OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [gdb-5.0/] [gdb/] [gnu-regex.c] - Diff between revs 105 and 1765

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 105 Rev 1765
/* *INDENT-OFF* */ /* keep in sync with glibc */
/* *INDENT-OFF* */ /* keep in sync with glibc */
/* Extended regular expression matching and search library,
/* Extended regular expression matching and search library,
   version 0.12.
   version 0.12.
   (Implements POSIX draft P1003.2/D11.2, except for some of the
   (Implements POSIX draft P1003.2/D11.2, except for some of the
   internationalization features.)
   internationalization features.)
   Copyright (C) 1993, 94, 95, 96, 97, 98 Free Software Foundation, Inc.
   Copyright (C) 1993, 94, 95, 96, 97, 98 Free Software Foundation, Inc.
 
 
   NOTE: The canonical source of this file is maintained with the
   NOTE: The canonical source of this file is maintained with the
   GNU C Library.  Bugs can be reported to bug-glibc@gnu.org.
   GNU C Library.  Bugs can be reported to bug-glibc@gnu.org.
 
 
   This program is free software; you can redistribute it and/or modify it
   This program is free software; you can redistribute it and/or modify it
   under the terms of the GNU General Public License as published by the
   under the terms of the GNU General Public License as published by the
   Free Software Foundation; either version 2, or (at your option) any
   Free Software Foundation; either version 2, or (at your option) any
   later version.
   later version.
 
 
   This program is distributed in the hope that it will be useful,
   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.
   GNU General Public License for more details.
 
 
   You should have received a copy of the GNU General Public License
   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software Foundation,
   along with this program; if not, write to the Free Software Foundation,
   Inc., 59 Temple Place - Suite 330,
   Inc., 59 Temple Place - Suite 330,
   Boston, MA 02111-1307, USA.  */
   Boston, MA 02111-1307, USA.  */
 
 
/* AIX requires this to be the first thing in the file. */
/* AIX requires this to be the first thing in the file. */
#if defined _AIX && !defined REGEX_MALLOC
#if defined _AIX && !defined REGEX_MALLOC
  #pragma alloca
  #pragma alloca
#endif
#endif
 
 
#undef  _GNU_SOURCE
#undef  _GNU_SOURCE
#define _GNU_SOURCE
#define _GNU_SOURCE
 
 
#ifdef HAVE_CONFIG_H
#ifdef HAVE_CONFIG_H
# include <config.h>
# include <config.h>
#endif
#endif
 
 
#ifndef PARAMS
#ifndef PARAMS
# if defined __GNUC__ || (defined __STDC__ && __STDC__)
# if defined __GNUC__ || (defined __STDC__ && __STDC__)
#  define PARAMS(args) args
#  define PARAMS(args) args
# else
# else
#  define PARAMS(args) ()
#  define PARAMS(args) ()
# endif  /* GCC.  */
# endif  /* GCC.  */
#endif  /* Not PARAMS.  */
#endif  /* Not PARAMS.  */
 
 
#if defined STDC_HEADERS && !defined emacs
#if defined STDC_HEADERS && !defined emacs
# include <stddef.h>
# include <stddef.h>
#else
#else
/* We need this for `gnu-regex.h', and perhaps for the Emacs include files.  */
/* We need this for `gnu-regex.h', and perhaps for the Emacs include files.  */
# include <sys/types.h>
# include <sys/types.h>
#endif
#endif
 
 
/* For platform which support the ISO C amendement 1 functionality we
/* For platform which support the ISO C amendement 1 functionality we
   support user defined character classes.  */
   support user defined character classes.  */
#if defined _LIBC || (defined HAVE_WCTYPE_H && defined HAVE_WCHAR_H)
#if defined _LIBC || (defined HAVE_WCTYPE_H && defined HAVE_WCHAR_H)
 /* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>.  */
 /* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>.  */
# include <wchar.h>
# include <wchar.h>
# include <wctype.h>
# include <wctype.h>
#endif
#endif
 
 
/* This is for other GNU distributions with internationalized messages.  */
/* This is for other GNU distributions with internationalized messages.  */
/* CYGNUS LOCAL: ../intl will handle this for us */
/* CYGNUS LOCAL: ../intl will handle this for us */
#ifdef ENABLE_NLS
#ifdef ENABLE_NLS
# include <libintl.h>
# include <libintl.h>
#else
#else
# define gettext(msgid) (msgid)
# define gettext(msgid) (msgid)
#endif
#endif
 
 
#ifndef gettext_noop
#ifndef gettext_noop
/* This define is so xgettext can find the internationalizable
/* This define is so xgettext can find the internationalizable
   strings.  */
   strings.  */
# define gettext_noop(String) String
# define gettext_noop(String) String
#endif
#endif
 
 
/* The `emacs' switch turns on certain matching commands
/* The `emacs' switch turns on certain matching commands
   that make sense only in Emacs. */
   that make sense only in Emacs. */
#ifdef emacs
#ifdef emacs
 
 
# include "lisp.h"
# include "lisp.h"
# include "buffer.h"
# include "buffer.h"
# include "syntax.h"
# include "syntax.h"
 
 
#else  /* not emacs */
#else  /* not emacs */
 
 
/* If we are not linking with Emacs proper,
/* If we are not linking with Emacs proper,
   we can't use the relocating allocator
   we can't use the relocating allocator
   even if config.h says that we can.  */
   even if config.h says that we can.  */
# undef REL_ALLOC
# undef REL_ALLOC
 
 
# if defined STDC_HEADERS || defined _LIBC
# if defined STDC_HEADERS || defined _LIBC
#  include <stdlib.h>
#  include <stdlib.h>
# else
# else
char *malloc ();
char *malloc ();
char *realloc ();
char *realloc ();
# endif
# endif
 
 
/* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
/* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
   If nothing else has been done, use the method below.  */
   If nothing else has been done, use the method below.  */
# ifdef INHIBIT_STRING_HEADER
# ifdef INHIBIT_STRING_HEADER
#  if !(defined HAVE_BZERO && defined HAVE_BCOPY)
#  if !(defined HAVE_BZERO && defined HAVE_BCOPY)
#   if !defined bzero && !defined bcopy
#   if !defined bzero && !defined bcopy
#    undef INHIBIT_STRING_HEADER
#    undef INHIBIT_STRING_HEADER
#   endif
#   endif
#  endif
#  endif
# endif
# endif
 
 
/* This is the normal way of making sure we have a bcopy and a bzero.
/* This is the normal way of making sure we have a bcopy and a bzero.
   This is used in most programs--a few other programs avoid this
   This is used in most programs--a few other programs avoid this
   by defining INHIBIT_STRING_HEADER.  */
   by defining INHIBIT_STRING_HEADER.  */
# ifndef INHIBIT_STRING_HEADER
# ifndef INHIBIT_STRING_HEADER
#  if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC
#  if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC
#   include <string.h>
#   include <string.h>
#   ifndef bzero
#   ifndef bzero
#    ifndef _LIBC
#    ifndef _LIBC
#     define bzero(s, n)        (memset (s, '\0', n), (s))
#     define bzero(s, n)        (memset (s, '\0', n), (s))
#    else
#    else
#     define bzero(s, n)        __bzero (s, n)
#     define bzero(s, n)        __bzero (s, n)
#    endif
#    endif
#   endif
#   endif
#  else
#  else
#   include <strings.h>
#   include <strings.h>
#   ifndef memcmp
#   ifndef memcmp
#    define memcmp(s1, s2, n)   bcmp (s1, s2, n)
#    define memcmp(s1, s2, n)   bcmp (s1, s2, n)
#   endif
#   endif
#   ifndef memcpy
#   ifndef memcpy
#    define memcpy(d, s, n)     (bcopy (s, d, n), (d))
#    define memcpy(d, s, n)     (bcopy (s, d, n), (d))
#   endif
#   endif
#  endif
#  endif
# endif
# endif
 
 
/* Define the syntax stuff for \<, \>, etc.  */
/* Define the syntax stuff for \<, \>, etc.  */
 
 
/* This must be nonzero for the wordchar and notwordchar pattern
/* This must be nonzero for the wordchar and notwordchar pattern
   commands in re_match_2.  */
   commands in re_match_2.  */
# ifndef Sword
# ifndef Sword
#  define Sword 1
#  define Sword 1
# endif
# endif
 
 
# ifdef SWITCH_ENUM_BUG
# ifdef SWITCH_ENUM_BUG
#  define SWITCH_ENUM_CAST(x) ((int)(x))
#  define SWITCH_ENUM_CAST(x) ((int)(x))
# else
# else
#  define SWITCH_ENUM_CAST(x) (x)
#  define SWITCH_ENUM_CAST(x) (x)
# endif
# endif
 
 
/* How many characters in the character set.  */
/* How many characters in the character set.  */
# define CHAR_SET_SIZE 256
# define CHAR_SET_SIZE 256
 
 
/* GDB LOCAL: define _REGEX_RE_COMP to get BSD style re_comp and re_exec */
/* GDB LOCAL: define _REGEX_RE_COMP to get BSD style re_comp and re_exec */
#ifndef _REGEX_RE_COMP
#ifndef _REGEX_RE_COMP
#define _REGEX_RE_COMP
#define _REGEX_RE_COMP
#endif
#endif
 
 
# ifdef SYNTAX_TABLE
# ifdef SYNTAX_TABLE
 
 
extern char *re_syntax_table;
extern char *re_syntax_table;
 
 
# else /* not SYNTAX_TABLE */
# else /* not SYNTAX_TABLE */
 
 
static char re_syntax_table[CHAR_SET_SIZE];
static char re_syntax_table[CHAR_SET_SIZE];
 
 
static void
static void
init_syntax_once ()
init_syntax_once ()
{
{
   register int c;
   register int c;
   static int done = 0;
   static int done = 0;
 
 
   if (done)
   if (done)
     return;
     return;
 
 
   bzero (re_syntax_table, sizeof re_syntax_table);
   bzero (re_syntax_table, sizeof re_syntax_table);
 
 
   for (c = 'a'; c <= 'z'; c++)
   for (c = 'a'; c <= 'z'; c++)
     re_syntax_table[c] = Sword;
     re_syntax_table[c] = Sword;
 
 
   for (c = 'A'; c <= 'Z'; c++)
   for (c = 'A'; c <= 'Z'; c++)
     re_syntax_table[c] = Sword;
     re_syntax_table[c] = Sword;
 
 
   for (c = '0'; c <= '9'; c++)
   for (c = '0'; c <= '9'; c++)
     re_syntax_table[c] = Sword;
     re_syntax_table[c] = Sword;
 
 
   re_syntax_table['_'] = Sword;
   re_syntax_table['_'] = Sword;
 
 
   done = 1;
   done = 1;
}
}
 
 
# endif /* not SYNTAX_TABLE */
# endif /* not SYNTAX_TABLE */
 
 
# define SYNTAX(c) re_syntax_table[c]
# define SYNTAX(c) re_syntax_table[c]
 
 
#endif /* not emacs */
#endif /* not emacs */


/* Get the interface, including the syntax bits.  */
/* Get the interface, including the syntax bits.  */
/* CYGNUS LOCAL: call it gnu-regex.h, not regex.h, to avoid name conflicts */
/* CYGNUS LOCAL: call it gnu-regex.h, not regex.h, to avoid name conflicts */
#include "gnu-regex.h"
#include "gnu-regex.h"
 
 
/* isalpha etc. are used for the character classes.  */
/* isalpha etc. are used for the character classes.  */
#include <ctype.h>
#include <ctype.h>
 
 
/* Jim Meyering writes:
/* Jim Meyering writes:
 
 
   "... Some ctype macros are valid only for character codes that
   "... Some ctype macros are valid only for character codes that
   isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
   isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
   using /bin/cc or gcc but without giving an ansi option).  So, all
   using /bin/cc or gcc but without giving an ansi option).  So, all
   ctype uses should be through macros like ISPRINT...  If
   ctype uses should be through macros like ISPRINT...  If
   STDC_HEADERS is defined, then autoconf has verified that the ctype
   STDC_HEADERS is defined, then autoconf has verified that the ctype
   macros don't need to be guarded with references to isascii. ...
   macros don't need to be guarded with references to isascii. ...
   Defining isascii to 1 should let any compiler worth its salt
   Defining isascii to 1 should let any compiler worth its salt
   eliminate the && through constant folding."
   eliminate the && through constant folding."
   Solaris defines some of these symbols so we must undefine them first.  */
   Solaris defines some of these symbols so we must undefine them first.  */
 
 
#undef ISASCII
#undef ISASCII
#if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII)
#if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII)
# define ISASCII(c) 1
# define ISASCII(c) 1
#else
#else
# define ISASCII(c) isascii(c)
# define ISASCII(c) isascii(c)
#endif
#endif
 
 
#ifdef isblank
#ifdef isblank
# define ISBLANK(c) (ISASCII (c) && isblank (c))
# define ISBLANK(c) (ISASCII (c) && isblank (c))
#else
#else
# define ISBLANK(c) ((c) == ' ' || (c) == '\t')
# define ISBLANK(c) ((c) == ' ' || (c) == '\t')
#endif
#endif
#ifdef isgraph
#ifdef isgraph
# define ISGRAPH(c) (ISASCII (c) && isgraph (c))
# define ISGRAPH(c) (ISASCII (c) && isgraph (c))
#else
#else
# define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
# define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
#endif
#endif
 
 
#undef ISPRINT
#undef ISPRINT
#define ISPRINT(c) (ISASCII (c) && isprint (c))
#define ISPRINT(c) (ISASCII (c) && isprint (c))
#define ISDIGIT(c) (ISASCII (c) && isdigit (c))
#define ISDIGIT(c) (ISASCII (c) && isdigit (c))
#define ISALNUM(c) (ISASCII (c) && isalnum (c))
#define ISALNUM(c) (ISASCII (c) && isalnum (c))
#define ISALPHA(c) (ISASCII (c) && isalpha (c))
#define ISALPHA(c) (ISASCII (c) && isalpha (c))
#define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
#define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
#define ISLOWER(c) (ISASCII (c) && islower (c))
#define ISLOWER(c) (ISASCII (c) && islower (c))
#define ISPUNCT(c) (ISASCII (c) && ispunct (c))
#define ISPUNCT(c) (ISASCII (c) && ispunct (c))
#define ISSPACE(c) (ISASCII (c) && isspace (c))
#define ISSPACE(c) (ISASCII (c) && isspace (c))
#define ISUPPER(c) (ISASCII (c) && isupper (c))
#define ISUPPER(c) (ISASCII (c) && isupper (c))
#define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
#define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
 
 
#ifndef NULL
#ifndef NULL
# define NULL (void *)0
# define NULL (void *)0
#endif
#endif
 
 
/* We remove any previous definition of `SIGN_EXTEND_CHAR',
/* We remove any previous definition of `SIGN_EXTEND_CHAR',
   since ours (we hope) works properly with all combinations of
   since ours (we hope) works properly with all combinations of
   machines, compilers, `char' and `unsigned char' argument types.
   machines, compilers, `char' and `unsigned char' argument types.
   (Per Bothner suggested the basic approach.)  */
   (Per Bothner suggested the basic approach.)  */
#undef SIGN_EXTEND_CHAR
#undef SIGN_EXTEND_CHAR
#if __STDC__
#if __STDC__
# define SIGN_EXTEND_CHAR(c) ((signed char) (c))
# define SIGN_EXTEND_CHAR(c) ((signed char) (c))
#else  /* not __STDC__ */
#else  /* not __STDC__ */
/* As in Harbison and Steele.  */
/* As in Harbison and Steele.  */
# define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
# define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
#endif
#endif


/* Should we use malloc or alloca?  If REGEX_MALLOC is not defined, we
/* Should we use malloc or alloca?  If REGEX_MALLOC is not defined, we
   use `alloca' instead of `malloc'.  This is because using malloc in
   use `alloca' instead of `malloc'.  This is because using malloc in
   re_search* or re_match* could cause memory leaks when C-g is used in
   re_search* or re_match* could cause memory leaks when C-g is used in
   Emacs; also, malloc is slower and causes storage fragmentation.  On
   Emacs; also, malloc is slower and causes storage fragmentation.  On
   the other hand, malloc is more portable, and easier to debug.
   the other hand, malloc is more portable, and easier to debug.
 
 
   Because we sometimes use alloca, some routines have to be macros,
   Because we sometimes use alloca, some routines have to be macros,
   not functions -- `alloca'-allocated space disappears at the end of the
   not functions -- `alloca'-allocated space disappears at the end of the
   function it is called in.  */
   function it is called in.  */
 
 
#ifdef REGEX_MALLOC
#ifdef REGEX_MALLOC
 
 
# define REGEX_ALLOCATE malloc
# define REGEX_ALLOCATE malloc
# define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
# define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
# define REGEX_FREE free
# define REGEX_FREE free
 
 
#else /* not REGEX_MALLOC  */
#else /* not REGEX_MALLOC  */
 
 
/* Emacs already defines alloca, sometimes.  */
/* Emacs already defines alloca, sometimes.  */
# ifndef alloca
# ifndef alloca
 
 
/* Make alloca work the best possible way.  */
/* Make alloca work the best possible way.  */
#  ifdef __GNUC__
#  ifdef __GNUC__
#   define alloca __builtin_alloca
#   define alloca __builtin_alloca
#  else /* not __GNUC__ */
#  else /* not __GNUC__ */
#   if HAVE_ALLOCA_H
#   if HAVE_ALLOCA_H
#    include <alloca.h>
#    include <alloca.h>
#   endif /* HAVE_ALLOCA_H */
#   endif /* HAVE_ALLOCA_H */
#  endif /* not __GNUC__ */
#  endif /* not __GNUC__ */
 
 
# endif /* not alloca */
# endif /* not alloca */
 
 
# define REGEX_ALLOCATE alloca
# define REGEX_ALLOCATE alloca
 
 
/* Assumes a `char *destination' variable.  */
/* Assumes a `char *destination' variable.  */
# define REGEX_REALLOCATE(source, osize, nsize)                         \
# define REGEX_REALLOCATE(source, osize, nsize)                         \
  (destination = (char *) alloca (nsize),                               \
  (destination = (char *) alloca (nsize),                               \
   memcpy (destination, source, osize))
   memcpy (destination, source, osize))
 
 
/* No need to do anything to free, after alloca.  */
/* No need to do anything to free, after alloca.  */
# define REGEX_FREE(arg) ((void)0) /* Do nothing!  But inhibit gcc warning.  */
# define REGEX_FREE(arg) ((void)0) /* Do nothing!  But inhibit gcc warning.  */
 
 
#endif /* not REGEX_MALLOC */
#endif /* not REGEX_MALLOC */
 
 
/* Define how to allocate the failure stack.  */
/* Define how to allocate the failure stack.  */
 
 
#if defined REL_ALLOC && defined REGEX_MALLOC
#if defined REL_ALLOC && defined REGEX_MALLOC
 
 
# define REGEX_ALLOCATE_STACK(size)                             \
# define REGEX_ALLOCATE_STACK(size)                             \
  r_alloc (&failure_stack_ptr, (size))
  r_alloc (&failure_stack_ptr, (size))
# define REGEX_REALLOCATE_STACK(source, osize, nsize)           \
# define REGEX_REALLOCATE_STACK(source, osize, nsize)           \
  r_re_alloc (&failure_stack_ptr, (nsize))
  r_re_alloc (&failure_stack_ptr, (nsize))
# define REGEX_FREE_STACK(ptr)                                  \
# define REGEX_FREE_STACK(ptr)                                  \
  r_alloc_free (&failure_stack_ptr)
  r_alloc_free (&failure_stack_ptr)
 
 
#else /* not using relocating allocator */
#else /* not using relocating allocator */
 
 
# ifdef REGEX_MALLOC
# ifdef REGEX_MALLOC
 
 
#  define REGEX_ALLOCATE_STACK malloc
#  define REGEX_ALLOCATE_STACK malloc
#  define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
#  define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
#  define REGEX_FREE_STACK free
#  define REGEX_FREE_STACK free
 
 
# else /* not REGEX_MALLOC */
# else /* not REGEX_MALLOC */
 
 
#  define REGEX_ALLOCATE_STACK alloca
#  define REGEX_ALLOCATE_STACK alloca
 
 
#  define REGEX_REALLOCATE_STACK(source, osize, nsize)                  \
#  define REGEX_REALLOCATE_STACK(source, osize, nsize)                  \
   REGEX_REALLOCATE (source, osize, nsize)
   REGEX_REALLOCATE (source, osize, nsize)
/* No need to explicitly free anything.  */
/* No need to explicitly free anything.  */
#  define REGEX_FREE_STACK(arg)
#  define REGEX_FREE_STACK(arg)
 
 
# endif /* not REGEX_MALLOC */
# endif /* not REGEX_MALLOC */
#endif /* not using relocating allocator */
#endif /* not using relocating allocator */
 
 
 
 
/* True if `size1' is non-NULL and PTR is pointing anywhere inside
/* True if `size1' is non-NULL and PTR is pointing anywhere inside
   `string1' or just past its end.  This works if PTR is NULL, which is
   `string1' or just past its end.  This works if PTR is NULL, which is
   a good thing.  */
   a good thing.  */
#define FIRST_STRING_P(ptr)                                     \
#define FIRST_STRING_P(ptr)                                     \
  (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
  (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
 
 
/* (Re)Allocate N items of type T using malloc, or fail.  */
/* (Re)Allocate N items of type T using malloc, or fail.  */
#define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
#define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
#define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
#define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
#define RETALLOC_IF(addr, n, t) \
#define RETALLOC_IF(addr, n, t) \
  if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
  if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
#define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
#define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
 
 
#define BYTEWIDTH 8 /* In bits.  */
#define BYTEWIDTH 8 /* In bits.  */
 
 
#define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
#define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
 
 
#undef MAX
#undef MAX
#undef MIN
#undef MIN
#define MAX(a, b) ((a) > (b) ? (a) : (b))
#define MAX(a, b) ((a) > (b) ? (a) : (b))
#define MIN(a, b) ((a) < (b) ? (a) : (b))
#define MIN(a, b) ((a) < (b) ? (a) : (b))
 
 
typedef char boolean;
typedef char boolean;
#define false 0
#define false 0
#define true 1
#define true 1
 
 
static int re_match_2_internal PARAMS ((struct re_pattern_buffer *bufp,
static int re_match_2_internal PARAMS ((struct re_pattern_buffer *bufp,
                                        const char *string1, int size1,
                                        const char *string1, int size1,
                                        const char *string2, int size2,
                                        const char *string2, int size2,
                                        int pos,
                                        int pos,
                                        struct re_registers *regs,
                                        struct re_registers *regs,
                                        int stop));
                                        int stop));


/* These are the command codes that appear in compiled regular
/* These are the command codes that appear in compiled regular
   expressions.  Some opcodes are followed by argument bytes.  A
   expressions.  Some opcodes are followed by argument bytes.  A
   command code can specify any interpretation whatsoever for its
   command code can specify any interpretation whatsoever for its
   arguments.  Zero bytes may appear in the compiled regular expression.  */
   arguments.  Zero bytes may appear in the compiled regular expression.  */
 
 
typedef enum
typedef enum
{
{
  no_op = 0,
  no_op = 0,
 
 
  /* Succeed right away--no more backtracking.  */
  /* Succeed right away--no more backtracking.  */
  succeed,
  succeed,
 
 
        /* Followed by one byte giving n, then by n literal bytes.  */
        /* Followed by one byte giving n, then by n literal bytes.  */
  exactn,
  exactn,
 
 
        /* Matches any (more or less) character.  */
        /* Matches any (more or less) character.  */
  anychar,
  anychar,
 
 
        /* Matches any one char belonging to specified set.  First
        /* Matches any one char belonging to specified set.  First
           following byte is number of bitmap bytes.  Then come bytes
           following byte is number of bitmap bytes.  Then come bytes
           for a bitmap saying which chars are in.  Bits in each byte
           for a bitmap saying which chars are in.  Bits in each byte
           are ordered low-bit-first.  A character is in the set if its
           are ordered low-bit-first.  A character is in the set if its
           bit is 1.  A character too large to have a bit in the map is
           bit is 1.  A character too large to have a bit in the map is
           automatically not in the set.  */
           automatically not in the set.  */
  charset,
  charset,
 
 
        /* Same parameters as charset, but match any character that is
        /* Same parameters as charset, but match any character that is
           not one of those specified.  */
           not one of those specified.  */
  charset_not,
  charset_not,
 
 
        /* Start remembering the text that is matched, for storing in a
        /* Start remembering the text that is matched, for storing in a
           register.  Followed by one byte with the register number, in
           register.  Followed by one byte with the register number, in
           the range 0 to one less than the pattern buffer's re_nsub
           the range 0 to one less than the pattern buffer's re_nsub
           field.  Then followed by one byte with the number of groups
           field.  Then followed by one byte with the number of groups
           inner to this one.  (This last has to be part of the
           inner to this one.  (This last has to be part of the
           start_memory only because we need it in the on_failure_jump
           start_memory only because we need it in the on_failure_jump
           of re_match_2.)  */
           of re_match_2.)  */
  start_memory,
  start_memory,
 
 
        /* Stop remembering the text that is matched and store it in a
        /* Stop remembering the text that is matched and store it in a
           memory register.  Followed by one byte with the register
           memory register.  Followed by one byte with the register
           number, in the range 0 to one less than `re_nsub' in the
           number, in the range 0 to one less than `re_nsub' in the
           pattern buffer, and one byte with the number of inner groups,
           pattern buffer, and one byte with the number of inner groups,
           just like `start_memory'.  (We need the number of inner
           just like `start_memory'.  (We need the number of inner
           groups here because we don't have any easy way of finding the
           groups here because we don't have any easy way of finding the
           corresponding start_memory when we're at a stop_memory.)  */
           corresponding start_memory when we're at a stop_memory.)  */
  stop_memory,
  stop_memory,
 
 
        /* Match a duplicate of something remembered. Followed by one
        /* Match a duplicate of something remembered. Followed by one
           byte containing the register number.  */
           byte containing the register number.  */
  duplicate,
  duplicate,
 
 
        /* Fail unless at beginning of line.  */
        /* Fail unless at beginning of line.  */
  begline,
  begline,
 
 
        /* Fail unless at end of line.  */
        /* Fail unless at end of line.  */
  endline,
  endline,
 
 
        /* Succeeds if at beginning of buffer (if emacs) or at beginning
        /* Succeeds if at beginning of buffer (if emacs) or at beginning
           of string to be matched (if not).  */
           of string to be matched (if not).  */
  begbuf,
  begbuf,
 
 
        /* Analogously, for end of buffer/string.  */
        /* Analogously, for end of buffer/string.  */
  endbuf,
  endbuf,
 
 
        /* Followed by two byte relative address to which to jump.  */
        /* Followed by two byte relative address to which to jump.  */
  jump,
  jump,
 
 
        /* Same as jump, but marks the end of an alternative.  */
        /* Same as jump, but marks the end of an alternative.  */
  jump_past_alt,
  jump_past_alt,
 
 
        /* Followed by two-byte relative address of place to resume at
        /* Followed by two-byte relative address of place to resume at
           in case of failure.  */
           in case of failure.  */
  on_failure_jump,
  on_failure_jump,
 
 
        /* Like on_failure_jump, but pushes a placeholder instead of the
        /* Like on_failure_jump, but pushes a placeholder instead of the
           current string position when executed.  */
           current string position when executed.  */
  on_failure_keep_string_jump,
  on_failure_keep_string_jump,
 
 
        /* Throw away latest failure point and then jump to following
        /* Throw away latest failure point and then jump to following
           two-byte relative address.  */
           two-byte relative address.  */
  pop_failure_jump,
  pop_failure_jump,
 
 
        /* Change to pop_failure_jump if know won't have to backtrack to
        /* Change to pop_failure_jump if know won't have to backtrack to
           match; otherwise change to jump.  This is used to jump
           match; otherwise change to jump.  This is used to jump
           back to the beginning of a repeat.  If what follows this jump
           back to the beginning of a repeat.  If what follows this jump
           clearly won't match what the repeat does, such that we can be
           clearly won't match what the repeat does, such that we can be
           sure that there is no use backtracking out of repetitions
           sure that there is no use backtracking out of repetitions
           already matched, then we change it to a pop_failure_jump.
           already matched, then we change it to a pop_failure_jump.
           Followed by two-byte address.  */
           Followed by two-byte address.  */
  maybe_pop_jump,
  maybe_pop_jump,
 
 
        /* Jump to following two-byte address, and push a dummy failure
        /* Jump to following two-byte address, and push a dummy failure
           point. This failure point will be thrown away if an attempt
           point. This failure point will be thrown away if an attempt
           is made to use it for a failure.  A `+' construct makes this
           is made to use it for a failure.  A `+' construct makes this
           before the first repeat.  Also used as an intermediary kind
           before the first repeat.  Also used as an intermediary kind
           of jump when compiling an alternative.  */
           of jump when compiling an alternative.  */
  dummy_failure_jump,
  dummy_failure_jump,
 
 
        /* Push a dummy failure point and continue.  Used at the end of
        /* Push a dummy failure point and continue.  Used at the end of
           alternatives.  */
           alternatives.  */
  push_dummy_failure,
  push_dummy_failure,
 
 
        /* Followed by two-byte relative address and two-byte number n.
        /* Followed by two-byte relative address and two-byte number n.
           After matching N times, jump to the address upon failure.  */
           After matching N times, jump to the address upon failure.  */
  succeed_n,
  succeed_n,
 
 
        /* Followed by two-byte relative address, and two-byte number n.
        /* Followed by two-byte relative address, and two-byte number n.
           Jump to the address N times, then fail.  */
           Jump to the address N times, then fail.  */
  jump_n,
  jump_n,
 
 
        /* Set the following two-byte relative address to the
        /* Set the following two-byte relative address to the
           subsequent two-byte number.  The address *includes* the two
           subsequent two-byte number.  The address *includes* the two
           bytes of number.  */
           bytes of number.  */
  set_number_at,
  set_number_at,
 
 
  wordchar,     /* Matches any word-constituent character.  */
  wordchar,     /* Matches any word-constituent character.  */
  notwordchar,  /* Matches any char that is not a word-constituent.  */
  notwordchar,  /* Matches any char that is not a word-constituent.  */
 
 
  wordbeg,      /* Succeeds if at word beginning.  */
  wordbeg,      /* Succeeds if at word beginning.  */
  wordend,      /* Succeeds if at word end.  */
  wordend,      /* Succeeds if at word end.  */
 
 
  wordbound,    /* Succeeds if at a word boundary.  */
  wordbound,    /* Succeeds if at a word boundary.  */
  notwordbound  /* Succeeds if not at a word boundary.  */
  notwordbound  /* Succeeds if not at a word boundary.  */
 
 
#ifdef emacs
#ifdef emacs
  ,before_dot,  /* Succeeds if before point.  */
  ,before_dot,  /* Succeeds if before point.  */
  at_dot,       /* Succeeds if at point.  */
  at_dot,       /* Succeeds if at point.  */
  after_dot,    /* Succeeds if after point.  */
  after_dot,    /* Succeeds if after point.  */
 
 
        /* Matches any character whose syntax is specified.  Followed by
        /* Matches any character whose syntax is specified.  Followed by
           a byte which contains a syntax code, e.g., Sword.  */
           a byte which contains a syntax code, e.g., Sword.  */
  syntaxspec,
  syntaxspec,
 
 
        /* Matches any character whose syntax is not that specified.  */
        /* Matches any character whose syntax is not that specified.  */
  notsyntaxspec
  notsyntaxspec
#endif /* emacs */
#endif /* emacs */
} re_opcode_t;
} re_opcode_t;


/* Common operations on the compiled pattern.  */
/* Common operations on the compiled pattern.  */
 
 
/* Store NUMBER in two contiguous bytes starting at DESTINATION.  */
/* Store NUMBER in two contiguous bytes starting at DESTINATION.  */
 
 
#define STORE_NUMBER(destination, number)                               \
#define STORE_NUMBER(destination, number)                               \
  do {                                                                  \
  do {                                                                  \
    (destination)[0] = (number) & 0377;                                  \
    (destination)[0] = (number) & 0377;                                  \
    (destination)[1] = (number) >> 8;                                   \
    (destination)[1] = (number) >> 8;                                   \
  } while (0)
  } while (0)
 
 
/* Same as STORE_NUMBER, except increment DESTINATION to
/* Same as STORE_NUMBER, except increment DESTINATION to
   the byte after where the number is stored.  Therefore, DESTINATION
   the byte after where the number is stored.  Therefore, DESTINATION
   must be an lvalue.  */
   must be an lvalue.  */
 
 
#define STORE_NUMBER_AND_INCR(destination, number)                      \
#define STORE_NUMBER_AND_INCR(destination, number)                      \
  do {                                                                  \
  do {                                                                  \
    STORE_NUMBER (destination, number);                                 \
    STORE_NUMBER (destination, number);                                 \
    (destination) += 2;                                                 \
    (destination) += 2;                                                 \
  } while (0)
  } while (0)
 
 
/* Put into DESTINATION a number stored in two contiguous bytes starting
/* Put into DESTINATION a number stored in two contiguous bytes starting
   at SOURCE.  */
   at SOURCE.  */
 
 
#define EXTRACT_NUMBER(destination, source)                             \
#define EXTRACT_NUMBER(destination, source)                             \
  do {                                                                  \
  do {                                                                  \
    (destination) = *(source) & 0377;                                   \
    (destination) = *(source) & 0377;                                   \
    (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8;           \
    (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8;           \
  } while (0)
  } while (0)
 
 
#ifdef DEBUG
#ifdef DEBUG
static void extract_number _RE_ARGS ((int *dest, unsigned char *source));
static void extract_number _RE_ARGS ((int *dest, unsigned char *source));
static void
static void
extract_number (dest, source)
extract_number (dest, source)
    int *dest;
    int *dest;
    unsigned char *source;
    unsigned char *source;
{
{
  int temp = SIGN_EXTEND_CHAR (*(source + 1));
  int temp = SIGN_EXTEND_CHAR (*(source + 1));
  *dest = *source & 0377;
  *dest = *source & 0377;
  *dest += temp << 8;
  *dest += temp << 8;
}
}
 
 
# ifndef EXTRACT_MACROS /* To debug the macros.  */
# ifndef EXTRACT_MACROS /* To debug the macros.  */
#  undef EXTRACT_NUMBER
#  undef EXTRACT_NUMBER
#  define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
#  define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
# endif /* not EXTRACT_MACROS */
# endif /* not EXTRACT_MACROS */
 
 
#endif /* DEBUG */
#endif /* DEBUG */
 
 
/* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
/* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
   SOURCE must be an lvalue.  */
   SOURCE must be an lvalue.  */
 
 
#define EXTRACT_NUMBER_AND_INCR(destination, source)                    \
#define EXTRACT_NUMBER_AND_INCR(destination, source)                    \
  do {                                                                  \
  do {                                                                  \
    EXTRACT_NUMBER (destination, source);                               \
    EXTRACT_NUMBER (destination, source);                               \
    (source) += 2;                                                      \
    (source) += 2;                                                      \
  } while (0)
  } while (0)
 
 
#ifdef DEBUG
#ifdef DEBUG
static void extract_number_and_incr _RE_ARGS ((int *destination,
static void extract_number_and_incr _RE_ARGS ((int *destination,
                                               unsigned char **source));
                                               unsigned char **source));
static void
static void
extract_number_and_incr (destination, source)
extract_number_and_incr (destination, source)
    int *destination;
    int *destination;
    unsigned char **source;
    unsigned char **source;
{
{
  extract_number (destination, *source);
  extract_number (destination, *source);
  *source += 2;
  *source += 2;
}
}
 
 
# ifndef EXTRACT_MACROS
# ifndef EXTRACT_MACROS
#  undef EXTRACT_NUMBER_AND_INCR
#  undef EXTRACT_NUMBER_AND_INCR
#  define EXTRACT_NUMBER_AND_INCR(dest, src) \
#  define EXTRACT_NUMBER_AND_INCR(dest, src) \
  extract_number_and_incr (&dest, &src)
  extract_number_and_incr (&dest, &src)
# endif /* not EXTRACT_MACROS */
# endif /* not EXTRACT_MACROS */
 
 
#endif /* DEBUG */
#endif /* DEBUG */


/* If DEBUG is defined, Regex prints many voluminous messages about what
/* If DEBUG is defined, Regex prints many voluminous messages about what
   it is doing (if the variable `debug' is nonzero).  If linked with the
   it is doing (if the variable `debug' is nonzero).  If linked with the
   main program in `iregex.c', you can enter patterns and strings
   main program in `iregex.c', you can enter patterns and strings
   interactively.  And if linked with the main program in `main.c' and
   interactively.  And if linked with the main program in `main.c' and
   the other test files, you can run the already-written tests.  */
   the other test files, you can run the already-written tests.  */
 
 
#ifdef DEBUG
#ifdef DEBUG
 
 
/* We use standard I/O for debugging.  */
/* We use standard I/O for debugging.  */
# include <stdio.h>
# include <stdio.h>
 
 
/* It is useful to test things that ``must'' be true when debugging.  */
/* It is useful to test things that ``must'' be true when debugging.  */
# include <assert.h>
# include <assert.h>
 
 
static int debug = 0;
static int debug = 0;
 
 
# define DEBUG_STATEMENT(e) e
# define DEBUG_STATEMENT(e) e
# define DEBUG_PRINT1(x) if (debug) printf (x)
# define DEBUG_PRINT1(x) if (debug) printf (x)
# define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
# define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
# define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
# define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
# define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
# define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
# define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)                          \
# define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)                          \
  if (debug) print_partial_compiled_pattern (s, e)
  if (debug) print_partial_compiled_pattern (s, e)
# define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)                 \
# define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)                 \
  if (debug) print_double_string (w, s1, sz1, s2, sz2)
  if (debug) print_double_string (w, s1, sz1, s2, sz2)
 
 
 
 
/* Print the fastmap in human-readable form.  */
/* Print the fastmap in human-readable form.  */
 
 
void
void
print_fastmap (fastmap)
print_fastmap (fastmap)
    char *fastmap;
    char *fastmap;
{
{
  unsigned was_a_range = 0;
  unsigned was_a_range = 0;
  unsigned i = 0;
  unsigned i = 0;
 
 
  while (i < (1 << BYTEWIDTH))
  while (i < (1 << BYTEWIDTH))
    {
    {
      if (fastmap[i++])
      if (fastmap[i++])
        {
        {
          was_a_range = 0;
          was_a_range = 0;
          putchar (i - 1);
          putchar (i - 1);
          while (i < (1 << BYTEWIDTH)  &&  fastmap[i])
          while (i < (1 << BYTEWIDTH)  &&  fastmap[i])
            {
            {
              was_a_range = 1;
              was_a_range = 1;
              i++;
              i++;
            }
            }
          if (was_a_range)
          if (was_a_range)
            {
            {
              printf ("-");
              printf ("-");
              putchar (i - 1);
              putchar (i - 1);
            }
            }
        }
        }
    }
    }
  putchar ('\n');
  putchar ('\n');
}
}
 
 
 
 
/* Print a compiled pattern string in human-readable form, starting at
/* Print a compiled pattern string in human-readable form, starting at
   the START pointer into it and ending just before the pointer END.  */
   the START pointer into it and ending just before the pointer END.  */
 
 
void
void
print_partial_compiled_pattern (start, end)
print_partial_compiled_pattern (start, end)
    unsigned char *start;
    unsigned char *start;
    unsigned char *end;
    unsigned char *end;
{
{
  int mcnt, mcnt2;
  int mcnt, mcnt2;
  unsigned char *p1;
  unsigned char *p1;
  unsigned char *p = start;
  unsigned char *p = start;
  unsigned char *pend = end;
  unsigned char *pend = end;
 
 
  if (start == NULL)
  if (start == NULL)
    {
    {
      printf ("(null)\n");
      printf ("(null)\n");
      return;
      return;
    }
    }
 
 
  /* Loop over pattern commands.  */
  /* Loop over pattern commands.  */
  while (p < pend)
  while (p < pend)
    {
    {
      printf ("%d:\t", p - start);
      printf ("%d:\t", p - start);
 
 
      switch ((re_opcode_t) *p++)
      switch ((re_opcode_t) *p++)
        {
        {
        case no_op:
        case no_op:
          printf ("/no_op");
          printf ("/no_op");
          break;
          break;
 
 
        case exactn:
        case exactn:
          mcnt = *p++;
          mcnt = *p++;
          printf ("/exactn/%d", mcnt);
          printf ("/exactn/%d", mcnt);
          do
          do
            {
            {
              putchar ('/');
              putchar ('/');
              putchar (*p++);
              putchar (*p++);
            }
            }
          while (--mcnt);
          while (--mcnt);
          break;
          break;
 
 
        case start_memory:
        case start_memory:
          mcnt = *p++;
          mcnt = *p++;
          printf ("/start_memory/%d/%d", mcnt, *p++);
          printf ("/start_memory/%d/%d", mcnt, *p++);
          break;
          break;
 
 
        case stop_memory:
        case stop_memory:
          mcnt = *p++;
          mcnt = *p++;
          printf ("/stop_memory/%d/%d", mcnt, *p++);
          printf ("/stop_memory/%d/%d", mcnt, *p++);
          break;
          break;
 
 
        case duplicate:
        case duplicate:
          printf ("/duplicate/%d", *p++);
          printf ("/duplicate/%d", *p++);
          break;
          break;
 
 
        case anychar:
        case anychar:
          printf ("/anychar");
          printf ("/anychar");
          break;
          break;
 
 
        case charset:
        case charset:
        case charset_not:
        case charset_not:
          {
          {
            register int c, last = -100;
            register int c, last = -100;
            register int in_range = 0;
            register int in_range = 0;
 
 
            printf ("/charset [%s",
            printf ("/charset [%s",
                    (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
                    (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
 
 
            assert (p + *p < pend);
            assert (p + *p < pend);
 
 
            for (c = 0; c < 256; c++)
            for (c = 0; c < 256; c++)
              if (c / 8 < *p
              if (c / 8 < *p
                  && (p[1 + (c/8)] & (1 << (c % 8))))
                  && (p[1 + (c/8)] & (1 << (c % 8))))
                {
                {
                  /* Are we starting a range?  */
                  /* Are we starting a range?  */
                  if (last + 1 == c && ! in_range)
                  if (last + 1 == c && ! in_range)
                    {
                    {
                      putchar ('-');
                      putchar ('-');
                      in_range = 1;
                      in_range = 1;
                    }
                    }
                  /* Have we broken a range?  */
                  /* Have we broken a range?  */
                  else if (last + 1 != c && in_range)
                  else if (last + 1 != c && in_range)
              {
              {
                      putchar (last);
                      putchar (last);
                      in_range = 0;
                      in_range = 0;
                    }
                    }
 
 
                  if (! in_range)
                  if (! in_range)
                    putchar (c);
                    putchar (c);
 
 
                  last = c;
                  last = c;
              }
              }
 
 
            if (in_range)
            if (in_range)
              putchar (last);
              putchar (last);
 
 
            putchar (']');
            putchar (']');
 
 
            p += 1 + *p;
            p += 1 + *p;
          }
          }
          break;
          break;
 
 
        case begline:
        case begline:
          printf ("/begline");
          printf ("/begline");
          break;
          break;
 
 
        case endline:
        case endline:
          printf ("/endline");
          printf ("/endline");
          break;
          break;
 
 
        case on_failure_jump:
        case on_failure_jump:
          extract_number_and_incr (&mcnt, &p);
          extract_number_and_incr (&mcnt, &p);
          printf ("/on_failure_jump to %d", p + mcnt - start);
          printf ("/on_failure_jump to %d", p + mcnt - start);
          break;
          break;
 
 
        case on_failure_keep_string_jump:
        case on_failure_keep_string_jump:
          extract_number_and_incr (&mcnt, &p);
          extract_number_and_incr (&mcnt, &p);
          printf ("/on_failure_keep_string_jump to %d", p + mcnt - start);
          printf ("/on_failure_keep_string_jump to %d", p + mcnt - start);
          break;
          break;
 
 
        case dummy_failure_jump:
        case dummy_failure_jump:
          extract_number_and_incr (&mcnt, &p);
          extract_number_and_incr (&mcnt, &p);
          printf ("/dummy_failure_jump to %d", p + mcnt - start);
          printf ("/dummy_failure_jump to %d", p + mcnt - start);
          break;
          break;
 
 
        case push_dummy_failure:
        case push_dummy_failure:
          printf ("/push_dummy_failure");
          printf ("/push_dummy_failure");
          break;
          break;
 
 
        case maybe_pop_jump:
        case maybe_pop_jump:
          extract_number_and_incr (&mcnt, &p);
          extract_number_and_incr (&mcnt, &p);
          printf ("/maybe_pop_jump to %d", p + mcnt - start);
          printf ("/maybe_pop_jump to %d", p + mcnt - start);
          break;
          break;
 
 
        case pop_failure_jump:
        case pop_failure_jump:
          extract_number_and_incr (&mcnt, &p);
          extract_number_and_incr (&mcnt, &p);
          printf ("/pop_failure_jump to %d", p + mcnt - start);
          printf ("/pop_failure_jump to %d", p + mcnt - start);
          break;
          break;
 
 
        case jump_past_alt:
        case jump_past_alt:
          extract_number_and_incr (&mcnt, &p);
          extract_number_and_incr (&mcnt, &p);
          printf ("/jump_past_alt to %d", p + mcnt - start);
          printf ("/jump_past_alt to %d", p + mcnt - start);
          break;
          break;
 
 
        case jump:
        case jump:
          extract_number_and_incr (&mcnt, &p);
          extract_number_and_incr (&mcnt, &p);
          printf ("/jump to %d", p + mcnt - start);
          printf ("/jump to %d", p + mcnt - start);
          break;
          break;
 
 
        case succeed_n:
        case succeed_n:
          extract_number_and_incr (&mcnt, &p);
          extract_number_and_incr (&mcnt, &p);
          p1 = p + mcnt;
          p1 = p + mcnt;
          extract_number_and_incr (&mcnt2, &p);
          extract_number_and_incr (&mcnt2, &p);
          printf ("/succeed_n to %d, %d times", p1 - start, mcnt2);
          printf ("/succeed_n to %d, %d times", p1 - start, mcnt2);
          break;
          break;
 
 
        case jump_n:
        case jump_n:
          extract_number_and_incr (&mcnt, &p);
          extract_number_and_incr (&mcnt, &p);
          p1 = p + mcnt;
          p1 = p + mcnt;
          extract_number_and_incr (&mcnt2, &p);
          extract_number_and_incr (&mcnt2, &p);
          printf ("/jump_n to %d, %d times", p1 - start, mcnt2);
          printf ("/jump_n to %d, %d times", p1 - start, mcnt2);
          break;
          break;
 
 
        case set_number_at:
        case set_number_at:
          extract_number_and_incr (&mcnt, &p);
          extract_number_and_incr (&mcnt, &p);
          p1 = p + mcnt;
          p1 = p + mcnt;
          extract_number_and_incr (&mcnt2, &p);
          extract_number_and_incr (&mcnt2, &p);
          printf ("/set_number_at location %d to %d", p1 - start, mcnt2);
          printf ("/set_number_at location %d to %d", p1 - start, mcnt2);
          break;
          break;
 
 
        case wordbound:
        case wordbound:
          printf ("/wordbound");
          printf ("/wordbound");
          break;
          break;
 
 
        case notwordbound:
        case notwordbound:
          printf ("/notwordbound");
          printf ("/notwordbound");
          break;
          break;
 
 
        case wordbeg:
        case wordbeg:
          printf ("/wordbeg");
          printf ("/wordbeg");
          break;
          break;
 
 
        case wordend:
        case wordend:
          printf ("/wordend");
          printf ("/wordend");
 
