OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [gdb-5.0/] [gdb/] [h8300-tdep.c] - Diff between revs 105 and 1765

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 105 Rev 1765
/* Target-machine dependent code for Hitachi H8/300, for GDB.
/* Target-machine dependent code for Hitachi H8/300, for GDB.
   Copyright (C) 1988, 1990, 1991 Free Software Foundation, Inc.
   Copyright (C) 1988, 1990, 1991 Free Software Foundation, Inc.
 
 
   This file is part of GDB.
   This file is part of GDB.
 
 
   This program is free software; you can redistribute it and/or modify
   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2 of the License, or
   the Free Software Foundation; either version 2 of the License, or
   (at your option) any later version.
   (at your option) any later version.
 
 
   This program is distributed in the hope that it will be useful,
   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.
   GNU General Public License for more details.
 
 
   You should have received a copy of the GNU General Public License
   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   along with this program; if not, write to the Free Software
   Foundation, Inc., 59 Temple Place - Suite 330,
   Foundation, Inc., 59 Temple Place - Suite 330,
   Boston, MA 02111-1307, USA.  */
   Boston, MA 02111-1307, USA.  */
 
 
/*
/*
   Contributed by Steve Chamberlain
   Contributed by Steve Chamberlain
   sac@cygnus.com
   sac@cygnus.com
 */
 */
 
 
#include "defs.h"
#include "defs.h"
#include "frame.h"
#include "frame.h"
#include "obstack.h"
#include "obstack.h"
#include "symtab.h"
#include "symtab.h"
#include "dis-asm.h"
#include "dis-asm.h"
#include "gdbcmd.h"
#include "gdbcmd.h"
#include "gdbtypes.h"
#include "gdbtypes.h"
#include "gdbcore.h"
#include "gdbcore.h"
#include "gdb_string.h"
#include "gdb_string.h"
#include "value.h"
#include "value.h"
 
 
extern int h8300hmode, h8300smode;
extern int h8300hmode, h8300smode;
 
 
#undef NUM_REGS
#undef NUM_REGS
#define NUM_REGS 11
#define NUM_REGS 11
 
 
#define UNSIGNED_SHORT(X) ((X) & 0xffff)
#define UNSIGNED_SHORT(X) ((X) & 0xffff)
 
 
#define IS_PUSH(x) ((x & 0xfff0)==0x6df0)
#define IS_PUSH(x) ((x & 0xfff0)==0x6df0)
#define IS_PUSH_FP(x) (x == 0x6df6)
#define IS_PUSH_FP(x) (x == 0x6df6)
#define IS_MOVE_FP(x) (x == 0x0d76 || x == 0x0ff6)
#define IS_MOVE_FP(x) (x == 0x0d76 || x == 0x0ff6)
#define IS_MOV_SP_FP(x) (x == 0x0d76 || x == 0x0ff6)
#define IS_MOV_SP_FP(x) (x == 0x0d76 || x == 0x0ff6)
#define IS_SUB2_SP(x) (x==0x1b87)
#define IS_SUB2_SP(x) (x==0x1b87)
#define IS_SUB4_SP(x) (x==0x1b97)
#define IS_SUB4_SP(x) (x==0x1b97)
#define IS_SUBL_SP(x) (x==0x7a37)
#define IS_SUBL_SP(x) (x==0x7a37)
#define IS_MOVK_R5(x) (x==0x7905)
#define IS_MOVK_R5(x) (x==0x7905)
#define IS_SUB_R5SP(x) (x==0x1957)
#define IS_SUB_R5SP(x) (x==0x1957)
 
 
 