 
# ifdef emacs
# ifdef emacs
        case before_dot:
        case before_dot:
          printf ("/before_dot");
          printf ("/before_dot");
          break;
          break;
 
 
        case at_dot:
        case at_dot:
          printf ("/at_dot");
          printf ("/at_dot");
          break;
          break;
 
 
        case after_dot:
        case after_dot:
          printf ("/after_dot");
          printf ("/after_dot");
          break;
          break;
 
 
        case syntaxspec:
        case syntaxspec:
          printf ("/syntaxspec");
          printf ("/syntaxspec");
          mcnt = *p++;
          mcnt = *p++;
          printf ("/%d", mcnt);
          printf ("/%d", mcnt);
          break;
          break;
 
 
        case notsyntaxspec:
        case notsyntaxspec:
          printf ("/notsyntaxspec");
          printf ("/notsyntaxspec");
          mcnt = *p++;
          mcnt = *p++;
          printf ("/%d", mcnt);
          printf ("/%d", mcnt);
          break;
          break;
# endif /* emacs */
# endif /* emacs */
 
 
        case wordchar:
        case wordchar:
          printf ("/wordchar");
          printf ("/wordchar");
          break;
          break;
 
 
        case notwordchar:
        case notwordchar:
          printf ("/notwordchar");
          printf ("/notwordchar");
          break;
          break;
 
 
        case begbuf:
        case begbuf:
          printf ("/begbuf");
          printf ("/begbuf");
          break;
          break;
 
 
        case endbuf:
        case endbuf:
          printf ("/endbuf");
          printf ("/endbuf");
          break;
          break;
 
 
        default:
        default:
          printf ("?%d", *(p-1));
          printf ("?%d", *(p-1));
        }
        }
 
 
      putchar ('\n');
      putchar ('\n');
    }
    }
 
 
  printf ("%d:\tend of pattern.\n", p - start);
  printf ("%d:\tend of pattern.\n", p - start);
}
}
 
 
 
 
void
void
print_compiled_pattern (bufp)
print_compiled_pattern (bufp)
    struct re_pattern_buffer *bufp;
    struct re_pattern_buffer *bufp;
{
{
  unsigned char *buffer = bufp->buffer;
  unsigned char *buffer = bufp->buffer;
 
 
  print_partial_compiled_pattern (buffer, buffer + bufp->used);
  print_partial_compiled_pattern (buffer, buffer + bufp->used);
  printf ("%ld bytes used/%ld bytes allocated.\n",
  printf ("%ld bytes used/%ld bytes allocated.\n",
          bufp->used, bufp->allocated);
          bufp->used, bufp->allocated);
 
 
  if (bufp->fastmap_accurate && bufp->fastmap)
  if (bufp->fastmap_accurate && bufp->fastmap)
    {
    {
      printf ("fastmap: ");
      printf ("fastmap: ");
      print_fastmap (bufp->fastmap);
      print_fastmap (bufp->fastmap);
    }
    }
 
 
  printf ("re_nsub: %d\t", bufp->re_nsub);
  printf ("re_nsub: %d\t", bufp->re_nsub);
  printf ("regs_alloc: %d\t", bufp->regs_allocated);
  printf ("regs_alloc: %d\t", bufp->regs_allocated);
  printf ("can_be_null: %d\t", bufp->can_be_null);
  printf ("can_be_null: %d\t", bufp->can_be_null);
  printf ("newline_anchor: %d\n", bufp->newline_anchor);
  printf ("newline_anchor: %d\n", bufp->newline_anchor);
  printf ("no_sub: %d\t", bufp->no_sub);
  printf ("no_sub: %d\t", bufp->no_sub);
  printf ("not_bol: %d\t", bufp->not_bol);
  printf ("not_bol: %d\t", bufp->not_bol);
  printf ("not_eol: %d\t", bufp->not_eol);
  printf ("not_eol: %d\t", bufp->not_eol);
  printf ("syntax: %lx\n", bufp->syntax);
  printf ("syntax: %lx\n", bufp->syntax);
  /* Perhaps we should print the translate table?  */
  /* Perhaps we should print the translate table?  */
}
}
 
 
 
 
void
void
print_double_string (where, string1, size1, string2, size2)
print_double_string (where, string1, size1, string2, size2)
    const char *where;
    const char *where;
    const char *string1;
    const char *string1;
    const char *string2;
    const char *string2;
    int size1;
    int size1;
    int size2;
    int size2;
{
{
  int this_char;
  int this_char;
 
 
  if (where == NULL)
  if (where == NULL)
    printf ("(null)");
    printf ("(null)");
  else
  else
    {
    {
      if (FIRST_STRING_P (where))
      if (FIRST_STRING_P (where))
        {
        {
          for (this_char = where - string1; this_char < size1; this_char++)
          for (this_char = where - string1; this_char < size1; this_char++)
            putchar (string1[this_char]);
            putchar (string1[this_char]);
 
 
          where = string2;
          where = string2;
        }
        }
 
 
      for (this_char = where - string2; this_char < size2; this_char++)
      for (this_char = where - string2; this_char < size2; this_char++)
        putchar (string2[this_char]);
        putchar (string2[this_char]);
    }
    }
}
}
 
 
void
void
printchar (c)
printchar (c)
     int c;
     int c;
{
{
  putc (c, stderr);
  putc (c, stderr);
}
}
 
 
#else /* not DEBUG */
#else /* not DEBUG */
 
 
# undef assert
# undef assert
# define assert(e)
# define assert(e)
 
 
# define DEBUG_STATEMENT(e)
# define DEBUG_STATEMENT(e)
# define DEBUG_PRINT1(x)
# define DEBUG_PRINT1(x)
# define DEBUG_PRINT2(x1, x2)
# define DEBUG_PRINT2(x1, x2)
# define DEBUG_PRINT3(x1, x2, x3)
# define DEBUG_PRINT3(x1, x2, x3)
# define DEBUG_PRINT4(x1, x2, x3, x4)
# define DEBUG_PRINT4(x1, x2, x3, x4)
# define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
# define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
# define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
# define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
 
 
#endif /* not DEBUG */
#endif /* not DEBUG */


/* Set by `re_set_syntax' to the current regexp syntax to recognize.  Can
/* Set by `re_set_syntax' to the current regexp syntax to recognize.  Can
   also be assigned to arbitrarily: each pattern buffer stores its own
   also be assigned to arbitrarily: each pattern buffer stores its own
   syntax, so it can be changed between regex compilations.  */
   syntax, so it can be changed between regex compilations.  */
/* This has no initializer because initialized variables in Emacs
/* This has no initializer because initialized variables in Emacs
   become read-only after dumping.  */
   become read-only after dumping.  */
reg_syntax_t re_syntax_options;
reg_syntax_t re_syntax_options;
 
 
 
 
/* Specify the precise syntax of regexps for compilation.  This provides
/* Specify the precise syntax of regexps for compilation.  This provides
   for compatibility for various utilities which historically have
   for compatibility for various utilities which historically have
   different, incompatible syntaxes.
   different, incompatible syntaxes.
 
 
   The argument SYNTAX is a bit mask comprised of the various bits
   The argument SYNTAX is a bit mask comprised of the various bits
   defined in gnu-regex.h.  We return the old syntax.  */
   defined in gnu-regex.h.  We return the old syntax.  */
 
 
reg_syntax_t
reg_syntax_t
re_set_syntax (syntax)
re_set_syntax (syntax)
    reg_syntax_t syntax;
    reg_syntax_t syntax;
{
{
  reg_syntax_t ret = re_syntax_options;
  reg_syntax_t ret = re_syntax_options;
 
 
  re_syntax_options = syntax;
  re_syntax_options = syntax;
#ifdef DEBUG
#ifdef DEBUG
  if (syntax & RE_DEBUG)
  if (syntax & RE_DEBUG)
    debug = 1;
    debug = 1;
  else if (debug) /* was on but now is not */
  else if (debug) /* was on but now is not */
    debug = 0;
    debug = 0;
#endif /* DEBUG */
#endif /* DEBUG */
  return ret;
  return ret;
}
}
#ifdef _LIBC
#ifdef _LIBC
weak_alias (__re_set_syntax, re_set_syntax)
weak_alias (__re_set_syntax, re_set_syntax)
#endif
#endif


/* This table gives an error message for each of the error codes listed
/* This table gives an error message for each of the error codes listed
   in gnu-regex.h.  Obviously the order here has to be same as there.
   in gnu-regex.h.  Obviously the order here has to be same as there.
   POSIX doesn't require that we do anything for REG_NOERROR,
   POSIX doesn't require that we do anything for REG_NOERROR,
   but why not be nice?  */
   but why not be nice?  */
 
 
static const char *re_error_msgid[] =
static const char *re_error_msgid[] =
  {
  {
    gettext_noop ("Success"),   /* REG_NOERROR */
    gettext_noop ("Success"),   /* REG_NOERROR */
    gettext_noop ("No match"),  /* REG_NOMATCH */
    gettext_noop ("No match"),  /* REG_NOMATCH */
    gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
    gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
    gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
    gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
    gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
    gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
    gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
    gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
    gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
    gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
    gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */
    gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */
    gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
    gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
    gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
    gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
    gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
    gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
    gettext_noop ("Invalid range end"), /* REG_ERANGE */
    gettext_noop ("Invalid range end"), /* REG_ERANGE */
    gettext_noop ("Memory exhausted"), /* REG_ESPACE */
    gettext_noop ("Memory exhausted"), /* REG_ESPACE */
    gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
    gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
    gettext_noop ("Premature end of regular expression"), /* REG_EEND */
    gettext_noop ("Premature end of regular expression"), /* REG_EEND */
    gettext_noop ("Regular expression too big"), /* REG_ESIZE */
    gettext_noop ("Regular expression too big"), /* REG_ESIZE */
    gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
    gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
  };
  };


/* Avoiding alloca during matching, to placate r_alloc.  */
/* Avoiding alloca during matching, to placate r_alloc.  */
 
 
/* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
/* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
   searching and matching functions should not call alloca.  On some
   searching and matching functions should not call alloca.  On some
   systems, alloca is implemented in terms of malloc, and if we're
   systems, alloca is implemented in terms of malloc, and if we're
   using the relocating allocator routines, then malloc could cause a
   using the relocating allocator routines, then malloc could cause a
   relocation, which might (if the strings being searched are in the
   relocation, which might (if the strings being searched are in the
   ralloc heap) shift the data out from underneath the regexp
   ralloc heap) shift the data out from underneath the regexp
   routines.
   routines.
 
 
   Here's another reason to avoid allocation: Emacs
   Here's another reason to avoid allocation: Emacs
   processes input from X in a signal handler; processing X input may
   processes input from X in a signal handler; processing X input may
   call malloc; if input arrives while a matching routine is calling
   call malloc; if input arrives while a matching routine is calling
   malloc, then we're scrod.  But Emacs can't just block input while
   malloc, then we're scrod.  But Emacs can't just block input while
   calling matching routines; then we don't notice interrupts when
   calling matching routines; then we don't notice interrupts when
   they come in.  So, Emacs blocks input around all regexp calls
   they come in.  So, Emacs blocks input around all regexp calls
   except the matching calls, which it leaves unprotected, in the
   except the matching calls, which it leaves unprotected, in the
   faith that they will not malloc.  */
   faith that they will not malloc.  */
 
 
/* Normally, this is fine.  */
/* Normally, this is fine.  */
#define MATCH_MAY_ALLOCATE
#define MATCH_MAY_ALLOCATE
 
 
/* When using GNU C, we are not REALLY using the C alloca, no matter
/* When using GNU C, we are not REALLY using the C alloca, no matter
   what config.h may say.  So don't take precautions for it.  */
   what config.h may say.  So don't take precautions for it.  */
#ifdef __GNUC__
#ifdef __GNUC__
# undef C_ALLOCA
# undef C_ALLOCA
#endif
#endif
 
 
/* The match routines may not allocate if (1) they would do it with malloc
/* The match routines may not allocate if (1) they would do it with malloc
   and (2) it's not safe for them to use malloc.
   and (2) it's not safe for them to use malloc.
   Note that if REL_ALLOC is defined, matching would not use malloc for the
   Note that if REL_ALLOC is defined, matching would not use malloc for the
   failure stack, but we would still use it for the register vectors;
   failure stack, but we would still use it for the register vectors;
   so REL_ALLOC should not affect this.  */
   so REL_ALLOC should not affect this.  */
#if (defined C_ALLOCA || defined REGEX_MALLOC) && defined emacs
#if (defined C_ALLOCA || defined REGEX_MALLOC) && defined emacs
# undef MATCH_MAY_ALLOCATE
# undef MATCH_MAY_ALLOCATE
#endif
#endif
 
 


/* Failure stack declarations and macros; both re_compile_fastmap and
/* Failure stack declarations and macros; both re_compile_fastmap and
   re_match_2 use a failure stack.  These have to be macros because of
   re_match_2 use a failure stack.  These have to be macros because of
   REGEX_ALLOCATE_STACK.  */
   REGEX_ALLOCATE_STACK.  */
 
 
 
 
/* Number of failure points for which to initially allocate space
/* Number of failure points for which to initially allocate space
   when matching.  If this number is exceeded, we allocate more
   when matching.  If this number is exceeded, we allocate more
   space, so it is not a hard limit.  */
   space, so it is not a hard limit.  */
#ifndef INIT_FAILURE_ALLOC
#ifndef INIT_FAILURE_ALLOC
# define INIT_FAILURE_ALLOC 5
# define INIT_FAILURE_ALLOC 5
#endif
#endif
 
 
/* Roughly the maximum number of failure points on the stack.  Would be
/* Roughly the maximum number of failure points on the stack.  Would be
   exactly that if always used MAX_FAILURE_ITEMS items each time we failed.
   exactly that if always used MAX_FAILURE_ITEMS items each time we failed.
   This is a variable only so users of regex can assign to it; we never
   This is a variable only so users of regex can assign to it; we never
   change it ourselves.  */
   change it ourselves.  */
 
 
#ifdef INT_IS_16BIT
#ifdef INT_IS_16BIT
 
 
# if defined MATCH_MAY_ALLOCATE
# if defined MATCH_MAY_ALLOCATE
/* 4400 was enough to cause a crash on Alpha OSF/1,
/* 4400 was enough to cause a crash on Alpha OSF/1,
   whose default stack limit is 2mb.  */
   whose default stack limit is 2mb.  */
long int re_max_failures = 4000;
long int re_max_failures = 4000;
# else
# else
long int re_max_failures = 2000;
long int re_max_failures = 2000;
# endif
# endif
 
 
union fail_stack_elt
union fail_stack_elt
{
{
  unsigned char *pointer;
  unsigned char *pointer;
  long int integer;
  long int integer;
};
};
 
 
typedef union fail_stack_elt fail_stack_elt_t;
typedef union fail_stack_elt fail_stack_elt_t;
 
 
typedef struct
typedef struct
{
{
  fail_stack_elt_t *stack;
  fail_stack_elt_t *stack;
  unsigned long int size;
  unsigned long int size;
  unsigned long int avail;              /* Offset of next open position.  */
  unsigned long int avail;              /* Offset of next open position.  */
} fail_stack_type;
} fail_stack_type;
 
 
#else /* not INT_IS_16BIT */
#else /* not INT_IS_16BIT */
 
 
# if defined MATCH_MAY_ALLOCATE
# if defined MATCH_MAY_ALLOCATE
/* 4400 was enough to cause a crash on Alpha OSF/1,
/* 4400 was enough to cause a crash on Alpha OSF/1,
   whose default stack limit is 2mb.  */
   whose default stack limit is 2mb.  */
int re_max_failures = 20000;
int re_max_failures = 20000;
# else
# else
int re_max_failures = 2000;
int re_max_failures = 2000;
# endif
# endif
 
 
union fail_stack_elt
union fail_stack_elt
{
{
  unsigned char *pointer;
  unsigned char *pointer;
  int integer;
  int integer;
};
};
 
 
typedef union fail_stack_elt fail_stack_elt_t;
typedef union fail_stack_elt fail_stack_elt_t;
 
 
typedef struct
typedef struct
{
{
  fail_stack_elt_t *stack;
  fail_stack_elt_t *stack;
  unsigned size;
  unsigned size;
  unsigned avail;                       /* Offset of next open position.  */
  unsigned avail;                       /* Offset of next open position.  */
} fail_stack_type;
} fail_stack_type;
 
 
#endif /* INT_IS_16BIT */
#endif /* INT_IS_16BIT */
 
 
#define FAIL_STACK_EMPTY()     (fail_stack.avail == 0)
#define FAIL_STACK_EMPTY()     (fail_stack.avail == 0)
#define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
#define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
#define FAIL_STACK_FULL()      (fail_stack.avail == fail_stack.size)
#define FAIL_STACK_FULL()      (fail_stack.avail == fail_stack.size)
 
 
 
 
/* Define macros to initialize and free the failure stack.
/* Define macros to initialize and free the failure stack.
   Do `return -2' if the alloc fails.  */
   Do `return -2' if the alloc fails.  */
 
 
#ifdef MATCH_MAY_ALLOCATE
#ifdef MATCH_MAY_ALLOCATE
# define INIT_FAIL_STACK()                                              \
# define INIT_FAIL_STACK()                                              \
  do {                                                                  \
  do {                                                                  \
    fail_stack.stack = (fail_stack_elt_t *)                             \
    fail_stack.stack = (fail_stack_elt_t *)                             \
      REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * sizeof (fail_stack_elt_t)); \
      REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * sizeof (fail_stack_elt_t)); \
                                                                        \
                                                                        \
    if (fail_stack.stack == NULL)                                       \
    if (fail_stack.stack == NULL)                                       \
      return -2;                                                        \
      return -2;                                                        \
                                                                        \
                                                                        \
    fail_stack.size = INIT_FAILURE_ALLOC;                               \
    fail_stack.size = INIT_FAILURE_ALLOC;                               \
    fail_stack.avail = 0;                                                \
    fail_stack.avail = 0;                                                \
  } while (0)
  } while (0)
 
 
# define RESET_FAIL_STACK()  REGEX_FREE_STACK (fail_stack.stack)
# define RESET_FAIL_STACK()  REGEX_FREE_STACK (fail_stack.stack)
#else
#else
# define INIT_FAIL_STACK()                                              \
# define INIT_FAIL_STACK()                                              \
  do {                                                                  \
  do {                                                                  \
    fail_stack.avail = 0;                                                \
    fail_stack.avail = 0;                                                \
  } while (0)
  } while (0)
 
 
# define RESET_FAIL_STACK()
# define RESET_FAIL_STACK()
#endif
#endif
 
 
 
 
/* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
/* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
 
 
   Return 1 if succeeds, and 0 if either ran out of memory
   Return 1 if succeeds, and 0 if either ran out of memory
   allocating space for it or it was already too large.
   allocating space for it or it was already too large.
 
 
   REGEX_REALLOCATE_STACK requires `destination' be declared.   */
   REGEX_REALLOCATE_STACK requires `destination' be declared.   */
 
 
#define DOUBLE_FAIL_STACK(fail_stack)                                   \
#define DOUBLE_FAIL_STACK(fail_stack)                                   \
  ((fail_stack).size > (unsigned) (re_max_failures * MAX_FAILURE_ITEMS) \
  ((fail_stack).size > (unsigned) (re_max_failures * MAX_FAILURE_ITEMS) \
   ? 0                                                                   \
   ? 0                                                                   \
   : ((fail_stack).stack = (fail_stack_elt_t *)                         \
   : ((fail_stack).stack = (fail_stack_elt_t *)                         \
        REGEX_REALLOCATE_STACK ((fail_stack).stack,                     \
        REGEX_REALLOCATE_STACK ((fail_stack).stack,                     \
          (fail_stack).size * sizeof (fail_stack_elt_t),                \
          (fail_stack).size * sizeof (fail_stack_elt_t),                \
          ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)),        \
          ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)),        \
                                                                        \
                                                                        \
      (fail_stack).stack == NULL                                        \
      (fail_stack).stack == NULL                                        \
      ? 0                                                                \
      ? 0                                                                \
      : ((fail_stack).size <<= 1,                                       \
      : ((fail_stack).size <<= 1,                                       \
         1)))
         1)))
 
 
 
 
/* Push pointer POINTER on FAIL_STACK.
/* Push pointer POINTER on FAIL_STACK.
   Return 1 if was able to do so and 0 if ran out of memory allocating
   Return 1 if was able to do so and 0 if ran out of memory allocating
   space to do so.  */
   space to do so.  */
#define PUSH_PATTERN_OP(POINTER, FAIL_STACK)                            \
#define PUSH_PATTERN_OP(POINTER, FAIL_STACK)                            \
  ((FAIL_STACK_FULL ()                                                  \
  ((FAIL_STACK_FULL ()                                                  \
    && !DOUBLE_FAIL_STACK (FAIL_STACK))                                 \
    && !DOUBLE_FAIL_STACK (FAIL_STACK))                                 \
   ? 0                                                                   \
   ? 0                                                                   \
   : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER,       \
   : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER,       \
      1))
      1))
 
 
/* Push a pointer value onto the failure stack.
/* Push a pointer value onto the failure stack.
   Assumes the variable `fail_stack'.  Probably should only
   Assumes the variable `fail_stack'.  Probably should only
   be called from within `PUSH_FAILURE_POINT'.  */
   be called from within `PUSH_FAILURE_POINT'.  */
#define PUSH_FAILURE_POINTER(item)                                      \
#define PUSH_FAILURE_POINTER(item)                                      \
  fail_stack.stack[fail_stack.avail++].pointer = (unsigned char *) (item)
  fail_stack.stack[fail_stack.avail++].pointer = (unsigned char *) (item)
 
 
/* This pushes an integer-valued item onto the failure stack.
/* This pushes an integer-valued item onto the failure stack.
   Assumes the variable `fail_stack'.  Probably should only
   Assumes the variable `fail_stack'.  Probably should only
   be called from within `PUSH_FAILURE_POINT'.  */
   be called from within `PUSH_FAILURE_POINT'.  */
#define PUSH_FAILURE_INT(item)                                  \
#define PUSH_FAILURE_INT(item)                                  \
  fail_stack.stack[fail_stack.avail++].integer = (item)
  fail_stack.stack[fail_stack.avail++].integer = (item)
 
 
/* Push a fail_stack_elt_t value onto the failure stack.
/* Push a fail_stack_elt_t value onto the failure stack.
   Assumes the variable `fail_stack'.  Probably should only
   Assumes the variable `fail_stack'.  Probably should only
   be called from within `PUSH_FAILURE_POINT'.  */
   be called from within `PUSH_FAILURE_POINT'.  */
#define PUSH_FAILURE_ELT(item)                                  \
#define PUSH_FAILURE_ELT(item)                                  \
  fail_stack.stack[fail_stack.avail++] =  (item)
  fail_stack.stack[fail_stack.avail++] =  (item)
 
 
/* These three POP... operations complement the three PUSH... operations.
/* These three POP... operations complement the three PUSH... operations.
   All assume that `fail_stack' is nonempty.  */
   All assume that `fail_stack' is nonempty.  */
#define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
#define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
#define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
#define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
#define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
#define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
 
 
/* Used to omit pushing failure point id's when we're not debugging.  */
/* Used to omit pushing failure point id's when we're not debugging.  */
#ifdef DEBUG
#ifdef DEBUG
# define DEBUG_PUSH PUSH_FAILURE_INT
# define DEBUG_PUSH PUSH_FAILURE_INT
# define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_INT ()
# define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_INT ()
#else
#else
# define DEBUG_PUSH(item)
# define DEBUG_PUSH(item)
# define DEBUG_POP(item_addr)
# define DEBUG_POP(item_addr)
#endif
#endif
 
 
 
 
/* Push the information about the state we will need
/* Push the information about the state we will need
   if we ever fail back to it.
   if we ever fail back to it.
 
 
   Requires variables fail_stack, regstart, regend, reg_info, and
   Requires variables fail_stack, regstart, regend, reg_info, and
   num_regs_pushed be declared.  DOUBLE_FAIL_STACK requires `destination'
   num_regs_pushed be declared.  DOUBLE_FAIL_STACK requires `destination'
   be declared.
   be declared.
 
 
   Does `return FAILURE_CODE' if runs out of memory.  */
   Does `return FAILURE_CODE' if runs out of memory.  */
 
 
#define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code)   \
#define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code)   \
  do {                                                                  \
  do {                                                                  \
    char *destination;                                                  \
    char *destination;                                                  \
    /* Must be int, so when we don't save any registers, the arithmetic \
    /* Must be int, so when we don't save any registers, the arithmetic \
       of 0 + -1 isn't done as unsigned.  */                            \
       of 0 + -1 isn't done as unsigned.  */                            \
    /* Can't be int, since there is not a shred of a guarantee that int \
    /* Can't be int, since there is not a shred of a guarantee that int \
       is wide enough to hold a value of something to which pointer can \
       is wide enough to hold a value of something to which pointer can \
       be assigned */                                                   \
       be assigned */                                                   \
    active_reg_t this_reg;                                              \
    active_reg_t this_reg;                                              \
                                                                        \
                                                                        \
    DEBUG_STATEMENT (failure_id++);                                     \
    DEBUG_STATEMENT (failure_id++);                                     \
    DEBUG_STATEMENT (nfailure_points_pushed++);                         \
    DEBUG_STATEMENT (nfailure_points_pushed++);                         \
    DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id);           \
    DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id);           \
    DEBUG_PRINT2 ("  Before push, next avail: %d\n", (fail_stack).avail);\
    DEBUG_PRINT2 ("  Before push, next avail: %d\n", (fail_stack).avail);\
    DEBUG_PRINT2 ("                     size: %d\n", (fail_stack).size);\
    DEBUG_PRINT2 ("                     size: %d\n", (fail_stack).size);\
                                                                        \
                                                                        \
    DEBUG_PRINT2 ("  slots needed: %ld\n", NUM_FAILURE_ITEMS);          \
    DEBUG_PRINT2 ("  slots needed: %ld\n", NUM_FAILURE_ITEMS);          \
    DEBUG_PRINT2 ("     available: %d\n", REMAINING_AVAIL_SLOTS);       \
    DEBUG_PRINT2 ("     available: %d\n", REMAINING_AVAIL_SLOTS);       \
                                                                        \
                                                                        \
    /* Ensure we have enough space allocated for what we will push.  */ \
    /* Ensure we have enough space allocated for what we will push.  */ \
    while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS)                   \
    while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS)                   \
      {                                                                 \
      {                                                                 \
        if (!DOUBLE_FAIL_STACK (fail_stack))                            \
        if (!DOUBLE_FAIL_STACK (fail_stack))                            \
          return failure_code;                                          \
          return failure_code;                                          \
                                                                        \
                                                                        \
        DEBUG_PRINT2 ("\n  Doubled stack; size now: %d\n",              \
        DEBUG_PRINT2 ("\n  Doubled stack; size now: %d\n",              \
                       (fail_stack).size);                              \
                       (fail_stack).size);                              \
        DEBUG_PRINT2 ("  slots available: %d\n", REMAINING_AVAIL_SLOTS);\
        DEBUG_PRINT2 ("  slots available: %d\n", REMAINING_AVAIL_SLOTS);\
      }                                                                 \
      }                                                                 \
                                                                        \
                                                                        \
    /* Push the info, starting with the registers.  */                  \
    /* Push the info, starting with the registers.  */                  \
    DEBUG_PRINT1 ("\n");                                                \
    DEBUG_PRINT1 ("\n");                                                \
                                                                        \
                                                                        \
    if (1)                                                              \
    if (1)                                                              \
      for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
      for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
           this_reg++)                                                  \
           this_reg++)                                                  \
        {                                                               \
        {                                                               \
          DEBUG_PRINT2 ("  Pushing reg: %lu\n", this_reg);              \
          DEBUG_PRINT2 ("  Pushing reg: %lu\n", this_reg);              \
          DEBUG_STATEMENT (num_regs_pushed++);                          \
          DEBUG_STATEMENT (num_regs_pushed++);                          \
                                                                        \
                                                                        \
          DEBUG_PRINT2 ("    start: %p\n", regstart[this_reg]);         \
          DEBUG_PRINT2 ("    start: %p\n", regstart[this_reg]);         \
          PUSH_FAILURE_POINTER (regstart[this_reg]);                    \
          PUSH_FAILURE_POINTER (regstart[this_reg]);                    \
                                                                        \
                                                                        \
          DEBUG_PRINT2 ("    end: %p\n", regend[this_reg]);             \
          DEBUG_PRINT2 ("    end: %p\n", regend[this_reg]);             \
          PUSH_FAILURE_POINTER (regend[this_reg]);                      \
          PUSH_FAILURE_POINTER (regend[this_reg]);                      \
                                                                        \
                                                                        \
          DEBUG_PRINT2 ("    info: %p\n      ",                         \
          DEBUG_PRINT2 ("    info: %p\n      ",                         \
                        reg_info[this_reg].word.pointer);               \
                        reg_info[this_reg].word.pointer);               \
          DEBUG_PRINT2 (" match_null=%d",                               \
          DEBUG_PRINT2 (" match_null=%d",                               \
                        REG_MATCH_NULL_STRING_P (reg_info[this_reg]));  \
                        REG_MATCH_NULL_STRING_P (reg_info[this_reg]));  \
          DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg]));  \
          DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg]));  \
          DEBUG_PRINT2 (" matched_something=%d",                        \
          DEBUG_PRINT2 (" matched_something=%d",                        \
                        MATCHED_SOMETHING (reg_info[this_reg]));        \
                        MATCHED_SOMETHING (reg_info[this_reg]));        \
          DEBUG_PRINT2 (" ever_matched=%d",                             \
          DEBUG_PRINT2 (" ever_matched=%d",                             \
                        EVER_MATCHED_SOMETHING (reg_info[this_reg]));   \
                        EVER_MATCHED_SOMETHING (reg_info[this_reg]));   \
          DEBUG_PRINT1 ("\n");                                          \
          DEBUG_PRINT1 ("\n");                                          \
          PUSH_FAILURE_ELT (reg_info[this_reg].word);                   \
          PUSH_FAILURE_ELT (reg_info[this_reg].word);                   \
        }                                                               \
        }                                                               \
                                                                        \
                                                                        \
    DEBUG_PRINT2 ("  Pushing  low active reg: %ld\n", lowest_active_reg);\
    DEBUG_PRINT2 ("  Pushing  low active reg: %ld\n", lowest_active_reg);\
    PUSH_FAILURE_INT (lowest_active_reg);                               \
    PUSH_FAILURE_INT (lowest_active_reg);                               \
                                                                        \
                                                                        \
    DEBUG_PRINT2 ("  Pushing high active reg: %ld\n", highest_active_reg);\
    DEBUG_PRINT2 ("  Pushing high active reg: %ld\n", highest_active_reg);\
    PUSH_FAILURE_INT (highest_active_reg);                              \
    PUSH_FAILURE_INT (highest_active_reg);                              \
                                                                        \
                                                                        \
    DEBUG_PRINT2 ("  Pushing pattern %p:\n", pattern_place);            \
    DEBUG_PRINT2 ("  Pushing pattern %p:\n", pattern_place);            \
    DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend);           \
    DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend);           \
    PUSH_FAILURE_POINTER (pattern_place);                               \
    PUSH_FAILURE_POINTER (pattern_place);                               \
                                                                        \
                                                                        \
    DEBUG_PRINT2 ("  Pushing string %p: `", string_place);              \
    DEBUG_PRINT2 ("  Pushing string %p: `", string_place);              \
    DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2,   \
    DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2,   \
                                 size2);                                \
                                 size2);                                \
    DEBUG_PRINT1 ("'\n");                                               \
    DEBUG_PRINT1 ("'\n");                                               \
    PUSH_FAILURE_POINTER (string_place);                                \
    PUSH_FAILURE_POINTER (string_place);                                \
                                                                        \
                                                                        \
    DEBUG_PRINT2 ("  Pushing failure id: %u\n", failure_id);            \
    DEBUG_PRINT2 ("  Pushing failure id: %u\n", failure_id);            \
    DEBUG_PUSH (failure_id);                                            \
    DEBUG_PUSH (failure_id);                                            \
  } while (0)
  } while (0)
 
 
/* This is the number of items that are pushed and popped on the stack
/* This is the number of items that are pushed and popped on the stack
   for each register.  */
   for each register.  */
#define NUM_REG_ITEMS  3
#define NUM_REG_ITEMS  3
 
 
/* Individual items aside from the registers.  */
/* Individual items aside from the registers.  */
#ifdef DEBUG
#ifdef DEBUG
# define NUM_NONREG_ITEMS 5 /* Includes failure point id.  */
# define NUM_NONREG_ITEMS 5 /* Includes failure point id.  */
#else
#else
# define NUM_NONREG_ITEMS 4
# define NUM_NONREG_ITEMS 4
#endif
#endif
 
 
/* We push at most this many items on the stack.  */
/* We push at most this many items on the stack.  */
/* We used to use (num_regs - 1), which is the number of registers
/* We used to use (num_regs - 1), which is the number of registers
   this regexp will save; but that was changed to 5
   this regexp will save; but that was changed to 5
   to avoid stack overflow for a regexp with lots of parens.  */
   to avoid stack overflow for a regexp with lots of parens.  */
#define MAX_FAILURE_ITEMS (5 * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
#define MAX_FAILURE_ITEMS (5 * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
 
 
/* We actually push this many items.  */
/* We actually push this many items.  */
#define NUM_FAILURE_ITEMS                               \
#define NUM_FAILURE_ITEMS                               \
  (((0                                                   \
  (((0                                                   \
     ? 0 : highest_active_reg - lowest_active_reg + 1)   \
     ? 0 : highest_active_reg - lowest_active_reg + 1)   \
    * NUM_REG_ITEMS)                                    \
    * NUM_REG_ITEMS)                                    \
   + NUM_NONREG_ITEMS)
   + NUM_NONREG_ITEMS)
 
 
/* How many items can still be added to the stack without overflowing it.  */
/* How many items can still be added to the stack without overflowing it.  */
#define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
#define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
 
 
 
 
/* Pops what PUSH_FAIL_STACK pushes.
/* Pops what PUSH_FAIL_STACK pushes.
 
 
   We restore into the parameters, all of which should be lvalues:
   We restore into the parameters, all of which should be lvalues:
     STR -- the saved data position.
     STR -- the saved data position.
     PAT -- the saved pattern position.
     PAT -- the saved pattern position.
     LOW_REG, HIGH_REG -- the highest and lowest active registers.
     LOW_REG, HIGH_REG -- the highest and lowest active registers.
     REGSTART, REGEND -- arrays of string positions.
     REGSTART, REGEND -- arrays of string positions.
     REG_INFO -- array of information about each subexpression.
     REG_INFO -- array of information about each subexpression.
 
 
   Also assumes the variables `fail_stack' and (if debugging), `bufp',
   Also assumes the variables `fail_stack' and (if debugging), `bufp',
   `pend', `string1', `size1', `string2', and `size2'.  */
   `pend', `string1', `size1', `string2', and `size2'.  */
 
 
#define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
#define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
{                                                                       \
{                                                                       \
  DEBUG_STATEMENT (unsigned failure_id;)                                \
  DEBUG_STATEMENT (unsigned failure_id;)                                \
  active_reg_t this_reg;                                                \
  active_reg_t this_reg;                                                \
  const unsigned char *string_temp;                                     \
  const unsigned char *string_temp;                                     \
                                                                        \
                                                                        \
  assert (!FAIL_STACK_EMPTY ());                                        \
  assert (!FAIL_STACK_EMPTY ());                                        \
                                                                        \
                                                                        \
  /* Remove failure points and point to how many regs pushed.  */       \
  /* Remove failure points and point to how many regs pushed.  */       \
  DEBUG_PRINT1 ("POP_FAILURE_POINT:\n");                                \
  DEBUG_PRINT1 ("POP_FAILURE_POINT:\n");                                \
  DEBUG_PRINT2 ("  Before pop, next avail: %d\n", fail_stack.avail);    \
  DEBUG_PRINT2 ("  Before pop, next avail: %d\n", fail_stack.avail);    \
  DEBUG_PRINT2 ("                    size: %d\n", fail_stack.size);     \
  DEBUG_PRINT2 ("                    size: %d\n", fail_stack.size);     \
                                                                        \
                                                                        \
  assert (fail_stack.avail >= NUM_NONREG_ITEMS);                        \
  assert (fail_stack.avail >= NUM_NONREG_ITEMS);                        \
                                                                        \
                                                                        \
  DEBUG_POP (&failure_id);                                              \
  DEBUG_POP (&failure_id);                                              \
  DEBUG_PRINT2 ("  Popping failure id: %u\n", failure_id);              \
  DEBUG_PRINT2 ("  Popping failure id: %u\n", failure_id);              \
                                                                        \
                                                                        \
  /* If the saved string location is NULL, it came from an              \
  /* If the saved string location is NULL, it came from an              \
     on_failure_keep_string_jump opcode, and we want to throw away the  \
     on_failure_keep_string_jump opcode, and we want to throw away the  \
     saved NULL, thus retaining our current position in the string.  */ \
     saved NULL, thus retaining our current position in the string.  */ \
  string_temp = POP_FAILURE_POINTER ();                                 \
  string_temp = POP_FAILURE_POINTER ();                                 \
  if (string_temp != NULL)                                              \
  if (string_temp != NULL)                                              \
    str = (const char *) string_temp;                                   \
    str = (const char *) string_temp;                                   \
                                                                        \
                                                                        \
  DEBUG_PRINT2 ("  Popping string %p: `", str);                         \
  DEBUG_PRINT2 ("  Popping string %p: `", str);                         \
  DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2);      \
  DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2);      \
  DEBUG_PRINT1 ("'\n");                                                 \
  DEBUG_PRINT1 ("'\n");                                                 \
                                                                        \
                                                                        \
  pat = (unsigned char *) POP_FAILURE_POINTER ();                       \
  pat = (unsigned char *) POP_FAILURE_POINTER ();                       \
  DEBUG_PRINT2 ("  Popping pattern %p:\n", pat);                        \
  DEBUG_PRINT2 ("  Popping pattern %p:\n", pat);                        \
  DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend);                       \
  DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend);                       \
                                                                        \
                                                                        \
  /* Restore register info.  */                                         \
  /* Restore register info.  */                                         \
  high_reg = (active_reg_t) POP_FAILURE_INT ();                         \
  high_reg = (active_reg_t) POP_FAILURE_INT ();                         \
  DEBUG_PRINT2 ("  Popping high active reg: %ld\n", high_reg);          \
  DEBUG_PRINT2 ("  Popping high active reg: %ld\n", high_reg);          \
                                                                        \
                                                                        \
  low_reg = (active_reg_t) POP_FAILURE_INT ();                          \
  low_reg = (active_reg_t) POP_FAILURE_INT ();                          \
  DEBUG_PRINT2 ("  Popping  low active reg: %ld\n", low_reg);           \
  DEBUG_PRINT2 ("  Popping  low active reg: %ld\n", low_reg);           \
                                                                        \
                                                                        \
  if (1)                                                                \
  if (1)                                                                \
    for (this_reg = high_reg; this_reg >= low_reg; this_reg--)          \
    for (this_reg = high_reg; this_reg >= low_reg; this_reg--)          \
      {                                                                 \
      {                                                                 \
        DEBUG_PRINT2 ("    Popping reg: %ld\n", this_reg);              \
        DEBUG_PRINT2 ("    Popping reg: %ld\n", this_reg);              \
                                                                        \
                                                                        \
        reg_info[this_reg].word = POP_FAILURE_ELT ();                   \
        reg_info[this_reg].word = POP_FAILURE_ELT ();                   \
        DEBUG_PRINT2 ("      info: %p\n",                               \
        DEBUG_PRINT2 ("      info: %p\n",                               \
                      reg_info[this_reg].word.pointer);                 \
                      reg_info[this_reg].word.pointer);                 \
                                                                        \
                                                                        \
        regend[this_reg] = (const char *) POP_FAILURE_POINTER ();       \
        regend[this_reg] = (const char *) POP_FAILURE_POINTER ();       \
        DEBUG_PRINT2 ("      end: %p\n", regend[this_reg]);             \
        DEBUG_PRINT2 ("      end: %p\n", regend[this_reg]);             \
                                                                        \
                                                                        \
        regstart[this_reg] = (const char *) POP_FAILURE_POINTER ();     \
        regstart[this_reg] = (const char *) POP_FAILURE_POINTER ();     \
        DEBUG_PRINT2 ("      start: %p\n", regstart[this_reg]);         \
        DEBUG_PRINT2 ("      start: %p\n", regstart[this_reg]);         \
      }                                                                 \
      }                                                                 \
  else                                                                  \
  else                                                                  \
    {                                                                   \
    {                                                                   \
      for (this_reg = highest_active_reg; this_reg > high_reg; this_reg--) \
      for (this_reg = highest_active_reg; this_reg > high_reg; this_reg--) \
        {                                                               \
        {                                                               \
          reg_info[this_reg].word.integer = 0;                           \
          reg_info[this_reg].word.integer = 0;                           \
          regend[this_reg] = 0;                                          \
          regend[this_reg] = 0;                                          \
          regstart[this_reg] = 0;                                        \
          regstart[this_reg] = 0;                                        \
        }                                                               \
        }                                                               \
      highest_active_reg = high_reg;                                    \
      highest_active_reg = high_reg;                                    \
    }                                                                   \
    }                                                                   \
                                                                        \
                                                                        \
  set_regs_matched_done = 0;                                             \
  set_regs_matched_done = 0;                                             \
  DEBUG_STATEMENT (nfailure_points_popped++);                           \
  DEBUG_STATEMENT (nfailure_points_popped++);                           \
} /* POP_FAILURE_POINT */
} /* POP_FAILURE_POINT */
 
 
 
 


/* Structure for per-register (a.k.a. per-group) information.
/* Structure for per-register (a.k.a. per-group) information.
   Other register information, such as the
   Other register information, such as the
   starting and ending positions (which are addresses), and the list of
   starting and ending positions (which are addresses), and the list of
   inner groups (which is a bits list) are maintained in separate
   inner groups (which is a bits list) are maintained in separate
   variables.
   variables.
 
 
   We are making a (strictly speaking) nonportable assumption here: that
   We are making a (strictly speaking) nonportable assumption here: that
   the compiler will pack our bit fields into something that fits into
   the compiler will pack our bit fields into something that fits into
   the type of `word', i.e., is something that fits into one item on the
   the type of `word', i.e., is something that fits into one item on the
   failure stack.  */
   failure stack.  */
 
 
 
 
/* Declarations and macros for re_match_2.  */
/* Declarations and macros for re_match_2.  */
 
 
typedef union
typedef union
{
{
  fail_stack_elt_t word;
  fail_stack_elt_t word;
  struct
  struct
  {
  {
      /* This field is one if this group can match the empty string,
      /* This field is one if this group can match the empty string,
         zero if not.  If not yet determined,  `MATCH_NULL_UNSET_VALUE'.  */
         zero if not.  If not yet determined,  `MATCH_NULL_UNSET_VALUE'.  */
#define MATCH_NULL_UNSET_VALUE 3
#define MATCH_NULL_UNSET_VALUE 3
    unsigned match_null_string_p : 2;
    unsigned match_null_string_p : 2;
    unsigned is_active : 1;
    unsigned is_active : 1;
    unsigned matched_something : 1;
    unsigned matched_something : 1;
    unsigned ever_matched_something : 1;
    unsigned ever_matched_something : 1;
  } bits;
  } bits;
} register_info_type;
} register_info_type;
 
 
#define REG_MATCH_NULL_STRING_P(R)  ((R).bits.match_null_string_p)
#define REG_MATCH_NULL_STRING_P(R)  ((R).bits.match_null_string_p)
#define IS_ACTIVE(R)  ((R).bits.is_active)
#define IS_ACTIVE(R)  ((R).bits.is_active)
#define MATCHED_SOMETHING(R)  ((R).bits.matched_something)
#define MATCHED_SOMETHING(R)  ((R).bits.matched_something)
#define EVER_MATCHED_SOMETHING(R)  ((R).bits.ever_matched_something)
#define EVER_MATCHED_SOMETHING(R)  ((R).bits.ever_matched_something)
 
 
 
 
/* Call this when have matched a real character; it sets `matched' flags
/* Call this when have matched a real character; it sets `matched' flags
   for the subexpressions which we are currently inside.  Also records
   for the subexpressions which we are currently inside.  Also records
   that those subexprs have matched.  */
   that those subexprs have matched.  */
#define SET_REGS_MATCHED()                                              \
#define SET_REGS_MATCHED()                                              \
  do                                                                    \
  do                                                                    \
    {                                                                   \
    {                                                                   \
      if (!set_regs_matched_done)                                       \
      if (!set_regs_matched_done)                                       \
        {                                                               \
        {                                                               \
          active_reg_t r;                                               \
          active_reg_t r;                                               \
          set_regs_matched_done = 1;                                    \
          set_regs_matched_done = 1;                                    \
          for (r = lowest_active_reg; r <= highest_active_reg; r++)     \
          for (r = lowest_active_reg; r <= highest_active_reg; r++)     \
            {                                                           \
            {                                                           \
              MATCHED_SOMETHING (reg_info[r])                           \
              MATCHED_SOMETHING (reg_info[r])                           \
                = EVER_MATCHED_SOMETHING (reg_info[r])                  \
                = EVER_MATCHED_SOMETHING (reg_info[r])                  \
                = 1;                                                    \
                = 1;                                                    \
            }                                                           \
            }                                                           \
        }                                                               \
        }                                                               \
    }                                                                   \
    }                                                                   \
  while (0)
  while (0)
 
 
/* Registers are set to a sentinel when they haven't yet matched.  */
/* Registers are set to a sentinel when they haven't yet matched.  */
static char reg_unset_dummy;
static char reg_unset_dummy;
#define REG_UNSET_VALUE (&reg_unset_dummy)
#define REG_UNSET_VALUE (&reg_unset_dummy)
#define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
#define REG_UNSET(e) ((e) == REG_UNSET_VALUE)


/* Subroutine declarations and macros for regex_compile.  */
/* Subroutine declarations and macros for regex_compile.  */
 
 
static reg_errcode_t regex_compile _RE_ARGS ((const char *pattern, size_t size,
static reg_errcode_t regex_compile _RE_ARGS ((const char *pattern, size_t size,
                                              reg_syntax_t syntax,
                                              reg_syntax_t syntax,
                                              struct re_pattern_buffer *bufp));
                                              struct re_pattern_buffer *bufp));
static void store_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc, int arg));
static void store_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc, int arg));
static void store_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
static void store_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
                                 int arg1, int arg2));
                                 int arg1, int arg2));
static void insert_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
static void insert_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
                                  int arg, unsigned char *end));
                                  int arg, unsigned char *end));
static void insert_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
static void insert_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
                                  int arg1, int arg2, unsigned char *end));
                                  int arg1, int arg2, unsigned char *end));
static boolean at_begline_loc_p _RE_ARGS ((const char *pattern, const char *p,
static boolean at_begline_loc_p _RE_ARGS ((const char *pattern, const char *p,
                                           reg_syntax_t syntax));
                                           reg_syntax_t syntax));
static boolean at_endline_loc_p _RE_ARGS ((const char *p, const char *pend,
static boolean at_endline_loc_p _RE_ARGS ((const char *p, const char *pend,
                                           reg_syntax_t syntax));
                                           reg_syntax_t syntax));
static reg_errcode_t compile_range _RE_ARGS ((const char **p_ptr,
static reg_errcode_t compile_range _RE_ARGS ((const char **p_ptr,
                                              const char *pend,
                                              const char *pend,
                                              char *translate,
                                              char *translate,
                                              reg_syntax_t syntax,
                                              reg_syntax_t syntax,
                                              unsigned char *b));
                                              unsigned char *b));
 
 
/* Fetch the next character in the uncompiled pattern---translating it
/* Fetch the next character in the uncompiled pattern---translating it
   if necessary.  Also cast from a signed character in the constant
   if necessary.  Also cast from a signed character in the constant
   string passed to us by the user to an unsigned char that we can use
   string passed to us by the user to an unsigned char that we can use
   as an array index (in, e.g., `translate').  */
   as an array index (in, e.g., `translate').  */
#ifndef PATFETCH
#ifndef PATFETCH
# define PATFETCH(c)                                                    \
# define PATFETCH(c)                                                    \
  do {if (p == pend) return REG_EEND;                                   \
  do {if (p == pend) return REG_EEND;                                   \
    c = (unsigned char) *p++;                                           \
    c = (unsigned char) *p++;                                           \
    if (translate) c = (unsigned char) translate[c];                    \
    if (translate) c = (unsigned char) translate[c];                    \
  } while (0)
  } while (0)
#endif
#endif
 
 
/* Fetch the next character in the uncompiled pattern, with no
/* Fetch the next character in the uncompiled pattern, with no
   translation.  */
   translation.  */
#define PATFETCH_RAW(c)                                                 \
#define PATFETCH_RAW(c)                                                 \
  do {if (p == pend) return REG_EEND;                                   \
  do {if (p == pend) return REG_EEND;                                   \
    c = (unsigned char) *p++;                                           \
    c = (unsigned char) *p++;                                           \
  } while (0)
  } while (0)
 
 
/* Go backwards one character in the pattern.  */
/* Go backwards one character in the pattern.  */
#define PATUNFETCH p--
#define PATUNFETCH p--
 
 
 
 
/* If `translate' is non-null, return translate[D], else just D.  We
/* If `translate' is non-null, return translate[D], else just D.  We
   cast the subscript to translate because some data is declared as
   cast the subscript to translate because some data is declared as
   `char *', to avoid warnings when a string constant is passed.  But
   `char *', to avoid warnings when a string constant is passed.  But
   when we use a character as a subscript we must make it unsigned.  */
   when we use a character as a subscript we must make it unsigned.  */
#ifndef TRANSLATE
#ifndef TRANSLATE
# define TRANSLATE(d) \
# define TRANSLATE(d) \
  (translate ? (char) translate[(unsigned char) (d)] : (d))
  (translate ? (char) translate[(unsigned char) (d)] : (d))
#endif
#endif
 
 
 
 
/* Macros for outputting the compiled pattern into `buffer'.  */
/* Macros for outputting the compiled pattern into `buffer'.  */
 
 
/* If the buffer isn't allocated when it comes in, use this.  */
/* If the buffer isn't allocated when it comes in, use this.  */
#define INIT_BUF_SIZE  32
#define INIT_BUF_SIZE  32
 
 
/* Make sure we have at least N more bytes of space in buffer.  */
/* Make sure we have at least N more bytes of space in buffer.  */
#define GET_BUFFER_SPACE(n)                                             \
#define GET_BUFFER_SPACE(n)                                             \
    while ((unsigned long) (b - bufp->buffer + (n)) > bufp->allocated)  \
    while ((unsigned long) (b - bufp->buffer + (n)) > bufp->allocated)  \
      EXTEND_BUFFER ()
      EXTEND_BUFFER ()
 
 
/* Make sure we have one more byte of buffer space and then add C to it.  */
/* Make sure we have one more byte of buffer space and then add C to it.  */
#define BUF_PUSH(c)                                                     \
#define BUF_PUSH(c)                                                     \
  do {                                                                  \
  do {                                                                  \
    GET_BUFFER_SPACE (1);                                               \
    GET_BUFFER_SPACE (1);                                               \
    *b++ = (unsigned char) (c);                                         \
    *b++ = (unsigned char) (c);                                         \
  } while (0)
  } while (0)
 
 
 
 
/* Ensure we have two more bytes of buffer space and then append C1 and C2.  */
/* Ensure we have two more bytes of buffer space and then append C1 and C2.  */
#define BUF_PUSH_2(c1, c2)                                              \
#define BUF_PUSH_2(c1, c2)                                              \
  do {                                                                  \
  do {                                                                  \
    GET_BUFFER_SPACE (2);                                               \
    GET_BUFFER_SPACE (2);                                               \
    *b++ = (unsigned char) (c1);                                        \
    *b++ = (unsigned char) (c1);                                        \
    *b++ = (unsigned char) (c2);                                        \
    *b++ = (unsigned char) (c2);                                        \
  } while (0)
  } while (0)
 
 
 
 
/* As with BUF_PUSH_2, except for three bytes.  */
/* As with BUF_PUSH_2, except for three bytes.  */
#define BUF_PUSH_3(c1, c2, c3)                                          \
#define BUF_PUSH_3(c1, c2, c3)                                          \
  do {                                                                  \
  do {                                                                  \
    GET_BUFFER_SPACE (3);                                               \
    GET_BUFFER_SPACE (3);                                               \
    *b++ = (unsigned char) (c1);                                        \
    *b++ = (unsigned char) (c1);                                        \
    *b++ = (unsigned char) (c2);                                        \
    *b++ = (unsigned char) (c2);                                        \
    *b++ = (unsigned char) (c3);                                        \
    *b++ = (unsigned char) (c3);                                        \
  } while (0)
  } while (0)
 
 
 
 
/* Store a jump with opcode OP at LOC to location TO.  We store a
/* Store a jump with opcode OP at LOC to location TO.  We store a
   relative address offset by the three bytes the jump itself occupies.  */
   relative address offset by the three bytes the jump itself occupies.  */
#define STORE_JUMP(op, loc, to) \
#define STORE_JUMP(op, loc, to) \
  store_op1 (op, loc, (int) ((to) - (loc) - 3))
  store_op1 (op, loc, (int) ((to) - (loc) - 3))
 
 
/* Likewise, for a two-argument jump.  */
/* Likewise, for a two-argument jump.  */
#define STORE_JUMP2(op, loc, to, arg) \
#define STORE_JUMP2(op, loc, to, arg) \
  store_op2 (op, loc, (int) ((to) - (loc) - 3), arg)
  store_op2 (op, loc, (int) ((to) - (loc) - 3), arg)
 
 
/* Like `STORE_JUMP', but for inserting.  Assume `b' is the buffer end.  */
/* Like `STORE_JUMP', but for inserting.  Assume `b' is the buffer end.  */
#define INSERT_JUMP(op, loc, to) \
#define INSERT_JUMP(op, loc, to) \
  insert_op1 (op, loc, (int) ((to) - (loc) - 3), b)
  insert_op1 (op, loc, (int) ((to) - (loc) - 3), b)
 
 
/* Like `STORE_JUMP2', but for inserting.  Assume `b' is the buffer end.  */
/* Like `STORE_JUMP2', but for inserting.  Assume `b' is the buffer end.  */
#define INSERT_JUMP2(op, loc, to, arg) \
#define INSERT_JUMP2(op, loc, to, arg) \
  insert_op2 (op, loc, (int) ((to) - (loc) - 3), arg, b)
  insert_op2 (op, loc, (int) ((to) - (loc) - 3), arg, b)
 
 
 
 
/* This is not an arbitrary limit: the arguments which represent offsets
/* This is not an arbitrary limit: the arguments which represent offsets
   into the pattern are two bytes long.  So if 2^16 bytes turns out to
   into the pattern are two bytes long.  So if 2^16 bytes turns out to
   be too small, many things would have to change.  */
   be too small, many things would have to change.  */
/* Any other compiler which, like MSC, has allocation limit below 2^16
/* Any other compiler which, like MSC, has allocation limit below 2^16
   bytes will have to use approach similar to what was done below for
   bytes will have to use approach similar to what was done below for
   MSC and drop MAX_BUF_SIZE a bit.  Otherwise you may end up
   MSC and drop MAX_BUF_SIZE a bit.  Otherwise you may end up
   reallocating to 0 bytes.  Such thing is not going to work too well.
   reallocating to 0 bytes.  Such thing is not going to work too well.
   You have been warned!!  */
   You have been warned!!  */
#if defined _MSC_VER  && !defined WIN32
#if defined _MSC_VER  && !defined WIN32
/* Microsoft C 16-bit versions limit malloc to approx 65512 bytes.
/* Microsoft C 16-bit versions limit malloc to approx 65512 bytes.
   The REALLOC define eliminates a flurry of conversion warnings,
   The REALLOC define eliminates a flurry of conversion warnings,
   but is not required. */
   but is not required. */
# define MAX_BUF_SIZE  65500L
# define MAX_BUF_SIZE  65500L
# define REALLOC(p,s) realloc ((p), (size_t) (s))
# define REALLOC(p,s) realloc ((p), (size_t) (s))
#else
#else
# define MAX_BUF_SIZE (1L << 16)
# define MAX_BUF_SIZE (1L << 16)
# define REALLOC(p,s) realloc ((p), (s))
# define REALLOC(p,s) realloc ((p), (s))
#endif
#endif
 
 
/* Extend the buffer by twice its current size via realloc and
/* Extend the buffer by twice its current size via realloc and
   reset the pointers that pointed into the old block to point to the
   reset the pointers that pointed into the old block to point to the
   correct places in the new one.  If extending the buffer results in it
   correct places in the new one.  If extending the buffer results in it
   being larger than MAX_BUF_SIZE, then flag memory exhausted.  */
   being larger than MAX_BUF_SIZE, then flag memory exhausted.  */
#define EXTEND_BUFFER()                                                 \
#define EXTEND_BUFFER()                                                 \
  do {                                                                  \
  do {                                                                  \
    unsigned char *old_buffer = bufp->buffer;                           \
    unsigned char *old_buffer = bufp->buffer;                           \
    if (bufp->allocated == MAX_BUF_SIZE)                                \
    if (bufp->allocated == MAX_BUF_SIZE)                                \
      return REG_ESIZE;                                                 \
      return REG_ESIZE;                                                 \
    bufp->allocated <<= 1;                                              \
    bufp->allocated <<= 1;                                              \
    if (bufp->allocated > MAX_BUF_SIZE)                                 \
    if (bufp->allocated > MAX_BUF_SIZE)                                 \
      bufp->allocated = MAX_BUF_SIZE;                                   \
      bufp->allocated = MAX_BUF_SIZE;                                   \
    bufp->buffer = (unsigned char *) REALLOC (bufp->buffer, bufp->allocated);\
    bufp->buffer = (unsigned char *) REALLOC (bufp->buffer, bufp->allocated);\
    if (bufp->buffer == NULL)                                           \
    if (bufp->buffer == NULL)                                           \
      return REG_ESPACE;                                                \
      return REG_ESPACE;                                                \
    /* If the buffer moved, move all the pointers into it.  */          \
    /* If the buffer moved, move all the pointers into it.  */          \
    if (old_buffer != bufp->buffer)                                     \
    if (old_buffer != bufp->buffer)                                     \
      {                                                                 \
      {                                                                 \
        b = (b - old_buffer) + bufp->buffer;                            \
        b = (b - old_buffer) + bufp->buffer;                            \
        begalt = (begalt - old_buffer) + bufp->buffer;                  \
        begalt = (begalt - old_buffer) + bufp->buffer;                  \
        if (fixup_alt_jump)                                             \
        if (fixup_alt_jump)                                             \
          fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\
          fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\
        if (laststart)                                                  \
        if (laststart)                                                  \
          laststart = (laststart - old_buffer) + bufp->buffer;          \
          laststart = (laststart - old_buffer) + bufp->buffer;          \
        if (pending_exact)                                              \
        if (pending_exact)                                              \
          pending_exact = (pending_exact - old_buffer) + bufp->buffer;  \
          pending_exact = (pending_exact - old_buffer) + bufp->buffer;  \
      }                                                                 \
      }                                                                 \
  } while (0)
  } while (0)
 
 
 
 
/* Since we have one byte reserved for the register number argument to
/* Since we have one byte reserved for the register number argument to
   {start,stop}_memory, the maximum number of groups we can report
   {start,stop}_memory, the maximum number of groups we can report
   things about is what fits in that byte.  */
   things about is what fits in that byte.  */
#define MAX_REGNUM 255
#define MAX_REGNUM 255
 
 
/* But patterns can have more than `MAX_REGNUM' registers.  We just
/* But patterns can have more than `MAX_REGNUM' registers.  We just
   ignore the excess.  */
   ignore the excess.  */
typedef unsigned regnum_t;
typedef unsigned regnum_t;
 
 
 
 
/* Macros for the compile stack.  */
/* Macros for the compile stack.  */
 
 
/* Since offsets can go either forwards or backwards, this type needs to
/* Since offsets can go either forwards or backwards, this type needs to
   be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1.  */
   be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1.  */
/* int may be not enough when sizeof(int) == 2.  */
/* int may be not enough when sizeof(int) == 2.  */
typedef long pattern_offset_t;
typedef long pattern_offset_t;
 
 
typedef struct
typedef struct
{
{
  pattern_offset_t begalt_offset;
  pattern_offset_t begalt_offset;
  pattern_offset_t fixup_alt_jump;
  pattern_offset_t fixup_alt_jump;
  pattern_offset_t inner_group_offset;
  pattern_offset_t inner_group_offset;
  pattern_offset_t laststart_offset;
  pattern_offset_t laststart_offset;
  regnum_t regnum;
  regnum_t regnum;
} compile_stack_elt_t;
} compile_stack_elt_t;
 
 
 
 
typedef struct
typedef struct
{
{
  compile_stack_elt_t *stack;
  compile_stack_elt_t *stack;
  unsigned size;
  unsigned size;
  unsigned avail;                       /* Offset of next open position.  */
  unsigned avail;                       /* Offset of next open position.  */
} compile_stack_type;
} compile_stack_type;
 
 
 
 
#define INIT_COMPILE_STACK_SIZE 32
#define INIT_COMPILE_STACK_SIZE 32
 
 
#define COMPILE_STACK_EMPTY  (compile_stack.avail == 0)
#define COMPILE_STACK_EMPTY  (compile_stack.avail == 0)
#define COMPILE_STACK_FULL  (compile_stack.avail == compile_stack.size)
#define COMPILE_STACK_FULL  (compile_stack.avail == compile_stack.size)
 
 
/* The next available element.  */
/* The next available element.  */
#define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
#define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
 
 
 
 
/* Set the bit for character C in a list.  */
/* Set the bit for character C in a list.  */
#define SET_LIST_BIT(c)                               \
#define SET_LIST_BIT(c)                               \
  (b[((unsigned char) (c)) / BYTEWIDTH]               \
  (b[((unsigned char) (c)) / BYTEWIDTH]               \
   |= 1 << (((unsigned char) c) % BYTEWIDTH))
   |= 1 << (((unsigned char) c) % BYTEWIDTH))
 
 
 
 
/* Get the next unsigned number in the uncompiled pattern.  */
/* Get the next unsigned number in the uncompiled pattern.  */
#define GET_UNSIGNED_NUMBER(num)                                        \
#define GET_UNSIGNED_NUMBER(num)                                        \
  { if (p != pend)                                                      \
  { if (p != pend)                                                      \
     {                                                                  \
     {                                                                  \
       PATFETCH (c);                                                    \
       PATFETCH (c);                                                    \
       while (ISDIGIT (c))                                              \
       while (ISDIGIT (c))                                              \
         {                                                              \
         {                                                              \
           if (num < 0)                                                  \
           if (num < 0)                                                  \
              num = 0;                                                   \
              num = 0;                                                   \
           num = num * 10 + c - '0';                                    \
           num = num * 10 + c - '0';                                    \
           if (p == pend)                                               \
           if (p == pend)                                               \
              break;                                                    \
              break;                                                    \
           PATFETCH (c);                                                \
           PATFETCH (c);                                                \
         }                                                              \
         }                                                              \
       }                                                                \
       }                                                                \
    }
    }
 
 
/* Use this only if they have btowc(), since wctype() is used below
/* Use this only if they have btowc(), since wctype() is used below
   together with btowc().  btowc() is defined in the 1994 Amendment 1
   together with btowc().  btowc() is defined in the 1994 Amendment 1
   to ISO C and may not be present on systems where we have wchar.h
   to ISO C and may not be present on systems where we have wchar.h
   and wctype.h.  */
   and wctype.h.  */
#if defined _LIBC || (defined HAVE_WCTYPE_H && defined HAVE_WCHAR_H && defined HAVE_BTOWC)
#if defined _LIBC || (defined HAVE_WCTYPE_H && defined HAVE_WCHAR_H && defined HAVE_BTOWC)
/* The GNU C library provides support for user-defined character classes
/* The GNU C library provides support for user-defined character classes
   and the functions from ISO C amendement 1.  */
   and the functions from ISO C amendement 1.  */
# ifdef CHARCLASS_NAME_MAX
# ifdef CHARCLASS_NAME_MAX
#  define CHAR_CLASS_MAX_LENGTH CHARCLASS_NAME_MAX
#  define CHAR_CLASS_MAX_LENGTH CHARCLASS_NAME_MAX
# else
# else
/* This shouldn't happen but some implementation might still have this
/* This shouldn't happen but some implementation might still have this
   problem.  Use a reasonable default value.  */
   problem.  Use a reasonable default value.  */
#  define CHAR_CLASS_MAX_LENGTH 256
#  define CHAR_CLASS_MAX_LENGTH 256
# endif
# endif
 
 
# ifdef _LIBC
# ifdef _LIBC
#  define IS_CHAR_CLASS(string) __wctype (string)
#  define IS_CHAR_CLASS(string) __wctype (string)
# else
# else
#  define IS_CHAR_CLASS(string) wctype (string)
#  define IS_CHAR_CLASS(string) wctype (string)
# endif
# endif
#else
#else
# define CHAR_CLASS_MAX_LENGTH  6 /* Namely, `xdigit'.  */
# define CHAR_CLASS_MAX_LENGTH  6 /* Namely, `xdigit'.  */
 
 
# define IS_CHAR_CLASS(string)                                          \
# define IS_CHAR_CLASS(string)                                          \
   (STREQ (string, "alpha") || STREQ (string, "upper")                  \
   (STREQ (string, "alpha") || STREQ (string, "upper")                  \
    || STREQ (string, "lower") || STREQ (string, "digit")               \
    || STREQ (string, "lower") || STREQ (string, "digit")               \
    || STREQ (string, "alnum") || STREQ (string, "xdigit")              \
    || STREQ (string, "alnum") || STREQ (string, "xdigit")              \
    || STREQ (string, "space") || STREQ (string, "print")               \
    || STREQ (string, "space") || STREQ (string, "print")               \
    || STREQ (string, "punct") || STREQ (string, "graph")               \
    || STREQ (string, "punct") || STREQ (string, "graph")               \
    || STREQ (string, "cntrl") || STREQ (string, "blank"))
    || STREQ (string, "cntrl") || STREQ (string, "blank"))
#endif
#endif


#ifndef MATCH_MAY_ALLOCATE
#ifndef MATCH_MAY_ALLOCATE
 
 
/* If we cannot allocate large objects within re_match_2_internal,
/* If we cannot allocate large objects within re_match_2_internal,
   we make the fail stack and register vectors global.
   we make the fail stack and register vectors global.
   The fail stack, we grow to the maximum size when a regexp
   The fail stack, we grow to the maximum size when a regexp
   is compiled.
   is compiled.
   The register vectors, we adjust in size each time we
   The register vectors, we adjust in size each time we
   compile a regexp, according to the number of registers it needs.  */
   compile a regexp, according to the number of registers it needs.  */
 
 
static fail_stack_type fail_stack;
static fail_stack_type fail_stack;
 
 
/* Size with which the following vectors are currently allocated.
/* Size with which the following vectors are currently allocated.
   That is so we can make them bigger as needed,
   That is so we can make them bigger as needed,
   but never make them smaller.  */
   but never make them smaller.  */
static int regs_allocated_size;
static int regs_allocated_size;
 
 
static const char **     regstart, **     regend;
static const char **     regstart, **     regend;
static const char ** old_regstart, ** old_regend;
static const char ** old_regstart, ** old_regend;
static const char **best_regstart, **best_regend;
static const char **best_regstart, **best_regend;
static register_info_type *reg_info;
static register_info_type *reg_info;
static const char **reg_dummy;
static const char **reg_dummy;
static register_info_type *reg_info_dummy;
static register_info_type *reg_info_dummy;
 
 
/* Make the register vectors big enough for NUM_REGS registers,
/* Make the register vectors big enough for NUM_REGS registers,
   but don't make them smaller.  */
   but don't make them smaller.  */
 
 
static
static
regex_grow_registers (num_regs)
regex_grow_registers (num_regs)
     int num_regs;
     int num_regs;
{
{
  if (num_regs > regs_allocated_size)
  if (num_regs > regs_allocated_size)
    {
    {
      RETALLOC_IF (regstart,     num_regs, const char *);
      RETALLOC_IF (regstart,     num_regs, const char *);
      RETALLOC_IF (regend,       num_regs, const char *);
      RETALLOC_IF (regend,       num_regs, const char *);
      RETALLOC_IF (old_regstart, num_regs, const char *);
      RETALLOC_IF (old_regstart, num_regs, const char *);
      RETALLOC_IF (old_regend,   num_regs, const char *);
      RETALLOC_IF (old_regend,   num_regs, const char *);
      RETALLOC_IF (best_regstart, num_regs, const char *);
      RETALLOC_IF (best_regstart, num_regs, const char *);
      RETALLOC_IF (best_regend,  num_regs, const char *);
      RETALLOC_IF (best_regend,  num_regs, const char *);
      RETALLOC_IF (reg_info,     num_regs, register_info_type);
      RETALLOC_IF (reg_info,     num_regs, register_info_type);
      RETALLOC_IF (reg_dummy,    num_regs, const char *);
      RETALLOC_IF (reg_dummy,    num_regs, const char *);
      RETALLOC_IF (reg_info_dummy, num_regs, register_info_type);
      RETALLOC_IF (reg_info_dummy, num_regs, register_info_type);
 
 
      regs_allocated_size = num_regs;
      regs_allocated_size = num_regs;
    }
    }
}
}
 
 
#endif /* not MATCH_MAY_ALLOCATE */
#endif /* not MATCH_MAY_ALLOCATE */


static boolean group_in_compile_stack _RE_ARGS ((compile_stack_type
static boolean group_in_compile_stack _RE_ARGS ((compile_stack_type
                                                 compile_stack,
                                                 compile_stack,
                                                 regnum_t regnum));
                                                 regnum_t regnum));
 
 
/* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
/* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
   Returns one of error codes defined in `gnu-regex.h', or zero for success.
   Returns one of error codes defined in `gnu-regex.h', or zero for success.
 
 
   Assumes the `allocated' (and perhaps `buffer') and `translate'
   Assumes the `allocated' (and perhaps `buffer') and `translate'
   fields are set in BUFP on entry.
   fields are set in BUFP on entry.
 
 
   If it succeeds, results are put in BUFP (if it returns an error, the
   If it succeeds, results are put in BUFP (if it returns an error, the
   contents of BUFP are undefined):
   contents of BUFP are undefined):
     `buffer' is the compiled pattern;
     `buffer' is the compiled pattern;
     `syntax' is set to SYNTAX;
     `syntax' is set to SYNTAX;
     `used' is set to the length of the compiled pattern;
     `used' is set to the length of the compiled pattern;
     `fastmap_accurate' is zero;
     `fastmap_accurate' is zero;
     `re_nsub' is the number of subexpressions in PATTERN;
     `re_nsub' is the number of subexpressions in PATTERN;
     `not_bol' and `not_eol' are zero;
     `not_bol' and `not_eol' are zero;
 
 
   The `fastmap' and `newline_anchor' fields are neither
   The `fastmap' and `newline_anchor' fields are neither
   examined nor set.  */
   examined nor set.  */
 
 
/* Return, freeing storage we allocated.  */
/* Return, freeing storage we allocated.  */
#define FREE_STACK_RETURN(value)                \
#define FREE_STACK_RETURN(value)                \
  return (free (compile_stack.stack), value)
  return (free (compile_stack.stack), value)
 
 
static reg_errcode_t
static reg_errcode_t
regex_compile (pattern, size, syntax, bufp)
regex_compile (pattern, size, syntax, bufp)
     const char *pattern;
     const char *pattern;
     size_t size;
     size_t size;
     reg_syntax_t syntax;
     reg_syntax_t syntax;
     struct re_pattern_buffer *bufp;
     struct re_pattern_buffer *bufp;
{
{
  /* We fetch characters from PATTERN here.  Even though PATTERN is
  /* We fetch characters from PATTERN here.  Even though PATTERN is
     `char *' (i.e., signed), we declare these variables as unsigned, so
     `char *' (i.e., signed), we declare these variables as unsigned, so
     they can be reliably used as array indices.  */
     they can be reliably used as array indices.  */
  register unsigned char c, c1;
  register unsigned char c, c1;
 
 
  /* A random temporary spot in PATTERN.  */
  /* A random temporary spot in PATTERN.  */
  const char *p1;
  const char *p1;
 
 
  /* Points to the end of the buffer, where we should append.  */
  /* Points to the end of the buffer, where we should append.  */
  register unsigned char *b;
  register unsigned char *b;
 
 
  /* Keeps track of unclosed groups.  */
  /* Keeps track of unclosed groups.  */
  compile_stack_type compile_stack;
  compile_stack_type compile_stack;
 
 
  /* Points to the current (ending) position in the pattern.  */
  /* Points to the current (ending) position in the pattern.  */
  const char *p = pattern;
  const char *p = pattern;
  const char *pend = pattern + size;
  const char *pend = pattern + size;
 
 
  /* How to translate the characters in the pattern.  */
  /* How to translate the characters in the pattern.  */
  RE_TRANSLATE_TYPE translate = bufp->translate;
  RE_TRANSLATE_TYPE translate = bufp->translate;
 
 
  /* Address of the count-byte of the most recently inserted `exactn'
  /* Address of the count-byte of the most recently inserted `exactn'
     command.  This makes it possible to tell if a new exact-match
     command.  This makes it possible to tell if a new exact-match
     character can be added to that command or if the character requires
     character can be added to that command or if the character requires
     a new `exactn' command.  */
     a new `exactn' command.  */
  unsigned char *pending_exact = 0;
  unsigned char *pending_exact = 0;
 
 
  /* Address of start of the most recently finished expression.
  /* Address of start of the most recently finished expression.
     This tells, e.g., postfix * where to find the start of its
     This tells, e.g., postfix * where to find the start of its
     operand.  Reset at the beginning of groups and alternatives.  */
     operand.  Reset at the beginning of groups and alternatives.  */
  unsigned char *laststart = 0;
  unsigned char *laststart = 0;
 
 
  /* Address of beginning of regexp, or inside of last group.  */
  /* Address of beginning of regexp, or inside of last group.  */
  unsigned char *begalt;
  unsigned char *begalt;
 
 
  /* Place in the uncompiled pattern (i.e., the {) to
  /* Place in the uncompiled pattern (i.e., the {) to
     which to go back if the interval is invalid.  */
     which to go back if the interval is invalid.  */
  const char *beg_interval;
  const char *beg_interval;
 
 
  /* Address of the place where a forward jump should go to the end of
  /* Address of the place where a forward jump should go to the end of
     the containing expression.  Each alternative of an `or' -- except the
     the containing expression.  Each alternative of an `or' -- except the
     last -- ends with a forward jump of this sort.  */
     last -- ends with a forward jump of this sort.  */
  unsigned char *fixup_alt_jump = 0;
  unsigned char *fixup_alt_jump = 0;
 
 
  /* Counts open-groups as they are encountered.  Remembered for the
  /* Counts open-groups as they are encountered.  Remembered for the
     matching close-group on the compile stack, so the same register
     matching close-group on the compile stack, so the same register
     number is put in the stop_memory as the start_memory.  */
     number is put in the stop_memory as the start_memory.  */
  regnum_t regnum = 0;
  regnum_t regnum = 0;
 
 
#ifdef DEBUG
#ifdef DEBUG
  DEBUG_PRINT1 ("\nCompiling pattern: ");
  DEBUG_PRINT1 ("\nCompiling pattern: ");
  if (debug)
  if (debug)
    {
    {
      unsigned debug_count;
      unsigned debug_count;
 
 
      for (debug_count = 0; debug_count < size; debug_count++)
      for (debug_count = 0; debug_count < size; debug_count++)
        putchar (pattern[debug_count]);
        putchar (pattern[debug_count]);
      putchar ('\n');
      putchar ('\n');
    }
    }
#endif /* DEBUG */
#endif /* DEBUG */
 
 
  /* Initialize the compile stack.  */
  /* Initialize the compile stack.  */
  compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
  compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
  if (compile_stack.stack == NULL)
  if (compile_stack.stack == NULL)
    return REG_ESPACE;
    return REG_ESPACE;
 
 
  compile_stack.size = INIT_COMPILE_STACK_SIZE;
  compile_stack.size = INIT_COMPILE_STACK_SIZE;
  compile_stack.avail = 0;
  compile_stack.avail = 0;
 
 
  /* Initialize the pattern buffer.  */
  /* Initialize the pattern buffer.  */
  bufp->syntax = syntax;
  bufp->syntax = syntax;
  bufp->fastmap_accurate = 0;
  bufp->fastmap_accurate = 0;
  bufp->not_bol = bufp->not_eol = 0;
  bufp->not_bol = bufp->not_eol = 0;
 
 
  /* Set `used' to zero, so that if we return an error, the pattern
  /* Set `used' to zero, so that if we return an error, the pattern
     printer (for debugging) will think there's no pattern.  We reset it
     printer (for debugging) will think there's no pattern.  We reset it
     at the end.  */
     at the end.  */
  bufp->used = 0;
  bufp->used = 0;
 
 
  /* Always count groups, whether or not bufp->no_sub is set.  */
  /* Always count groups, whether or not bufp->no_sub is set.  */
  bufp->re_nsub = 0;
  bufp->re_nsub = 0;
 
 
#if !defined emacs && !defined SYNTAX_TABLE
#if !defined emacs && !defined SYNTAX_TABLE
  /* Initialize the syntax table.  */
  /* Initialize the syntax table.  */
   init_syntax_once ();
   init_syntax_once ();
#endif
#endif
 
 
  if (bufp->allocated == 0)
  if (bufp->allocated == 0)
    {
    {
      if (bufp->buffer)
      if (bufp->buffer)
        { /* If zero allocated, but buffer is non-null, try to realloc
        { /* If zero allocated, but buffer is non-null, try to realloc
             enough space.  This loses if buffer's address is bogus, but
             enough space.  This loses if buffer's address is bogus, but
             that is the user's responsibility.  */
             that is the user's responsibility.  */
          RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
          RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
        }
        }
      else
      else
        { /* Caller did not allocate a buffer.  Do it for them.  */
        { /* Caller did not allocate a buffer.  Do it for them.  */
          bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
          bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
        }
        }
      if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE);
      if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE);
 
 
      bufp->allocated = INIT_BUF_SIZE;
      bufp->allocated = INIT_BUF_SIZE;
    }
    }
 
 
  begalt = b = bufp->buffer;
  begalt = b = bufp->buffer;
 
 
  /* Loop through the uncompiled pattern until we're at the end.  */
  /* Loop through the uncompiled pattern until we're at the end.  */
  while (p != pend)
  while (p != pend)
    {
    {
      PATFETCH (c);
      PATFETCH (c);
 
 
      switch (c)
      switch (c)
        {
        {
        case '^':
        case '^':
          {
          {
            if (   /* If at start of pattern, it's an operator.  */
            if (   /* If at start of pattern, it's an operator.  */
                   p == pattern + 1
                   p == pattern + 1
                   /* If context independent, it's an operator.  */
                   /* If context independent, it's an operator.  */
                || syntax & RE_CONTEXT_INDEP_ANCHORS
                || syntax & RE_CONTEXT_INDEP_ANCHORS
                   /* Otherwise, depends on what's come before.  */
                   /* Otherwise, depends on what's come before.  */
                || at_begline_loc_p (pattern, p, syntax))
                || at_begline_loc_p (pattern, p, syntax))
              BUF_PUSH (begline);
              BUF_PUSH (begline);
            else
            else
              goto normal_char;
              goto normal_char;
          }
          }
          break;
          break;
 
 
 
 
        case '$':
        case '$':
          {
          {
            if (   /* If at end of pattern, it's an operator.  */
            if (   /* If at end of pattern, it's an operator.  */
                   p == pend
                   p == pend
                   /* If context independent, it's an operator.  */
                   /* If context independent, it's an operator.  */
                || syntax & RE_CONTEXT_INDEP_ANCHORS
                || syntax & RE_CONTEXT_INDEP_ANCHORS
                   /* Otherwise, depends on what's next.  */
                   /* Otherwise, depends on what's next.  */
                || at_endline_loc_p (p, pend, syntax))
                || at_endline_loc_p (p, pend, syntax))
               BUF_PUSH (endline);
               BUF_PUSH (endline);
             else
             else
               goto normal_char;
               goto normal_char;
           }
           }
           break;
           break;
 
 
 
 
        case '+':
        case '+':
        case '?':
        case '?':
          if ((syntax & RE_BK_PLUS_QM)
          if ((syntax & RE_BK_PLUS_QM)
              || (syntax & RE_LIMITED_OPS))
              || (syntax & RE_LIMITED_OPS))
            goto normal_char;
            goto normal_char;
        handle_plus:
        handle_plus:
        case '*':
        case '*':
          /* If there is no previous pattern... */
          /* If there is no previous pattern... */
          if (!laststart)
          if (!laststart)
            {
            {
              if (syntax & RE_CONTEXT_INVALID_OPS)
              if (syntax & RE_CONTEXT_INVALID_OPS)
                FREE_STACK_RETURN (REG_BADRPT);
                FREE_STACK_RETURN (REG_BADRPT);
              else if (!(syntax & RE_CONTEXT_INDEP_OPS))
              else if (!(syntax & RE_CONTEXT_INDEP_OPS))
                goto normal_char;
                goto normal_char;
            }
            }
 
 
          {
          {
            /* Are we optimizing this jump?  */
            /* Are we optimizing this jump?  */
            boolean keep_string_p = false;
            boolean keep_string_p = false;
 
 
            /* 1 means zero (many) matches is allowed.  */
            /* 1 means zero (many) matches is allowed.  */
            char zero_times_ok = 0, many_times_ok = 0;
            char zero_times_ok = 0, many_times_ok = 0;
 
 
            /* If there is a sequence of repetition chars, collapse it
            /* If there is a sequence of repetition chars, collapse it
               down to just one (the right one).  We can't combine
               down to just one (the right one).  We can't combine
               interval operators with these because of, e.g., `a{2}*',
               interval operators with these because of, e.g., `a{2}*',
               which should only match an even number of `a's.  */
               which should only match an even number of `a's.  */
 
 
            for (;;)
            for (;;)
              {
              {
                zero_times_ok |= c != '+';
                zero_times_ok |= c != '+';
                many_times_ok |= c != '?';
                many_times_ok |= c != '?';
 
 
                if (p == pend)
                if (p == pend)
                  break;
                  break;
 
 
                PATFETCH (c);
                PATFETCH (c);
 
 
                if (c == '*'
                if (c == '*'
                    || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?')))
                    || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?')))
                  ;
                  ;
 
 
                else if (syntax & RE_BK_PLUS_QM  &&  c == '\\')
                else if (syntax & RE_BK_PLUS_QM  &&  c == '\\')
                  {
                  {
                    if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
                    if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
 
 
                    PATFETCH (c1);
                    PATFETCH (c1);
                    if (!(c1 == '+' || c1 == '?'))
                    if (!(c1 == '+' || c1 == '?'))
                      {
                      {
                        PATUNFETCH;
                        PATUNFETCH;
                        PATUNFETCH;
                        PATUNFETCH;
                        break;
                        break;
                      }
                      }
 
 
                    c = c1;
                    c = c1;
                  }
                  }
                else
                else
                  {
                  {
                    PATUNFETCH;
                    PATUNFETCH;
                    break;
                    break;
                  }
                  }
 
 
                /* If we get here, we found another repeat character.  */
                /* If we get here, we found another repeat character.  */
               }
               }
 
 
            /* Star, etc. applied to an empty pattern is equivalent
            /* Star, etc. applied to an empty pattern is equivalent
               to an empty pattern.  */
               to an empty pattern.  */
            if (!laststart)
            if (!laststart)
              break;
              break;
 
 
            /* Now we know whether or not zero matches is allowed
            /* Now we know whether or not zero matches is allowed
               and also whether or not two or more matches is allowed.  */
               and also whether or not two or more matches is allowed.  */
            if (many_times_ok)
            if (many_times_ok)
              { /* More than one repetition is allowed, so put in at the
              { /* More than one repetition is allowed, so put in at the
                   end a backward relative jump from `b' to before the next
                   end a backward relative jump from `b' to before the next
                   jump we're going to put in below (which jumps from
                   jump we're going to put in below (which jumps from
                   laststart to after this jump).
                   laststart to after this jump).
 