 
/* The register names change depending on whether the h8300h processor
/* The register names change depending on whether the h8300h processor
   type is selected. */
   type is selected. */
 
 
static char *original_register_names[] = REGISTER_NAMES;
static char *original_register_names[] = REGISTER_NAMES;
 
 
static char *h8300h_register_names[] =
static char *h8300h_register_names[] =
{"er0", "er1", "er2", "er3", "er4", "er5", "er6",
{"er0", "er1", "er2", "er3", "er4", "er5", "er6",
 "sp", "ccr", "pc", "cycles", "tick", "inst"};
 "sp", "ccr", "pc", "cycles", "tick", "inst"};
 
 
char **h8300_register_names = original_register_names;
char **h8300_register_names = original_register_names;
 
 
 
 
/* Local function declarations.  */
/* Local function declarations.  */
 
 
static CORE_ADDR examine_prologue ();
static CORE_ADDR examine_prologue ();
static void set_machine_hook PARAMS ((char *filename));
static void set_machine_hook PARAMS ((char *filename));
 
 
void h8300_frame_find_saved_regs ();
void h8300_frame_find_saved_regs ();
 
 
CORE_ADDR
CORE_ADDR
h8300_skip_prologue (start_pc)
h8300_skip_prologue (start_pc)
     CORE_ADDR start_pc;
     CORE_ADDR start_pc;
{
{
  short int w;
  short int w;
  int adjust = 0;
  int adjust = 0;
 
 
  /* Skip past all push and stm insns.  */
  /* Skip past all push and stm insns.  */
  while (1)
  while (1)
    {
    {
      w = read_memory_unsigned_integer (start_pc, 2);
      w = read_memory_unsigned_integer (start_pc, 2);
      /* First look for push insns.  */
      /* First look for push insns.  */
      if (w == 0x0100 || w == 0x0110 || w == 0x0120 || w == 0x0130)
      if (w == 0x0100 || w == 0x0110 || w == 0x0120 || w == 0x0130)
        {
        {
          w = read_memory_unsigned_integer (start_pc + 2, 2);
          w = read_memory_unsigned_integer (start_pc + 2, 2);
          adjust = 2;
          adjust = 2;
        }
        }
 
 
      if (IS_PUSH (w))
      if (IS_PUSH (w))
        {
        {
          start_pc += 2 + adjust;
          start_pc += 2 + adjust;
          w = read_memory_unsigned_integer (start_pc, 2);
          w = read_memory_unsigned_integer (start_pc, 2);
          continue;
          continue;
        }
        }
      adjust = 0;
      adjust = 0;
      break;
      break;
    }
    }
 
 
  /* Skip past a move to FP, either word or long sized */
  /* Skip past a move to FP, either word or long sized */
  w = read_memory_unsigned_integer (start_pc, 2);
  w = read_memory_unsigned_integer (start_pc, 2);
  if (w == 0x0100)
  if (w == 0x0100)
    {
    {
      w = read_memory_unsigned_integer (start_pc + 2, 2);
      w = read_memory_unsigned_integer (start_pc + 2, 2);
      adjust += 2;
      adjust += 2;
    }
    }
 
 
  if (IS_MOVE_FP (w))
  if (IS_MOVE_FP (w))
    {
    {
      start_pc += 2 + adjust;
      start_pc += 2 + adjust;
      w = read_memory_unsigned_integer (start_pc, 2);
      w = read_memory_unsigned_integer (start_pc, 2);
    }
    }
 
 
  /* Check for loading either a word constant into r5;
  /* Check for loading either a word constant into r5;
     long versions are handled by the SUBL_SP below.  */
     long versions are handled by the SUBL_SP below.  */
  if (IS_MOVK_R5 (w))
  if (IS_MOVK_R5 (w))
    {
    {
      start_pc += 2;
      start_pc += 2;
      w = read_memory_unsigned_integer (start_pc, 2);
      w = read_memory_unsigned_integer (start_pc, 2);
    }
    }
 
 
  /* Now check for subtracting r5 from sp, word sized only.  */
  /* Now check for subtracting r5 from sp, word sized only.  */
  if (IS_SUB_R5SP (w))
  if (IS_SUB_R5SP (w))
    {
    {
      start_pc += 2 + adjust;
      start_pc += 2 + adjust;
      w = read_memory_unsigned_integer (start_pc, 2);
      w = read_memory_unsigned_integer (start_pc, 2);
    }
    }
 