 
                   But if we are at the `*' in the exact sequence `.*\n',
                   But if we are at the `*' in the exact sequence `.*\n',
                   insert an unconditional jump backwards to the .,
                   insert an unconditional jump backwards to the .,
                   instead of the beginning of the loop.  This way we only
                   instead of the beginning of the loop.  This way we only
                   push a failure point once, instead of every time
                   push a failure point once, instead of every time
                   through the loop.  */
                   through the loop.  */
                assert (p - 1 > pattern);
                assert (p - 1 > pattern);
 
 
                /* Allocate the space for the jump.  */
                /* Allocate the space for the jump.  */
                GET_BUFFER_SPACE (3);
                GET_BUFFER_SPACE (3);
 
 
                /* We know we are not at the first character of the pattern,
                /* We know we are not at the first character of the pattern,
                   because laststart was nonzero.  And we've already
                   because laststart was nonzero.  And we've already
                   incremented `p', by the way, to be the character after
                   incremented `p', by the way, to be the character after
                   the `*'.  Do we have to do something analogous here
                   the `*'.  Do we have to do something analogous here
                   for null bytes, because of RE_DOT_NOT_NULL?  */
                   for null bytes, because of RE_DOT_NOT_NULL?  */
                if (TRANSLATE (*(p - 2)) == TRANSLATE ('.')
                if (TRANSLATE (*(p - 2)) == TRANSLATE ('.')
                    && zero_times_ok
                    && zero_times_ok
                    && p < pend && TRANSLATE (*p) == TRANSLATE ('\n')
                    && p < pend && TRANSLATE (*p) == TRANSLATE ('\n')
                    && !(syntax & RE_DOT_NEWLINE))
                    && !(syntax & RE_DOT_NEWLINE))
                  { /* We have .*\n.  */
                  { /* We have .*\n.  */
                    STORE_JUMP (jump, b, laststart);
                    STORE_JUMP (jump, b, laststart);
                    keep_string_p = true;
                    keep_string_p = true;
                  }
                  }
                else
                else
                  /* Anything else.  */
                  /* Anything else.  */
                  STORE_JUMP (maybe_pop_jump, b, laststart - 3);
                  STORE_JUMP (maybe_pop_jump, b, laststart - 3);
 
 
                /* We've added more stuff to the buffer.  */
                /* We've added more stuff to the buffer.  */
                b += 3;
                b += 3;
              }
              }
 
 
            /* On failure, jump from laststart to b + 3, which will be the
            /* On failure, jump from laststart to b + 3, which will be the
               end of the buffer after this jump is inserted.  */
               end of the buffer after this jump is inserted.  */
            GET_BUFFER_SPACE (3);
            GET_BUFFER_SPACE (3);
            INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump
            INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump
                                       : on_failure_jump,
                                       : on_failure_jump,
                         laststart, b + 3);
                         laststart, b + 3);
            pending_exact = 0;
            pending_exact = 0;
            b += 3;
            b += 3;
 
 
            if (!zero_times_ok)
            if (!zero_times_ok)
              {
              {
                /* At least one repetition is required, so insert a
                /* At least one repetition is required, so insert a
                   `dummy_failure_jump' before the initial
                   `dummy_failure_jump' before the initial
                   `on_failure_jump' instruction of the loop. This
                   `on_failure_jump' instruction of the loop. This
                   effects a skip over that instruction the first time
                   effects a skip over that instruction the first time
                   we hit that loop.  */
                   we hit that loop.  */
                GET_BUFFER_SPACE (3);
                GET_BUFFER_SPACE (3);
                INSERT_JUMP (dummy_failure_jump, laststart, laststart + 6);
                INSERT_JUMP (dummy_failure_jump, laststart, laststart + 6);
                b += 3;
                b += 3;
              }
              }
            }
            }
          break;
          break;
 
 
 
 
        case '.':
        case '.':
          laststart = b;
          laststart = b;
          BUF_PUSH (anychar);
          BUF_PUSH (anychar);
          break;
          break;
 
 
 
 
        case '[':
        case '[':
          {
          {
            boolean had_char_class = false;
            boolean had_char_class = false;
 
 
            if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
            if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
 
 
            /* Ensure that we have enough space to push a charset: the
            /* Ensure that we have enough space to push a charset: the
               opcode, the length count, and the bitset; 34 bytes in all.  */
               opcode, the length count, and the bitset; 34 bytes in all.  */
            GET_BUFFER_SPACE (34);
            GET_BUFFER_SPACE (34);
 
 
            laststart = b;
            laststart = b;
 
 
            /* We test `*p == '^' twice, instead of using an if
            /* We test `*p == '^' twice, instead of using an if
               statement, so we only need one BUF_PUSH.  */
               statement, so we only need one BUF_PUSH.  */
            BUF_PUSH (*p == '^' ? charset_not : charset);
            BUF_PUSH (*p == '^' ? charset_not : charset);
            if (*p == '^')
            if (*p == '^')
              p++;
              p++;
 
 
            /* Remember the first position in the bracket expression.  */
            /* Remember the first position in the bracket expression.  */
            p1 = p;
            p1 = p;
 
 
            /* Push the number of bytes in the bitmap.  */
            /* Push the number of bytes in the bitmap.  */
            BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
            BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
 
 
            /* Clear the whole map.  */
            /* Clear the whole map.  */
            bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
            bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
 
 
            /* charset_not matches newline according to a syntax bit.  */
            /* charset_not matches newline according to a syntax bit.  */
            if ((re_opcode_t) b[-2] == charset_not
            if ((re_opcode_t) b[-2] == charset_not
                && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
                && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
              SET_LIST_BIT ('\n');
              SET_LIST_BIT ('\n');
 
 
            /* Read in characters and ranges, setting map bits.  */
            /* Read in characters and ranges, setting map bits.  */
            for (;;)
            for (;;)
              {
              {
                if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
                if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
 
 
                PATFETCH (c);
                PATFETCH (c);
 
 
                /* \ might escape characters inside [...] and [^...].  */
                /* \ might escape characters inside [...] and [^...].  */
                if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
                if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
                  {
                  {
                    if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
                    if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
 
 
                    PATFETCH (c1);
                    PATFETCH (c1);
                    SET_LIST_BIT (c1);
                    SET_LIST_BIT (c1);
                    continue;
                    continue;
                  }
                  }
 
 
                /* Could be the end of the bracket expression.  If it's
                /* Could be the end of the bracket expression.  If it's
                   not (i.e., when the bracket expression is `[]' so
                   not (i.e., when the bracket expression is `[]' so
                   far), the ']' character bit gets set way below.  */
                   far), the ']' character bit gets set way below.  */
                if (c == ']' && p != p1 + 1)
                if (c == ']' && p != p1 + 1)
                  break;
                  break;
 
 
                /* Look ahead to see if it's a range when the last thing
                /* Look ahead to see if it's a range when the last thing
                   was a character class.  */
                   was a character class.  */
                if (had_char_class && c == '-' && *p != ']')
                if (had_char_class && c == '-' && *p != ']')
                  FREE_STACK_RETURN (REG_ERANGE);
                  FREE_STACK_RETURN (REG_ERANGE);
 
 
                /* Look ahead to see if it's a range when the last thing
                /* Look ahead to see if it's a range when the last thing
                   was a character: if this is a hyphen not at the
                   was a character: if this is a hyphen not at the
                   beginning or the end of a list, then it's the range
                   beginning or the end of a list, then it's the range
                   operator.  */
                   operator.  */
                if (c == '-'
                if (c == '-'
                    && !(p - 2 >= pattern && p[-2] == '[')
                    && !(p - 2 >= pattern && p[-2] == '[')
                    && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
                    && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
                    && *p != ']')
                    && *p != ']')
                  {
                  {
                    reg_errcode_t ret
                    reg_errcode_t ret
                      = compile_range (&p, pend, translate, syntax, b);
                      = compile_range (&p, pend, translate, syntax, b);
                    if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
                    if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
                  }
                  }
 
 
                else if (p[0] == '-' && p[1] != ']')
                else if (p[0] == '-' && p[1] != ']')
                  { /* This handles ranges made up of characters only.  */
                  { /* This handles ranges made up of characters only.  */
                    reg_errcode_t ret;
                    reg_errcode_t ret;
 
 
                    /* Move past the `-'.  */
                    /* Move past the `-'.  */
                    PATFETCH (c1);
                    PATFETCH (c1);
 
 
                    ret = compile_range (&p, pend, translate, syntax, b);
                    ret = compile_range (&p, pend, translate, syntax, b);
                    if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
                    if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
                  }
                  }
 
 
                /* See if we're at the beginning of a possible character
                /* See if we're at the beginning of a possible character
                   class.  */
                   class.  */
 
 
                else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
                else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
                  { /* Leave room for the null.  */
                  { /* Leave room for the null.  */
                    char str[CHAR_CLASS_MAX_LENGTH + 1];
                    char str[CHAR_CLASS_MAX_LENGTH + 1];
 
 
                    PATFETCH (c);
                    PATFETCH (c);
                    c1 = 0;
                    c1 = 0;
 
 
                    /* If pattern is `[[:'.  */
                    /* If pattern is `[[:'.  */
                    if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
                    if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
 
 
                    for (;;)
                    for (;;)
                      {
                      {
                        PATFETCH (c);
                        PATFETCH (c);
                        if ((c == ':' && *p == ']') || p == pend
                        if ((c == ':' && *p == ']') || p == pend
                            || c1 == CHAR_CLASS_MAX_LENGTH)
                            || c1 == CHAR_CLASS_MAX_LENGTH)
                          break;
                          break;
                        str[c1++] = c;
                        str[c1++] = c;
                      }
                      }
                    str[c1] = '\0';
                    str[c1] = '\0';
 
 
                    /* If isn't a word bracketed by `[:' and `:]':
                    /* If isn't a word bracketed by `[:' and `:]':
                       undo the ending character, the letters, and leave
                       undo the ending character, the letters, and leave
                       the leading `:' and `[' (but set bits for them).  */
                       the leading `:' and `[' (but set bits for them).  */
                    if (c == ':' && *p == ']')
                    if (c == ':' && *p == ']')
                      {
                      {
/* CYGNUS LOCAL: Skip this code if we don't have btowc().  btowc() is */
/* CYGNUS LOCAL: Skip this code if we don't have btowc().  btowc() is */
/* defined in the 1994 Amendment 1 to ISO C and may not be present on */
/* defined in the 1994 Amendment 1 to ISO C and may not be present on */
/* systems where we have wchar.h and wctype.h.   */
/* systems where we have wchar.h and wctype.h.   */
#if defined _LIBC || (defined HAVE_WCTYPE_H && defined HAVE_WCHAR_H && defined HAVE_BTOWC)
#if defined _LIBC || (defined HAVE_WCTYPE_H && defined HAVE_WCHAR_H && defined HAVE_BTOWC)
                        boolean is_lower = STREQ (str, "lower");
                        boolean is_lower = STREQ (str, "lower");
                        boolean is_upper = STREQ (str, "upper");
                        boolean is_upper = STREQ (str, "upper");
                        wctype_t wt;
                        wctype_t wt;
                        int ch;
                        int ch;
 
 
                        wt = IS_CHAR_CLASS (str);
                        wt = IS_CHAR_CLASS (str);
                        if (wt == 0)
                        if (wt == 0)
                          FREE_STACK_RETURN (REG_ECTYPE);
                          FREE_STACK_RETURN (REG_ECTYPE);
 
 
                        /* Throw away the ] at the end of the character
                        /* Throw away the ] at the end of the character
                           class.  */
                           class.  */
                        PATFETCH (c);
                        PATFETCH (c);
 
 
                        if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
                        if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
 
 
                        for (ch = 0; ch < 1 << BYTEWIDTH; ++ch)
                        for (ch = 0; ch < 1 << BYTEWIDTH; ++ch)
                          {
                          {
# ifdef _LIBC
# ifdef _LIBC
                            if (__iswctype (__btowc (ch), wt))
                            if (__iswctype (__btowc (ch), wt))
                              SET_LIST_BIT (ch);
                              SET_LIST_BIT (ch);
#else
#else
                            if (iswctype (btowc (ch), wt))
                            if (iswctype (btowc (ch), wt))
                              SET_LIST_BIT (ch);
                              SET_LIST_BIT (ch);
#endif
#endif
 
 
                            if (translate && (is_upper || is_lower)
                            if (translate && (is_upper || is_lower)
                                && (ISUPPER (ch) || ISLOWER (ch)))
                                && (ISUPPER (ch) || ISLOWER (ch)))
                              SET_LIST_BIT (ch);
                              SET_LIST_BIT (ch);
                          }
                          }
 
 
                        had_char_class = true;
                        had_char_class = true;
#else
#else
                        int ch;
                        int ch;
                        boolean is_alnum = STREQ (str, "alnum");
                        boolean is_alnum = STREQ (str, "alnum");
                        boolean is_alpha = STREQ (str, "alpha");
                        boolean is_alpha = STREQ (str, "alpha");
                        boolean is_blank = STREQ (str, "blank");
                        boolean is_blank = STREQ (str, "blank");
                        boolean is_cntrl = STREQ (str, "cntrl");
                        boolean is_cntrl = STREQ (str, "cntrl");
                        boolean is_digit = STREQ (str, "digit");
                        boolean is_digit = STREQ (str, "digit");
                        boolean is_graph = STREQ (str, "graph");
                        boolean is_graph = STREQ (str, "graph");
                        boolean is_lower = STREQ (str, "lower");
                        boolean is_lower = STREQ (str, "lower");
                        boolean is_print = STREQ (str, "print");
                        boolean is_print = STREQ (str, "print");
                        boolean is_punct = STREQ (str, "punct");
                        boolean is_punct = STREQ (str, "punct");
                        boolean is_space = STREQ (str, "space");
                        boolean is_space = STREQ (str, "space");
                        boolean is_upper = STREQ (str, "upper");
                        boolean is_upper = STREQ (str, "upper");
                        boolean is_xdigit = STREQ (str, "xdigit");
                        boolean is_xdigit = STREQ (str, "xdigit");
 
 
                        if (!IS_CHAR_CLASS (str))
                        if (!IS_CHAR_CLASS (str))
                          FREE_STACK_RETURN (REG_ECTYPE);
                          FREE_STACK_RETURN (REG_ECTYPE);
 
 
                        /* Throw away the ] at the end of the character
                        /* Throw away the ] at the end of the character
                           class.  */
                           class.  */
                        PATFETCH (c);
                        PATFETCH (c);
 
 
                        if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
                        if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
 
 
                        for (ch = 0; ch < 1 << BYTEWIDTH; ch++)
                        for (ch = 0; ch < 1 << BYTEWIDTH; ch++)
                          {
                          {
                            /* This was split into 3 if's to
                            /* This was split into 3 if's to
                               avoid an arbitrary limit in some compiler.  */
                               avoid an arbitrary limit in some compiler.  */
                            if (   (is_alnum  && ISALNUM (ch))
                            if (   (is_alnum  && ISALNUM (ch))
                                || (is_alpha  && ISALPHA (ch))
                                || (is_alpha  && ISALPHA (ch))
                                || (is_blank  && ISBLANK (ch))
                                || (is_blank  && ISBLANK (ch))
                                || (is_cntrl  && ISCNTRL (ch)))
                                || (is_cntrl  && ISCNTRL (ch)))
                              SET_LIST_BIT (ch);
                              SET_LIST_BIT (ch);
                            if (   (is_digit  && ISDIGIT (ch))
                            if (   (is_digit  && ISDIGIT (ch))
                                || (is_graph  && ISGRAPH (ch))
                                || (is_graph  && ISGRAPH (ch))
                                || (is_lower  && ISLOWER (ch))
                                || (is_lower  && ISLOWER (ch))
                                || (is_print  && ISPRINT (ch)))
                                || (is_print  && ISPRINT (ch)))
                              SET_LIST_BIT (ch);
                              SET_LIST_BIT (ch);
                            if (   (is_punct  && ISPUNCT (ch))
                            if (   (is_punct  && ISPUNCT (ch))
                                || (is_space  && ISSPACE (ch))
                                || (is_space  && ISSPACE (ch))
                                || (is_upper  && ISUPPER (ch))
                                || (is_upper  && ISUPPER (ch))
                                || (is_xdigit && ISXDIGIT (ch)))
                                || (is_xdigit && ISXDIGIT (ch)))
                              SET_LIST_BIT (ch);
                              SET_LIST_BIT (ch);
                            if (   translate && (is_upper || is_lower)
                            if (   translate && (is_upper || is_lower)
                                && (ISUPPER (ch) || ISLOWER (ch)))
                                && (ISUPPER (ch) || ISLOWER (ch)))
                              SET_LIST_BIT (ch);
                              SET_LIST_BIT (ch);
                          }
                          }
                        had_char_class = true;
                        had_char_class = true;
#endif  /* libc || wctype.h */
#endif  /* libc || wctype.h */
                      }
                      }
                    else
                    else
                      {
                      {
                        c1++;
                        c1++;
                        while (c1--)
                        while (c1--)
                          PATUNFETCH;
                          PATUNFETCH;
                        SET_LIST_BIT ('[');
                        SET_LIST_BIT ('[');
                        SET_LIST_BIT (':');
                        SET_LIST_BIT (':');
                        had_char_class = false;
                        had_char_class = false;
                      }
                      }
                  }
                  }
                else
                else
                  {
                  {
                    had_char_class = false;
                    had_char_class = false;
                    SET_LIST_BIT (c);
                    SET_LIST_BIT (c);
                  }
                  }
              }
              }
 
 
            /* Discard any (non)matching list bytes that are all 0 at the
            /* Discard any (non)matching list bytes that are all 0 at the
               end of the map.  Decrease the map-length byte too.  */
               end of the map.  Decrease the map-length byte too.  */
            while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
            while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
              b[-1]--;
              b[-1]--;
            b += b[-1];
            b += b[-1];
          }
          }
          break;
          break;
 
 
 
 
        case '(':
        case '(':
          if (syntax & RE_NO_BK_PARENS)
          if (syntax & RE_NO_BK_PARENS)
            goto handle_open;
            goto handle_open;
          else
          else
            goto normal_char;
            goto normal_char;
 
 
 
 
        case ')':
        case ')':
          if (syntax & RE_NO_BK_PARENS)
          if (syntax & RE_NO_BK_PARENS)
            goto handle_close;
            goto handle_close;
          else
          else
            goto normal_char;
            goto normal_char;
 
 
 
 
        case '\n':
        case '\n':
          if (syntax & RE_NEWLINE_ALT)
          if (syntax & RE_NEWLINE_ALT)
            goto handle_alt;
            goto handle_alt;
          else
          else
            goto normal_char;
            goto normal_char;
 
 
 
 
        case '|':
        case '|':
          if (syntax & RE_NO_BK_VBAR)
          if (syntax & RE_NO_BK_VBAR)
            goto handle_alt;
            goto handle_alt;
          else
          else
            goto normal_char;
            goto normal_char;
 
 
 
 
        case '{':
        case '{':
           if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
           if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
             goto handle_interval;
             goto handle_interval;
           else
           else
             goto normal_char;
             goto normal_char;
 
 
 
 
        case '\\':
        case '\\':
          if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
          if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
 
 
          /* Do not translate the character after the \, so that we can
          /* Do not translate the character after the \, so that we can
             distinguish, e.g., \B from \b, even if we normally would
             distinguish, e.g., \B from \b, even if we normally would
             translate, e.g., B to b.  */
             translate, e.g., B to b.  */
          PATFETCH_RAW (c);
          PATFETCH_RAW (c);
 
 
          switch (c)
          switch (c)
            {
            {
            case '(':
            case '(':
              if (syntax & RE_NO_BK_PARENS)
              if (syntax & RE_NO_BK_PARENS)
                goto normal_backslash;
                goto normal_backslash;
 
 
            handle_open:
            handle_open:
              bufp->re_nsub++;
              bufp->re_nsub++;
              regnum++;
              regnum++;
 
 
              if (COMPILE_STACK_FULL)
              if (COMPILE_STACK_FULL)
                {
                {
                  RETALLOC (compile_stack.stack, compile_stack.size << 1,
                  RETALLOC (compile_stack.stack, compile_stack.size << 1,
                            compile_stack_elt_t);
                            compile_stack_elt_t);
                  if (compile_stack.stack == NULL) return REG_ESPACE;
                  if (compile_stack.stack == NULL) return REG_ESPACE;
 
 
                  compile_stack.size <<= 1;
                  compile_stack.size <<= 1;
                }
                }
 
 
              /* These are the values to restore when we hit end of this
              /* These are the values to restore when we hit end of this
                 group.  They are all relative offsets, so that if the
                 group.  They are all relative offsets, so that if the
                 whole pattern moves because of realloc, they will still
                 whole pattern moves because of realloc, they will still
                 be valid.  */
                 be valid.  */
              COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
              COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
              COMPILE_STACK_TOP.fixup_alt_jump
              COMPILE_STACK_TOP.fixup_alt_jump
                = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
                = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
              COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
              COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
              COMPILE_STACK_TOP.regnum = regnum;
              COMPILE_STACK_TOP.regnum = regnum;
 
 
              /* We will eventually replace the 0 with the number of
              /* We will eventually replace the 0 with the number of
                 groups inner to this one.  But do not push a
                 groups inner to this one.  But do not push a
                 start_memory for groups beyond the last one we can
                 start_memory for groups beyond the last one we can
                 represent in the compiled pattern.  */
                 represent in the compiled pattern.  */
              if (regnum <= MAX_REGNUM)
              if (regnum <= MAX_REGNUM)
                {
                {
                  COMPILE_STACK_TOP.inner_group_offset = b - bufp->buffer + 2;
                  COMPILE_STACK_TOP.inner_group_offset = b - bufp->buffer + 2;
                  BUF_PUSH_3 (start_memory, regnum, 0);
                  BUF_PUSH_3 (start_memory, regnum, 0);
                }
                }
 
 
              compile_stack.avail++;
              compile_stack.avail++;
 
 
              fixup_alt_jump = 0;
              fixup_alt_jump = 0;
              laststart = 0;
              laststart = 0;
              begalt = b;
              begalt = b;
              /* If we've reached MAX_REGNUM groups, then this open
              /* If we've reached MAX_REGNUM groups, then this open
                 won't actually generate any code, so we'll have to
                 won't actually generate any code, so we'll have to
                 clear pending_exact explicitly.  */
                 clear pending_exact explicitly.  */
              pending_exact = 0;
              pending_exact = 0;
              break;
              break;
 
 
 
 
            case ')':
            case ')':
              if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
              if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
 
 
              if (COMPILE_STACK_EMPTY)
              if (COMPILE_STACK_EMPTY)
                {
                {
                  if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
                  if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
                    goto normal_backslash;
                    goto normal_backslash;
                  else
                  else
                    FREE_STACK_RETURN (REG_ERPAREN);
                    FREE_STACK_RETURN (REG_ERPAREN);
                }
                }
 
 
            handle_close:
            handle_close:
              if (fixup_alt_jump)
              if (fixup_alt_jump)
                { /* Push a dummy failure point at the end of the
                { /* Push a dummy failure point at the end of the
                     alternative for a possible future
                     alternative for a possible future
                     `pop_failure_jump' to pop.  See comments at
                     `pop_failure_jump' to pop.  See comments at
                     `push_dummy_failure' in `re_match_2'.  */
                     `push_dummy_failure' in `re_match_2'.  */
                  BUF_PUSH (push_dummy_failure);
                  BUF_PUSH (push_dummy_failure);
 
 
                  /* We allocated space for this jump when we assigned
                  /* We allocated space for this jump when we assigned
                     to `fixup_alt_jump', in the `handle_alt' case below.  */
                     to `fixup_alt_jump', in the `handle_alt' case below.  */
                  STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1);
                  STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1);
                }
                }
 
 
              /* See similar code for backslashed left paren above.  */
              /* See similar code for backslashed left paren above.  */
              if (COMPILE_STACK_EMPTY)
              if (COMPILE_STACK_EMPTY)
                {
                {
                  if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
                  if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
                    goto normal_char;
                    goto normal_char;
                  else
                  else
                    FREE_STACK_RETURN (REG_ERPAREN);
                    FREE_STACK_RETURN (REG_ERPAREN);
                }
                }
 
 
              /* Since we just checked for an empty stack above, this
              /* Since we just checked for an empty stack above, this
                 ``can't happen''.  */
                 ``can't happen''.  */
              assert (compile_stack.avail != 0);
              assert (compile_stack.avail != 0);
              {
              {
                /* We don't just want to restore into `regnum', because
                /* We don't just want to restore into `regnum', because
                   later groups should continue to be numbered higher,
                   later groups should continue to be numbered higher,
                   as in `(ab)c(de)' -- the second group is #2.  */
                   as in `(ab)c(de)' -- the second group is #2.  */
                regnum_t this_group_regnum;
                regnum_t this_group_regnum;
 
 
                compile_stack.avail--;
                compile_stack.avail--;
                begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
                begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
                fixup_alt_jump
                fixup_alt_jump
                  = COMPILE_STACK_TOP.fixup_alt_jump
                  = COMPILE_STACK_TOP.fixup_alt_jump
                    ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
                    ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
                    : 0;
                    : 0;
                laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
                laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
                this_group_regnum = COMPILE_STACK_TOP.regnum;
                this_group_regnum = COMPILE_STACK_TOP.regnum;
                /* If we've reached MAX_REGNUM groups, then this open
                /* If we've reached MAX_REGNUM groups, then this open
                   won't actually generate any code, so we'll have to
                   won't actually generate any code, so we'll have to
                   clear pending_exact explicitly.  */
                   clear pending_exact explicitly.  */
                pending_exact = 0;
                pending_exact = 0;
 
 
                /* We're at the end of the group, so now we know how many
                /* We're at the end of the group, so now we know how many
                   groups were inside this one.  */
                   groups were inside this one.  */
                if (this_group_regnum <= MAX_REGNUM)
                if (this_group_regnum <= MAX_REGNUM)
                  {
                  {
                    unsigned char *inner_group_loc
                    unsigned char *inner_group_loc
                      = bufp->buffer + COMPILE_STACK_TOP.inner_group_offset;
                      = bufp->buffer + COMPILE_STACK_TOP.inner_group_offset;
 
 
                    *inner_group_loc = regnum - this_group_regnum;
                    *inner_group_loc = regnum - this_group_regnum;
                    BUF_PUSH_3 (stop_memory, this_group_regnum,
                    BUF_PUSH_3 (stop_memory, this_group_regnum,
                                regnum - this_group_regnum);
                                regnum - this_group_regnum);
                  }
                  }
              }
              }
              break;
              break;
 
 
 
 
            case '|':                                   /* `\|'.  */
            case '|':                                   /* `\|'.  */
              if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
              if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
                goto normal_backslash;
                goto normal_backslash;
            handle_alt:
            handle_alt:
              if (syntax & RE_LIMITED_OPS)
              if (syntax & RE_LIMITED_OPS)
                goto normal_char;
                goto normal_char;
 
 
              /* Insert before the previous alternative a jump which
              /* Insert before the previous alternative a jump which
                 jumps to this alternative if the former fails.  */
                 jumps to this alternative if the former fails.  */
              GET_BUFFER_SPACE (3);
              GET_BUFFER_SPACE (3);
              INSERT_JUMP (on_failure_jump, begalt, b + 6);
              INSERT_JUMP (on_failure_jump, begalt, b + 6);
              pending_exact = 0;
              pending_exact = 0;
              b += 3;
              b += 3;
 
 
              /* The alternative before this one has a jump after it
              /* The alternative before this one has a jump after it
                 which gets executed if it gets matched.  Adjust that
                 which gets executed if it gets matched.  Adjust that
                 jump so it will jump to this alternative's analogous
                 jump so it will jump to this alternative's analogous
                 jump (put in below, which in turn will jump to the next
                 jump (put in below, which in turn will jump to the next
                 (if any) alternative's such jump, etc.).  The last such
                 (if any) alternative's such jump, etc.).  The last such
                 jump jumps to the correct final destination.  A picture:
                 jump jumps to the correct final destination.  A picture:
                          _____ _____
                          _____ _____
                          |   | |   |
                          |   | |   |
                          |   v |   v
                          |   v |   v
                         a | b   | c
                         a | b   | c
 
 
                 If we are at `b', then fixup_alt_jump right now points to a
                 If we are at `b', then fixup_alt_jump right now points to a
                 three-byte space after `a'.  We'll put in the jump, set
                 three-byte space after `a'.  We'll put in the jump, set
                 fixup_alt_jump to right after `b', and leave behind three
                 fixup_alt_jump to right after `b', and leave behind three
                 bytes which we'll fill in when we get to after `c'.  */
                 bytes which we'll fill in when we get to after `c'.  */
 
 
              if (fixup_alt_jump)
              if (fixup_alt_jump)
                STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
                STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
 
 
              /* Mark and leave space for a jump after this alternative,
              /* Mark and leave space for a jump after this alternative,
                 to be filled in later either by next alternative or
                 to be filled in later either by next alternative or
                 when know we're at the end of a series of alternatives.  */
                 when know we're at the end of a series of alternatives.  */
              fixup_alt_jump = b;
              fixup_alt_jump = b;
              GET_BUFFER_SPACE (3);
              GET_BUFFER_SPACE (3);
              b += 3;
              b += 3;
 
 
              laststart = 0;
              laststart = 0;
              begalt = b;
              begalt = b;
              break;
              break;
 
 
 
 
            case '{':
            case '{':
              /* If \{ is a literal.  */
              /* If \{ is a literal.  */
              if (!(syntax & RE_INTERVALS)
              if (!(syntax & RE_INTERVALS)
                     /* If we're at `\{' and it's not the open-interval
                     /* If we're at `\{' and it's not the open-interval
                        operator.  */
                        operator.  */
                  || ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES))
                  || ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES))
                  || (p - 2 == pattern  &&  p == pend))
                  || (p - 2 == pattern  &&  p == pend))
                goto normal_backslash;
                goto normal_backslash;
 
 
            handle_interval:
            handle_interval:
              {
              {
                /* If got here, then the syntax allows intervals.  */
                /* If got here, then the syntax allows intervals.  */
 
 
                /* At least (most) this many matches must be made.  */
                /* At least (most) this many matches must be made.  */
                int lower_bound = -1, upper_bound = -1;
                int lower_bound = -1, upper_bound = -1;
 
 
                beg_interval = p - 1;
                beg_interval = p - 1;
 
 
                if (p == pend)
                if (p == pend)
                  {
                  {
                    if (syntax & RE_NO_BK_BRACES)
                    if (syntax & RE_NO_BK_BRACES)
                      goto unfetch_interval;
                      goto unfetch_interval;
                    else
                    else
                      FREE_STACK_RETURN (REG_EBRACE);
                      FREE_STACK_RETURN (REG_EBRACE);
                  }
                  }
 
 
                GET_UNSIGNED_NUMBER (lower_bound);
                GET_UNSIGNED_NUMBER (lower_bound);
 
 
                if (c == ',')
                if (c == ',')
                  {
                  {
                    GET_UNSIGNED_NUMBER (upper_bound);
                    GET_UNSIGNED_NUMBER (upper_bound);
                    if (upper_bound < 0) upper_bound = RE_DUP_MAX;
                    if (upper_bound < 0) upper_bound = RE_DUP_MAX;
                  }
                  }
                else
                else
                  /* Interval such as `{1}' => match exactly once. */
                  /* Interval such as `{1}' => match exactly once. */
                  upper_bound = lower_bound;
                  upper_bound = lower_bound;
 
 
                if (lower_bound < 0 || upper_bound > RE_DUP_MAX
                if (lower_bound < 0 || upper_bound > RE_DUP_MAX
                    || lower_bound > upper_bound)
                    || lower_bound > upper_bound)
                  {
                  {
                    if (syntax & RE_NO_BK_BRACES)
                    if (syntax & RE_NO_BK_BRACES)
                      goto unfetch_interval;
                      goto unfetch_interval;
                    else
                    else
                      FREE_STACK_RETURN (REG_BADBR);
                      FREE_STACK_RETURN (REG_BADBR);
                  }
                  }
 
 
                if (!(syntax & RE_NO_BK_BRACES))
                if (!(syntax & RE_NO_BK_BRACES))
                  {
                  {
                    if (c != '\\') FREE_STACK_RETURN (REG_EBRACE);
                    if (c != '\\') FREE_STACK_RETURN (REG_EBRACE);
 
 
                    PATFETCH (c);
                    PATFETCH (c);
                  }
                  }
 
 
                if (c != '}')
                if (c != '}')
                  {
                  {
                    if (syntax & RE_NO_BK_BRACES)
                    if (syntax & RE_NO_BK_BRACES)
                      goto unfetch_interval;
                      goto unfetch_interval;
                    else
                    else
                      FREE_STACK_RETURN (REG_BADBR);
                      FREE_STACK_RETURN (REG_BADBR);
                  }
                  }
 
 
                /* We just parsed a valid interval.  */
                /* We just parsed a valid interval.  */
 
 
                /* If it's invalid to have no preceding re.  */
                /* If it's invalid to have no preceding re.  */
                if (!laststart)
                if (!laststart)
                  {
                  {
                    if (syntax & RE_CONTEXT_INVALID_OPS)
                    if (syntax & RE_CONTEXT_INVALID_OPS)
                      FREE_STACK_RETURN (REG_BADRPT);
                      FREE_STACK_RETURN (REG_BADRPT);
                    else if (syntax & RE_CONTEXT_INDEP_OPS)
                    else if (syntax & RE_CONTEXT_INDEP_OPS)
                      laststart = b;
                      laststart = b;
                    else
                    else
                      goto unfetch_interval;
                      goto unfetch_interval;
                  }
                  }
 
 
                /* If the upper bound is zero, don't want to succeed at
                /* If the upper bound is zero, don't want to succeed at
                   all; jump from `laststart' to `b + 3', which will be
                   all; jump from `laststart' to `b + 3', which will be
                   the end of the buffer after we insert the jump.  */
                   the end of the buffer after we insert the jump.  */
                 if (upper_bound == 0)
                 if (upper_bound == 0)
                   {
                   {
                     GET_BUFFER_SPACE (3);
                     GET_BUFFER_SPACE (3);
                     INSERT_JUMP (jump, laststart, b + 3);
                     INSERT_JUMP (jump, laststart, b + 3);
                     b += 3;
                     b += 3;
                   }
                   }
 
 
                 /* Otherwise, we have a nontrivial interval.  When
                 /* Otherwise, we have a nontrivial interval.  When
                    we're all done, the pattern will look like:
                    we're all done, the pattern will look like:
                      set_number_at <jump count> <upper bound>
                      set_number_at <jump count> <upper bound>
                      set_number_at <succeed_n count> <lower bound>
                      set_number_at <succeed_n count> <lower bound>
                      succeed_n <after jump addr> <succeed_n count>
                      succeed_n <after jump addr> <succeed_n count>
                      <body of loop>
                      <body of loop>
                      jump_n <succeed_n addr> <jump count>
                      jump_n <succeed_n addr> <jump count>
                    (The upper bound and `jump_n' are omitted if
                    (The upper bound and `jump_n' are omitted if
                    `upper_bound' is 1, though.)  */
                    `upper_bound' is 1, though.)  */
                 else
                 else
                   { /* If the upper bound is > 1, we need to insert
                   { /* If the upper bound is > 1, we need to insert
                        more at the end of the loop.  */
                        more at the end of the loop.  */
                     unsigned nbytes = 10 + (upper_bound > 1) * 10;
                     unsigned nbytes = 10 + (upper_bound > 1) * 10;
 
 
                     GET_BUFFER_SPACE (nbytes);
                     GET_BUFFER_SPACE (nbytes);
 
 
                     /* Initialize lower bound of the `succeed_n', even
                     /* Initialize lower bound of the `succeed_n', even
                        though it will be set during matching by its
                        though it will be set during matching by its
                        attendant `set_number_at' (inserted next),
                        attendant `set_number_at' (inserted next),
                        because `re_compile_fastmap' needs to know.
                        because `re_compile_fastmap' needs to know.
                        Jump to the `jump_n' we might insert below.  */
                        Jump to the `jump_n' we might insert below.  */
                     INSERT_JUMP2 (succeed_n, laststart,
                     INSERT_JUMP2 (succeed_n, laststart,
                                   b + 5 + (upper_bound > 1) * 5,
                                   b + 5 + (upper_bound > 1) * 5,
                                   lower_bound);
                                   lower_bound);
                     b += 5;
                     b += 5;
 
 
                     /* Code to initialize the lower bound.  Insert
                     /* Code to initialize the lower bound.  Insert
                        before the `succeed_n'.  The `5' is the last two
                        before the `succeed_n'.  The `5' is the last two
                        bytes of this `set_number_at', plus 3 bytes of
                        bytes of this `set_number_at', plus 3 bytes of
                        the following `succeed_n'.  */
                        the following `succeed_n'.  */
                     insert_op2 (set_number_at, laststart, 5, lower_bound, b);
                     insert_op2 (set_number_at, laststart, 5, lower_bound, b);
                     b += 5;
                     b += 5;
 
 
                     if (upper_bound > 1)
                     if (upper_bound > 1)
                       { /* More than one repetition is allowed, so
                       { /* More than one repetition is allowed, so
                            append a backward jump to the `succeed_n'
                            append a backward jump to the `succeed_n'
                            that starts this interval.
                            that starts this interval.
 
 
                            When we've reached this during matching,
                            When we've reached this during matching,
                            we'll have matched the interval once, so
                            we'll have matched the interval once, so
                            jump back only `upper_bound - 1' times.  */
                            jump back only `upper_bound - 1' times.  */
                         STORE_JUMP2 (jump_n, b, laststart + 5,
                         STORE_JUMP2 (jump_n, b, laststart + 5,
                                      upper_bound - 1);
                                      upper_bound - 1);
                         b += 5;
                         b += 5;
 
 
                         /* The location we want to set is the second
                         /* The location we want to set is the second
                            parameter of the `jump_n'; that is `b-2' as
                            parameter of the `jump_n'; that is `b-2' as
                            an absolute address.  `laststart' will be
                            an absolute address.  `laststart' will be
                            the `set_number_at' we're about to insert;
                            the `set_number_at' we're about to insert;
                            `laststart+3' the number to set, the source
                            `laststart+3' the number to set, the source
                            for the relative address.  But we are
                            for the relative address.  But we are
                            inserting into the middle of the pattern --
                            inserting into the middle of the pattern --
                            so everything is getting moved up by 5.
                            so everything is getting moved up by 5.
                            Conclusion: (b - 2) - (laststart + 3) + 5,
                            Conclusion: (b - 2) - (laststart + 3) + 5,
                            i.e., b - laststart.
                            i.e., b - laststart.
 
 
                            We insert this at the beginning of the loop
                            We insert this at the beginning of the loop
                            so that if we fail during matching, we'll
                            so that if we fail during matching, we'll
                            reinitialize the bounds.  */
                            reinitialize the bounds.  */
                         insert_op2 (set_number_at, laststart, b - laststart,
                         insert_op2 (set_number_at, laststart, b - laststart,
                                     upper_bound - 1, b);
                                     upper_bound - 1, b);
                         b += 5;
                         b += 5;
                       }
                       }
                   }
                   }
                pending_exact = 0;
                pending_exact = 0;
                beg_interval = NULL;
                beg_interval = NULL;
              }
              }
              break;
              break;
 
 
            unfetch_interval:
            unfetch_interval:
              /* If an invalid interval, match the characters as literals.  */
              /* If an invalid interval, match the characters as literals.  */
               assert (beg_interval);
               assert (beg_interval);
               p = beg_interval;
               p = beg_interval;
               beg_interval = NULL;
               beg_interval = NULL;
 
 
               /* normal_char and normal_backslash need `c'.  */
               /* normal_char and normal_backslash need `c'.  */
               PATFETCH (c);
               PATFETCH (c);
 
 
               if (!(syntax & RE_NO_BK_BRACES))
               if (!(syntax & RE_NO_BK_BRACES))
                 {
                 {
                   if (p > pattern  &&  p[-1] == '\\')
                   if (p > pattern  &&  p[-1] == '\\')
                     goto normal_backslash;
                     goto normal_backslash;
                 }
                 }
               goto normal_char;
               goto normal_char;
 
 
#ifdef emacs
#ifdef emacs
            /* There is no way to specify the before_dot and after_dot
            /* There is no way to specify the before_dot and after_dot
               operators.  rms says this is ok.  --karl  */
               operators.  rms says this is ok.  --karl  */
            case '=':
            case '=':
              BUF_PUSH (at_dot);
              BUF_PUSH (at_dot);
              break;
              break;
 
 
            case 's':
            case 's':
              laststart = b;
              laststart = b;
              PATFETCH (c);
              PATFETCH (c);
              BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
              BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
              break;
              break;
 
 
            case 'S':
            case 'S':
              laststart = b;
              laststart = b;
              PATFETCH (c);
              PATFETCH (c);
              BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
              BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
              break;
              break;
#endif /* emacs */
#endif /* emacs */
 
 
 
 
            case 'w':
            case 'w':
              if (syntax & RE_NO_GNU_OPS)
              if (syntax & RE_NO_GNU_OPS)
                goto normal_char;
                goto normal_char;
              laststart = b;
              laststart = b;
              BUF_PUSH (wordchar);
              BUF_PUSH (wordchar);
              break;
              break;
 
 
 
 
            case 'W':
            case 'W':
              if (syntax & RE_NO_GNU_OPS)
              if (syntax & RE_NO_GNU_OPS)
                goto normal_char;
                goto normal_char;
              laststart = b;
              laststart = b;
              BUF_PUSH (notwordchar);
              BUF_PUSH (notwordchar);
              break;
              break;
 
 
 
 
            case '<':
            case '<':
              if (syntax & RE_NO_GNU_OPS)
              if (syntax & RE_NO_GNU_OPS)
                goto normal_char;
                goto normal_char;
              BUF_PUSH (wordbeg);
              BUF_PUSH (wordbeg);
              break;
              break;
 
 
            case '>':
            case '>':
              if (syntax & RE_NO_GNU_OPS)
              if (syntax & RE_NO_GNU_OPS)
                goto normal_char;
                goto normal_char;
              BUF_PUSH (wordend);
              BUF_PUSH (wordend);
              break;
              break;
 
 
            case 'b':
            case 'b':
              if (syntax & RE_NO_GNU_OPS)
              if (syntax & RE_NO_GNU_OPS)
                goto normal_char;
                goto normal_char;
              BUF_PUSH (wordbound);
              BUF_PUSH (wordbound);
              break;
              break;
 
 
            case 'B':
            case 'B':
              if (syntax & RE_NO_GNU_OPS)
              if (syntax & RE_NO_GNU_OPS)
                goto normal_char;
                goto normal_char;
              BUF_PUSH (notwordbound);
              BUF_PUSH (notwordbound);
              break;
              break;
 
 
            case '`':
            case '`':
              if (syntax & RE_NO_GNU_OPS)
              if (syntax & RE_NO_GNU_OPS)
                goto normal_char;
                goto normal_char;
              BUF_PUSH (begbuf);
              BUF_PUSH (begbuf);
              break;
              break;
 
 
            case '\'':
            case '\'':
              if (syntax & RE_NO_GNU_OPS)
              if (syntax & RE_NO_GNU_OPS)
                goto normal_char;
                goto normal_char;
              BUF_PUSH (endbuf);
              BUF_PUSH (endbuf);
              break;
              break;
 
 
            case '1': case '2': case '3': case '4': case '5':
            case '1': case '2': case '3': case '4': case '5':
            case '6': case '7': case '8': case '9':
            case '6': case '7': case '8': case '9':
              if (syntax & RE_NO_BK_REFS)
              if (syntax & RE_NO_BK_REFS)
                goto normal_char;
                goto normal_char;
 
 
              c1 = c - '0';
              c1 = c - '0';
 
 
              if (c1 > regnum)
              if (c1 > regnum)
                FREE_STACK_RETURN (REG_ESUBREG);
                FREE_STACK_RETURN (REG_ESUBREG);
 
 
              /* Can't back reference to a subexpression if inside of it.  */
              /* Can't back reference to a subexpression if inside of it.  */
              if (group_in_compile_stack (compile_stack, (regnum_t) c1))
              if (group_in_compile_stack (compile_stack, (regnum_t) c1))
                goto normal_char;
                goto normal_char;
 
 
              laststart = b;
              laststart = b;
              BUF_PUSH_2 (duplicate, c1);
              BUF_PUSH_2 (duplicate, c1);
              break;
              break;
 
 
 
 
            case '+':
            case '+':
            case '?':
            case '?':
              if (syntax & RE_BK_PLUS_QM)
              if (syntax & RE_BK_PLUS_QM)
                goto handle_plus;
                goto handle_plus;
              else
              else
                goto normal_backslash;
                goto normal_backslash;
 
 
            default:
            default:
            normal_backslash:
            normal_backslash:
              /* You might think it would be useful for \ to mean
              /* You might think it would be useful for \ to mean
                 not to translate; but if we don't translate it
                 not to translate; but if we don't translate it
                 it will never match anything.  */
                 it will never match anything.  */
              c = TRANSLATE (c);
              c = TRANSLATE (c);
              goto normal_char;
              goto normal_char;
            }
            }
          break;
          break;
 
 
 
 
        default:
        default:
        /* Expects the character in `c'.  */
        /* Expects the character in `c'.  */
        normal_char:
        normal_char:
              /* If no exactn currently being built.  */
              /* If no exactn currently being built.  */
          if (!pending_exact
          if (!pending_exact
 