 
  /* Check for subs #2 and subs #4. */
  /* Check for subs #2 and subs #4. */
  while (IS_SUB2_SP (w) || IS_SUB4_SP (w))
  while (IS_SUB2_SP (w) || IS_SUB4_SP (w))
    {
    {
      start_pc += 2 + adjust;
      start_pc += 2 + adjust;
      w = read_memory_unsigned_integer (start_pc, 2);
      w = read_memory_unsigned_integer (start_pc, 2);
    }
    }
 
 
  /* Check for a 32bit subtract.  */
  /* Check for a 32bit subtract.  */
  if (IS_SUBL_SP (w))
  if (IS_SUBL_SP (w))
    start_pc += 6 + adjust;
    start_pc += 6 + adjust;
 
 
  return start_pc;
  return start_pc;
}
}
 
 
int
int
gdb_print_insn_h8300 (memaddr, info)
gdb_print_insn_h8300 (memaddr, info)
     bfd_vma memaddr;
     bfd_vma memaddr;
     disassemble_info *info;
     disassemble_info *info;
{
{
  if (h8300smode)
  if (h8300smode)
    return print_insn_h8300s (memaddr, info);
    return print_insn_h8300s (memaddr, info);
  else if (h8300hmode)
  else if (h8300hmode)
    return print_insn_h8300h (memaddr, info);
    return print_insn_h8300h (memaddr, info);
  else
  else
    return print_insn_h8300 (memaddr, info);
    return print_insn_h8300 (memaddr, info);
}
}
 
 
/* Given a GDB frame, determine the address of the calling function's frame.
/* Given a GDB frame, determine the address of the calling function's frame.
   This will be used to create a new GDB frame struct, and then
   This will be used to create a new GDB frame struct, and then
   INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
   INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
 
 
   For us, the frame address is its stack pointer value, so we look up
   For us, the frame address is its stack pointer value, so we look up
   the function prologue to determine the caller's sp value, and return it.  */
   the function prologue to determine the caller's sp value, and return it.  */
 
 
CORE_ADDR
CORE_ADDR
h8300_frame_chain (thisframe)
h8300_frame_chain (thisframe)
     struct frame_info *thisframe;
     struct frame_info *thisframe;
{
{
  if (PC_IN_CALL_DUMMY (thisframe->pc, thisframe->frame, thisframe->frame))
  if (PC_IN_CALL_DUMMY (thisframe->pc, thisframe->frame, thisframe->frame))
    {                           /* initialize the from_pc now */
    {                           /* initialize the from_pc now */
      thisframe->from_pc = generic_read_register_dummy (thisframe->pc,
      thisframe->from_pc = generic_read_register_dummy (thisframe->pc,
                                                        thisframe->frame,
                                                        thisframe->frame,
                                                        PC_REGNUM);
                                                        PC_REGNUM);
      return thisframe->frame;
      return thisframe->frame;
    }
    }
  h8300_frame_find_saved_regs (thisframe, (struct frame_saved_regs *) 0);
  h8300_frame_find_saved_regs (thisframe, (struct frame_saved_regs *) 0);
  return thisframe->fsr->regs[SP_REGNUM];
  return thisframe->fsr->regs[SP_REGNUM];
}
}
 
 
/* Put here the code to store, into a struct frame_saved_regs,
/* Put here the code to store, into a struct frame_saved_regs,
   the addresses of the saved registers of frame described by FRAME_INFO.
   the addresses of the saved registers of frame described by FRAME_INFO.
   This includes special registers such as pc and fp saved in special
   This includes special registers such as pc and fp saved in special
   ways in the stack frame.  sp is even more special:
   ways in the stack frame.  sp is even more special:
   the address we return for it IS the sp for the next frame.
   the address we return for it IS the sp for the next frame.
 
 
   We cache the result of doing this in the frame_obstack, since it is
   We cache the result of doing this in the frame_obstack, since it is
   fairly expensive.  */
   fairly expensive.  */
 
 
void
void
h8300_frame_find_saved_regs (fi, fsr)
h8300_frame_find_saved_regs (fi, fsr)
     struct frame_info *fi;
     struct frame_info *fi;
     struct frame_saved_regs *fsr;
     struct frame_saved_regs *fsr;
{
{
  register struct frame_saved_regs *cache_fsr;
  register struct frame_saved_regs *cache_fsr;
  CORE_ADDR ip;
  CORE_ADDR ip;
  struct symtab_and_line sal;
  struct symtab_and_line sal;
  CORE_ADDR limit;
  CORE_ADDR limit;
 
 
  if (!fi->fsr)
  if (!fi->fsr)
    {
    {
      cache_fsr = (struct frame_saved_regs *)
      cache_fsr = (struct frame_saved_regs *)
        frame_obstack_alloc (sizeof (struct frame_saved_regs));
        frame_obstack_alloc (sizeof (struct frame_saved_regs));
      memset (cache_fsr, '\0', sizeof (struct frame_saved_regs));
      memset (cache_fsr, '\0', sizeof (struct frame_saved_regs));
 
 
      fi->fsr = cache_fsr;
      fi->fsr = cache_fsr;
 
 
      if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
      if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
        {                       /* no more to do. */
        {                       /* no more to do. */
          if (fsr)
          if (fsr)
            *fsr = *fi->fsr;
            *fsr = *fi->fsr;
          return;
          return;
        }
        }
      /* Find the start and end of the function prologue.  If the PC
      /* Find the start and end of the function prologue.  If the PC
         is in the function prologue, we only consider the part that
         is in the function prologue, we only consider the part that
         has executed already.  */
         has executed already.  */
 
 
      ip = get_pc_function_start (fi->pc);
      ip = get_pc_function_start (fi->pc);
      sal = find_pc_line (ip, 0);
      sal = find_pc_line (ip, 0);
      limit = (sal.end && sal.end < fi->pc) ? sal.end : fi->pc;
      limit = (sal.end && sal.end < fi->pc) ? sal.end : fi->pc;
 
 
      /* This will fill in fields in *fi as well as in cache_fsr.  */
      /* This will fill in fields in *fi as well as in cache_fsr.  */
      examine_prologue (ip, limit, fi->frame, cache_fsr, fi);
      examine_prologue (ip, limit, fi->frame, cache_fsr, fi);
    }
    }
 
 
  if (fsr)
  if (fsr)
    *fsr = *fi->fsr;
    *fsr = *fi->fsr;
}
}
 
 
/* Fetch the instruction at ADDR, returning 0 if ADDR is beyond LIM or
/* Fetch the instruction at ADDR, returning 0 if ADDR is beyond LIM or
   is not the address of a valid instruction, the address of the next
   is not the address of a valid instruction, the address of the next
   instruction beyond ADDR otherwise.  *PWORD1 receives the first word
   instruction beyond ADDR otherwise.  *PWORD1 receives the first word
   of the instruction. */
   of the instruction. */
 
 
CORE_ADDR
CORE_ADDR
NEXT_PROLOGUE_INSN (addr, lim, pword1)
NEXT_PROLOGUE_INSN (addr, lim, pword1)
     CORE_ADDR addr;
     CORE_ADDR addr;
     CORE_ADDR lim;
     CORE_ADDR lim;
     INSN_WORD *pword1;
     INSN_WORD *pword1;
{
{
  char buf[2];
  char buf[2];
  if (addr < lim + 8)
  if (addr < lim + 8)
    {
    {
      read_memory (addr, buf, 2);
      read_memory (addr, buf, 2);
      *pword1 = extract_signed_integer (buf, 2);
      *pword1 = extract_signed_integer (buf, 2);
 