 
              /* If last exactn not at current position.  */
              /* If last exactn not at current position.  */
              || pending_exact + *pending_exact + 1 != b
              || pending_exact + *pending_exact + 1 != b
 
 
              /* We have only one byte following the exactn for the count.  */
              /* We have only one byte following the exactn for the count.  */
              || *pending_exact == (1 << BYTEWIDTH) - 1
              || *pending_exact == (1 << BYTEWIDTH) - 1
 
 
              /* If followed by a repetition operator.  */
              /* If followed by a repetition operator.  */
              || *p == '*' || *p == '^'
              || *p == '*' || *p == '^'
              || ((syntax & RE_BK_PLUS_QM)
              || ((syntax & RE_BK_PLUS_QM)
                  ? *p == '\\' && (p[1] == '+' || p[1] == '?')
                  ? *p == '\\' && (p[1] == '+' || p[1] == '?')
                  : (*p == '+' || *p == '?'))
                  : (*p == '+' || *p == '?'))
              || ((syntax & RE_INTERVALS)
              || ((syntax & RE_INTERVALS)
                  && ((syntax & RE_NO_BK_BRACES)
                  && ((syntax & RE_NO_BK_BRACES)
                      ? *p == '{'
                      ? *p == '{'
                      : (p[0] == '\\' && p[1] == '{'))))
                      : (p[0] == '\\' && p[1] == '{'))))
            {
            {
              /* Start building a new exactn.  */
              /* Start building a new exactn.  */
 
 
              laststart = b;
              laststart = b;
 
 
              BUF_PUSH_2 (exactn, 0);
              BUF_PUSH_2 (exactn, 0);
              pending_exact = b - 1;
              pending_exact = b - 1;
            }
            }
 
 
          BUF_PUSH (c);
          BUF_PUSH (c);
          (*pending_exact)++;
          (*pending_exact)++;
          break;
          break;
        } /* switch (c) */
        } /* switch (c) */
    } /* while p != pend */
    } /* while p != pend */
 
 
 
 
  /* Through the pattern now.  */
  /* Through the pattern now.  */
 
 
  if (fixup_alt_jump)
  if (fixup_alt_jump)
    STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
    STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
 
 
  if (!COMPILE_STACK_EMPTY)
  if (!COMPILE_STACK_EMPTY)
    FREE_STACK_RETURN (REG_EPAREN);
    FREE_STACK_RETURN (REG_EPAREN);
 
 
  /* If we don't want backtracking, force success
  /* If we don't want backtracking, force success
     the first time we reach the end of the compiled pattern.  */
     the first time we reach the end of the compiled pattern.  */
  if (syntax & RE_NO_POSIX_BACKTRACKING)
  if (syntax & RE_NO_POSIX_BACKTRACKING)
    BUF_PUSH (succeed);
    BUF_PUSH (succeed);
 
 
  free (compile_stack.stack);
  free (compile_stack.stack);
 
 
  /* We have succeeded; set the length of the buffer.  */
  /* We have succeeded; set the length of the buffer.  */
  bufp->used = b - bufp->buffer;
  bufp->used = b - bufp->buffer;
 
 
#ifdef DEBUG
#ifdef DEBUG
  if (debug)
  if (debug)
    {
    {
      DEBUG_PRINT1 ("\nCompiled pattern: \n");
      DEBUG_PRINT1 ("\nCompiled pattern: \n");
      print_compiled_pattern (bufp);
      print_compiled_pattern (bufp);
    }
    }
#endif /* DEBUG */
#endif /* DEBUG */
 
 
#ifndef MATCH_MAY_ALLOCATE
#ifndef MATCH_MAY_ALLOCATE
  /* Initialize the failure stack to the largest possible stack.  This
  /* Initialize the failure stack to the largest possible stack.  This
     isn't necessary unless we're trying to avoid calling alloca in
     isn't necessary unless we're trying to avoid calling alloca in
     the search and match routines.  */
     the search and match routines.  */
  {
  {
    int num_regs = bufp->re_nsub + 1;
    int num_regs = bufp->re_nsub + 1;
 
 
    /* Since DOUBLE_FAIL_STACK refuses to double only if the current size
    /* Since DOUBLE_FAIL_STACK refuses to double only if the current size
       is strictly greater than re_max_failures, the largest possible stack
       is strictly greater than re_max_failures, the largest possible stack
       is 2 * re_max_failures failure points.  */
       is 2 * re_max_failures failure points.  */
    if (fail_stack.size < (2 * re_max_failures * MAX_FAILURE_ITEMS))
    if (fail_stack.size < (2 * re_max_failures * MAX_FAILURE_ITEMS))
      {
      {
        fail_stack.size = (2 * re_max_failures * MAX_FAILURE_ITEMS);
        fail_stack.size = (2 * re_max_failures * MAX_FAILURE_ITEMS);
 
 
# ifdef emacs
# ifdef emacs
        if (! fail_stack.stack)
        if (! fail_stack.stack)
          fail_stack.stack
          fail_stack.stack
            = (fail_stack_elt_t *) xmalloc (fail_stack.size
            = (fail_stack_elt_t *) xmalloc (fail_stack.size
                                            * sizeof (fail_stack_elt_t));
                                            * sizeof (fail_stack_elt_t));
        else
        else
          fail_stack.stack
          fail_stack.stack
            = (fail_stack_elt_t *) xrealloc (fail_stack.stack,
            = (fail_stack_elt_t *) xrealloc (fail_stack.stack,
                                             (fail_stack.size
                                             (fail_stack.size
                                              * sizeof (fail_stack_elt_t)));
                                              * sizeof (fail_stack_elt_t)));
# else /* not emacs */
# else /* not emacs */
        if (! fail_stack.stack)
        if (! fail_stack.stack)
          fail_stack.stack
          fail_stack.stack
            = (fail_stack_elt_t *) malloc (fail_stack.size
            = (fail_stack_elt_t *) malloc (fail_stack.size
                                           * sizeof (fail_stack_elt_t));
                                           * sizeof (fail_stack_elt_t));
        else
        else
          fail_stack.stack
          fail_stack.stack
            = (fail_stack_elt_t *) realloc (fail_stack.stack,
            = (fail_stack_elt_t *) realloc (fail_stack.stack,
                                            (fail_stack.size
                                            (fail_stack.size
                                             * sizeof (fail_stack_elt_t)));
                                             * sizeof (fail_stack_elt_t)));
# endif /* not emacs */
# endif /* not emacs */
      }
      }
 
 
    regex_grow_registers (num_regs);
    regex_grow_registers (num_regs);
  }
  }
#endif /* not MATCH_MAY_ALLOCATE */
#endif /* not MATCH_MAY_ALLOCATE */
 
 
  return REG_NOERROR;
  return REG_NOERROR;
} /* regex_compile */
} /* regex_compile */


/* Subroutines for `regex_compile'.  */
/* Subroutines for `regex_compile'.  */
 
 
/* Store OP at LOC followed by two-byte integer parameter ARG.  */
/* Store OP at LOC followed by two-byte integer parameter ARG.  */
 
 
static void
static void
store_op1 (op, loc, arg)
store_op1 (op, loc, arg)
    re_opcode_t op;
    re_opcode_t op;
    unsigned char *loc;
    unsigned char *loc;
    int arg;
    int arg;
{
{
  *loc = (unsigned char) op;
  *loc = (unsigned char) op;
  STORE_NUMBER (loc + 1, arg);
  STORE_NUMBER (loc + 1, arg);
}
}
 
 
 
 
/* Like `store_op1', but for two two-byte parameters ARG1 and ARG2.  */
/* Like `store_op1', but for two two-byte parameters ARG1 and ARG2.  */
 
 
static void
static void
store_op2 (op, loc, arg1, arg2)
store_op2 (op, loc, arg1, arg2)
    re_opcode_t op;
    re_opcode_t op;
    unsigned char *loc;
    unsigned char *loc;
    int arg1, arg2;
    int arg1, arg2;
{
{
  *loc = (unsigned char) op;
  *loc = (unsigned char) op;
  STORE_NUMBER (loc + 1, arg1);
  STORE_NUMBER (loc + 1, arg1);
  STORE_NUMBER (loc + 3, arg2);
  STORE_NUMBER (loc + 3, arg2);
}
}
 
 
 
 
/* Copy the bytes from LOC to END to open up three bytes of space at LOC
/* Copy the bytes from LOC to END to open up three bytes of space at LOC
   for OP followed by two-byte integer parameter ARG.  */
   for OP followed by two-byte integer parameter ARG.  */
 
 
static void
static void
insert_op1 (op, loc, arg, end)
insert_op1 (op, loc, arg, end)
    re_opcode_t op;
    re_opcode_t op;
    unsigned char *loc;
    unsigned char *loc;
    int arg;
    int arg;
    unsigned char *end;
    unsigned char *end;
{
{
  register unsigned char *pfrom = end;
  register unsigned char *pfrom = end;
  register unsigned char *pto = end + 3;
  register unsigned char *pto = end + 3;
 
 
  while (pfrom != loc)
  while (pfrom != loc)
    *--pto = *--pfrom;
    *--pto = *--pfrom;
 
 
  store_op1 (op, loc, arg);
  store_op1 (op, loc, arg);
}
}
 
 
 
 
/* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2.  */
/* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2.  */
 
 
static void
static void
insert_op2 (op, loc, arg1, arg2, end)
insert_op2 (op, loc, arg1, arg2, end)
    re_opcode_t op;
    re_opcode_t op;
    unsigned char *loc;
    unsigned char *loc;
    int arg1, arg2;
    int arg1, arg2;
    unsigned char *end;
    unsigned char *end;
{
{
  register unsigned char *pfrom = end;
  register unsigned char *pfrom = end;
  register unsigned char *pto = end + 5;
  register unsigned char *pto = end + 5;
 
 
  while (pfrom != loc)
  while (pfrom != loc)
    *--pto = *--pfrom;
    *--pto = *--pfrom;
 
 
  store_op2 (op, loc, arg1, arg2);
  store_op2 (op, loc, arg1, arg2);
}
}
 
 
 
 
/* P points to just after a ^ in PATTERN.  Return true if that ^ comes
/* P points to just after a ^ in PATTERN.  Return true if that ^ comes
   after an alternative or a begin-subexpression.  We assume there is at
   after an alternative or a begin-subexpression.  We assume there is at
   least one character before the ^.  */
   least one character before the ^.  */
 
 
static boolean
static boolean
at_begline_loc_p (pattern, p, syntax)
at_begline_loc_p (pattern, p, syntax)
    const char *pattern, *p;
    const char *pattern, *p;
    reg_syntax_t syntax;
    reg_syntax_t syntax;
{
{
  const char *prev = p - 2;
  const char *prev = p - 2;
  boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
  boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
 
 
  return
  return
       /* After a subexpression?  */
       /* After a subexpression?  */
       (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
       (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
       /* After an alternative?  */
       /* After an alternative?  */
    || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
    || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
}
}
 
 
 
 
/* The dual of at_begline_loc_p.  This one is for $.  We assume there is
/* The dual of at_begline_loc_p.  This one is for $.  We assume there is
   at least one character after the $, i.e., `P < PEND'.  */
   at least one character after the $, i.e., `P < PEND'.  */
 
 
static boolean
static boolean
at_endline_loc_p (p, pend, syntax)
at_endline_loc_p (p, pend, syntax)
    const char *p, *pend;
    const char *p, *pend;
    reg_syntax_t syntax;
    reg_syntax_t syntax;
{
{
  const char *next = p;
  const char *next = p;
  boolean next_backslash = *next == '\\';
  boolean next_backslash = *next == '\\';
  const char *next_next = p + 1 < pend ? p + 1 : 0;
  const char *next_next = p + 1 < pend ? p + 1 : 0;
 
 
  return
  return
       /* Before a subexpression?  */
       /* Before a subexpression?  */
       (syntax & RE_NO_BK_PARENS ? *next == ')'
       (syntax & RE_NO_BK_PARENS ? *next == ')'
        : next_backslash && next_next && *next_next == ')')
        : next_backslash && next_next && *next_next == ')')
       /* Before an alternative?  */
       /* Before an alternative?  */
    || (syntax & RE_NO_BK_VBAR ? *next == '|'
    || (syntax & RE_NO_BK_VBAR ? *next == '|'
        : next_backslash && next_next && *next_next == '|');
        : next_backslash && next_next && *next_next == '|');
}
}
 
 
 
 
/* Returns true if REGNUM is in one of COMPILE_STACK's elements and
/* Returns true if REGNUM is in one of COMPILE_STACK's elements and
   false if it's not.  */
   false if it's not.  */
 
 
static boolean
static boolean
group_in_compile_stack (compile_stack, regnum)
group_in_compile_stack (compile_stack, regnum)
    compile_stack_type compile_stack;
    compile_stack_type compile_stack;
    regnum_t regnum;
    regnum_t regnum;
{
{
  int this_element;
  int this_element;
 
 
  for (this_element = compile_stack.avail - 1;
  for (this_element = compile_stack.avail - 1;
       this_element >= 0;
       this_element >= 0;
       this_element--)
       this_element--)
    if (compile_stack.stack[this_element].regnum == regnum)
    if (compile_stack.stack[this_element].regnum == regnum)
      return true;
      return true;
 
 
  return false;
  return false;
}
}
 
 
 
 
/* Read the ending character of a range (in a bracket expression) from the
/* Read the ending character of a range (in a bracket expression) from the
   uncompiled pattern *P_PTR (which ends at PEND).  We assume the
   uncompiled pattern *P_PTR (which ends at PEND).  We assume the
   starting character is in `P[-2]'.  (`P[-1]' is the character `-'.)
   starting character is in `P[-2]'.  (`P[-1]' is the character `-'.)
   Then we set the translation of all bits between the starting and
   Then we set the translation of all bits between the starting and
   ending characters (inclusive) in the compiled pattern B.
   ending characters (inclusive) in the compiled pattern B.
 
 
   Return an error code.
   Return an error code.
 
 
   We use these short variable names so we can use the same macros as
   We use these short variable names so we can use the same macros as
   `regex_compile' itself.  */
   `regex_compile' itself.  */
 
 
static reg_errcode_t
static reg_errcode_t
compile_range (p_ptr, pend, translate, syntax, b)
compile_range (p_ptr, pend, translate, syntax, b)
    const char **p_ptr, *pend;
    const char **p_ptr, *pend;
    RE_TRANSLATE_TYPE translate;
    RE_TRANSLATE_TYPE translate;
    reg_syntax_t syntax;
    reg_syntax_t syntax;
    unsigned char *b;
    unsigned char *b;
{
{
  unsigned this_char;
  unsigned this_char;
 
 
  const char *p = *p_ptr;
  const char *p = *p_ptr;
  unsigned int range_start, range_end;
  unsigned int range_start, range_end;
 
 
  if (p == pend)
  if (p == pend)
    return REG_ERANGE;
    return REG_ERANGE;
 
 
  /* Even though the pattern is a signed `char *', we need to fetch
  /* Even though the pattern is a signed `char *', we need to fetch
     with unsigned char *'s; if the high bit of the pattern character
     with unsigned char *'s; if the high bit of the pattern character
     is set, the range endpoints will be negative if we fetch using a
     is set, the range endpoints will be negative if we fetch using a
     signed char *.
     signed char *.
 
 
     We also want to fetch the endpoints without translating them; the
     We also want to fetch the endpoints without translating them; the
     appropriate translation is done in the bit-setting loop below.  */
     appropriate translation is done in the bit-setting loop below.  */
  /* The SVR4 compiler on the 3B2 had trouble with unsigned const char *.  */
  /* The SVR4 compiler on the 3B2 had trouble with unsigned const char *.  */
  range_start = ((const unsigned char *) p)[-2];
  range_start = ((const unsigned char *) p)[-2];
  range_end   = ((const unsigned char *) p)[0];
  range_end   = ((const unsigned char *) p)[0];
 
 
  /* Have to increment the pointer into the pattern string, so the
  /* Have to increment the pointer into the pattern string, so the
     caller isn't still at the ending character.  */
     caller isn't still at the ending character.  */
  (*p_ptr)++;
  (*p_ptr)++;
 
 
  /* If the start is after the end, the range is empty.  */
  /* If the start is after the end, the range is empty.  */
  if (range_start > range_end)
  if (range_start > range_end)
    return syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR;
    return syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR;
 
 
  /* Here we see why `this_char' has to be larger than an `unsigned
  /* Here we see why `this_char' has to be larger than an `unsigned
     char' -- the range is inclusive, so if `range_end' == 0xff
     char' -- the range is inclusive, so if `range_end' == 0xff
     (assuming 8-bit characters), we would otherwise go into an infinite
     (assuming 8-bit characters), we would otherwise go into an infinite
     loop, since all characters <= 0xff.  */
     loop, since all characters <= 0xff.  */
  for (this_char = range_start; this_char <= range_end; this_char++)
  for (this_char = range_start; this_char <= range_end; this_char++)
    {
    {
      SET_LIST_BIT (TRANSLATE (this_char));
      SET_LIST_BIT (TRANSLATE (this_char));
    }
    }
 
 
  return REG_NOERROR;
  return REG_NOERROR;
}
}


/* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
/* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
   BUFP.  A fastmap records which of the (1 << BYTEWIDTH) possible
   BUFP.  A fastmap records which of the (1 << BYTEWIDTH) possible
   characters can start a string that matches the pattern.  This fastmap
   characters can start a string that matches the pattern.  This fastmap
   is used by re_search to skip quickly over impossible starting points.
   is used by re_search to skip quickly over impossible starting points.
 
 
   The caller must supply the address of a (1 << BYTEWIDTH)-byte data
   The caller must supply the address of a (1 << BYTEWIDTH)-byte data
   area as BUFP->fastmap.
   area as BUFP->fastmap.
 
 
   We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
   We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
   the pattern buffer.
   the pattern buffer.
 
 
   Returns 0 if we succeed, -2 if an internal error.   */
   Returns 0 if we succeed, -2 if an internal error.   */
 
 
int
int
re_compile_fastmap (bufp)
re_compile_fastmap (bufp)
     struct re_pattern_buffer *bufp;
     struct re_pattern_buffer *bufp;
{
{
  int j, k;
  int j, k;
#ifdef MATCH_MAY_ALLOCATE
#ifdef MATCH_MAY_ALLOCATE
  fail_stack_type fail_stack;
  fail_stack_type fail_stack;
#endif
#endif
#ifndef REGEX_MALLOC
#ifndef REGEX_MALLOC
  char *destination;
  char *destination;
#endif
#endif
 
 
  register char *fastmap = bufp->fastmap;
  register char *fastmap = bufp->fastmap;
  unsigned char *pattern = bufp->buffer;
  unsigned char *pattern = bufp->buffer;
  unsigned char *p = pattern;
  unsigned char *p = pattern;
  register unsigned char *pend = pattern + bufp->used;
  register unsigned char *pend = pattern + bufp->used;
 
 
#ifdef REL_ALLOC
#ifdef REL_ALLOC
  /* This holds the pointer to the failure stack, when
  /* This holds the pointer to the failure stack, when
     it is allocated relocatably.  */
     it is allocated relocatably.  */
  fail_stack_elt_t *failure_stack_ptr;
  fail_stack_elt_t *failure_stack_ptr;
#endif
#endif
 
 
  /* Assume that each path through the pattern can be null until
  /* Assume that each path through the pattern can be null until
     proven otherwise.  We set this false at the bottom of switch
     proven otherwise.  We set this false at the bottom of switch
     statement, to which we get only if a particular path doesn't
     statement, to which we get only if a particular path doesn't
     match the empty string.  */
     match the empty string.  */
  boolean path_can_be_null = true;
  boolean path_can_be_null = true;
 
 
  /* We aren't doing a `succeed_n' to begin with.  */
  /* We aren't doing a `succeed_n' to begin with.  */
  boolean succeed_n_p = false;
  boolean succeed_n_p = false;
 
 
  assert (fastmap != NULL && p != NULL);
  assert (fastmap != NULL && p != NULL);
 
 
  INIT_FAIL_STACK ();
  INIT_FAIL_STACK ();
  bzero (fastmap, 1 << BYTEWIDTH);  /* Assume nothing's valid.  */
  bzero (fastmap, 1 << BYTEWIDTH);  /* Assume nothing's valid.  */
  bufp->fastmap_accurate = 1;       /* It will be when we're done.  */
  bufp->fastmap_accurate = 1;       /* It will be when we're done.  */
  bufp->can_be_null = 0;
  bufp->can_be_null = 0;
 
 
  while (1)
  while (1)
    {
    {
      if (p == pend || *p == succeed)
      if (p == pend || *p == succeed)
        {
        {
          /* We have reached the (effective) end of pattern.  */
          /* We have reached the (effective) end of pattern.  */
          if (!FAIL_STACK_EMPTY ())
          if (!FAIL_STACK_EMPTY ())
            {
            {
              bufp->can_be_null |= path_can_be_null;
              bufp->can_be_null |= path_can_be_null;
 
 
              /* Reset for next path.  */
              /* Reset for next path.  */
              path_can_be_null = true;
              path_can_be_null = true;
 
 
              p = fail_stack.stack[--fail_stack.avail].pointer;
              p = fail_stack.stack[--fail_stack.avail].pointer;
 
 
              continue;
              continue;
            }
            }
          else
          else
            break;
            break;
        }
        }
 
 
      /* We should never be about to go beyond the end of the pattern.  */
      /* We should never be about to go beyond the end of the pattern.  */
      assert (p < pend);
      assert (p < pend);
 
 
      switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
      switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
        {
        {
 
 
        /* I guess the idea here is to simply not bother with a fastmap
        /* I guess the idea here is to simply not bother with a fastmap
           if a backreference is used, since it's too hard to figure out
           if a backreference is used, since it's too hard to figure out
           the fastmap for the corresponding group.  Setting
           the fastmap for the corresponding group.  Setting
           `can_be_null' stops `re_search_2' from using the fastmap, so
           `can_be_null' stops `re_search_2' from using the fastmap, so
           that is all we do.  */
           that is all we do.  */
        case duplicate:
        case duplicate:
          bufp->can_be_null = 1;
          bufp->can_be_null = 1;
          goto done;
          goto done;
 
 
 
 
      /* Following are the cases which match a character.  These end
      /* Following are the cases which match a character.  These end
         with `break'.  */
         with `break'.  */
 
 
        case exactn:
        case exactn:
          fastmap[p[1]] = 1;
          fastmap[p[1]] = 1;
          break;
          break;
 
 
 
 
        case charset:
        case charset:
          for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
          for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
            if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
            if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
              fastmap[j] = 1;
              fastmap[j] = 1;
          break;
          break;
 
 
 
 
        case charset_not:
        case charset_not:
          /* Chars beyond end of map must be allowed.  */
          /* Chars beyond end of map must be allowed.  */
          for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
          for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
            fastmap[j] = 1;
            fastmap[j] = 1;
 
 
          for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
          for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
            if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
            if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
              fastmap[j] = 1;
              fastmap[j] = 1;
          break;
          break;
 
 
 
 
        case wordchar:
        case wordchar:
          for (j = 0; j < (1 << BYTEWIDTH); j++)
          for (j = 0; j < (1 << BYTEWIDTH); j++)
            if (SYNTAX (j) == Sword)
            if (SYNTAX (j) == Sword)
              fastmap[j] = 1;
              fastmap[j] = 1;
          break;
          break;
 
 
 
 
        case notwordchar:
        case notwordchar:
          for (j = 0; j < (1 << BYTEWIDTH); j++)
          for (j = 0; j < (1 << BYTEWIDTH); j++)
            if (SYNTAX (j) != Sword)
            if (SYNTAX (j) != Sword)
              fastmap[j] = 1;
              fastmap[j] = 1;
          break;
          break;
 
 
 
 
        case anychar:
        case anychar:
          {
          {
            int fastmap_newline = fastmap['\n'];
            int fastmap_newline = fastmap['\n'];
 
 
            /* `.' matches anything ...  */
            /* `.' matches anything ...  */
            for (j = 0; j < (1 << BYTEWIDTH); j++)
            for (j = 0; j < (1 << BYTEWIDTH); j++)
              fastmap[j] = 1;
              fastmap[j] = 1;
 
 
            /* ... except perhaps newline.  */
            /* ... except perhaps newline.  */
            if (!(bufp->syntax & RE_DOT_NEWLINE))
            if (!(bufp->syntax & RE_DOT_NEWLINE))
              fastmap['\n'] = fastmap_newline;
              fastmap['\n'] = fastmap_newline;
 
 
            /* Return if we have already set `can_be_null'; if we have,
            /* Return if we have already set `can_be_null'; if we have,
               then the fastmap is irrelevant.  Something's wrong here.  */
               then the fastmap is irrelevant.  Something's wrong here.  */
            else if (bufp->can_be_null)
            else if (bufp->can_be_null)
              goto done;
              goto done;
 
 
            /* Otherwise, have to check alternative paths.  */
            /* Otherwise, have to check alternative paths.  */
            break;
            break;
          }
          }
 
 
#ifdef emacs
#ifdef emacs
        case syntaxspec:
        case syntaxspec:
          k = *p++;
          k = *p++;
          for (j = 0; j < (1 << BYTEWIDTH); j++)
          for (j = 0; j < (1 << BYTEWIDTH); j++)
            if (SYNTAX (j) == (enum syntaxcode) k)
            if (SYNTAX (j) == (enum syntaxcode) k)
              fastmap[j] = 1;
              fastmap[j] = 1;
          break;
          break;
 
 
 
 
        case notsyntaxspec:
        case notsyntaxspec:
          k = *p++;
          k = *p++;
          for (j = 0; j < (1 << BYTEWIDTH); j++)
          for (j = 0; j < (1 << BYTEWIDTH); j++)
            if (SYNTAX (j) != (enum syntaxcode) k)
            if (SYNTAX (j) != (enum syntaxcode) k)
              fastmap[j] = 1;
              fastmap[j] = 1;
          break;
          break;
 
 
 
 
      /* All cases after this match the empty string.  These end with
      /* All cases after this match the empty string.  These end with
         `continue'.  */
         `continue'.  */
 
 
 
 
        case before_dot:
        case before_dot:
        case at_dot:
        case at_dot:
        case after_dot:
        case after_dot:
          continue;
          continue;
#endif /* emacs */
#endif /* emacs */
 
 
 
 
        case no_op:
        case no_op:
        case begline:
        case begline:
        case endline:
        case endline:
        case begbuf:
        case begbuf:
        case endbuf:
        case endbuf:
        case wordbound:
        case wordbound:
        case notwordbound:
        case notwordbound:
        case wordbeg:
        case wordbeg:
        case wordend:
        case wordend:
        case push_dummy_failure:
        case push_dummy_failure:
          continue;
          continue;
 
 
 
 
        case jump_n:
        case jump_n:
        case pop_failure_jump:
        case pop_failure_jump:
        case maybe_pop_jump:
        case maybe_pop_jump:
        case jump:
        case jump:
        case jump_past_alt:
        case jump_past_alt:
        case dummy_failure_jump:
        case dummy_failure_jump:
          EXTRACT_NUMBER_AND_INCR (j, p);
          EXTRACT_NUMBER_AND_INCR (j, p);
          p += j;
          p += j;
          if (j > 0)
          if (j > 0)
            continue;
            continue;
 
 
          /* Jump backward implies we just went through the body of a
          /* Jump backward implies we just went through the body of a
             loop and matched nothing.  Opcode jumped to should be
             loop and matched nothing.  Opcode jumped to should be
             `on_failure_jump' or `succeed_n'.  Just treat it like an
             `on_failure_jump' or `succeed_n'.  Just treat it like an
             ordinary jump.  For a * loop, it has pushed its failure
             ordinary jump.  For a * loop, it has pushed its failure
             point already; if so, discard that as redundant.  */
             point already; if so, discard that as redundant.  */
          if ((re_opcode_t) *p != on_failure_jump
          if ((re_opcode_t) *p != on_failure_jump
              && (re_opcode_t) *p != succeed_n)
              && (re_opcode_t) *p != succeed_n)
            continue;
            continue;
 
 
          p++;
          p++;
          EXTRACT_NUMBER_AND_INCR (j, p);
          EXTRACT_NUMBER_AND_INCR (j, p);
          p += j;
          p += j;
 
 
          /* If what's on the stack is where we are now, pop it.  */
          /* If what's on the stack is where we are now, pop it.  */
          if (!FAIL_STACK_EMPTY ()
          if (!FAIL_STACK_EMPTY ()
              && fail_stack.stack[fail_stack.avail - 1].pointer == p)
              && fail_stack.stack[fail_stack.avail - 1].pointer == p)
            fail_stack.avail--;
            fail_stack.avail--;
 
 
          continue;
          continue;
 
 
 
 
        case on_failure_jump:
        case on_failure_jump:
        case on_failure_keep_string_jump:
        case on_failure_keep_string_jump:
        handle_on_failure_jump:
        handle_on_failure_jump:
          EXTRACT_NUMBER_AND_INCR (j, p);
          EXTRACT_NUMBER_AND_INCR (j, p);
 
 
          /* For some patterns, e.g., `(a?)?', `p+j' here points to the
          /* For some patterns, e.g., `(a?)?', `p+j' here points to the
             end of the pattern.  We don't want to push such a point,
             end of the pattern.  We don't want to push such a point,
             since when we restore it above, entering the switch will
             since when we restore it above, entering the switch will
             increment `p' past the end of the pattern.  We don't need
             increment `p' past the end of the pattern.  We don't need
             to push such a point since we obviously won't find any more
             to push such a point since we obviously won't find any more
             fastmap entries beyond `pend'.  Such a pattern can match
             fastmap entries beyond `pend'.  Such a pattern can match
             the null string, though.  */
             the null string, though.  */
          if (p + j < pend)
          if (p + j < pend)
            {
            {
              if (!PUSH_PATTERN_OP (p + j, fail_stack))
              if (!PUSH_PATTERN_OP (p + j, fail_stack))
                {
                {
                  RESET_FAIL_STACK ();
                  RESET_FAIL_STACK ();
                  return -2;
                  return -2;
                }
                }
            }
            }
          else
          else
            bufp->can_be_null = 1;
            bufp->can_be_null = 1;
 
 
          if (succeed_n_p)
          if (succeed_n_p)
            {
            {
              EXTRACT_NUMBER_AND_INCR (k, p);   /* Skip the n.  */
              EXTRACT_NUMBER_AND_INCR (k, p);   /* Skip the n.  */
              succeed_n_p = false;
              succeed_n_p = false;
            }
            }
 
 
          continue;
          continue;
 
 
 
 
        case succeed_n:
        case succeed_n:
          /* Get to the number of times to succeed.  */
          /* Get to the number of times to succeed.  */
          p += 2;
          p += 2;
 
 
          /* Increment p past the n for when k != 0.  */
          /* Increment p past the n for when k != 0.  */
          EXTRACT_NUMBER_AND_INCR (k, p);
          EXTRACT_NUMBER_AND_INCR (k, p);
          if (k == 0)
          if (k == 0)
            {
            {
              p -= 4;
              p -= 4;
              succeed_n_p = true;  /* Spaghetti code alert.  */
              succeed_n_p = true;  /* Spaghetti code alert.  */
              goto handle_on_failure_jump;
              goto handle_on_failure_jump;
            }
            }
          continue;
          continue;
 
 
 
 
        case set_number_at:
        case set_number_at:
          p += 4;
          p += 4;
          continue;
          continue;
 
 
 
 
        case start_memory:
        case start_memory:
        case stop_memory:
        case stop_memory:
          p += 2;
          p += 2;
          continue;
          continue;
 
 
 
 
        default:
        default:
          abort (); /* We have listed all the cases.  */
          abort (); /* We have listed all the cases.  */
        } /* switch *p++ */
        } /* switch *p++ */
 
 
      /* Getting here means we have found the possible starting
      /* Getting here means we have found the possible starting
         characters for one path of the pattern -- and that the empty
         characters for one path of the pattern -- and that the empty
         string does not match.  We need not follow this path further.
         string does not match.  We need not follow this path further.
         Instead, look at the next alternative (remembered on the
         Instead, look at the next alternative (remembered on the
         stack), or quit if no more.  The test at the top of the loop
         stack), or quit if no more.  The test at the top of the loop
         does these things.  */
         does these things.  */
      path_can_be_null = false;
      path_can_be_null = false;
      p = pend;
      p = pend;
    } /* while p */
    } /* while p */
 
 
  /* Set `can_be_null' for the last path (also the first path, if the
  /* Set `can_be_null' for the last path (also the first path, if the
     pattern is empty).  */
     pattern is empty).  */
  bufp->can_be_null |= path_can_be_null;
  bufp->can_be_null |= path_can_be_null;
 
 
 done:
 done:
  RESET_FAIL_STACK ();
  RESET_FAIL_STACK ();
  return 0;
  return 0;
} /* re_compile_fastmap */
} /* re_compile_fastmap */
#ifdef _LIBC
#ifdef _LIBC
weak_alias (__re_compile_fastmap, re_compile_fastmap)
weak_alias (__re_compile_fastmap, re_compile_fastmap)
#endif
#endif


/* Set REGS to hold NUM_REGS registers, storing them in STARTS and
/* Set REGS to hold NUM_REGS registers, storing them in STARTS and
   ENDS.  Subsequent matches using PATTERN_BUFFER and REGS will use
   ENDS.  Subsequent matches using PATTERN_BUFFER and REGS will use
   this memory for recording register information.  STARTS and ENDS
   this memory for recording register information.  STARTS and ENDS
   must be allocated using the malloc library routine, and must each
   must be allocated using the malloc library routine, and must each
   be at least NUM_REGS * sizeof (regoff_t) bytes long.
   be at least NUM_REGS * sizeof (regoff_t) bytes long.
 
 
   If NUM_REGS == 0, then subsequent matches should allocate their own
   If NUM_REGS == 0, then subsequent matches should allocate their own
   register data.
   register data.
 
 
   Unless this function is called, the first search or match using
   Unless this function is called, the first search or match using
   PATTERN_BUFFER will allocate its own register data, without
   PATTERN_BUFFER will allocate its own register data, without
   freeing the old data.  */
   freeing the old data.  */
 
 
void
void
re_set_registers (bufp, regs, num_regs, starts, ends)
re_set_registers (bufp, regs, num_regs, starts, ends)
    struct re_pattern_buffer *bufp;
    struct re_pattern_buffer *bufp;
    struct re_registers *regs;
    struct re_registers *regs;
    unsigned num_regs;
    unsigned num_regs;
    regoff_t *starts, *ends;
    regoff_t *starts, *ends;
{
{
  if (num_regs)
  if (num_regs)
    {
    {
      bufp->regs_allocated = REGS_REALLOCATE;
      bufp->regs_allocated = REGS_REALLOCATE;
      regs->num_regs = num_regs;
      regs->num_regs = num_regs;
      regs->start = starts;
      regs->start = starts;
      regs->end = ends;
      regs->end = ends;
    }
    }
  else
  else
    {
    {
      bufp->regs_allocated = REGS_UNALLOCATED;
      bufp->regs_allocated = REGS_UNALLOCATED;
      regs->num_regs = 0;
      regs->num_regs = 0;
      regs->start = regs->end = (regoff_t *) 0;
      regs->start = regs->end = (regoff_t *) 0;
    }
    }
}
}
#ifdef _LIBC
#ifdef _LIBC
weak_alias (__re_set_registers, re_set_registers)
weak_alias (__re_set_registers, re_set_registers)
#endif
#endif


/* Searching routines.  */
/* Searching routines.  */
 
 
/* Like re_search_2, below, but only one string is specified, and
/* Like re_search_2, below, but only one string is specified, and
   doesn't let you say where to stop matching. */
   doesn't let you say where to stop matching. */
 
 
int
int
re_search (bufp, string, size, startpos, range, regs)
re_search (bufp, string, size, startpos, range, regs)
     struct re_pattern_buffer *bufp;
     struct re_pattern_buffer *bufp;
     const char *string;
     const char *string;
     int size, startpos, range;
     int size, startpos, range;
     struct re_registers *regs;
     struct re_registers *regs;
{
{
  return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
  return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
                      regs, size);
                      regs, size);
}
}
#ifdef _LIBC
#ifdef _LIBC
weak_alias (__re_search, re_search)
weak_alias (__re_search, re_search)
#endif
#endif
 
 
 
 
/* Using the compiled pattern in BUFP->buffer, first tries to match the
/* Using the compiled pattern in BUFP->buffer, first tries to match the
   virtual concatenation of STRING1 and STRING2, starting first at index
   virtual concatenation of STRING1 and STRING2, starting first at index
   STARTPOS, then at STARTPOS + 1, and so on.
   STARTPOS, then at STARTPOS + 1, and so on.
 
 
   STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
   STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
 
 
   RANGE is how far to scan while trying to match.  RANGE = 0 means try
   RANGE is how far to scan while trying to match.  RANGE = 0 means try
   only at STARTPOS; in general, the last start tried is STARTPOS +
   only at STARTPOS; in general, the last start tried is STARTPOS +
   RANGE.
   RANGE.
 
 
   In REGS, return the indices of the virtual concatenation of STRING1
   In REGS, return the indices of the virtual concatenation of STRING1
   and STRING2 that matched the entire BUFP->buffer and its contained
   and STRING2 that matched the entire BUFP->buffer and its contained
   subexpressions.
   subexpressions.
 
 
   Do not consider matching one past the index STOP in the virtual
   Do not consider matching one past the index STOP in the virtual
   concatenation of STRING1 and STRING2.
   concatenation of STRING1 and STRING2.
 
 
   We return either the position in the strings at which the match was
   We return either the position in the strings at which the match was
   found, -1 if no match, or -2 if error (such as failure
   found, -1 if no match, or -2 if error (such as failure
   stack overflow).  */
   stack overflow).  */
 
 
int
int
re_search_2 (bufp, string1, size1, string2, size2, startpos, range, regs, stop)
re_search_2 (bufp, string1, size1, string2, size2, startpos, range, regs, stop)
     struct re_pattern_buffer *bufp;
     struct re_pattern_buffer *bufp;
     const char *string1, *string2;
     const char *string1, *string2;
     int size1, size2;
     int size1, size2;
     int startpos;
     int startpos;
     int range;
     int range;
     struct re_registers *regs;
     struct re_registers *regs;
     int stop;
     int stop;
{
{
  int val;
  int val;
  register char *fastmap = bufp->fastmap;
  register char *fastmap = bufp->fastmap;
  register RE_TRANSLATE_TYPE translate = bufp->translate;
  register RE_TRANSLATE_TYPE translate = bufp->translate;
  int total_size = size1 + size2;
  int total_size = size1 + size2;
  int endpos = startpos + range;
  int endpos = startpos + range;
 
 
  /* Check for out-of-range STARTPOS.  */
  /* Check for out-of-range STARTPOS.  */
  if (startpos < 0 || startpos > total_size)
  if (startpos < 0 || startpos > total_size)
    return -1;
    return -1;
 
 
  /* Fix up RANGE if it might eventually take us outside
  /* Fix up RANGE if it might eventually take us outside
     the virtual concatenation of STRING1 and STRING2.
     the virtual concatenation of STRING1 and STRING2.
     Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE.  */
     Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE.  */
  if (endpos < 0)
  if (endpos < 0)
    range = 0 - startpos;
    range = 0 - startpos;
  else if (endpos > total_size)
  else if (endpos > total_size)
    range = total_size - startpos;
    range = total_size - startpos;
 
 
  /* If the search isn't to be a backwards one, don't waste time in a
  /* If the search isn't to be a backwards one, don't waste time in a
     search for a pattern that must be anchored.  */
     search for a pattern that must be anchored.  */
  if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
  if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
    {
    {
      if (startpos > 0)
      if (startpos > 0)
        return -1;
        return -1;
      else
      else
        range = 1;
        range = 1;
    }
    }
 
 
#ifdef emacs
#ifdef emacs
  /* In a forward search for something that starts with \=.
  /* In a forward search for something that starts with \=.
     don't keep searching past point.  */
     don't keep searching past point.  */
  if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
  if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
    {
    {
      range = PT - startpos;
      range = PT - startpos;
      if (range <= 0)
      if (range <= 0)
        return -1;
        return -1;
    }
    }
#endif /* emacs */
#endif /* emacs */
 
 
  /* Update the fastmap now if not correct already.  */
  /* Update the fastmap now if not correct already.  */
  if (fastmap && !bufp->fastmap_accurate)
  if (fastmap && !bufp->fastmap_accurate)
    if (re_compile_fastmap (bufp) == -2)
    if (re_compile_fastmap (bufp) == -2)
      return -2;
      return -2;
 
 
  /* Loop through the string, looking for a place to start matching.  */
  /* Loop through the string, looking for a place to start matching.  */
  for (;;)
  for (;;)
    {
    {
      /* If a fastmap is supplied, skip quickly over characters that
      /* If a fastmap is supplied, skip quickly over characters that
         cannot be the start of a match.  If the pattern can match the
         cannot be the start of a match.  If the pattern can match the
         null string, however, we don't need to skip characters; we want
         null string, however, we don't need to skip characters; we want
         the first null string.  */
         the first null string.  */
      if (fastmap && startpos < total_size && !bufp->can_be_null)
      if (fastmap && startpos < total_size && !bufp->can_be_null)
        {
        {
          if (range > 0) /* Searching forwards.  */
          if (range > 0) /* Searching forwards.  */
            {
            {
              register const char *d;
              register const char *d;
              register int lim = 0;
              register int lim = 0;
              int irange = range;
              int irange = range;
 
 
              if (startpos < size1 && startpos + range >= size1)
              if (startpos < size1 && startpos + range >= size1)
                lim = range - (size1 - startpos);
                lim = range - (size1 - startpos);
 
 
              d = (startpos >= size1 ? string2 - size1 : string1) + startpos;
              d = (startpos >= size1 ? string2 - size1 : string1) + startpos;
 
 
              /* Written out as an if-else to avoid testing `translate'
              /* Written out as an if-else to avoid testing `translate'
                 inside the loop.  */
                 inside the loop.  */
              if (translate)
              if (translate)
                while (range > lim
                while (range > lim
                       && !fastmap[(unsigned char)
                       && !fastmap[(unsigned char)
                                   translate[(unsigned char) *d++]])
                                   translate[(unsigned char) *d++]])
                  range--;
                  range--;
              else
              else
                while (range > lim && !fastmap[(unsigned char) *d++])
                while (range > lim && !fastmap[(unsigned char) *d++])
                  range--;
                  range--;
 
 
              startpos += irange - range;
              startpos += irange - range;
            }
            }
          else                          /* Searching backwards.  */
          else                          /* Searching backwards.  */
            {
            {
              register char c = (size1 == 0 || startpos >= size1
              register char c = (size1 == 0 || startpos >= size1
                                 ? string2[startpos - size1]
                                 ? string2[startpos - size1]
                                 : string1[startpos]);
                                 : string1[startpos]);
 
 
              if (!fastmap[(unsigned char) TRANSLATE (c)])
              if (!fastmap[(unsigned char) TRANSLATE (c)])
                goto advance;
                goto advance;
            }
            }
        }
        }
 
 
      /* If can't match the null string, and that's all we have left, fail.  */
      /* If can't match the null string, and that's all we have left, fail.  */
      if (range >= 0 && startpos == total_size && fastmap
      if (range >= 0 && startpos == total_size && fastmap
          && !bufp->can_be_null)
          && !bufp->can_be_null)
        return -1;
        return -1;
 
 
      val = re_match_2_internal (bufp, string1, size1, string2, size2,
      val = re_match_2_internal (bufp, string1, size1, string2, size2,
                                 startpos, regs, stop);
                                 startpos, regs, stop);
#ifndef REGEX_MALLOC
#ifndef REGEX_MALLOC
# ifdef C_ALLOCA
# ifdef C_ALLOCA
      alloca (0);
      alloca (0);
# endif
# endif
#endif
#endif
 
 
      if (val >= 0)
      if (val >= 0)
        return startpos;
        return startpos;
 
 
      if (val == -2)
      if (val == -2)
        return -2;
        return -2;
 
 
    advance:
    advance:
      if (!range)
      if (!range)
        break;
        break;
      else if (range > 0)
      else if (range > 0)
        {
        {
          range--;
          range--;
          startpos++;
          startpos++;
        }
        }
      else
      else
        {
        {
          range++;
          range++;
          startpos--;
          startpos--;
        }
        }
    }
    }
  return -1;
  return -1;
} /* re_search_2 */
} /* re_search_2 */
#ifdef _LIBC
#ifdef _LIBC
weak_alias (__re_search_2, re_search_2)
weak_alias (__re_search_2, re_search_2)
#endif
#endif


/* This converts PTR, a pointer into one of the search strings `string1'
/* This converts PTR, a pointer into one of the search strings `string1'
   and `string2' into an offset from the beginning of that string.  */
   and `string2' into an offset from the beginning of that string.  */
#define POINTER_TO_OFFSET(ptr)                  \
#define POINTER_TO_OFFSET(ptr)                  \
  (FIRST_STRING_P (ptr)                         \
  (FIRST_STRING_P (ptr)                         \
   ? ((regoff_t) ((ptr) - string1))             \
   ? ((regoff_t) ((ptr) - string1))             \
   : ((regoff_t) ((ptr) - string2 + size1)))
   : ((regoff_t) ((ptr) - string2 + size1)))
 
 
/* Macros for dealing with the split strings in re_match_2.  */
/* Macros for dealing with the split strings in re_match_2.  */
 
 
#define MATCHING_IN_FIRST_STRING  (dend == end_match_1)
#define MATCHING_IN_FIRST_STRING  (dend == end_match_1)
 
 
/* Call before fetching a character with *d.  This switches over to
/* Call before fetching a character with *d.  This switches over to
   string2 if necessary.  */
   string2 if necessary.  */
#define PREFETCH()                                                      \
#define PREFETCH()                                                      \
  while (d == dend)                                                     \
  while (d == dend)                                                     \
    {                                                                   \
    {                                                                   \
      /* End of string2 => fail.  */                                    \
      /* End of string2 => fail.  */                                    \
      if (dend == end_match_2)                                          \
      if (dend == end_match_2)                                          \
        goto fail;                                                      \
        goto fail;                                                      \
      /* End of string1 => advance to string2.  */                      \
      /* End of string1 => advance to string2.  */                      \
      d = string2;                                                      \
      d = string2;                                                      \
      dend = end_match_2;                                               \
      dend = end_match_2;                                               \
    }
    }
 
 
 
 
/* Test if at very beginning or at very end of the virtual concatenation
/* Test if at very beginning or at very end of the virtual concatenation
   of `string1' and `string2'.  If only one string, it's `string2'.  */
   of `string1' and `string2'.  If only one string, it's `string2'.  */
#define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
#define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
#define AT_STRINGS_END(d) ((d) == end2)
#define AT_STRINGS_END(d) ((d) == end2)
 
 
 
 
/* Test if D points to a character which is word-constituent.  We have
/* Test if D points to a character which is word-constituent.  We have
   two special cases to check for: if past the end of string1, look at
   two special cases to check for: if past the end of string1, look at
   the first character in string2; and if before the beginning of
   the first character in string2; and if before the beginning of
   string2, look at the last character in string1.  */
   string2, look at the last character in string1.  */
#define WORDCHAR_P(d)                                                   \
#define WORDCHAR_P(d)                                                   \
  (SYNTAX ((d) == end1 ? *string2                                       \
  (SYNTAX ((d) == end1 ? *string2                                       \
           : (d) == string2 - 1 ? *(end1 - 1) : *(d))                   \
           : (d) == string2 - 1 ? *(end1 - 1) : *(d))                   \
   == Sword)
   == Sword)
 
 
/* Disabled due to a compiler bug -- see comment at case wordbound */
/* Disabled due to a compiler bug -- see comment at case wordbound */
#if 0
#if 0
/* Test if the character before D and the one at D differ with respect
/* Test if the character before D and the one at D differ with respect
   to being word-constituent.  */
   to being word-constituent.  */
#define AT_WORD_BOUNDARY(d)                                             \
#define AT_WORD_BOUNDARY(d)                                             \
  (AT_STRINGS_BEG (d) || AT_STRINGS_END (d)                             \
  (AT_STRINGS_BEG (d) || AT_STRINGS_END (d)                             \
   || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
   || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
#endif
#endif
 
 
/* Free everything we malloc.  */
/* Free everything we malloc.  */
#ifdef MATCH_MAY_ALLOCATE
#ifdef MATCH_MAY_ALLOCATE
# define FREE_VAR(var) if (var) REGEX_FREE (var); var = NULL
# define FREE_VAR(var) if (var) REGEX_FREE (var); var = NULL
# define FREE_VARIABLES()                                               \
# define FREE_VARIABLES()                                               \
  do {                                                                  \
  do {                                                                  \
    REGEX_FREE_STACK (fail_stack.stack);                                \
    REGEX_FREE_STACK (fail_stack.stack);                                \
    FREE_VAR (regstart);                                                \
    FREE_VAR (regstart);                                                \
    FREE_VAR (regend);                                                  \
    FREE_VAR (regend);                                                  \
    FREE_VAR (old_regstart);                                            \
    FREE_VAR (old_regstart);                                            \
    FREE_VAR (old_regend);                                              \
    FREE_VAR (old_regend);                                              \
    FREE_VAR (best_regstart);                                           \
    FREE_VAR (best_regstart);                                           \
    FREE_VAR (best_regend);                                             \
    FREE_VAR (best_regend);                                             \
    FREE_VAR (reg_info);                                                \
    FREE_VAR (reg_info);                                                \
    FREE_VAR (reg_dummy);                                               \
    FREE_VAR (reg_dummy);                                               \
    FREE_VAR (reg_info_dummy);                                          \
    FREE_VAR (reg_info_dummy);                                          \
  } while (0)
  } while (0)
#else
#else
# define FREE_VARIABLES() ((void)0) /* Do nothing!  But inhibit gcc warning. */
# define FREE_VARIABLES() ((void)0) /* Do nothing!  But inhibit gcc warning. */
#endif /* not MATCH_MAY_ALLOCATE */
#endif /* not MATCH_MAY_ALLOCATE */
 
 
/* These values must meet several constraints.  They must not be valid
/* These values must meet several constraints.  They must not be valid
   register values; since we have a limit of 255 registers (because
   register values; since we have a limit of 255 registers (because
   we use only one byte in the pattern for the register number), we can
   we use only one byte in the pattern for the register number), we can
   use numbers larger than 255.  They must differ by 1, because of
   use numbers larger than 255.  They must differ by 1, because of
   NUM_FAILURE_ITEMS above.  And the value for the lowest register must
   NUM_FAILURE_ITEMS above.  And the value for the lowest register must
   be larger than the value for the highest register, so we do not try
   be larger than the value for the highest register, so we do not try
   to actually save any registers when none are active.  */
   to actually save any registers when none are active.  */
#define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
#define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
#define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
#define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)


/* Matching routines.  */
/* Matching routines.  */
 
 
#ifndef emacs   /* Emacs never uses this.  */
#ifndef emacs   /* Emacs never uses this.  */
/* re_match is like re_match_2 except it takes only a single string.  */
/* re_match is like re_match_2 except it takes only a single string.  */
 
 
int
int
re_match (bufp, string, size, pos, regs)
re_match (bufp, string, size, pos, regs)
     struct re_pattern_buffer *bufp;
     struct re_pattern_buffer *bufp;
     const char *string;
     const char *string;
     int size, pos;
     int size, pos;
     struct re_registers *regs;
     struct re_registers *regs;
{
{
  int result = re_match_2_internal (bufp, NULL, 0, string, size,
  int result = re_match_2_internal (bufp, NULL, 0, string, size,
                                    pos, regs, size);
                                    pos, regs, size);
# ifndef REGEX_MALLOC
# ifndef REGEX_MALLOC
#  ifdef C_ALLOCA
#  ifdef C_ALLOCA
  alloca (0);
  alloca (0);
#  endif
#  endif
# endif
# endif
  return result;
  return result;
}
}
# ifdef _LIBC
# ifdef _LIBC
weak_alias (__re_match, re_match)
weak_alias (__re_match, re_match)
# endif
# endif
#endif /* not emacs */
#endif /* not emacs */
 
 
static boolean group_match_null_string_p _RE_ARGS ((unsigned char **p,
static boolean group_match_null_string_p _RE_ARGS ((unsigned char **p,
                                                    unsigned char *end,
                                                    unsigned char *end,
                                                register_info_type *reg_info));
                                                register_info_type *reg_info));
static boolean alt_match_null_string_p _RE_ARGS ((unsigned char *p,
static boolean alt_match_null_string_p _RE_ARGS ((unsigned char *p,
                                                  unsigned char *end,
                                                  unsigned char *end,
                                                register_info_type *reg_info));
                                                register_info_type *reg_info));
static boolean common_op_match_null_string_p _RE_ARGS ((unsigned char **p,
static boolean common_op_match_null_string_p _RE_ARGS ((unsigned char **p,
                                                        unsigned char *end,
                                                        unsigned char *end,
                                                register_info_type *reg_info));
                                                register_info_type *reg_info));
static int bcmp_translate _RE_ARGS ((const char *s1, const char *s2,
static int bcmp_translate _RE_ARGS ((const char *s1, const char *s2,
                                     int len, char *translate));
                                     int len, char *translate));
 
 
/* re_match_2 matches the compiled pattern in BUFP against the
/* re_match_2 matches the compiled pattern in BUFP against the
   the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
   the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
   and SIZE2, respectively).  We start matching at POS, and stop
   and SIZE2, respectively).  We start matching at POS, and stop
   matching at STOP.
   matching at STOP.
 
 
   If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
   If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
   store offsets for the substring each group matched in REGS.  See the
   store offsets for the substring each group matched in REGS.  See the
   documentation for exactly how many groups we fill.
   documentation for exactly how many groups we fill.
 
 
   We return -1 if no match, -2 if an internal error (such as the
   We return -1 if no match, -2 if an internal error (such as the
   failure stack overflowing).  Otherwise, we return the length of the
   failure stack overflowing).  Otherwise, we return the length of the
   matched substring.  */
   matched substring.  */
 
 
int
int
re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
     struct re_pattern_buffer *bufp;
     struct re_pattern_buffer *bufp;
     const char *string1, *string2;
     const char *string1, *string2;
     int size1, size2;
     int size1, size2;
     int pos;
     int pos;
     struct re_registers *regs;
     struct re_registers *regs;
     int stop;
     int stop;
{
{
  int result = re_match_2_internal (bufp, string1, size1, string2, size2,
  int result = re_match_2_internal (bufp, string1, size1, string2, size2,
                                    pos, regs, stop);
                                    pos, regs, stop);
#ifndef REGEX_MALLOC
#ifndef REGEX_MALLOC
# ifdef C_ALLOCA
# ifdef C_ALLOCA
  alloca (0);
  alloca (0);
# endif
# endif
#endif
#endif
  return result;
  return result;
}
}
#ifdef _LIBC
#ifdef _LIBC
weak_alias (__re_match_2, re_match_2)
weak_alias (__re_match_2, re_match_2)
#endif
#endif
 
 
/* This is a separate function so that we can force an alloca cleanup
/* This is a separate function so that we can force an alloca cleanup
   afterwards.  */
   afterwards.  */
static int
static int
re_match_2_internal (bufp, string1, size1, string2, size2, pos, regs, stop)
re_match_2_internal (bufp, string1, size1, string2, size2, pos, regs, stop)
     struct re_pattern_buffer *bufp;
     struct re_pattern_buffer *bufp;
     const char *string1, *string2;
     const char *string1, *string2;
     int size1, size2;
     int size1, size2;
     int pos;
     int pos;
     struct re_registers *regs;
     struct re_registers *regs;
     int stop;
     int stop;
{
{
  /* General temporaries.  */
  /* General temporaries.  */
  int mcnt;
  int mcnt;
  unsigned char *p1;
  unsigned char *p1;
 
 
  /* Just past the end of the corresponding string.  */
  /* Just past the end of the corresponding string.  */
  const char *end1, *end2;
  const char *end1, *end2;
 
 
  /* Pointers into string1 and string2, just past the last characters in
  /* Pointers into string1 and string2, just past the last characters in
     each to consider matching.  */
     each to consider matching.  */
  const char *end_match_1, *end_match_2;
  const char *end_match_1, *end_match_2;
 
 
  /* Where we are in the data, and the end of the current string.  */
  /* Where we are in the data, and the end of the current string.  */
  const char *d, *dend;
  const char *d, *dend;
 
 
  /* Where we are in the pattern, and the end of the pattern.  */
  /* Where we are in the pattern, and the end of the pattern.  */
  unsigned char *p = bufp->buffer;
  unsigned char *p = bufp->buffer;
  register unsigned char *pend = p + bufp->used;
  register unsigned char *pend = p + bufp->used;
 
 
  /* Mark the opcode just after a start_memory, so we can test for an
  /* Mark the opcode just after a start_memory, so we can test for an
     empty subpattern when we get to the stop_memory.  */
     empty subpattern when we get to the stop_memory.  */
  unsigned char *just_past_start_mem = 0;
  unsigned char *just_past_start_mem = 0;
 
 
  /* We use this to map every character in the string.  */
  /* We use this to map every character in the string.  */
  RE_TRANSLATE_TYPE translate = bufp->translate;
  RE_TRANSLATE_TYPE translate = bufp->translate;
 
 
  /* Failure point stack.  Each place that can handle a failure further
  /* Failure point stack.  Each place that can handle a failure further
     down the line pushes a failure point on this stack.  It consists of
     down the line pushes a failure point on this stack.  It consists of
     restart, regend, and reg_info for all registers corresponding to
     restart, regend, and reg_info for all registers corresponding to
     the subexpressions we're currently inside, plus the number of such
     the subexpressions we're currently inside, plus the number of such
     registers, and, finally, two char *'s.  The first char * is where
     registers, and, finally, two char *'s.  The first char * is where
     to resume scanning the pattern; the second one is where to resume
     to resume scanning the pattern; the second one is where to resume
     scanning the strings.  If the latter is zero, the failure point is
     scanning the strings.  If the latter is zero, the failure point is
     a ``dummy''; if a failure happens and the failure point is a dummy,
     a ``dummy''; if a failure happens and the failure point is a dummy,
     it gets discarded and the next next one is tried.  */
     it gets discarded and the next next one is tried.  */
#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global.  */
#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global.  */
  fail_stack_type fail_stack;
  fail_stack_type fail_stack;
#endif
#endif
#ifdef DEBUG
#ifdef DEBUG
  static unsigned failure_id = 0;
  static unsigned failure_id = 0;
  unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
  unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
#endif
#endif
 
 
#ifdef REL_ALLOC
#ifdef REL_ALLOC
  /* This holds the pointer to the failure stack, when
  /* This holds the pointer to the failure stack, when
     it is allocated relocatably.  */
     it is allocated relocatably.  */
  fail_stack_elt_t *failure_stack_ptr;
  fail_stack_elt_t *failure_stack_ptr;
#endif
#endif
 
 
  /* We fill all the registers internally, independent of what we
  /* We fill all the registers internally, independent of what we
     return, for use in backreferences.  The number here includes
     return, for use in backreferences.  The number here includes
     an element for register zero.  */
     an element for register zero.  */
  size_t num_regs = bufp->re_nsub + 1;
  size_t num_regs = bufp->re_nsub + 1;
 
 
  /* The currently active registers.  */
  /* The currently active registers.  */
  active_reg_t lowest_active_reg = NO_LOWEST_ACTIVE_REG;
  active_reg_t lowest_active_reg = NO_LOWEST_ACTIVE_REG;
  active_reg_t highest_active_reg = NO_HIGHEST_ACTIVE_REG;
  active_reg_t highest_active_reg = NO_HIGHEST_ACTIVE_REG;
 
 
  /* Information on the contents of registers. These are pointers into
  /* Information on the contents of registers. These are pointers into
     the input strings; they record just what was matched (on this
     the input strings; they record just what was matched (on this
     attempt) by a subexpression part of the pattern, that is, the
     attempt) by a subexpression part of the pattern, that is, the
     regnum-th regstart pointer points to where in the pattern we began
     regnum-th regstart pointer points to where in the pattern we began
     matching and the regnum-th regend points to right after where we
     matching and the regnum-th regend points to right after where we
     stopped matching the regnum-th subexpression.  (The zeroth register
     stopped matching the regnum-th subexpression.  (The zeroth register
     keeps track of what the whole pattern matches.)  */
     keeps track of what the whole pattern matches.)  */
#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
  const char **regstart, **regend;
  const char **regstart, **regend;
#endif
#endif
 
 
  /* If a group that's operated upon by a repetition operator fails to
  /* If a group that's operated upon by a repetition operator fails to
     match anything, then the register for its start will need to be
     match anything, then the register for its start will need to be
     restored because it will have been set to wherever in the string we
     restored because it will have been set to wherever in the string we
     are when we last see its open-group operator.  Similarly for a
     are when we last see its open-group operator.  Similarly for a
     register's end.  */
     register's end.  */
#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
  const char **old_regstart, **old_regend;
  const char **old_regstart, **old_regend;
#endif
#endif
 
 
  /* The is_active field of reg_info helps us keep track of which (possibly
  /* The is_active field of reg_info helps us keep track of which (possibly
     nested) subexpressions we are currently in. The matched_something
     nested) subexpressions we are currently in. The matched_something
     field of reg_info[reg_num] helps us tell whether or not we have
     field of reg_info[reg_num] helps us tell whether or not we have
     matched any of the pattern so far this time through the reg_num-th
     matched any of the pattern so far this time through the reg_num-th
     subexpression.  These two fields get reset each time through any
     subexpression.  These two fields get reset each time through any
     loop their register is in.  */
     loop their register is in.  */
#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global.  */
#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global.  */
  register_info_type *reg_info;
  register_info_type *reg_info;
#endif
#endif
 
 
  /* The following record the register info as found in the above
  /* The following record the register info as found in the above
     variables when we find a match better than any we've seen before.
     variables when we find a match better than any we've seen before.
     This happens as we backtrack through the failure points, which in
     This happens as we backtrack through the failure points, which in
     turn happens only if we have not yet matched the entire string. */
     turn happens only if we have not yet matched the entire string. */
  unsigned best_regs_set = false;
  unsigned best_regs_set = false;
#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
  const char **best_regstart, **best_regend;
  const char **best_regstart, **best_regend;
#endif
#endif
 
 
  /* Logically, this is `best_regend[0]'.  But we don't want to have to
  /* Logically, this is `best_regend[0]'.  But we don't want to have to
     allocate space for that if we're not allocating space for anything
     allocate space for that if we're not allocating space for anything
     else (see below).  Also, we never need info about register 0 for
     else (see below).  Also, we never need info about register 0 for
     any of the other register vectors, and it seems rather a kludge to
     any of the other register vectors, and it seems rather a kludge to
     treat `best_regend' differently than the rest.  So we keep track of
     treat `best_regend' differently than the rest.  So we keep track of
     the end of the best match so far in a separate variable.  We
     the end of the best match so far in a separate variable.  We
     initialize this to NULL so that when we backtrack the first time
     initialize this to NULL so that when we backtrack the first time
     and need to test it, it's not garbage.  */
     and need to test it, it's not garbage.  */
  const char *match_end = NULL;
  const char *match_end = NULL;
 
 
  /* This helps SET_REGS_MATCHED avoid doing redundant work.  */
  /* This helps SET_REGS_MATCHED avoid doing redundant work.  */
  int set_regs_matched_done = 0;
  int set_regs_matched_done = 0;
 
 
  /* Used when we pop values we don't care about.  */
  /* Used when we pop values we don't care about.  */
#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
  const char **reg_dummy;
  const char **reg_dummy;
  register_info_type *reg_info_dummy;
  register_info_type *reg_info_dummy;
#endif
#endif
 
 
#ifdef DEBUG
#ifdef DEBUG
  /* Counts the total number of registers pushed.  */
  /* Counts the total number of registers pushed.  */
  unsigned num_regs_pushed = 0;
  unsigned num_regs_pushed = 0;
#endif
#endif
 
 
  DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
  DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
 
 
  INIT_FAIL_STACK ();
  INIT_FAIL_STACK ();
 
 
#ifdef MATCH_MAY_ALLOCATE
#ifdef MATCH_MAY_ALLOCATE
  /* Do not bother to initialize all the register variables if there are
  /* Do not bother to initialize all the register variables if there are
     no groups in the pattern, as it takes a fair amount of time.  If
     no groups in the pattern, as it takes a fair amount of time.  If
     there are groups, we include space for register 0 (the whole
     there are groups, we include space for register 0 (the whole
     pattern), even though we never use it, since it simplifies the
     pattern), even though we never use it, since it simplifies the
     array indexing.  We should fix this.  */
     array indexing.  We should fix this.  */
  if (bufp->re_nsub)
  if (bufp->re_nsub)
    {
    {
      regstart = REGEX_TALLOC (num_regs, const char *);
      regstart = REGEX_TALLOC (num_regs, const char *);
      regend = REGEX_TALLOC (num_regs, const char *);
      regend = REGEX_TALLOC (num_regs, const char *);
      old_regstart = REGEX_TALLOC (num_regs, const char *);
      old_regstart = REGEX_TALLOC (num_regs, const char *);
      old_regend = REGEX_TALLOC (num_regs, const char *);
      old_regend = REGEX_TALLOC (num_regs, const char *);
      best_regstart = REGEX_TALLOC (num_regs, const char *);
      best_regstart = REGEX_TALLOC (num_regs, const char *);
      best_regend = REGEX_TALLOC (num_regs, const char *);
      best_regend = REGEX_TALLOC (num_regs, const char *);
      reg_info = REGEX_TALLOC (num_regs, register_info_type);
      reg_info = REGEX_TALLOC (num_regs, register_info_type);
      reg_dummy = REGEX_TALLOC (num_regs, const char *);
      reg_dummy = REGEX_TALLOC (num_regs, const char *);
      reg_info_dummy = REGEX_TALLOC (num_regs, register_info_type);
      reg_info_dummy = REGEX_TALLOC (num_regs, register_info_type);
 
 
      if (!(regstart && regend && old_regstart && old_regend && reg_info
      if (!(regstart && regend && old_regstart && old_regend && reg_info
            && best_regstart && best_regend && reg_dummy && reg_info_dummy))
            && best_regstart && best_regend && reg_dummy && reg_info_dummy))
        {
        {
          FREE_VARIABLES ();
          FREE_VARIABLES ();
          return -2;
          return -2;
        }
        }
    }
    }
  else
  else
    {
    {
      /* We must initialize all our variables to NULL, so that
      /* We must initialize all our variables to NULL, so that
         `FREE_VARIABLES' doesn't try to free them.  */
         `FREE_VARIABLES' doesn't try to free them.  */
      regstart = regend = old_regstart = old_regend = best_regstart
      regstart = regend = old_regstart = old_regend = best_regstart
        = best_regend = reg_dummy = NULL;
        = best_regend = reg_dummy = NULL;
      reg_info = reg_info_dummy = (register_info_type *) NULL;
      reg_info = reg_info_dummy = (register_info_type *) NULL;
    }
    }
#endif /* MATCH_MAY_ALLOCATE */
#endif /* MATCH_MAY_ALLOCATE */
 
 
  /* The starting position is bogus.  */
  /* The starting position is bogus.  */
  if (pos < 0 || pos > size1 + size2)
  if (pos < 0 || pos > size1 + size2)
    {
    {
      FREE_VARIABLES ();
      FREE_VARIABLES ();
      return -1;
      return -1;
    }
    }
 
 
  /* Initialize subexpression text positions to -1 to mark ones that no
  /* Initialize subexpression text positions to -1 to mark ones that no
     start_memory/stop_memory has been seen for. Also initialize the
     start_memory/stop_memory has been seen for. Also initialize the
     register information struct.  */
     register information struct.  */
  for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
  for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
    {
    {
      regstart[mcnt] = regend[mcnt]
      regstart[mcnt] = regend[mcnt]
        = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
        = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
 
 
      REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
      REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
      IS_ACTIVE (reg_info[mcnt]) = 0;
      IS_ACTIVE (reg_info[mcnt]) = 0;
      MATCHED_SOMETHING (reg_info[mcnt]) = 0;
      MATCHED_SOMETHING (reg_info[mcnt]) = 0;
      EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0;
      EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0;
    }
    }
 
 
  /* We move `string1' into `string2' if the latter's empty -- but not if
  /* We move `string1' into `string2' if the latter's empty -- but not if
     `string1' is null.  */
     `string1' is null.  */
  if (size2 == 0 && string1 != NULL)
  if (size2 == 0 && string1 != NULL)
    {
    {
      string2 = string1;
      string2 = string1;
      size2 = size1;
      size2 = size1;
      string1 = 0;
      string1 = 0;
      size1 = 0;
      size1 = 0;
    }
    }
  end1 = string1 + size1;
  end1 = string1 + size1;
  end2 = string2 + size2;
  end2 = string2 + size2;
 
 
  /* Compute where to stop matching, within the two strings.  */
  /* Compute where to stop matching, within the two strings.  */
  if (stop <= size1)
  if (stop <= size1)
    {
    {
      end_match_1 = string1 + stop;
      end_match_1 = string1 + stop;
      end_match_2 = string2;
      end_match_2 = string2;
    }
    }
  else
  else
    {
    {
      end_match_1 = end1;
      end_match_1 = end1;
      end_match_2 = string2 + stop - size1;
      end_match_2 = string2 + stop - size1;
    }
    }
 
 
  /* `p' scans through the pattern as `d' scans through the data.
  /* `p' scans through the pattern as `d' scans through the data.
     `dend' is the end of the input string that `d' points within.  `d'
     `dend' is the end of the input string that `d' points within.  `d'
     is advanced into the following input string whenever necessary, but
     is advanced into the following input string whenever necessary, but
     this happens before fetching; therefore, at the beginning of the
     this happens before fetching; therefore, at the beginning of the
     loop, `d' can be pointing at the end of a string, but it cannot
     loop, `d' can be pointing at the end of a string, but it cannot
     equal `string2'.  */
     equal `string2'.  */
  if (size1 > 0 && pos <= size1)
  if (size1 > 0 && pos <= size1)
    {
    {
      d = string1 + pos;
      d = string1 + pos;
      dend = end_match_1;
      dend = end_match_1;
    }
    }
  else
  else
    {
    {
      d = string2 + pos - size1;
      d = string2 + pos - size1;
      dend = end_match_2;
      dend = end_match_2;
    }
    }
 
 
  DEBUG_PRINT1 ("The compiled pattern is:\n");
  DEBUG_PRINT1 ("The compiled pattern is:\n");
  DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
  DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
  DEBUG_PRINT1 ("The string to match is: `");
  DEBUG_PRINT1 ("The string to match is: `");
  DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
  DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
  DEBUG_PRINT1 ("'\n");
  DEBUG_PRINT1 ("'\n");
 
 
  /* This loops over pattern commands.  It exits by returning from the
  /* This loops over pattern commands.  It exits by returning from the
     function if the match is complete, or it drops through if the match
     function if the match is complete, or it drops through if the match
     fails at this starting point in the input data.  */
     fails at this starting point in the input data.  */
  for (;;)
  for (;;)
    {
    {
#ifdef _LIBC
#ifdef _LIBC
      DEBUG_PRINT2 ("\n%p: ", p);
      DEBUG_PRINT2 ("\n%p: ", p);
#else
#else
      DEBUG_PRINT2 ("\n0x%x: ", p);
      DEBUG_PRINT2 ("\n0x%x: ", p);
#endif
#endif
 
 
      if (p == pend)
      if (p == pend)
        { /* End of pattern means we might have succeeded.  */
        { /* End of pattern means we might have succeeded.  */
          DEBUG_PRINT1 ("end of pattern ... ");
          DEBUG_PRINT1 ("end of pattern ... ");
 
 
          /* If we haven't matched the entire string, and we want the
          /* If we haven't matched the entire string, and we want the
             longest match, try backtracking.  */
             longest match, try backtracking.  */
          if (d != end_match_2)
          if (d != end_match_2)
            {
            {
              /* 1 if this match ends in the same string (string1 or string2)
              /* 1 if this match ends in the same string (string1 or string2)
                 as the best previous match.  */
                 as the best previous match.  */
              boolean same_str_p = (FIRST_STRING_P (match_end)
              boolean same_str_p = (FIRST_STRING_P (match_end)
                                    == MATCHING_IN_FIRST_STRING);
                                    == MATCHING_IN_FIRST_STRING);
              /* 1 if this match is the best seen so far.  */
              /* 1 if this match is the best seen so far.  */
              boolean best_match_p;
              boolean best_match_p;
 
 
              /* AIX compiler got confused when this was combined
              /* AIX compiler got confused when this was combined
                 with the previous declaration.  */
                 with the previous declaration.  */
              if (same_str_p)
              if (same_str_p)
                best_match_p = d > match_end;
                best_match_p = d > match_end;
              else
              else
                best_match_p = !MATCHING_IN_FIRST_STRING;
                best_match_p = !MATCHING_IN_FIRST_STRING;
 
 
              DEBUG_PRINT1 ("backtracking.\n");
              DEBUG_PRINT1 ("backtracking.\n");
 
 
              if (!FAIL_STACK_EMPTY ())
              if (!FAIL_STACK_EMPTY ())
                { /* More failure points to try.  */
                { /* More failure points to try.  */
 
 
                  /* If exceeds best match so far, save it.  */
                  /* If exceeds best match so far, save it.  */
                  if (!best_regs_set || best_match_p)
                  if (!best_regs_set || best_match_p)
                    {
                    {
                      best_regs_set = true;
                      best_regs_set = true;
                      match_end = d;
                      match_end = d;
 
 
                      DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
                      DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
 
 
                      for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
                      for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
                        {
                        {
                          best_regstart[mcnt] = regstart[mcnt];
                          best_regstart[mcnt] = regstart[mcnt];
                          best_regend[mcnt] = regend[mcnt];
                          best_regend[mcnt] = regend[mcnt];
                        }
                        }
                    }
                    }
                  goto fail;
                  goto fail;
                }
                }
 
 
              /* If no failure points, don't restore garbage.  And if
              /* If no failure points, don't restore garbage.  And if
                 last match is real best match, don't restore second
                 last match is real best match, don't restore second
                 best one. */
                 best one. */
              else if (best_regs_set && !best_match_p)
              else if (best_regs_set && !best_match_p)
                {
                {
                restore_best_regs:
                restore_best_regs:
                  /* Restore best match.  It may happen that `dend ==
                  /* Restore best match.  It may happen that `dend ==
                     end_match_1' while the restored d is in string2.
                     end_match_1' while the restored d is in string2.
                     For example, the pattern `x.*y.*z' against the
                     For example, the pattern `x.*y.*z' against the
                     strings `x-' and `y-z-', if the two strings are
                     strings `x-' and `y-z-', if the two strings are
                     not consecutive in memory.  */
                     not consecutive in memory.  */
                  DEBUG_PRINT1 ("Restoring best registers.\n");
                  DEBUG_PRINT1 ("Restoring best registers.\n");
 
 
                  d = match_end;
                  d = match_end;
                  dend = ((d >= string1 && d <= end1)
                  dend = ((d >= string1 && d <= end1)
                           ? end_match_1 : end_match_2);
                           ? end_match_1 : end_match_2);
 
 
                  for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
                  for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
                    {
                    {
                      regstart[mcnt] = best_regstart[mcnt];
                      regstart[mcnt] = best_regstart[mcnt];
                      regend[mcnt] = best_regend[mcnt];
                      regend[mcnt] = best_regend[mcnt];
                    }
                    }
                }
                }
            } /* d != end_match_2 */
            } /* d != end_match_2 */
 
 
        succeed_label:
        succeed_label:
          DEBUG_PRINT1 ("Accepting match.\n");
          DEBUG_PRINT1 ("Accepting match.\n");
 
 
          /* If caller wants register contents data back, do it.  */
          /* If caller wants register contents data back, do it.  */
          if (regs && !bufp->no_sub)
          if (regs && !bufp->no_sub)
            {
            {
              /* Have the register data arrays been allocated?  */
              /* Have the register data arrays been allocated?  */
              if (bufp->regs_allocated == REGS_UNALLOCATED)
              if (bufp->regs_allocated == REGS_UNALLOCATED)
                { /* No.  So allocate them with malloc.  We need one
                { /* No.  So allocate them with malloc.  We need one
                     extra element beyond `num_regs' for the `-1' marker
                     extra element beyond `num_regs' for the `-1' marker
                     GNU code uses.  */
                     GNU code uses.  */
                  regs->num_regs = MAX (RE_NREGS, num_regs + 1);
                  regs->num_regs = MAX (RE_NREGS, num_regs + 1);
                  regs->start = TALLOC (regs->num_regs, regoff_t);
                  regs->start = TALLOC (regs->num_regs, regoff_t);
                  regs->end = TALLOC (regs->num_regs, regoff_t);
                  regs->end = TALLOC (regs->num_regs, regoff_t);
                  if (regs->start == NULL || regs->end == NULL)
                  if (regs->start == NULL || regs->end == NULL)
                    {
                    {
                      FREE_VARIABLES ();
                      FREE_VARIABLES ();
                      return -2;
                      return -2;
                    }
                    }
                  bufp->regs_allocated = REGS_REALLOCATE;
                  bufp->regs_allocated = REGS_REALLOCATE;
                }
                }
              else if (bufp->regs_allocated == REGS_REALLOCATE)
              else if (bufp->regs_allocated == REGS_REALLOCATE)
                { /* Yes.  If we need more elements than were already
                { /* Yes.  If we need more elements than were already
                     allocated, reallocate them.  If we need fewer, just
                     allocated, reallocate them.  If we need fewer, just
                     leave it alone.  */
                     leave it alone.  */
                  if (regs->num_regs < num_regs + 1)
                  if (regs->num_regs < num_regs + 1)
                    {
                    {
                      regs->num_regs = num_regs + 1;
                      regs->num_regs = num_regs + 1;
                      RETALLOC (regs->start, regs->num_regs, regoff_t);
                      RETALLOC (regs->start, regs->num_regs, regoff_t);
                      RETALLOC (regs->end, regs->num_regs, regoff_t);
                      RETALLOC (regs->end, regs->num_regs, regoff_t);
                      if (regs->start == NULL || regs->end == NULL)
                      if (regs->start == NULL || regs->end == NULL)
                        {
                        {
                          FREE_VARIABLES ();
                          FREE_VARIABLES ();
                          return -2;
                          return -2;
                        }
                        }
                    }
                    }
                }
                }
              else
              else
                {
                {
                  /* These braces fend off a "empty body in an else-statement"
                  /* These braces fend off a "empty body in an else-statement"
                     warning under GCC when assert expands to nothing.  */
                     warning under GCC when assert expands to nothing.  */
                  assert (bufp->regs_allocated == REGS_FIXED);
                  assert (bufp->regs_allocated == REGS_FIXED);
                }
                }
 
 
              /* Convert the pointer data in `regstart' and `regend' to
              /* Convert the pointer data in `regstart' and `regend' to
                 indices.  Register zero has to be set differently,
                 indices.  Register zero has to be set differently,
                 since we haven't kept track of any info for it.  */
                 since we haven't kept track of any info for it.  */
              if (regs->num_regs > 0)
              if (regs->num_regs > 0)
                {
                {
                  regs->start[0] = pos;
                  regs->start[0] = pos;
                  regs->end[0] = (MATCHING_IN_FIRST_STRING
                  regs->end[0] = (MATCHING_IN_FIRST_STRING
                                  ? ((regoff_t) (d - string1))
                                  ? ((regoff_t) (d - string1))
                                  : ((regoff_t) (d - string2 + size1)));
                                  : ((regoff_t) (d - string2 + size1)));
                }
                }
 
 
              /* Go through the first `min (num_regs, regs->num_regs)'
              /* Go through the first `min (num_regs, regs->num_regs)'
                 registers, since that is all we initialized.  */
                 registers, since that is all we initialized.  */
              for (mcnt = 1; (unsigned) mcnt < MIN (num_regs, regs->num_regs);
              for (mcnt = 1; (unsigned) mcnt < MIN (num_regs, regs->num_regs);
                   mcnt++)
                   mcnt++)
                {
                {
                  if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt]))
                  if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt]))
                    regs->start[mcnt] = regs->end[mcnt] = -1;
                    regs->start[mcnt] = regs->end[mcnt] = -1;
                  else
                  else
                    {
                    {
                      regs->start[mcnt]
                      regs->start[mcnt]
                        = (regoff_t) POINTER_TO_OFFSET (regstart[mcnt]);
                        = (regoff_t) POINTER_TO_OFFSET (regstart[mcnt]);
                      regs->end[mcnt]
                      regs->end[mcnt]
                        = (regoff_t) POINTER_TO_OFFSET (regend[mcnt]);
                        = (regoff_t) POINTER_TO_OFFSET (regend[mcnt]);
                    }
                    }
                }
                }
 
 
              /* If the regs structure we return has more elements than
              /* If the regs structure we return has more elements than
                 were in the pattern, set the extra elements to -1.  If
                 were in the pattern, set the extra elements to -1.  If
                 we (re)allocated the registers, this is the case,
                 we (re)allocated the registers, this is the case,
                 because we always allocate enough to have at least one
                 because we always allocate enough to have at least one
                 -1 at the end.  */
                 -1 at the end.  */
              for (mcnt = num_regs; (unsigned) mcnt < regs->num_regs; mcnt++)
              for (mcnt = num_regs; (unsigned) mcnt < regs->num_regs; mcnt++)
                regs->start[mcnt] = regs->end[mcnt] = -1;
                regs->start[mcnt] = regs->end[mcnt] = -1;
            } /* regs && !bufp->no_sub */
            } /* regs && !bufp->no_sub */
 
 
          DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
          DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
                        nfailure_points_pushed, nfailure_points_popped,
                        nfailure_points_pushed, nfailure_points_popped,
                        nfailure_points_pushed - nfailure_points_popped);
                        nfailure_points_pushed - nfailure_points_popped);
          DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
          DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
 
 
          mcnt = d - pos - (MATCHING_IN_FIRST_STRING
          mcnt = d - pos - (MATCHING_IN_FIRST_STRING
                            ? string1
                            ? string1
                            : string2 - size1);
                            : string2 - size1);
 
 
          DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
          DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
 
 
          FREE_VARIABLES ();
          FREE_VARIABLES ();
          return mcnt;
          return mcnt;
        }
        }
 
 
      /* Otherwise match next pattern command.  */
      /* Otherwise match next pattern command.  */
      switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
      switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
        {
        {
        /* Ignore these.  Used to ignore the n of succeed_n's which
        /* Ignore these.  Used to ignore the n of succeed_n's which
           currently have n == 0.  */
           currently have n == 0.  */
        case no_op:
        case no_op:
          DEBUG_PRINT1 ("EXECUTING no_op.\n");
          DEBUG_PRINT1 ("EXECUTING no_op.\n");
          break;
          break;
 
 
        case succeed:
        case succeed:
          DEBUG_PRINT1 ("EXECUTING succeed.\n");
          DEBUG_PRINT1 ("EXECUTING succeed.\n");
          goto succeed_label;
          goto succeed_label;
 
 
        /* Match the next n pattern characters exactly.  The following
        /* Match the next n pattern characters exactly.  The following
           byte in the pattern defines n, and the n bytes after that
           byte in the pattern defines n, and the n bytes after that
           are the characters to match.  */
           are the characters to match.  */
        case exactn:
        case exactn:
          mcnt = *p++;
          mcnt = *p++;
          DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
          DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
 
 
          /* This is written out as an if-else so we don't waste time
          /* This is written out as an if-else so we don't waste time
             testing `translate' inside the loop.  */
             testing `translate' inside the loop.  */
          if (translate)
          if (translate)
            {
            {
              do
              do
                {
                {
                  PREFETCH ();
                  PREFETCH ();
                  if ((unsigned char) translate[(unsigned char) *d++]
                  if ((unsigned char) translate[(unsigned char) *d++]
                      != (unsigned char) *p++)
                      != (unsigned char) *p++)
                    goto fail;
                    goto fail;
                }
                }
              while (--mcnt);
              while (--mcnt);
            }
            }
          else
          else
            {
            {
              do
              do
                {
                {
                  PREFETCH ();
                  PREFETCH ();
                  if (*d++ != (char) *p++) goto fail;
                  if (*d++ != (char) *p++) goto fail;
                }
                }
              while (--mcnt);
              while (--mcnt);
            }
            }
          SET_REGS_MATCHED ();
          SET_REGS_MATCHED ();
          break;
          break;
 
 
 
 
        /* Match any character except possibly a newline or a null.  */
        /* Match any character except possibly a newline or a null.  */
        case anychar:
        case anychar:
          DEBUG_PRINT1 ("EXECUTING anychar.\n");
          DEBUG_PRINT1 ("EXECUTING anychar.\n");
 
 
          PREFETCH ();
          PREFETCH ();
 
 
          if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n')
          if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n')
              || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000'))
              || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000'))
            goto fail;
            goto fail;
 
 
          SET_REGS_MATCHED ();
          SET_REGS_MATCHED ();
          DEBUG_PRINT2 ("  Matched `%d'.\n", *d);
          DEBUG_PRINT2 ("  Matched `%d'.\n", *d);
          d++;
          d++;
          break;
          break;
 
 
 
 
        case charset:
        case charset:
        case charset_not:
        case charset_not:
          {
          {
            register unsigned char c;
            register unsigned char c;
            boolean not = (re_opcode_t) *(p - 1) == charset_not;
            boolean not = (re_opcode_t) *(p - 1) == charset_not;
 
 
            DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
            DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
 
 
            PREFETCH ();
            PREFETCH ();
            c = TRANSLATE (*d); /* The character to match.  */
            c = TRANSLATE (*d); /* The character to match.  */
 
 
            /* Cast to `unsigned' instead of `unsigned char' in case the
            /* Cast to `unsigned' instead of `unsigned char' in case the
               bit list is a full 32 bytes long.  */
               bit list is a full 32 bytes long.  */
            if (c < (unsigned) (*p * BYTEWIDTH)
            if (c < (unsigned) (*p * BYTEWIDTH)
                && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
                && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
              not = !not;
              not = !not;
 
 
            p += 1 + *p;
            p += 1 + *p;
 
 
            if (!not) goto fail;
            if (!not) goto fail;
 
 
            SET_REGS_MATCHED ();
            SET_REGS_MATCHED ();
            d++;
            d++;
            break;
            break;
          }
          }
 
 
 
 
        /* The beginning of a group is represented by start_memory.
        /* The beginning of a group is represented by start_memory.
           The arguments are the register number in the next byte, and the
           The arguments are the register number in the next byte, and the
           number of groups inner to this one in the next.  The text
           number of groups inner to this one in the next.  The text
           matched within the group is recorded (in the internal
           matched within the group is recorded (in the internal
           registers data structure) under the register number.  */
           registers data structure) under the register number.  */
        case start_memory:
        case start_memory:
          DEBUG_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p, p[1]);
          DEBUG_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p, p[1]);
 
 
          /* Find out if this group can match the empty string.  */
          /* Find out if this group can match the empty string.  */
          p1 = p;               /* To send to group_match_null_string_p.  */
          p1 = p;               /* To send to group_match_null_string_p.  */
 
 
          if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
          if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
            REG_MATCH_NULL_STRING_P (reg_info[*p])
            REG_MATCH_NULL_STRING_P (reg_info[*p])
              = group_match_null_string_p (&p1, pend, reg_info);
              = group_match_null_string_p (&p1, pend, reg_info);
 
 
          /* Save the position in the string where we were the last time
          /* Save the position in the string where we were the last time
             we were at this open-group operator in case the group is
             we were at this open-group operator in case the group is
             operated upon by a repetition operator, e.g., with `(a*)*b'
             operated upon by a repetition operator, e.g., with `(a*)*b'
             against `ab'; then we want to ignore where we are now in
             against `ab'; then we want to ignore where we are now in
             the string in case this attempt to match fails.  */
             the string in case this attempt to match fails.  */
          old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
          old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
                             ? REG_UNSET (regstart[*p]) ? d : regstart[*p]
                             ? REG_UNSET (regstart[*p]) ? d : regstart[*p]
                             : regstart[*p];
                             : regstart[*p];
          DEBUG_PRINT2 ("  old_regstart: %d\n",
          DEBUG_PRINT2 ("  old_regstart: %d\n",
                         POINTER_TO_OFFSET (old_regstart[*p]));
                         POINTER_TO_OFFSET (old_regstart[*p]));
 
 
          regstart[*p] = d;
          regstart[*p] = d;
          DEBUG_PRINT2 ("  regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
          DEBUG_PRINT2 ("  regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
 
 
          IS_ACTIVE (reg_info[*p]) = 1;
          IS_ACTIVE (reg_info[*p]) = 1;
          MATCHED_SOMETHING (reg_info[*p]) = 0;
          MATCHED_SOMETHING (reg_info[*p]) = 0;
 