 
      return addr + 2;
      return addr + 2;
    }
    }
  return 0;
  return 0;
}
}
 
 
/* Examine the prologue of a function.  `ip' points to the first instruction.
/* Examine the prologue of a function.  `ip' points to the first instruction.
   `limit' is the limit of the prologue (e.g. the addr of the first
   `limit' is the limit of the prologue (e.g. the addr of the first
   linenumber, or perhaps the program counter if we're stepping through).
   linenumber, or perhaps the program counter if we're stepping through).
   `frame_sp' is the stack pointer value in use in this frame.
   `frame_sp' is the stack pointer value in use in this frame.
   `fsr' is a pointer to a frame_saved_regs structure into which we put
   `fsr' is a pointer to a frame_saved_regs structure into which we put
   info about the registers saved by this frame.
   info about the registers saved by this frame.
   `fi' is a struct frame_info pointer; we fill in various fields in it
   `fi' is a struct frame_info pointer; we fill in various fields in it
   to reflect the offsets of the arg pointer and the locals pointer.  */
   to reflect the offsets of the arg pointer and the locals pointer.  */
 
 
static CORE_ADDR
static CORE_ADDR
examine_prologue (ip, limit, after_prolog_fp, fsr, fi)
examine_prologue (ip, limit, after_prolog_fp, fsr, fi)
     register CORE_ADDR ip;
     register CORE_ADDR ip;
     register CORE_ADDR limit;
     register CORE_ADDR limit;
     CORE_ADDR after_prolog_fp;
     CORE_ADDR after_prolog_fp;
     struct frame_saved_regs *fsr;
     struct frame_saved_regs *fsr;
     struct frame_info *fi;
     struct frame_info *fi;
{
{
  register CORE_ADDR next_ip;
  register CORE_ADDR next_ip;
  int r;
  int r;
  int have_fp = 0;
  int have_fp = 0;
  INSN_WORD insn_word;
  INSN_WORD insn_word;
  /* Number of things pushed onto stack, starts at 2/4, 'cause the
  /* Number of things pushed onto stack, starts at 2/4, 'cause the
     PC is already there */
     PC is already there */
  unsigned int reg_save_depth = h8300hmode ? 4 : 2;
  unsigned int reg_save_depth = h8300hmode ? 4 : 2;
 
 
  unsigned int auto_depth = 0;   /* Number of bytes of autos */
  unsigned int auto_depth = 0;   /* Number of bytes of autos */
 
 
  char in_frame[11];            /* One for each reg */
  char in_frame[11];            /* One for each reg */
 
 
  int adjust = 0;
  int adjust = 0;
 
 
  memset (in_frame, 1, 11);
  memset (in_frame, 1, 11);
  for (r = 0; r < 8; r++)
  for (r = 0; r < 8; r++)
    {
    {
      fsr->regs[r] = 0;
      fsr->regs[r] = 0;
    }
    }
  if (after_prolog_fp == 0)
  if (after_prolog_fp == 0)
    {
    {
      after_prolog_fp = read_register (SP_REGNUM);
      after_prolog_fp = read_register (SP_REGNUM);
    }
    }
 
 
  /* If the PC isn't valid, quit now.  */
  /* If the PC isn't valid, quit now.  */
  if (ip == 0 || ip & (h8300hmode ? ~0xffffff : ~0xffff))
  if (ip == 0 || ip & (h8300hmode ? ~0xffffff : ~0xffff))
    return 0;
    return 0;
 
 
  next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
  next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
 
 
  if (insn_word == 0x0100)
  if (insn_word == 0x0100)
    {
    {
      insn_word = read_memory_unsigned_integer (ip + 2, 2);
      insn_word = read_memory_unsigned_integer (ip + 2, 2);
      adjust = 2;
      adjust = 2;
    }
    }
 