 
          /* Clear this whenever we change the register activity status.  */
          /* Clear this whenever we change the register activity status.  */
          set_regs_matched_done = 0;
          set_regs_matched_done = 0;
 
 
          /* This is the new highest active register.  */
          /* This is the new highest active register.  */
          highest_active_reg = *p;
          highest_active_reg = *p;
 
 
          /* If nothing was active before, this is the new lowest active
          /* If nothing was active before, this is the new lowest active
             register.  */
             register.  */
          if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
          if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
            lowest_active_reg = *p;
            lowest_active_reg = *p;
 
 
          /* Move past the register number and inner group count.  */
          /* Move past the register number and inner group count.  */
          p += 2;
          p += 2;
          just_past_start_mem = p;
          just_past_start_mem = p;
 
 
          break;
          break;
 
 
 
 
        /* The stop_memory opcode represents the end of a group.  Its
        /* The stop_memory opcode represents the end of a group.  Its
           arguments are the same as start_memory's: the register
           arguments are the same as start_memory's: the register
           number, and the number of inner groups.  */
           number, and the number of inner groups.  */
        case stop_memory:
        case stop_memory:
          DEBUG_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p, p[1]);
          DEBUG_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p, p[1]);
 
 
          /* We need to save the string position the last time we were at
          /* We need to save the string position the last time we were at
             this close-group operator in case the group is operated
             this close-group operator in case the group is operated
             upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
             upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
             against `aba'; then we want to ignore where we are now in
             against `aba'; then we want to ignore where we are now in
             the string in case this attempt to match fails.  */
             the string in case this attempt to match fails.  */
          old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
          old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
                           ? REG_UNSET (regend[*p]) ? d : regend[*p]
                           ? REG_UNSET (regend[*p]) ? d : regend[*p]
                           : regend[*p];
                           : regend[*p];
          DEBUG_PRINT2 ("      old_regend: %d\n",
          DEBUG_PRINT2 ("      old_regend: %d\n",
                         POINTER_TO_OFFSET (old_regend[*p]));
                         POINTER_TO_OFFSET (old_regend[*p]));
 
 
          regend[*p] = d;
          regend[*p] = d;
          DEBUG_PRINT2 ("      regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
          DEBUG_PRINT2 ("      regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
 
 
          /* This register isn't active anymore.  */
          /* This register isn't active anymore.  */
          IS_ACTIVE (reg_info[*p]) = 0;
          IS_ACTIVE (reg_info[*p]) = 0;
 
 
          /* Clear this whenever we change the register activity status.  */
          /* Clear this whenever we change the register activity status.  */
          set_regs_matched_done = 0;
          set_regs_matched_done = 0;
 
 
          /* If this was the only register active, nothing is active
          /* If this was the only register active, nothing is active
             anymore.  */
             anymore.  */
          if (lowest_active_reg == highest_active_reg)
          if (lowest_active_reg == highest_active_reg)
            {
            {
              lowest_active_reg = NO_LOWEST_ACTIVE_REG;
              lowest_active_reg = NO_LOWEST_ACTIVE_REG;
              highest_active_reg = NO_HIGHEST_ACTIVE_REG;
              highest_active_reg = NO_HIGHEST_ACTIVE_REG;
            }
            }
          else
          else
            { /* We must scan for the new highest active register, since
            { /* We must scan for the new highest active register, since
                 it isn't necessarily one less than now: consider
                 it isn't necessarily one less than now: consider
                 (a(b)c(d(e)f)g).  When group 3 ends, after the f), the
                 (a(b)c(d(e)f)g).  When group 3 ends, after the f), the
                 new highest active register is 1.  */
                 new highest active register is 1.  */
              unsigned char r = *p - 1;
              unsigned char r = *p - 1;
              while (r > 0 && !IS_ACTIVE (reg_info[r]))
              while (r > 0 && !IS_ACTIVE (reg_info[r]))
                r--;
                r--;
 
 
              /* If we end up at register zero, that means that we saved
              /* If we end up at register zero, that means that we saved
                 the registers as the result of an `on_failure_jump', not
                 the registers as the result of an `on_failure_jump', not
                 a `start_memory', and we jumped to past the innermost
                 a `start_memory', and we jumped to past the innermost
                 `stop_memory'.  For example, in ((.)*) we save
                 `stop_memory'.  For example, in ((.)*) we save
                 registers 1 and 2 as a result of the *, but when we pop
                 registers 1 and 2 as a result of the *, but when we pop
                 back to the second ), we are at the stop_memory 1.
                 back to the second ), we are at the stop_memory 1.
                 Thus, nothing is active.  */
                 Thus, nothing is active.  */
              if (r == 0)
              if (r == 0)
                {
                {
                  lowest_active_reg = NO_LOWEST_ACTIVE_REG;
                  lowest_active_reg = NO_LOWEST_ACTIVE_REG;
                  highest_active_reg = NO_HIGHEST_ACTIVE_REG;
                  highest_active_reg = NO_HIGHEST_ACTIVE_REG;
                }
                }
              else
              else
                highest_active_reg = r;
                highest_active_reg = r;
            }
            }
 
 
          /* If just failed to match something this time around with a
          /* If just failed to match something this time around with a
             group that's operated on by a repetition operator, try to
             group that's operated on by a repetition operator, try to
             force exit from the ``loop'', and restore the register
             force exit from the ``loop'', and restore the register
             information for this group that we had before trying this
             information for this group that we had before trying this
             last match.  */
             last match.  */
          if ((!MATCHED_SOMETHING (reg_info[*p])
          if ((!MATCHED_SOMETHING (reg_info[*p])
               || just_past_start_mem == p - 1)
               || just_past_start_mem == p - 1)
              && (p + 2) < pend)
              && (p + 2) < pend)
            {
            {
              boolean is_a_jump_n = false;
              boolean is_a_jump_n = false;
 
 
              p1 = p + 2;
              p1 = p + 2;
              mcnt = 0;
              mcnt = 0;
              switch ((re_opcode_t) *p1++)
              switch ((re_opcode_t) *p1++)
                {
                {
                  case jump_n:
                  case jump_n:
                    is_a_jump_n = true;
                    is_a_jump_n = true;
                  case pop_failure_jump:
                  case pop_failure_jump:
                  case maybe_pop_jump:
                  case maybe_pop_jump:
                  case jump:
                  case jump:
                  case dummy_failure_jump:
                  case dummy_failure_jump:
                    EXTRACT_NUMBER_AND_INCR (mcnt, p1);
                    EXTRACT_NUMBER_AND_INCR (mcnt, p1);
                    if (is_a_jump_n)
                    if (is_a_jump_n)
                      p1 += 2;
                      p1 += 2;
                    break;
                    break;
 
 
                  default:
                  default:
                    /* do nothing */ ;
                    /* do nothing */ ;
                }
                }
              p1 += mcnt;
              p1 += mcnt;
 
 
              /* If the next operation is a jump backwards in the pattern
              /* If the next operation is a jump backwards in the pattern
                 to an on_failure_jump right before the start_memory
                 to an on_failure_jump right before the start_memory
                 corresponding to this stop_memory, exit from the loop
                 corresponding to this stop_memory, exit from the loop
                 by forcing a failure after pushing on the stack the
                 by forcing a failure after pushing on the stack the
                 on_failure_jump's jump in the pattern, and d.  */
                 on_failure_jump's jump in the pattern, and d.  */
              if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump
              if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump
                  && (re_opcode_t) p1[3] == start_memory && p1[4] == *p)
                  && (re_opcode_t) p1[3] == start_memory && p1[4] == *p)
                {
                {
                  /* If this group ever matched anything, then restore
                  /* If this group ever matched anything, then restore
                     what its registers were before trying this last
                     what its registers were before trying this last
                     failed match, e.g., with `(a*)*b' against `ab' for
                     failed match, e.g., with `(a*)*b' against `ab' for
                     regstart[1], and, e.g., with `((a*)*(b*)*)*'
                     regstart[1], and, e.g., with `((a*)*(b*)*)*'
                     against `aba' for regend[3].
                     against `aba' for regend[3].
 
 
                     Also restore the registers for inner groups for,
                     Also restore the registers for inner groups for,
                     e.g., `((a*)(b*))*' against `aba' (register 3 would
                     e.g., `((a*)(b*))*' against `aba' (register 3 would
                     otherwise get trashed).  */
                     otherwise get trashed).  */
 
 
                  if (EVER_MATCHED_SOMETHING (reg_info[*p]))
                  if (EVER_MATCHED_SOMETHING (reg_info[*p]))
                    {
                    {
                      unsigned r;
                      unsigned r;
 
 
                      EVER_MATCHED_SOMETHING (reg_info[*p]) = 0;
                      EVER_MATCHED_SOMETHING (reg_info[*p]) = 0;
 
 
                      /* Restore this and inner groups' (if any) registers.  */
                      /* Restore this and inner groups' (if any) registers.  */
                      for (r = *p; r < (unsigned) *p + (unsigned) *(p + 1);
                      for (r = *p; r < (unsigned) *p + (unsigned) *(p + 1);
                           r++)
                           r++)
                        {
                        {
                          regstart[r] = old_regstart[r];
                          regstart[r] = old_regstart[r];
 
 
                          /* xx why this test?  */
                          /* xx why this test?  */
                          if (old_regend[r] >= regstart[r])
                          if (old_regend[r] >= regstart[r])
                            regend[r] = old_regend[r];
                            regend[r] = old_regend[r];
                        }
                        }
                    }
                    }
                  p1++;
                  p1++;
                  EXTRACT_NUMBER_AND_INCR (mcnt, p1);
                  EXTRACT_NUMBER_AND_INCR (mcnt, p1);
                  PUSH_FAILURE_POINT (p1 + mcnt, d, -2);
                  PUSH_FAILURE_POINT (p1 + mcnt, d, -2);
 
 
                  goto fail;
                  goto fail;
                }
                }
            }
            }
 
 
          /* Move past the register number and the inner group count.  */
          /* Move past the register number and the inner group count.  */
          p += 2;
          p += 2;
          break;
          break;
 
 
 
 
        /* \<digit> has been turned into a `duplicate' command which is
        /* \<digit> has been turned into a `duplicate' command which is
           followed by the numeric value of <digit> as the register number.  */
           followed by the numeric value of <digit> as the register number.  */
        case duplicate:
        case duplicate:
          {
          {
            register const char *d2, *dend2;
            register const char *d2, *dend2;
            int regno = *p++;   /* Get which register to match against.  */
            int regno = *p++;   /* Get which register to match against.  */
            DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
            DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
 
 
            /* Can't back reference a group which we've never matched.  */
            /* Can't back reference a group which we've never matched.  */
            if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
            if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
              goto fail;
              goto fail;
 
 
            /* Where in input to try to start matching.  */
            /* Where in input to try to start matching.  */
            d2 = regstart[regno];
            d2 = regstart[regno];
 
 
            /* Where to stop matching; if both the place to start and
            /* Where to stop matching; if both the place to start and
               the place to stop matching are in the same string, then
               the place to stop matching are in the same string, then
               set to the place to stop, otherwise, for now have to use
               set to the place to stop, otherwise, for now have to use
               the end of the first string.  */
               the end of the first string.  */
 
 
            dend2 = ((FIRST_STRING_P (regstart[regno])
            dend2 = ((FIRST_STRING_P (regstart[regno])
                      == FIRST_STRING_P (regend[regno]))
                      == FIRST_STRING_P (regend[regno]))
                     ? regend[regno] : end_match_1);
                     ? regend[regno] : end_match_1);
            for (;;)
            for (;;)
              {
              {
                /* If necessary, advance to next segment in register
                /* If necessary, advance to next segment in register
                   contents.  */
                   contents.  */
                while (d2 == dend2)
                while (d2 == dend2)
                  {
                  {
                    if (dend2 == end_match_2) break;
                    if (dend2 == end_match_2) break;
                    if (dend2 == regend[regno]) break;
                    if (dend2 == regend[regno]) break;
 
 
                    /* End of string1 => advance to string2. */
                    /* End of string1 => advance to string2. */
                    d2 = string2;
                    d2 = string2;
                    dend2 = regend[regno];
                    dend2 = regend[regno];
                  }
                  }
                /* At end of register contents => success */
                /* At end of register contents => success */
                if (d2 == dend2) break;
                if (d2 == dend2) break;
 
 
                /* If necessary, advance to next segment in data.  */
                /* If necessary, advance to next segment in data.  */
                PREFETCH ();
                PREFETCH ();
 
 
                /* How many characters left in this segment to match.  */
                /* How many characters left in this segment to match.  */
                mcnt = dend - d;
                mcnt = dend - d;
 
 
                /* Want how many consecutive characters we can match in
                /* Want how many consecutive characters we can match in
                   one shot, so, if necessary, adjust the count.  */
                   one shot, so, if necessary, adjust the count.  */
                if (mcnt > dend2 - d2)
                if (mcnt > dend2 - d2)
                  mcnt = dend2 - d2;
                  mcnt = dend2 - d2;
 
 
                /* Compare that many; failure if mismatch, else move
                /* Compare that many; failure if mismatch, else move
                   past them.  */
                   past them.  */
                if (translate
                if (translate
                    ? bcmp_translate (d, d2, mcnt, translate)
                    ? bcmp_translate (d, d2, mcnt, translate)
                    : memcmp (d, d2, mcnt))
                    : memcmp (d, d2, mcnt))
                  goto fail;
                  goto fail;
                d += mcnt, d2 += mcnt;
                d += mcnt, d2 += mcnt;
 
 
                /* Do this because we've match some characters.  */
                /* Do this because we've match some characters.  */
                SET_REGS_MATCHED ();
                SET_REGS_MATCHED ();
              }
              }
          }
          }
          break;
          break;
 
 
 
 
        /* begline matches the empty string at the beginning of the string
        /* begline matches the empty string at the beginning of the string
           (unless `not_bol' is set in `bufp'), and, if
           (unless `not_bol' is set in `bufp'), and, if
           `newline_anchor' is set, after newlines.  */
           `newline_anchor' is set, after newlines.  */
        case begline:
        case begline:
          DEBUG_PRINT1 ("EXECUTING begline.\n");
          DEBUG_PRINT1 ("EXECUTING begline.\n");
 
 
          if (AT_STRINGS_BEG (d))
          if (AT_STRINGS_BEG (d))
            {
            {
              if (!bufp->not_bol) break;
              if (!bufp->not_bol) break;
            }
            }
          else if (d[-1] == '\n' && bufp->newline_anchor)
          else if (d[-1] == '\n' && bufp->newline_anchor)
            {
            {
              break;
              break;
            }
            }
          /* In all other cases, we fail.  */
          /* In all other cases, we fail.  */
          goto fail;
          goto fail;
 
 
 
 
        /* endline is the dual of begline.  */
        /* endline is the dual of begline.  */
        case endline:
        case endline:
          DEBUG_PRINT1 ("EXECUTING endline.\n");
          DEBUG_PRINT1 ("EXECUTING endline.\n");
 
 
          if (AT_STRINGS_END (d))
          if (AT_STRINGS_END (d))
            {
            {
              if (!bufp->not_eol) break;
              if (!bufp->not_eol) break;
            }
            }
 
 
          /* We have to ``prefetch'' the next character.  */
          /* We have to ``prefetch'' the next character.  */
          else if ((d == end1 ? *string2 : *d) == '\n'
          else if ((d == end1 ? *string2 : *d) == '\n'
                   && bufp->newline_anchor)
                   && bufp->newline_anchor)
            {
            {
              break;
              break;
            }
            }
          goto fail;
          goto fail;
 
 
 
 
        /* Match at the very beginning of the data.  */
        /* Match at the very beginning of the data.  */
        case begbuf:
        case begbuf:
          DEBUG_PRINT1 ("EXECUTING begbuf.\n");
          DEBUG_PRINT1 ("EXECUTING begbuf.\n");
          if (AT_STRINGS_BEG (d))
          if (AT_STRINGS_BEG (d))
            break;
            break;
          goto fail;
          goto fail;
 
 
 
 
        /* Match at the very end of the data.  */
        /* Match at the very end of the data.  */
        case endbuf:
        case endbuf:
          DEBUG_PRINT1 ("EXECUTING endbuf.\n");
          DEBUG_PRINT1 ("EXECUTING endbuf.\n");
          if (AT_STRINGS_END (d))
          if (AT_STRINGS_END (d))
            break;
            break;
          goto fail;
          goto fail;
 
 
 
 
        /* on_failure_keep_string_jump is used to optimize `.*\n'.  It
        /* on_failure_keep_string_jump is used to optimize `.*\n'.  It
           pushes NULL as the value for the string on the stack.  Then
           pushes NULL as the value for the string on the stack.  Then
           `pop_failure_point' will keep the current value for the
           `pop_failure_point' will keep the current value for the
           string, instead of restoring it.  To see why, consider
           string, instead of restoring it.  To see why, consider
           matching `foo\nbar' against `.*\n'.  The .* matches the foo;
           matching `foo\nbar' against `.*\n'.  The .* matches the foo;
           then the . fails against the \n.  But the next thing we want
           then the . fails against the \n.  But the next thing we want
           to do is match the \n against the \n; if we restored the
           to do is match the \n against the \n; if we restored the
           string value, we would be back at the foo.
           string value, we would be back at the foo.
 
 
           Because this is used only in specific cases, we don't need to
           Because this is used only in specific cases, we don't need to
           check all the things that `on_failure_jump' does, to make
           check all the things that `on_failure_jump' does, to make
           sure the right things get saved on the stack.  Hence we don't
           sure the right things get saved on the stack.  Hence we don't
           share its code.  The only reason to push anything on the
           share its code.  The only reason to push anything on the
           stack at all is that otherwise we would have to change
           stack at all is that otherwise we would have to change
           `anychar's code to do something besides goto fail in this
           `anychar's code to do something besides goto fail in this
           case; that seems worse than this.  */
           case; that seems worse than this.  */
        case on_failure_keep_string_jump:
        case on_failure_keep_string_jump:
          DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
          DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
 
 
          EXTRACT_NUMBER_AND_INCR (mcnt, p);
          EXTRACT_NUMBER_AND_INCR (mcnt, p);
#ifdef _LIBC
#ifdef _LIBC
          DEBUG_PRINT3 (" %d (to %p):\n", mcnt, p + mcnt);
          DEBUG_PRINT3 (" %d (to %p):\n", mcnt, p + mcnt);
#else
#else
          DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt);
          DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt);
#endif
#endif
 
 
          PUSH_FAILURE_POINT (p + mcnt, NULL, -2);
          PUSH_FAILURE_POINT (p + mcnt, NULL, -2);
          break;
          break;
 
 
 
 
        /* Uses of on_failure_jump:
        /* Uses of on_failure_jump:
 
 
           Each alternative starts with an on_failure_jump that points
           Each alternative starts with an on_failure_jump that points
           to the beginning of the next alternative.  Each alternative
           to the beginning of the next alternative.  Each alternative
           except the last ends with a jump that in effect jumps past
           except the last ends with a jump that in effect jumps past
           the rest of the alternatives.  (They really jump to the
           the rest of the alternatives.  (They really jump to the
           ending jump of the following alternative, because tensioning
           ending jump of the following alternative, because tensioning
           these jumps is a hassle.)
           these jumps is a hassle.)
 
 
           Repeats start with an on_failure_jump that points past both
           Repeats start with an on_failure_jump that points past both
           the repetition text and either the following jump or
           the repetition text and either the following jump or
           pop_failure_jump back to this on_failure_jump.  */
           pop_failure_jump back to this on_failure_jump.  */
        case on_failure_jump:
        case on_failure_jump:
        on_failure:
        on_failure:
          DEBUG_PRINT1 ("EXECUTING on_failure_jump");
          DEBUG_PRINT1 ("EXECUTING on_failure_jump");
 
 
          EXTRACT_NUMBER_AND_INCR (mcnt, p);
          EXTRACT_NUMBER_AND_INCR (mcnt, p);
#ifdef _LIBC
#ifdef _LIBC
          DEBUG_PRINT3 (" %d (to %p)", mcnt, p + mcnt);
          DEBUG_PRINT3 (" %d (to %p)", mcnt, p + mcnt);
#else
#else
          DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt);
          DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt);
#endif
#endif
 
 
          /* If this on_failure_jump comes right before a group (i.e.,
          /* If this on_failure_jump comes right before a group (i.e.,
             the original * applied to a group), save the information
             the original * applied to a group), save the information
             for that group and all inner ones, so that if we fail back
             for that group and all inner ones, so that if we fail back
             to this point, the group's information will be correct.
             to this point, the group's information will be correct.
             For example, in \(a*\)*\1, we need the preceding group,
             For example, in \(a*\)*\1, we need the preceding group,
             and in \(zz\(a*\)b*\)\2, we need the inner group.  */
             and in \(zz\(a*\)b*\)\2, we need the inner group.  */
 
 
          /* We can't use `p' to check ahead because we push
          /* We can't use `p' to check ahead because we push
             a failure point to `p + mcnt' after we do this.  */
             a failure point to `p + mcnt' after we do this.  */
          p1 = p;
          p1 = p;
 
 
          /* We need to skip no_op's before we look for the
          /* We need to skip no_op's before we look for the
             start_memory in case this on_failure_jump is happening as
             start_memory in case this on_failure_jump is happening as
             the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
             the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
             against aba.  */
             against aba.  */
          while (p1 < pend && (re_opcode_t) *p1 == no_op)
          while (p1 < pend && (re_opcode_t) *p1 == no_op)
            p1++;
            p1++;
 
 
          if (p1 < pend && (re_opcode_t) *p1 == start_memory)
          if (p1 < pend && (re_opcode_t) *p1 == start_memory)
            {
            {
              /* We have a new highest active register now.  This will
              /* We have a new highest active register now.  This will
                 get reset at the start_memory we are about to get to,
                 get reset at the start_memory we are about to get to,
                 but we will have saved all the registers relevant to
                 but we will have saved all the registers relevant to
                 this repetition op, as described above.  */
                 this repetition op, as described above.  */
              highest_active_reg = *(p1 + 1) + *(p1 + 2);
              highest_active_reg = *(p1 + 1) + *(p1 + 2);
              if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
              if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
                lowest_active_reg = *(p1 + 1);
                lowest_active_reg = *(p1 + 1);
            }
            }
 
 
          DEBUG_PRINT1 (":\n");
          DEBUG_PRINT1 (":\n");
          PUSH_FAILURE_POINT (p + mcnt, d, -2);
          PUSH_FAILURE_POINT (p + mcnt, d, -2);
          break;
          break;
 
 
 
 
        /* A smart repeat ends with `maybe_pop_jump'.
        /* A smart repeat ends with `maybe_pop_jump'.
           We change it to either `pop_failure_jump' or `jump'.  */
           We change it to either `pop_failure_jump' or `jump'.  */
        case maybe_pop_jump:
        case maybe_pop_jump:
          EXTRACT_NUMBER_AND_INCR (mcnt, p);
          EXTRACT_NUMBER_AND_INCR (mcnt, p);
          DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt);
          DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt);
          {
          {
            register unsigned char *p2 = p;
            register unsigned char *p2 = p;
 
 
            /* Compare the beginning of the repeat with what in the
            /* Compare the beginning of the repeat with what in the
               pattern follows its end. If we can establish that there
               pattern follows its end. If we can establish that there
               is nothing that they would both match, i.e., that we
               is nothing that they would both match, i.e., that we
               would have to backtrack because of (as in, e.g., `a*a')
               would have to backtrack because of (as in, e.g., `a*a')
               then we can change to pop_failure_jump, because we'll
               then we can change to pop_failure_jump, because we'll
               never have to backtrack.
               never have to backtrack.
 
 
               This is not true in the case of alternatives: in
               This is not true in the case of alternatives: in
               `(a|ab)*' we do need to backtrack to the `ab' alternative
               `(a|ab)*' we do need to backtrack to the `ab' alternative
               (e.g., if the string was `ab').  But instead of trying to
               (e.g., if the string was `ab').  But instead of trying to
               detect that here, the alternative has put on a dummy
               detect that here, the alternative has put on a dummy
               failure point which is what we will end up popping.  */
               failure point which is what we will end up popping.  */
 
 
            /* Skip over open/close-group commands.
            /* Skip over open/close-group commands.
               If what follows this loop is a ...+ construct,
               If what follows this loop is a ...+ construct,
               look at what begins its body, since we will have to
               look at what begins its body, since we will have to
               match at least one of that.  */
               match at least one of that.  */
            while (1)
            while (1)
              {
              {
                if (p2 + 2 < pend
                if (p2 + 2 < pend
                    && ((re_opcode_t) *p2 == stop_memory
                    && ((re_opcode_t) *p2 == stop_memory
                        || (re_opcode_t) *p2 == start_memory))
                        || (re_opcode_t) *p2 == start_memory))
                  p2 += 3;
                  p2 += 3;
                else if (p2 + 6 < pend
                else if (p2 + 6 < pend
                         && (re_opcode_t) *p2 == dummy_failure_jump)
                         && (re_opcode_t) *p2 == dummy_failure_jump)
                  p2 += 6;
                  p2 += 6;
                else
                else
                  break;
                  break;
              }
              }
 
 
            p1 = p + mcnt;
            p1 = p + mcnt;
            /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
            /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
               to the `maybe_finalize_jump' of this case.  Examine what
               to the `maybe_finalize_jump' of this case.  Examine what
               follows.  */
               follows.  */
 
 
            /* If we're at the end of the pattern, we can change.  */
            /* If we're at the end of the pattern, we can change.  */
            if (p2 == pend)
            if (p2 == pend)
              {
              {
                /* Consider what happens when matching ":\(.*\)"
                /* Consider what happens when matching ":\(.*\)"
                   against ":/".  I don't really understand this code
                   against ":/".  I don't really understand this code
                   yet.  */
                   yet.  */
                p[-3] = (unsigned char) pop_failure_jump;
                p[-3] = (unsigned char) pop_failure_jump;
                DEBUG_PRINT1
                DEBUG_PRINT1
                  ("  End of pattern: change to `pop_failure_jump'.\n");
                  ("  End of pattern: change to `pop_failure_jump'.\n");
              }
              }
 
 
            else if ((re_opcode_t) *p2 == exactn
            else if ((re_opcode_t) *p2 == exactn
                     || (bufp->newline_anchor && (re_opcode_t) *p2 == endline))
                     || (bufp->newline_anchor && (re_opcode_t) *p2 == endline))
              {
              {
                register unsigned char c
                register unsigned char c
                  = *p2 == (unsigned char) endline ? '\n' : p2[2];
                  = *p2 == (unsigned char) endline ? '\n' : p2[2];
 
 
                if ((re_opcode_t) p1[3] == exactn && p1[5] != c)
                if ((re_opcode_t) p1[3] == exactn && p1[5] != c)
                  {
                  {
                    p[-3] = (unsigned char) pop_failure_jump;
                    p[-3] = (unsigned char) pop_failure_jump;
                    DEBUG_PRINT3 ("  %c != %c => pop_failure_jump.\n",
                    DEBUG_PRINT3 ("  %c != %c => pop_failure_jump.\n",
                                  c, p1[5]);
                                  c, p1[5]);
                  }
                  }
 
 
                else if ((re_opcode_t) p1[3] == charset
                else if ((re_opcode_t) p1[3] == charset
                         || (re_opcode_t) p1[3] == charset_not)
                         || (re_opcode_t) p1[3] == charset_not)
                  {
                  {
                    int not = (re_opcode_t) p1[3] == charset_not;
                    int not = (re_opcode_t) p1[3] == charset_not;
 
 
                    if (c < (unsigned char) (p1[4] * BYTEWIDTH)
                    if (c < (unsigned char) (p1[4] * BYTEWIDTH)
                        && p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
                        && p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
                      not = !not;
                      not = !not;
 
 
                    /* `not' is equal to 1 if c would match, which means
                    /* `not' is equal to 1 if c would match, which means
                        that we can't change to pop_failure_jump.  */
                        that we can't change to pop_failure_jump.  */
                    if (!not)
                    if (!not)
                      {
                      {
                        p[-3] = (unsigned char) pop_failure_jump;
                        p[-3] = (unsigned char) pop_failure_jump;
                        DEBUG_PRINT1 ("  No match => pop_failure_jump.\n");
                        DEBUG_PRINT1 ("  No match => pop_failure_jump.\n");
                      }
                      }
                  }
                  }
              }
              }
            else if ((re_opcode_t) *p2 == charset)
            else if ((re_opcode_t) *p2 == charset)
              {
              {
#ifdef DEBUG
#ifdef DEBUG
                register unsigned char c
                register unsigned char c
                  = *p2 == (unsigned char) endline ? '\n' : p2[2];
                  = *p2 == (unsigned char) endline ? '\n' : p2[2];
#endif
#endif
 
 
#if 0
#if 0
                if ((re_opcode_t) p1[3] == exactn
                if ((re_opcode_t) p1[3] == exactn
                    && ! ((int) p2[1] * BYTEWIDTH > (int) p1[5]
                    && ! ((int) p2[1] * BYTEWIDTH > (int) p1[5]
                          && (p2[2 + p1[5] / BYTEWIDTH]
                          && (p2[2 + p1[5] / BYTEWIDTH]
                              & (1 << (p1[5] % BYTEWIDTH)))))
                              & (1 << (p1[5] % BYTEWIDTH)))))
#else
#else
                if ((re_opcode_t) p1[3] == exactn
                if ((re_opcode_t) p1[3] == exactn
                    && ! ((int) p2[1] * BYTEWIDTH > (int) p1[4]
                    && ! ((int) p2[1] * BYTEWIDTH > (int) p1[4]
                          && (p2[2 + p1[4] / BYTEWIDTH]
                          && (p2[2 + p1[4] / BYTEWIDTH]
                              & (1 << (p1[4] % BYTEWIDTH)))))
                              & (1 << (p1[4] % BYTEWIDTH)))))
#endif
#endif
                  {
                  {
                    p[-3] = (unsigned char) pop_failure_jump;
                    p[-3] = (unsigned char) pop_failure_jump;
                    DEBUG_PRINT3 ("  %c != %c => pop_failure_jump.\n",
                    DEBUG_PRINT3 ("  %c != %c => pop_failure_jump.\n",
                                  c, p1[5]);
                                  c, p1[5]);
                  }
                  }
 
 
                else if ((re_opcode_t) p1[3] == charset_not)
                else if ((re_opcode_t) p1[3] == charset_not)
                  {
                  {
                    int idx;
                    int idx;
                    /* We win if the charset_not inside the loop
                    /* We win if the charset_not inside the loop
                       lists every character listed in the charset after.  */
                       lists every character listed in the charset after.  */
                    for (idx = 0; idx < (int) p2[1]; idx++)
                    for (idx = 0; idx < (int) p2[1]; idx++)
                      if (! (p2[2 + idx] == 0
                      if (! (p2[2 + idx] == 0
                             || (idx < (int) p1[4]
                             || (idx < (int) p1[4]
                                 && ((p2[2 + idx] & ~ p1[5 + idx]) == 0))))
                                 && ((p2[2 + idx] & ~ p1[5 + idx]) == 0))))
                        break;
                        break;
 
 
                    if (idx == p2[1])
                    if (idx == p2[1])
                      {
                      {
                        p[-3] = (unsigned char) pop_failure_jump;
                        p[-3] = (unsigned char) pop_failure_jump;
                        DEBUG_PRINT1 ("  No match => pop_failure_jump.\n");
                        DEBUG_PRINT1 ("  No match => pop_failure_jump.\n");
                      }
                      }
                  }
                  }
                else if ((re_opcode_t) p1[3] == charset)
                else if ((re_opcode_t) p1[3] == charset)
                  {
                  {
                    int idx;
                    int idx;
                    /* We win if the charset inside the loop
                    /* We win if the charset inside the loop
                       has no overlap with the one after the loop.  */
                       has no overlap with the one after the loop.  */
                    for (idx = 0;
                    for (idx = 0;
                         idx < (int) p2[1] && idx < (int) p1[4];
                         idx < (int) p2[1] && idx < (int) p1[4];
                         idx++)
                         idx++)
                      if ((p2[2 + idx] & p1[5 + idx]) != 0)
                      if ((p2[2 + idx] & p1[5 + idx]) != 0)
                        break;
                        break;
 
 
                    if (idx == p2[1] || idx == p1[4])
                    if (idx == p2[1] || idx == p1[4])
                      {
                      {
                        p[-3] = (unsigned char) pop_failure_jump;
                        p[-3] = (unsigned char) pop_failure_jump;
                        DEBUG_PRINT1 ("  No match => pop_failure_jump.\n");
                        DEBUG_PRINT1 ("  No match => pop_failure_jump.\n");
                      }
                      }
                  }
                  }
              }
              }
          }
          }
          p -= 2;               /* Point at relative address again.  */
          p -= 2;               /* Point at relative address again.  */
          if ((re_opcode_t) p[-1] != pop_failure_jump)
          if ((re_opcode_t) p[-1] != pop_failure_jump)
            {
            {
              p[-1] = (unsigned char) jump;
              p[-1] = (unsigned char) jump;
              DEBUG_PRINT1 ("  Match => jump.\n");
              DEBUG_PRINT1 ("  Match => jump.\n");
              goto unconditional_jump;
              goto unconditional_jump;
            }
            }
        /* Note fall through.  */
        /* Note fall through.  */
 
 
 
 
        /* The end of a simple repeat has a pop_failure_jump back to
        /* The end of a simple repeat has a pop_failure_jump back to
           its matching on_failure_jump, where the latter will push a
           its matching on_failure_jump, where the latter will push a
           failure point.  The pop_failure_jump takes off failure
           failure point.  The pop_failure_jump takes off failure
           points put on by this pop_failure_jump's matching
           points put on by this pop_failure_jump's matching
           on_failure_jump; we got through the pattern to here from the
           on_failure_jump; we got through the pattern to here from the
           matching on_failure_jump, so didn't fail.  */
           matching on_failure_jump, so didn't fail.  */
        case pop_failure_jump:
        case pop_failure_jump:
          {
          {
            /* We need to pass separate storage for the lowest and
            /* We need to pass separate storage for the lowest and
               highest registers, even though we don't care about the
               highest registers, even though we don't care about the
               actual values.  Otherwise, we will restore only one
               actual values.  Otherwise, we will restore only one
               register from the stack, since lowest will == highest in
               register from the stack, since lowest will == highest in
               `pop_failure_point'.  */
               `pop_failure_point'.  */
            active_reg_t dummy_low_reg, dummy_high_reg;
            active_reg_t dummy_low_reg, dummy_high_reg;
            unsigned char *pdummy;
            unsigned char *pdummy;
            const char *sdummy;
            const char *sdummy;
 
 
            DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
            DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
            POP_FAILURE_POINT (sdummy, pdummy,
            POP_FAILURE_POINT (sdummy, pdummy,
                               dummy_low_reg, dummy_high_reg,
                               dummy_low_reg, dummy_high_reg,
                               reg_dummy, reg_dummy, reg_info_dummy);
                               reg_dummy, reg_dummy, reg_info_dummy);
          }
          }
          /* Note fall through.  */
          /* Note fall through.  */
 
 
        unconditional_jump:
        unconditional_jump:
#ifdef _LIBC
#ifdef _LIBC
          DEBUG_PRINT2 ("\n%p: ", p);
          DEBUG_PRINT2 ("\n%p: ", p);
#else
#else
          DEBUG_PRINT2 ("\n0x%x: ", p);
          DEBUG_PRINT2 ("\n0x%x: ", p);
#endif
#endif
          /* Note fall through.  */
          /* Note fall through.  */
 
 
        /* Unconditionally jump (without popping any failure points).  */
        /* Unconditionally jump (without popping any failure points).  */
        case jump:
        case jump:
          EXTRACT_NUMBER_AND_INCR (mcnt, p);    /* Get the amount to jump.  */
          EXTRACT_NUMBER_AND_INCR (mcnt, p);    /* Get the amount to jump.  */
          DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
          DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
          p += mcnt;                            /* Do the jump.  */
          p += mcnt;                            /* Do the jump.  */
#ifdef _LIBC
#ifdef _LIBC
          DEBUG_PRINT2 ("(to %p).\n", p);
          DEBUG_PRINT2 ("(to %p).\n", p);
#else
#else
          DEBUG_PRINT2 ("(to 0x%x).\n", p);
          DEBUG_PRINT2 ("(to 0x%x).\n", p);
#endif
#endif
          break;
          break;
 
 
 
 
        /* We need this opcode so we can detect where alternatives end
        /* We need this opcode so we can detect where alternatives end
           in `group_match_null_string_p' et al.  */
           in `group_match_null_string_p' et al.  */
        case jump_past_alt:
        case jump_past_alt:
          DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
          DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
          goto unconditional_jump;
          goto unconditional_jump;
 
 
 
 
        /* Normally, the on_failure_jump pushes a failure point, which
        /* Normally, the on_failure_jump pushes a failure point, which
           then gets popped at pop_failure_jump.  We will end up at
           then gets popped at pop_failure_jump.  We will end up at
           pop_failure_jump, also, and with a pattern of, say, `a+', we
           pop_failure_jump, also, and with a pattern of, say, `a+', we
           are skipping over the on_failure_jump, so we have to push
           are skipping over the on_failure_jump, so we have to push
           something meaningless for pop_failure_jump to pop.  */
           something meaningless for pop_failure_jump to pop.  */
        case dummy_failure_jump:
        case dummy_failure_jump:
          DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
          DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
          /* It doesn't matter what we push for the string here.  What
          /* It doesn't matter what we push for the string here.  What
             the code at `fail' tests is the value for the pattern.  */
             the code at `fail' tests is the value for the pattern.  */
          PUSH_FAILURE_POINT (NULL, NULL, -2);
          PUSH_FAILURE_POINT (NULL, NULL, -2);
          goto unconditional_jump;
          goto unconditional_jump;
 
 
 
 
        /* At the end of an alternative, we need to push a dummy failure
        /* At the end of an alternative, we need to push a dummy failure
           point in case we are followed by a `pop_failure_jump', because
           point in case we are followed by a `pop_failure_jump', because
           we don't want the failure point for the alternative to be
           we don't want the failure point for the alternative to be
           popped.  For example, matching `(a|ab)*' against `aab'
           popped.  For example, matching `(a|ab)*' against `aab'
           requires that we match the `ab' alternative.  */
           requires that we match the `ab' alternative.  */
        case push_dummy_failure:
        case push_dummy_failure:
          DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
          DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
          /* See comments just above at `dummy_failure_jump' about the
          /* See comments just above at `dummy_failure_jump' about the
             two zeroes.  */
             two zeroes.  */
          PUSH_FAILURE_POINT (NULL, NULL, -2);
          PUSH_FAILURE_POINT (NULL, NULL, -2);
          break;
          break;
 
 
        /* Have to succeed matching what follows at least n times.
        /* Have to succeed matching what follows at least n times.
           After that, handle like `on_failure_jump'.  */
           After that, handle like `on_failure_jump'.  */
        case succeed_n:
        case succeed_n:
          EXTRACT_NUMBER (mcnt, p + 2);
          EXTRACT_NUMBER (mcnt, p + 2);
          DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
          DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
 
 
          assert (mcnt >= 0);
          assert (mcnt >= 0);
          /* Originally, this is how many times we HAVE to succeed.  */
          /* Originally, this is how many times we HAVE to succeed.  */
          if (mcnt > 0)
          if (mcnt > 0)
            {
            {
               mcnt--;
               mcnt--;
               p += 2;
               p += 2;
               STORE_NUMBER_AND_INCR (p, mcnt);
               STORE_NUMBER_AND_INCR (p, mcnt);
#ifdef _LIBC
#ifdef _LIBC
               DEBUG_PRINT3 ("  Setting %p to %d.\n", p - 2, mcnt);
               DEBUG_PRINT3 ("  Setting %p to %d.\n", p - 2, mcnt);
#else
#else
               DEBUG_PRINT3 ("  Setting 0x%x to %d.\n", p - 2, mcnt);
               DEBUG_PRINT3 ("  Setting 0x%x to %d.\n", p - 2, mcnt);
#endif
#endif
            }
            }
          else if (mcnt == 0)
          else if (mcnt == 0)
            {
            {
#ifdef _LIBC
#ifdef _LIBC
              DEBUG_PRINT2 ("  Setting two bytes from %p to no_op.\n", p+2);
              DEBUG_PRINT2 ("  Setting two bytes from %p to no_op.\n", p+2);
#else
#else
              DEBUG_PRINT2 ("  Setting two bytes from 0x%x to no_op.\n", p+2);
              DEBUG_PRINT2 ("  Setting two bytes from 0x%x to no_op.\n", p+2);
#endif
#endif
              p[2] = (unsigned char) no_op;
              p[2] = (unsigned char) no_op;
              p[3] = (unsigned char) no_op;
              p[3] = (unsigned char) no_op;
              goto on_failure;
              goto on_failure;
            }
            }
          break;
          break;
 
 
        case jump_n:
        case jump_n:
          EXTRACT_NUMBER (mcnt, p + 2);
          EXTRACT_NUMBER (mcnt, p + 2);
          DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
          DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
 
 
          /* Originally, this is how many times we CAN jump.  */
          /* Originally, this is how many times we CAN jump.  */
          if (mcnt)
          if (mcnt)
            {
            {
               mcnt--;
               mcnt--;
               STORE_NUMBER (p + 2, mcnt);
               STORE_NUMBER (p + 2, mcnt);
#ifdef _LIBC
#ifdef _LIBC
               DEBUG_PRINT3 ("  Setting %p to %d.\n", p + 2, mcnt);
               DEBUG_PRINT3 ("  Setting %p to %d.\n", p + 2, mcnt);
#else
#else
               DEBUG_PRINT3 ("  Setting 0x%x to %d.\n", p + 2, mcnt);
               DEBUG_PRINT3 ("  Setting 0x%x to %d.\n", p + 2, mcnt);
#endif
#endif
               goto unconditional_jump;
               goto unconditional_jump;
            }
            }
          /* If don't have to jump any more, skip over the rest of command.  */
          /* If don't have to jump any more, skip over the rest of command.  */
          else
          else
            p += 4;
            p += 4;
          break;
          break;
 
 
        case set_number_at:
        case set_number_at:
          {
          {
            DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
            DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
 
 
            EXTRACT_NUMBER_AND_INCR (mcnt, p);
            EXTRACT_NUMBER_AND_INCR (mcnt, p);
            p1 = p + mcnt;
            p1 = p + mcnt;
            EXTRACT_NUMBER_AND_INCR (mcnt, p);
            EXTRACT_NUMBER_AND_INCR (mcnt, p);
#ifdef _LIBC
#ifdef _LIBC
            DEBUG_PRINT3 ("  Setting %p to %d.\n", p1, mcnt);
            DEBUG_PRINT3 ("  Setting %p to %d.\n", p1, mcnt);
#else
#else
            DEBUG_PRINT3 ("  Setting 0x%x to %d.\n", p1, mcnt);
            DEBUG_PRINT3 ("  Setting 0x%x to %d.\n", p1, mcnt);
#endif
#endif
            STORE_NUMBER (p1, mcnt);
            STORE_NUMBER (p1, mcnt);
            break;
            break;
          }
          }
 
 
#if 0
#if 0
        /* The DEC Alpha C compiler 3.x generates incorrect code for the
        /* The DEC Alpha C compiler 3.x generates incorrect code for the
           test  WORDCHAR_P (d - 1) != WORDCHAR_P (d)  in the expansion of
           test  WORDCHAR_P (d - 1) != WORDCHAR_P (d)  in the expansion of
           AT_WORD_BOUNDARY, so this code is disabled.  Expanding the
           AT_WORD_BOUNDARY, so this code is disabled.  Expanding the
           macro and introducing temporary variables works around the bug.  */
           macro and introducing temporary variables works around the bug.  */
 
 
        case wordbound:
        case wordbound:
          DEBUG_PRINT1 ("EXECUTING wordbound.\n");
          DEBUG_PRINT1 ("EXECUTING wordbound.\n");
          if (AT_WORD_BOUNDARY (d))
          if (AT_WORD_BOUNDARY (d))
            break;
            break;
          goto fail;
          goto fail;
 
 
        case notwordbound:
        case notwordbound:
          DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
          DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
          if (AT_WORD_BOUNDARY (d))
          if (AT_WORD_BOUNDARY (d))
            goto fail;
            goto fail;
          break;
          break;
#else
#else
        case wordbound:
        case wordbound:
        {
        {
          boolean prevchar, thischar;
          boolean prevchar, thischar;
 
 
          DEBUG_PRINT1 ("EXECUTING wordbound.\n");
          DEBUG_PRINT1 ("EXECUTING wordbound.\n");
          if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
          if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
            break;
            break;
 
 
          prevchar = WORDCHAR_P (d - 1);
          prevchar = WORDCHAR_P (d - 1);
          thischar = WORDCHAR_P (d);
          thischar = WORDCHAR_P (d);
          if (prevchar != thischar)
          if (prevchar != thischar)
            break;
            break;
          goto fail;
          goto fail;
        }
        }
 
 
      case notwordbound:
      case notwordbound:
        {
        {
          boolean prevchar, thischar;
          boolean prevchar, thischar;
 
 
          DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
          DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
          if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
          if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
            goto fail;
            goto fail;
 
 
          prevchar = WORDCHAR_P (d - 1);
          prevchar = WORDCHAR_P (d - 1);
          thischar = WORDCHAR_P (d);
          thischar = WORDCHAR_P (d);
          if (prevchar != thischar)
          if (prevchar != thischar)
            goto fail;
            goto fail;
          break;
          break;
        }
        }
#endif
#endif
 
 
        case wordbeg:
        case wordbeg:
          DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
          DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
          if (WORDCHAR_P (d) && (AT_STRINGS_BEG (d) || !WORDCHAR_P (d - 1)))
          if (WORDCHAR_P (d) && (AT_STRINGS_BEG (d) || !WORDCHAR_P (d - 1)))
            break;
            break;
          goto fail;
          goto fail;
 
 
        case wordend:
        case wordend:
          DEBUG_PRINT1 ("EXECUTING wordend.\n");
          DEBUG_PRINT1 ("EXECUTING wordend.\n");
          if (!AT_STRINGS_BEG (d) && WORDCHAR_P (d - 1)
          if (!AT_STRINGS_BEG (d) && WORDCHAR_P (d - 1)
              && (!WORDCHAR_P (d) || AT_STRINGS_END (d)))
              && (!WORDCHAR_P (d) || AT_STRINGS_END (d)))
            break;
            break;
          goto fail;
          goto fail;
 
 
#ifdef emacs
#ifdef emacs
        case before_dot:
        case before_dot:
          DEBUG_PRINT1 ("EXECUTING before_dot.\n");
          DEBUG_PRINT1 ("EXECUTING before_dot.\n");
          if (PTR_CHAR_POS ((unsigned char *) d) >= point)
          if (PTR_CHAR_POS ((unsigned char *) d) >= point)
            goto fail;
            goto fail;
          break;
          break;
 
 
        case at_dot:
        case at_dot:
          DEBUG_PRINT1 ("EXECUTING at_dot.\n");
          DEBUG_PRINT1 ("EXECUTING at_dot.\n");
          if (PTR_CHAR_POS ((unsigned char *) d) != point)
          if (PTR_CHAR_POS ((unsigned char *) d) != point)
            goto fail;
            goto fail;
          break;
          break;
 
 
        case after_dot:
        case after_dot:
          DEBUG_PRINT1 ("EXECUTING after_dot.\n");
          DEBUG_PRINT1 ("EXECUTING after_dot.\n");
          if (PTR_CHAR_POS ((unsigned char *) d) <= point)
          if (PTR_CHAR_POS ((unsigned char *) d) <= point)
            goto fail;
            goto fail;
          break;
          break;
 
 
        case syntaxspec:
        case syntaxspec:
          DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt);
          DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt);
          mcnt = *p++;
          mcnt = *p++;
          goto matchsyntax;
          goto matchsyntax;
 
 
        case wordchar:
        case wordchar:
          DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
          DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
          mcnt = (int) Sword;
          mcnt = (int) Sword;
        matchsyntax:
        matchsyntax:
          PREFETCH ();
          PREFETCH ();
          /* Can't use *d++ here; SYNTAX may be an unsafe macro.  */
          /* Can't use *d++ here; SYNTAX may be an unsafe macro.  */
          d++;
          d++;
          if (SYNTAX (d[-1]) != (enum syntaxcode) mcnt)
          if (SYNTAX (d[-1]) != (enum syntaxcode) mcnt)
            goto fail;
            goto fail;
          SET_REGS_MATCHED ();
          SET_REGS_MATCHED ();
          break;
          break;
 
 
        case notsyntaxspec:
        case notsyntaxspec:
          DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt);
          DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt);
          mcnt = *p++;
          mcnt = *p++;
          goto matchnotsyntax;
          goto matchnotsyntax;
 
 
        case notwordchar:
        case notwordchar:
          DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
          DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
          mcnt = (int) Sword;
          mcnt = (int) Sword;
        matchnotsyntax:
        matchnotsyntax:
          PREFETCH ();
          PREFETCH ();
          /* Can't use *d++ here; SYNTAX may be an unsafe macro.  */
          /* Can't use *d++ here; SYNTAX may be an unsafe macro.  */
          d++;
          d++;
          if (SYNTAX (d[-1]) == (enum syntaxcode) mcnt)
          if (SYNTAX (d[-1]) == (enum syntaxcode) mcnt)
            goto fail;
            goto fail;
          SET_REGS_MATCHED ();
          SET_REGS_MATCHED ();
          break;
          break;
 
 
#else /* not emacs */
#else /* not emacs */
        case wordchar:
        case wordchar:
          DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
          DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
          PREFETCH ();
          PREFETCH ();
          if (!WORDCHAR_P (d))
          if (!WORDCHAR_P (d))
            goto fail;
            goto fail;
          SET_REGS_MATCHED ();
          SET_REGS_MATCHED ();
          d++;
          d++;
          break;
          break;
 
 
        case notwordchar:
        case notwordchar:
          DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
          DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
          PREFETCH ();
          PREFETCH ();
          if (WORDCHAR_P (d))
          if (WORDCHAR_P (d))
            goto fail;
            goto fail;
          SET_REGS_MATCHED ();
          SET_REGS_MATCHED ();
          d++;
          d++;
          break;
          break;
#endif /* not emacs */
#endif /* not emacs */
 
 
        default:
        default:
          abort ();
          abort ();
        }
        }
      continue;  /* Successfully executed one pattern command; keep going.  */
      continue;  /* Successfully executed one pattern command; keep going.  */
 
 
 
 
    /* We goto here if a matching operation fails. */
    /* We goto here if a matching operation fails. */
    fail:
    fail:
      if (!FAIL_STACK_EMPTY ())
      if (!FAIL_STACK_EMPTY ())
        { /* A restart point is known.  Restore to that state.  */
        { /* A restart point is known.  Restore to that state.  */
          DEBUG_PRINT1 ("\nFAIL:\n");
          DEBUG_PRINT1 ("\nFAIL:\n");
          POP_FAILURE_POINT (d, p,
          POP_FAILURE_POINT (d, p,
                             lowest_active_reg, highest_active_reg,
                             lowest_active_reg, highest_active_reg,
                             regstart, regend, reg_info);
                             regstart, regend, reg_info);
 
 
          /* If this failure point is a dummy, try the next one.  */
          /* If this failure point is a dummy, try the next one.  */
          if (!p)
          if (!p)
            goto fail;
            goto fail;
 
 
          /* If we failed to the end of the pattern, don't examine *p.  */
          /* If we failed to the end of the pattern, don't examine *p.  */
          assert (p <= pend);
          assert (p <= pend);
          if (p < pend)
          if (p < pend)
            {
            {
              boolean is_a_jump_n = false;
              boolean is_a_jump_n = false;
 
 
              /* If failed to a backwards jump that's part of a repetition
              /* If failed to a backwards jump that's part of a repetition
                 loop, need to pop this failure point and use the next one.  */
                 loop, need to pop this failure point and use the next one.  */
              switch ((re_opcode_t) *p)
              switch ((re_opcode_t) *p)
                {
                {
                case jump_n:
                case jump_n:
                  is_a_jump_n = true;
                  is_a_jump_n = true;
                case maybe_pop_jump:
                case maybe_pop_jump:
                case pop_failure_jump:
                case pop_failure_jump:
                case jump:
                case jump:
                  p1 = p + 1;
                  p1 = p + 1;
                  EXTRACT_NUMBER_AND_INCR (mcnt, p1);
                  EXTRACT_NUMBER_AND_INCR (mcnt, p1);
                  p1 += mcnt;
                  p1 += mcnt;
 
 
                  if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n)
                  if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n)
                      || (!is_a_jump_n
                      || (!is_a_jump_n
                          && (re_opcode_t) *p1 == on_failure_jump))
                          && (re_opcode_t) *p1 == on_failure_jump))
                    goto fail;
                    goto fail;
                  break;
                  break;
                default:
                default:
                  /* do nothing */ ;
                  /* do nothing */ ;
                }
                }
            }
            }
 
 
          if (d >= string1 && d <= end1)
          if (d >= string1 && d <= end1)
            dend = end_match_1;
            dend = end_match_1;
        }
        }
      else
      else
        break;   /* Matching at this starting point really fails.  */
        break;   /* Matching at this starting point really fails.  */
    } /* for (;;) */
    } /* for (;;) */
 
 
  if (best_regs_set)
  if (best_regs_set)
    goto restore_best_regs;
    goto restore_best_regs;
 
 
  FREE_VARIABLES ();
  FREE_VARIABLES ();
 
 
  return -1;                            /* Failure to match.  */
  return -1;                            /* Failure to match.  */
} /* re_match_2 */
} /* re_match_2 */


/* Subroutine definitions for re_match_2.  */
/* Subroutine definitions for re_match_2.  */
 
 
 
 
/* We are passed P pointing to a register number after a start_memory.
/* We are passed P pointing to a register number after a start_memory.
 
 
   Return true if the pattern up to the corresponding stop_memory can
   Return true if the pattern up to the corresponding stop_memory can
   match the empty string, and false otherwise.
   match the empty string, and false otherwise.
 
 
   If we find the matching stop_memory, sets P to point to one past its number.
   If we find the matching stop_memory, sets P to point to one past its number.
   Otherwise, sets P to an undefined byte less than or equal to END.
   Otherwise, sets P to an undefined byte less than or equal to END.
 
 
   We don't handle duplicates properly (yet).  */
   We don't handle duplicates properly (yet).  */
 
 
static boolean
static boolean
group_match_null_string_p (p, end, reg_info)
group_match_null_string_p (p, end, reg_info)
    unsigned char **p, *end;
    unsigned char **p, *end;
    register_info_type *reg_info;
    register_info_type *reg_info;
{
{
  int mcnt;
  int mcnt;
  /* Point to after the args to the start_memory.  */
  /* Point to after the args to the start_memory.  */
  unsigned char *p1 = *p + 2;
  unsigned char *p1 = *p + 2;
 
 
  while (p1 < end)
  while (p1 < end)
    {
    {
      /* Skip over opcodes that can match nothing, and return true or
      /* Skip over opcodes that can match nothing, and return true or
         false, as appropriate, when we get to one that can't, or to the
         false, as appropriate, when we get to one that can't, or to the
         matching stop_memory.  */
         matching stop_memory.  */
 
 
      switch ((re_opcode_t) *p1)
      switch ((re_opcode_t) *p1)
        {
        {
        /* Could be either a loop or a series of alternatives.  */
        /* Could be either a loop or a series of alternatives.  */
        case on_failure_jump:
        case on_failure_jump:
          p1++;
          p1++;
          EXTRACT_NUMBER_AND_INCR (mcnt, p1);
          EXTRACT_NUMBER_AND_INCR (mcnt, p1);
 
 
          /* If the next operation is not a jump backwards in the
          /* If the next operation is not a jump backwards in the
             pattern.  */
             pattern.  */
 
 
          if (mcnt >= 0)
          if (mcnt >= 0)
            {
            {
              /* Go through the on_failure_jumps of the alternatives,
              /* Go through the on_failure_jumps of the alternatives,
                 seeing if any of the alternatives cannot match nothing.
                 seeing if any of the alternatives cannot match nothing.
                 The last alternative starts with only a jump,
                 The last alternative starts with only a jump,
                 whereas the rest start with on_failure_jump and end
                 whereas the rest start with on_failure_jump and end
                 with a jump, e.g., here is the pattern for `a|b|c':
                 with a jump, e.g., here is the pattern for `a|b|c':
 
 
                 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
                 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
                 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
                 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
                 /exactn/1/c
                 /exactn/1/c
 
 
                 So, we have to first go through the first (n-1)
                 So, we have to first go through the first (n-1)
                 alternatives and then deal with the last one separately.  */
                 alternatives and then deal with the last one separately.  */
 
 
 
 
              /* Deal with the first (n-1) alternatives, which start
              /* Deal with the first (n-1) alternatives, which start
                 with an on_failure_jump (see above) that jumps to right
                 with an on_failure_jump (see above) that jumps to right
                 past a jump_past_alt.  */
                 past a jump_past_alt.  */
 
 
              while ((re_opcode_t) p1[mcnt-3] == jump_past_alt)
              while ((re_opcode_t) p1[mcnt-3] == jump_past_alt)
                {
                {
                  /* `mcnt' holds how many bytes long the alternative
                  /* `mcnt' holds how many bytes long the alternative
                     is, including the ending `jump_past_alt' and
                     is, including the ending `jump_past_alt' and
                     its number.  */
                     its number.  */
 
 
                  if (!alt_match_null_string_p (p1, p1 + mcnt - 3,
                  if (!alt_match_null_string_p (p1, p1 + mcnt - 3,
                                                      reg_info))
                                                      reg_info))
                    return false;
                    return false;
 
 
                  /* Move to right after this alternative, including the
                  /* Move to right after this alternative, including the
                     jump_past_alt.  */
                     jump_past_alt.  */
                  p1 += mcnt;
                  p1 += mcnt;
 
 
                  /* Break if it's the beginning of an n-th alternative
                  /* Break if it's the beginning of an n-th alternative
                     that doesn't begin with an on_failure_jump.  */
                     that doesn't begin with an on_failure_jump.  */
                  if ((re_opcode_t) *p1 != on_failure_jump)
                  if ((re_opcode_t) *p1 != on_failure_jump)
                    break;
                    break;
 
 
                  /* Still have to check that it's not an n-th
                  /* Still have to check that it's not an n-th
                     alternative that starts with an on_failure_jump.  */
                     alternative that starts with an on_failure_jump.  */
                  p1++;
                  p1++;
                  EXTRACT_NUMBER_AND_INCR (mcnt, p1);
                  EXTRACT_NUMBER_AND_INCR (mcnt, p1);
                  if ((re_opcode_t) p1[mcnt-3] != jump_past_alt)
                  if ((re_opcode_t) p1[mcnt-3] != jump_past_alt)
                    {
                    {
                      /* Get to the beginning of the n-th alternative.  */
                      /* Get to the beginning of the n-th alternative.  */
                      p1 -= 3;
                      p1 -= 3;
                      break;
                      break;
                    }
                    }
                }
                }
 
 
              /* Deal with the last alternative: go back and get number
              /* Deal with the last alternative: go back and get number
                 of the `jump_past_alt' just before it.  `mcnt' contains
                 of the `jump_past_alt' just before it.  `mcnt' contains
                 the length of the alternative.  */
                 the length of the alternative.  */
              EXTRACT_NUMBER (mcnt, p1 - 2);
              EXTRACT_NUMBER (mcnt, p1 - 2);
 
 
              if (!alt_match_null_string_p (p1, p1 + mcnt, reg_info))
              if (!alt_match_null_string_p (p1, p1 + mcnt, reg_info))
                return false;
                return false;
 
 
              p1 += mcnt;       /* Get past the n-th alternative.  */
              p1 += mcnt;       /* Get past the n-th alternative.  */
            } /* if mcnt > 0 */
            } /* if mcnt > 0 */
          break;
          break;
 
 
 
 
        case stop_memory:
        case stop_memory:
          assert (p1[1] == **p);
          assert (p1[1] == **p);
          *p = p1 + 2;
          *p = p1 + 2;
          return true;
          return true;
 
 
 
 
        default:
        default:
          if (!common_op_match_null_string_p (&p1, end, reg_info))
          if (!common_op_match_null_string_p (&p1, end, reg_info))
            return false;
            return false;
        }
        }
    } /* while p1 < end */
    } /* while p1 < end */
 
 
  return false;
  return false;
} /* group_match_null_string_p */
} /* group_match_null_string_p */
 
 
 
 
/* Similar to group_match_null_string_p, but doesn't deal with alternatives:
/* Similar to group_match_null_string_p, but doesn't deal with alternatives:
   It expects P to be the first byte of a single alternative and END one
   It expects P to be the first byte of a single alternative and END one
   byte past the last. The alternative can contain groups.  */
   byte past the last. The alternative can contain groups.  */
 
 
static boolean
static boolean
alt_match_null_string_p (p, end, reg_info)
alt_match_null_string_p (p, end, reg_info)
    unsigned char *p, *end;
    unsigned char *p, *end;
    register_info_type *reg_info;
    register_info_type *reg_info;
{
{
  int mcnt;
  int mcnt;
  unsigned char *p1 = p;
  unsigned char *p1 = p;
 
 
  while (p1 < end)
  while (p1 < end)
    {
    {
      /* Skip over opcodes that can match nothing, and break when we get
      /* Skip over opcodes that can match nothing, and break when we get
         to one that can't.  */
         to one that can't.  */
 
 
      switch ((re_opcode_t) *p1)
      switch ((re_opcode_t) *p1)
        {
        {
        /* It's a loop.  */
        /* It's a loop.  */
        case on_failure_jump:
        case on_failure_jump:
          p1++;
          p1++;
          EXTRACT_NUMBER_AND_INCR (mcnt, p1);
          EXTRACT_NUMBER_AND_INCR (mcnt, p1);
          p1 += mcnt;
          p1 += mcnt;
          break;
          break;
 
 
        default:
        default:
          if (!common_op_match_null_string_p (&p1, end, reg_info))
          if (!common_op_match_null_string_p (&p1, end, reg_info))
            return false;
            return false;
        }
        }
    }  /* while p1 < end */
    }  /* while p1 < end */
 
 
  return true;
  return true;
} /* alt_match_null_string_p */
} /* alt_match_null_string_p */
 
 
 
 
/* Deals with the ops common to group_match_null_string_p and
/* Deals with the ops common to group_match_null_string_p and
   alt_match_null_string_p.
   alt_match_null_string_p.
 
 
   Sets P to one after the op and its arguments, if any.  */
   Sets P to one after the op and its arguments, if any.  */
 
 
static boolean
static boolean
common_op_match_null_string_p (p, end, reg_info)
common_op_match_null_string_p (p, end, reg_info)
    unsigned char **p, *end;
    unsigned char **p, *end;
    register_info_type *reg_info;
    register_info_type *reg_info;
{
{
  int mcnt;
  int mcnt;
  boolean ret;
  boolean ret;
  int reg_no;
  int reg_no;
  unsigned char *p1 = *p;
  unsigned char *p1 = *p;
 
 
  switch ((re_opcode_t) *p1++)
  switch ((re_opcode_t) *p1++)
    {
    {
    case no_op:
    case no_op:
    case begline:
    case begline:
    case endline:
    case endline:
    case begbuf:
    case begbuf:
    case endbuf:
    case endbuf:
    case wordbeg:
    case wordbeg:
    case wordend:
    case wordend:
    case wordbound:
    case wordbound:
    case notwordbound:
    case notwordbound:
#ifdef emacs
#ifdef emacs
    case before_dot:
    case before_dot:
    case at_dot:
    case at_dot:
    case after_dot:
    case after_dot:
#endif
#endif
      break;
      break;
 
 
    case start_memory:
    case start_memory:
      reg_no = *p1;
      reg_no = *p1;
      assert (reg_no > 0 && reg_no <= MAX_REGNUM);
      assert (reg_no > 0 && reg_no <= MAX_REGNUM);
      ret = group_match_null_string_p (&p1, end, reg_info);
      ret = group_match_null_string_p (&p1, end, reg_info);
 
 
      /* Have to set this here in case we're checking a group which
      /* Have to set this here in case we're checking a group which
         contains a group and a back reference to it.  */
         contains a group and a back reference to it.  */
 
 
      if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
      if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
        REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret;
        REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret;
 
 
      if (!ret)
      if (!ret)
        return false;
        return false;
      break;
      break;
 
 
    /* If this is an optimized succeed_n for zero times, make the jump.  */
    /* If this is an optimized succeed_n for zero times, make the jump.  */
    case jump:
    case jump:
      EXTRACT_NUMBER_AND_INCR (mcnt, p1);
      EXTRACT_NUMBER_AND_INCR (mcnt, p1);
      if (mcnt >= 0)
      if (mcnt >= 0)
        p1 += mcnt;
        p1 += mcnt;
      else
      else
        return false;
        return false;
      break;
      break;
 
 
    case succeed_n:
    case succeed_n:
      /* Get to the number of times to succeed.  */
      /* Get to the number of times to succeed.  */
      p1 += 2;
      p1 += 2;
      EXTRACT_NUMBER_AND_INCR (mcnt, p1);
      EXTRACT_NUMBER_AND_INCR (mcnt, p1);
 
 
      if (mcnt == 0)
      if (mcnt == 0)
        {
        {
          p1 -= 4;
          p1 -= 4;
          EXTRACT_NUMBER_AND_INCR (mcnt, p1);
          EXTRACT_NUMBER_AND_INCR (mcnt, p1);
          p1 += mcnt;
          p1 += mcnt;
        }
        }
      else
      else
        return false;
        return false;
      break;
      break;
 
 
    case duplicate:
    case duplicate:
      if (!REG_MATCH_NULL_STRING_P (reg_info[*p1]))
      if (!REG_MATCH_NULL_STRING_P (reg_info[*p1]))
        return false;
        return false;
      break;
      break;
 
 
    case set_number_at:
    case set_number_at:
      p1 += 4;
      p1 += 4;
 
 
    default:
    default:
      /* All other opcodes mean we cannot match the empty string.  */
      /* All other opcodes mean we cannot match the empty string.  */
      return false;
      return false;
  }
  }
 
 
  *p = p1;
  *p = p1;
  return true;
  return true;
} /* common_op_match_null_string_p */
} /* common_op_match_null_string_p */
 
 
 
 
/* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
/* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
   bytes; nonzero otherwise.  */
   bytes; nonzero otherwise.  */
 
 
static int
static int
bcmp_translate (s1, s2, len, translate)
bcmp_translate (s1, s2, len, translate)
     const char *s1, *s2;
     const char *s1, *s2;
     register int len;
     register int len;
     RE_TRANSLATE_TYPE translate;
     RE_TRANSLATE_TYPE translate;
{
{
  register const unsigned char *p1 = (const unsigned char *) s1;
  register const unsigned char *p1 = (const unsigned char *) s1;
  register const unsigned char *p2 = (const unsigned char *) s2;
  register const unsigned char *p2 = (const unsigned char *) s2;
  while (len)
  while (len)
    {
    {
      if (translate[*p1++] != translate[*p2++]) return 1;
      if (translate[*p1++] != translate[*p2++]) return 1;
      len--;
      len--;
    }
    }
  return 0;
  return 0;
}
}


/* Entry points for GNU code.  */
/* Entry points for GNU code.  */
 
 
/* re_compile_pattern is the GNU regular expression compiler: it
/* re_compile_pattern is the GNU regular expression compiler: it
   compiles PATTERN (of length SIZE) and puts the result in BUFP.
   compiles PATTERN (of length SIZE) and puts the result in BUFP.
   Returns 0 if the pattern was valid, otherwise an error string.
   Returns 0 if the pattern was valid, otherwise an error string.
 
 
   Assumes the `allocated' (and perhaps `buffer') and `translate' fields
   Assumes the `allocated' (and perhaps `buffer') and `translate' fields
   are set in BUFP on entry.
   are set in BUFP on entry.
 
 
   We call regex_compile to do the actual compilation.  */
   We call regex_compile to do the actual compilation.  */
 
 
const char *
const char *
re_compile_pattern (pattern, length, bufp)
re_compile_pattern (pattern, length, bufp)
     const char *pattern;
     const char *pattern;
     size_t length;
     size_t length;
     struct re_pattern_buffer *bufp;
     struct re_pattern_buffer *bufp;
{
{
  reg_errcode_t ret;
  reg_errcode_t ret;
 
 
  /* GNU code is written to assume at least RE_NREGS registers will be set
  /* GNU code is written to assume at least RE_NREGS registers will be set
     (and at least one extra will be -1).  */
     (and at least one extra will be -1).  */
  bufp->regs_allocated = REGS_UNALLOCATED;
  bufp->regs_allocated = REGS_UNALLOCATED;
 
 
  /* And GNU code determines whether or not to get register information
  /* And GNU code determines whether or not to get register information
     by passing null for the REGS argument to re_match, etc., not by
     by passing null for the REGS argument to re_match, etc., not by
     setting no_sub.  */
     setting no_sub.  */
  bufp->no_sub = 0;
  bufp->no_sub = 0;
 
 
  /* Match anchors at newline.  */
  /* Match anchors at newline.  */
  bufp->newline_anchor = 1;
  bufp->newline_anchor = 1;
 
 
  ret = regex_compile (pattern, length, re_syntax_options, bufp);
  ret = regex_compile (pattern, length, re_syntax_options, bufp);
 
 
  if (!ret)
  if (!ret)
    return NULL;
    return NULL;
  return gettext (re_error_msgid[(int) ret]);
  return gettext (re_error_msgid[(int) ret]);
}
}
#ifdef _LIBC
#ifdef _LIBC
weak_alias (__re_compile_pattern, re_compile_pattern)
weak_alias (__re_compile_pattern, re_compile_pattern)
#endif
#endif


/* Entry points compatible with 4.2 BSD regex library.  We don't define
/* Entry points compatible with 4.2 BSD regex library.  We don't define
   them unless specifically requested.  */
   them unless specifically requested.  */
 
 
#if defined _REGEX_RE_COMP || defined _LIBC
#if defined _REGEX_RE_COMP || defined _LIBC
 
 
/* BSD has one and only one pattern buffer.  */
/* BSD has one and only one pattern buffer.  */
static struct re_pattern_buffer re_comp_buf;
static struct re_pattern_buffer re_comp_buf;
 
 
char *
char *
#ifdef _LIBC
#ifdef _LIBC
/* Make these definitions weak in libc, so POSIX programs can redefine
/* Make these definitions weak in libc, so POSIX programs can redefine
   these names if they don't use our functions, and still use
   these names if they don't use our functions, and still use
   regcomp/regexec below without link errors.  */
   regcomp/regexec below without link errors.  */
weak_function
weak_function
#endif
#endif
re_comp (s)
re_comp (s)
    const char *s;
    const char *s;
{
{
  reg_errcode_t ret;
  reg_errcode_t ret;
 
 
  if (!s)
  if (!s)
    {
    {
      if (!re_comp_buf.buffer)
      if (!re_comp_buf.buffer)
        return gettext ("No previous regular expression");
        return gettext ("No previous regular expression");
      return 0;
      return 0;
    }
    }
 
 
  if (!re_comp_buf.buffer)
  if (!re_comp_buf.buffer)
    {
    {
      re_comp_buf.buffer = (unsigned char *) malloc (200);
      re_comp_buf.buffer = (unsigned char *) malloc (200);
      if (re_comp_buf.buffer == NULL)
      if (re_comp_buf.buffer == NULL)
        return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
        return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
      re_comp_buf.allocated = 200;
      re_comp_buf.allocated = 200;
 
 
      re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
      re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
      if (re_comp_buf.fastmap == NULL)
      if (re_comp_buf.fastmap == NULL)
        return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
        return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
    }
    }
 
 
  /* Since `re_exec' always passes NULL for the `regs' argument, we
  /* Since `re_exec' always passes NULL for the `regs' argument, we
     don't need to initialize the pattern buffer fields which affect it.  */
     don't need to initialize the pattern buffer fields which affect it.  */
 
 
  /* Match anchors at newlines.  */
  /* Match anchors at newlines.  */
  re_comp_buf.newline_anchor = 1;
  re_comp_buf.newline_anchor = 1;
 
 
  ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
  ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
 
 
  if (!ret)
  if (!ret)
    return NULL;
    return NULL;
 
 
  /* Yes, we're discarding `const' here if !HAVE_LIBINTL.  */
  /* Yes, we're discarding `const' here if !HAVE_LIBINTL.  */
  return (char *) gettext (re_error_msgid[(int) ret]);
  return (char *) gettext (re_error_msgid[(int) ret]);
}
}
 
 
 
 
int
int
#ifdef _LIBC
#ifdef _LIBC
weak_function
weak_function
#endif
#endif
re_exec (s)
re_exec (s)
    const char *s;
    const char *s;
{
{
  const int len = strlen (s);
  const int len = strlen (s);
  return
  return
    0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
    0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
}
}
 
 
#endif /* _REGEX_RE_COMP */
#endif /* _REGEX_RE_COMP */


/* POSIX.2 functions.  Don't define these for Emacs.  */
/* POSIX.2 functions.  Don't define these for Emacs.  */
 
 
#ifndef emacs
#ifndef emacs
 
 
/* regcomp takes a regular expression as a string and compiles it.
/* regcomp takes a regular expression as a string and compiles it.
 
 
   PREG is a regex_t *.  We do not expect any fields to be initialized,
   PREG is a regex_t *.  We do not expect any fields to be initialized,
   since POSIX says we shouldn't.  Thus, we set
   since POSIX says we shouldn't.  Thus, we set
 
 
     `buffer' to the compiled pattern;
     `buffer' to the compiled pattern;
     `used' to the length of the compiled pattern;
     `used' to the length of the compiled pattern;
     `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
     `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
       REG_EXTENDED bit in CFLAGS is set; otherwise, to
       REG_EXTENDED bit in CFLAGS is set; otherwise, to
       RE_SYNTAX_POSIX_BASIC;
       RE_SYNTAX_POSIX_BASIC;
     `newline_anchor' to REG_NEWLINE being set in CFLAGS;
     `newline_anchor' to REG_NEWLINE being set in CFLAGS;
     `fastmap' and `fastmap_accurate' to zero;
     `fastmap' and `fastmap_accurate' to zero;
     `re_nsub' to the number of subexpressions in PATTERN.
     `re_nsub' to the number of subexpressions in PATTERN.
 
 
   PATTERN is the address of the pattern string.
   PATTERN is the address of the pattern string.
 
 
   CFLAGS is a series of bits which affect compilation.
   CFLAGS is a series of bits which affect compilation.
 
 
     If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
     If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
     use POSIX basic syntax.
     use POSIX basic syntax.
 
 
     If REG_NEWLINE is set, then . and [^...] don't match newline.
     If REG_NEWLINE is set, then . and [^...] don't match newline.
     Also, regexec will try a match beginning after every newline.
     Also, regexec will try a match beginning after every newline.
 
 
     If REG_ICASE is set, then we considers upper- and lowercase
     If REG_ICASE is set, then we considers upper- and lowercase
     versions of letters to be equivalent when matching.
     versions of letters to be equivalent when matching.
 
 
     If REG_NOSUB is set, then when PREG is passed to regexec, that
     If REG_NOSUB is set, then when PREG is passed to regexec, that
     routine will report only success or failure, and nothing about the
     routine will report only success or failure, and nothing about the
     registers.
     registers.
 
 
   It returns 0 if it succeeds, nonzero if it doesn't.  (See gnu-regex.h for
   It returns 0 if it succeeds, nonzero if it doesn't.  (See gnu-regex.h for
   the return codes and their meanings.)  */
   the return codes and their meanings.)  */
 
 
int
int
regcomp (preg, pattern, cflags)
regcomp (preg, pattern, cflags)
    regex_t *preg;
    regex_t *preg;
    const char *pattern;
    const char *pattern;
    int cflags;
    int cflags;
{
{
  reg_errcode_t ret;
  reg_errcode_t ret;
  reg_syntax_t syntax
  reg_syntax_t syntax
    = (cflags & REG_EXTENDED) ?
    = (cflags & REG_EXTENDED) ?
      RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
      RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
 
 
  /* regex_compile will allocate the space for the compiled pattern.  */
  /* regex_compile will allocate the space for the compiled pattern.  */
  preg->buffer = 0;
  preg->buffer = 0;
  preg->allocated = 0;
  preg->allocated = 0;
  preg->used = 0;
  preg->used = 0;
 
 
  /* Don't bother to use a fastmap when searching.  This simplifies the
  /* Don't bother to use a fastmap when searching.  This simplifies the
     REG_NEWLINE case: if we used a fastmap, we'd have to put all the
     REG_NEWLINE case: if we used a fastmap, we'd have to put all the
     characters after newlines into the fastmap.  This way, we just try
     characters after newlines into the fastmap.  This way, we just try
     every character.  */
     every character.  */
  preg->fastmap = 0;
  preg->fastmap = 0;
 
 
  if (cflags & REG_ICASE)
  if (cflags & REG_ICASE)
    {
    {
      unsigned i;
      unsigned i;
 
 
      preg->translate
      preg->translate
        = (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE
        = (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE
                                      * sizeof (*(RE_TRANSLATE_TYPE)0));
                                      * sizeof (*(RE_TRANSLATE_TYPE)0));
      if (preg->translate == NULL)
      if (preg->translate == NULL)
        return (int) REG_ESPACE;
        return (int) REG_ESPACE;
 
 
      /* Map uppercase characters to corresponding lowercase ones.  */
      /* Map uppercase characters to corresponding lowercase ones.  */
      for (i = 0; i < CHAR_SET_SIZE; i++)
      for (i = 0; i < CHAR_SET_SIZE; i++)
        preg->translate[i] = ISUPPER (i) ? tolower (i) : i;
        preg->translate[i] = ISUPPER (i) ? tolower (i) : i;
    }
    }
  else
  else
    preg->translate = NULL;
    preg->translate = NULL;
 
 
  /* If REG_NEWLINE is set, newlines are treated differently.  */
  /* If REG_NEWLINE is set, newlines are treated differently.  */
  if (cflags & REG_NEWLINE)
  if (cflags & REG_NEWLINE)
    { /* REG_NEWLINE implies neither . nor [^...] match newline.  */
    { /* REG_NEWLINE implies neither . nor [^...] match newline.  */
      syntax &= ~RE_DOT_NEWLINE;
      syntax &= ~RE_DOT_NEWLINE;
      syntax |= RE_HAT_LISTS_NOT_NEWLINE;
      syntax |= RE_HAT_LISTS_NOT_NEWLINE;
      /* It also changes the matching behavior.  */
      /* It also changes the matching behavior.  */
      preg->newline_anchor = 1;
      preg->newline_anchor = 1;
    }
    }
  else
  else
    preg->newline_anchor = 0;
    preg->newline_anchor = 0;
 
 
  preg->no_sub = !!(cflags & REG_NOSUB);
  preg->no_sub = !!(cflags & REG_NOSUB);
 
 
  /* POSIX says a null character in the pattern terminates it, so we
  /* POSIX says a null character in the pattern terminates it, so we
     can use strlen here in compiling the pattern.  */
     can use strlen here in compiling the pattern.  */
  ret = regex_compile (pattern, strlen (pattern), syntax, preg);
  ret = regex_compile (pattern, strlen (pattern), syntax, preg);
 
 
  /* POSIX doesn't distinguish between an unmatched open-group and an
  /* POSIX doesn't distinguish between an unmatched open-group and an
     unmatched close-group: both are REG_EPAREN.  */
     unmatched close-group: both are REG_EPAREN.  */
  if (ret == REG_ERPAREN) ret = REG_EPAREN;
  if (ret == REG_ERPAREN) ret = REG_EPAREN;
 
 
  return (int) ret;
  return (int) ret;
}
}
#ifdef _LIBC
#ifdef _LIBC
weak_alias (__regcomp, regcomp)
weak_alias (__regcomp, regcomp)
#endif
#endif
 
 
 
 
/* regexec searches for a given pattern, specified by PREG, in the
/* regexec searches for a given pattern, specified by PREG, in the
   string STRING.
   string STRING.
 
 
   If NMATCH is zero or REG_NOSUB was set in the cflags argument to
   If NMATCH is zero or REG_NOSUB was set in the cflags argument to
   `regcomp', we ignore PMATCH.  Otherwise, we assume PMATCH has at
   `regcomp', we ignore PMATCH.  Otherwise, we assume PMATCH has at
   least NMATCH elements, and we set them to the offsets of the
   least NMATCH elements, and we set them to the offsets of the
   corresponding matched substrings.
   corresponding matched substrings.
 
 
   EFLAGS specifies `execution flags' which affect matching: if
   EFLAGS specifies `execution flags' which affect matching: if
   REG_NOTBOL is set, then ^ does not match at the beginning of the
   REG_NOTBOL is set, then ^ does not match at the beginning of the
   string; if REG_NOTEOL is set, then $ does not match at the end.
   string; if REG_NOTEOL is set, then $ does not match at the end.
 
 
   We return 0 if we find a match and REG_NOMATCH if not.  */
   We return 0 if we find a match and REG_NOMATCH if not.  */
 
 
int
int
regexec (preg, string, nmatch, pmatch, eflags)
regexec (preg, string, nmatch, pmatch, eflags)
    const regex_t *preg;
    const regex_t *preg;
    const char *string;
    const char *string;
    size_t nmatch;
    size_t nmatch;
    regmatch_t pmatch[];
    regmatch_t pmatch[];
    int eflags;
    int eflags;
{
{
  int ret;
  int ret;
  struct re_registers regs;
  struct re_registers regs;
  regex_t private_preg;
  regex_t private_preg;
  int len = strlen (string);
  int len = strlen (string);
  boolean want_reg_info = !preg->no_sub && nmatch > 0;
  boolean want_reg_info = !preg->no_sub && nmatch > 0;
 
 
  private_preg = *preg;
  private_preg = *preg;
 
 
  private_preg.not_bol = !!(eflags & REG_NOTBOL);
  private_preg.not_bol = !!(eflags & REG_NOTBOL);
  private_preg.not_eol = !!(eflags & REG_NOTEOL);
  private_preg.not_eol = !!(eflags & REG_NOTEOL);
 
 
  /* The user has told us exactly how many registers to return
  /* The user has told us exactly how many registers to return
     information about, via `nmatch'.  We have to pass that on to the
     information about, via `nmatch'.  We have to pass that on to the
     matching routines.  */
     matching routines.  */
  private_preg.regs_allocated = REGS_FIXED;
  private_preg.regs_allocated = REGS_FIXED;
 
 
  if (want_reg_info)
  if (want_reg_info)
    {
    {
      regs.num_regs = nmatch;
      regs.num_regs = nmatch;
      regs.start = TALLOC (nmatch, regoff_t);
      regs.start = TALLOC (nmatch, regoff_t);
      regs.end = TALLOC (nmatch, regoff_t);
      regs.end = TALLOC (nmatch, regoff_t);
      if (regs.start == NULL || regs.end == NULL)
      if (regs.start == NULL || regs.end == NULL)
        return (int) REG_NOMATCH;
        return (int) REG_NOMATCH;
    }
    }
 
 
  /* Perform the searching operation.  */
  /* Perform the searching operation.  */
  ret = re_search (&private_preg, string, len,
  ret = re_search (&private_preg, string, len,
                   /* start: */ 0, /* range: */ len,
                   /* start: */ 0, /* range: */ len,
                   want_reg_info ? &regs : (struct re_registers *) 0);
                   want_reg_info ? &regs : (struct re_registers *) 0);
 
 
  /* Copy the register information to the POSIX structure.  */
  /* Copy the register information to the POSIX structure.  */
  if (want_reg_info)
  if (want_reg_info)
    {
    {
      if (ret >= 0)
      if (ret >= 0)
        {
        {
          unsigned r;
          unsigned r;
 
 
          for (r = 0; r < nmatch; r++)
          for (r = 0; r < nmatch; r++)
            {
            {
              pmatch[r].rm_so = regs.start[r];
              pmatch[r].rm_so = regs.start[r];
              pmatch[r].rm_eo = regs.end[r];
              pmatch[r].rm_eo = regs.end[r];
            }
            }
        }
        }
 
 
      /* If we needed the temporary register info, free the space now.  */
      /* If we needed the temporary register info, free the space now.  */
      free (regs.start);
      free (regs.start);
      free (regs.end);
      free (regs.end);
    }
    }
 
 
  /* We want zero return to mean success, unlike `re_search'.  */
  /* We want zero return to mean success, unlike `re_search'.  */
  return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
  return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
}
}
#ifdef _LIBC
#ifdef _LIBC
weak_alias (__regexec, regexec)
weak_alias (__regexec, regexec)
#endif
#endif
 
 
 
 
/* Returns a message corresponding to an error code, ERRCODE, returned
/* Returns a message corresponding to an error code, ERRCODE, returned
   from either regcomp or regexec.   We don't use PREG here.  */
   from either regcomp or regexec.   We don't use PREG here.  */
 
 
size_t
size_t
regerror (errcode, preg, errbuf, errbuf_size)
regerror (errcode, preg, errbuf, errbuf_size)
    int errcode;
    int errcode;
    const regex_t *preg;
    const regex_t *preg;
    char *errbuf;
    char *errbuf;
    size_t errbuf_size;
    size_t errbuf_size;
{
{
  const char *msg;
  const char *msg;
  size_t msg_size;
  size_t msg_size;
 
 
  if (errcode < 0
  if (errcode < 0
      || errcode >= (int) (sizeof (re_error_msgid)
      || errcode >= (int) (sizeof (re_error_msgid)
                           / sizeof (re_error_msgid[0])))
                           / sizeof (re_error_msgid[0])))
    /* Only error codes returned by the rest of the code should be passed
    /* Only error codes returned by the rest of the code should be passed
       to this routine.  If we are given anything else, or if other regex
       to this routine.  If we are given anything else, or if other regex
       code generates an invalid error code, then the program has a bug.
       code generates an invalid error code, then the program has a bug.
       Dump core so we can fix it.  */
       Dump core so we can fix it.  */
    abort ();
    abort ();
 
 
  msg = gettext (re_error_msgid[errcode]);
  msg = gettext (re_error_msgid[errcode]);
 
 
  msg_size = strlen (msg) + 1; /* Includes the null.  */
  msg_size = strlen (msg) + 1; /* Includes the null.  */
 
 
  if (errbuf_size != 0)
  if (errbuf_size != 0)
    {
    {
      if (msg_size > errbuf_size)
      if (msg_size > errbuf_size)
        {
        {
#if defined HAVE_MEMPCPY || defined _LIBC
#if defined HAVE_MEMPCPY || defined _LIBC
          *((char *) __mempcpy (errbuf, msg, errbuf_size - 1)) = '\0';
          *((char *) __mempcpy (errbuf, msg, errbuf_size - 1)) = '\0';
#else
#else
          memcpy (errbuf, msg, errbuf_size - 1);
          memcpy (errbuf, msg, errbuf_size - 1);
          errbuf[errbuf_size - 1] = 0;
          errbuf[errbuf_size - 1] = 0;
#endif
#endif
        }
        }
      else
      else
        memcpy (errbuf, msg, msg_size);
        memcpy (errbuf, msg, msg_size);
    }
    }
 
 
  return msg_size;
  return msg_size;
}
}
#ifdef _LIBC
#ifdef _LIBC
weak_alias (__regerror, regerror)
weak_alias (__regerror, regerror)
#endif
#endif
 
 
 
 
/* Free dynamically allocated space used by PREG.  */
/* Free dynamically allocated space used by PREG.  */
 
 
void
void
regfree (preg)
regfree (preg)
    regex_t *preg;
    regex_t *preg;
{
{
  if (preg->buffer != NULL)
  if (preg->buffer != NULL)
    free (preg->buffer);
    free (preg->buffer);
  preg->buffer = NULL;
  preg->buffer = NULL;
 
 
  preg->allocated = 0;
  preg->allocated = 0;
  preg->used = 0;
  preg->used = 0;
 
 
  if (preg->fastmap != NULL)
  if (preg->fastmap != NULL)
    free (preg->fastmap);
    free (preg->fastmap);
  preg->fastmap = NULL;
  preg->fastmap = NULL;
  preg->fastmap_accurate = 0;
  preg->fastmap_accurate = 0;
 
 
  if (preg->translate != NULL)
  if (preg->translate != NULL)
    free (preg->translate);
    free (preg->translate);
  preg->translate = NULL;
  preg->translate = NULL;
}
}
#ifdef _LIBC
#ifdef _LIBC
weak_alias (__regfree, regfree)
weak_alias (__regfree, regfree)
#endif
#endif
 
 
#endif /* not emacs  */
#endif /* not emacs  */
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.