 
  /* Skip over any fp push instructions */
  /* Skip over any fp push instructions */
  fsr->regs[6] = after_prolog_fp;
  fsr->regs[6] = after_prolog_fp;
  while (next_ip && IS_PUSH_FP (insn_word))
  while (next_ip && IS_PUSH_FP (insn_word))
    {
    {
      ip = next_ip + adjust;
      ip = next_ip + adjust;
 
 
      in_frame[insn_word & 0x7] = reg_save_depth;
      in_frame[insn_word & 0x7] = reg_save_depth;
      next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
      next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
      reg_save_depth += 2 + adjust;
      reg_save_depth += 2 + adjust;
    }
    }
 
 
  /* Is this a move into the fp */
  /* Is this a move into the fp */
  if (next_ip && IS_MOV_SP_FP (insn_word))
  if (next_ip && IS_MOV_SP_FP (insn_word))
    {
    {
      ip = next_ip;
      ip = next_ip;
      next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
      next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
      have_fp = 1;
      have_fp = 1;
    }
    }
 
 
  /* Skip over any stack adjustment, happens either with a number of
  /* Skip over any stack adjustment, happens either with a number of
     sub#2,sp or a mov #x,r5 sub r5,sp */
     sub#2,sp or a mov #x,r5 sub r5,sp */
 
 
  if (next_ip && (IS_SUB2_SP (insn_word) || IS_SUB4_SP (insn_word)))
  if (next_ip && (IS_SUB2_SP (insn_word) || IS_SUB4_SP (insn_word)))
    {
    {
      while (next_ip && (IS_SUB2_SP (insn_word) || IS_SUB4_SP (insn_word)))
      while (next_ip && (IS_SUB2_SP (insn_word) || IS_SUB4_SP (insn_word)))
        {
        {
          auto_depth += IS_SUB2_SP (insn_word) ? 2 : 4;
          auto_depth += IS_SUB2_SP (insn_word) ? 2 : 4;
          ip = next_ip;
          ip = next_ip;
          next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
          next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
        }
        }
    }
    }
  else
  else
    {
    {
      if (next_ip && IS_MOVK_R5 (insn_word))
      if (next_ip && IS_MOVK_R5 (insn_word))
        {
        {
          ip = next_ip;
          ip = next_ip;
          next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
          next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
          auto_depth += insn_word;
          auto_depth += insn_word;
 
 
          next_ip = NEXT_PROLOGUE_INSN (next_ip, limit, &insn_word);
          next_ip = NEXT_PROLOGUE_INSN (next_ip, limit, &insn_word);
          auto_depth += insn_word;
          auto_depth += insn_word;
        }
        }
      if (next_ip && IS_SUBL_SP (insn_word))
      if (next_ip && IS_SUBL_SP (insn_word))
        {
        {
          ip = next_ip;
          ip = next_ip;
          auto_depth += read_memory_unsigned_integer (ip, 4);
          auto_depth += read_memory_unsigned_integer (ip, 4);
          ip += 4;
          ip += 4;
 
 
          next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
          next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
        }
        }
    }
    }
 
 
  /* Now examine the push insns to determine where everything lives
  /* Now examine the push insns to determine where everything lives
     on the stack.  */
     on the stack.  */
  while (1)
  while (1)
    {
    {
      adjust = 0;
      adjust = 0;
      if (!next_ip)
      if (!next_ip)
        break;
        break;
 
 
      if (insn_word == 0x0100)
      if (insn_word == 0x0100)
        {
        {
          ip = next_ip;
          ip = next_ip;
          next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
          next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
          adjust = 2;
          adjust = 2;
        }
        }
 
 
      if (IS_PUSH (insn_word))
      if (IS_PUSH (insn_word))
        {
        {
          ip = next_ip;
          ip = next_ip;
          next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
          next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
          fsr->regs[r] = after_prolog_fp + auto_depth;
          fsr->regs[r] = after_prolog_fp + auto_depth;
          auto_depth += 2 + adjust;
          auto_depth += 2 + adjust;
          continue;
          continue;
        }
        }
 
 
      /* Now check for push multiple insns.  */
      /* Now check for push multiple insns.  */
      if (insn_word == 0x0110 || insn_word == 0x0120 || insn_word == 0x0130)
      if (insn_word == 0x0110 || insn_word == 0x0120 || insn_word == 0x0130)
        {
        {
          int count = ((insn_word >> 4) & 0xf) + 1;
          int count = ((insn_word >> 4) & 0xf) + 1;
          int start, i;
          int start, i;
 
 
          ip = next_ip;
          ip = next_ip;
          next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
          next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
          start = insn_word & 0x7;
          start = insn_word & 0x7;
 
 
          for (i = start; i <= start + count; i++)
          for (i = start; i <= start + count; i++)
            {
            {
              fsr->regs[i] = after_prolog_fp + auto_depth;
              fsr->regs[i] = after_prolog_fp + auto_depth;
              auto_depth += 4;
              auto_depth += 4;
            }
            }
        }
        }
      break;
      break;
    }
    }
 
 
  /* The args are always reffed based from the stack pointer */
  /* The args are always reffed based from the stack pointer */
  fi->args_pointer = after_prolog_fp;
  fi->args_pointer = after_prolog_fp;
  /* Locals are always reffed based from the fp */
  /* Locals are always reffed based from the fp */
  fi->locals_pointer = after_prolog_fp;
  fi->locals_pointer = after_prolog_fp;
  /* The PC is at a known place */
  /* The PC is at a known place */
  fi->from_pc = read_memory_unsigned_integer (after_prolog_fp + BINWORD, BINWORD);
  fi->from_pc = read_memory_unsigned_integer (after_prolog_fp + BINWORD, BINWORD);
 
 
  /* Rememeber any others too */
  /* Rememeber any others too */
  in_frame[PC_REGNUM] = 0;
  in_frame[PC_REGNUM] = 0;
 
 
  if (have_fp)
  if (have_fp)
    /* We keep the old FP in the SP spot */
    /* We keep the old FP in the SP spot */
    fsr->regs[SP_REGNUM] = read_memory_unsigned_integer (fsr->regs[6], BINWORD);
    fsr->regs[SP_REGNUM] = read_memory_unsigned_integer (fsr->regs[6], BINWORD);
  else
  else
    fsr->regs[SP_REGNUM] = after_prolog_fp + auto_depth;
    fsr->regs[SP_REGNUM] = after_prolog_fp + auto_depth;
 
 
  return (ip);
  return (ip);
}
}
 
 
void
void
h8300_init_extra_frame_info (fromleaf, fi)
h8300_init_extra_frame_info (fromleaf, fi)
     int fromleaf;
     int fromleaf;
     struct frame_info *fi;
     struct frame_info *fi;
{
{
  fi->fsr = 0;                   /* Not yet allocated */
  fi->fsr = 0;                   /* Not yet allocated */
  fi->args_pointer = 0;          /* Unknown */
  fi->args_pointer = 0;          /* Unknown */
  fi->locals_pointer = 0;        /* Unknown */
  fi->locals_pointer = 0;        /* Unknown */
  fi->from_pc = 0;
  fi->from_pc = 0;
  if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
  if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
    {                           /* anything special to do? */
    {                           /* anything special to do? */
      return;
      return;
    }
    }
}
}
 
 
/* Return the saved PC from this frame.
/* Return the saved PC from this frame.
 
 
   If the frame has a memory copy of SRP_REGNUM, use that.  If not,
   If the frame has a memory copy of SRP_REGNUM, use that.  If not,
   just use the register SRP_REGNUM itself.  */
   just use the register SRP_REGNUM itself.  */
 
 
CORE_ADDR
CORE_ADDR
h8300_frame_saved_pc (frame)
h8300_frame_saved_pc (frame)
     struct frame_info *frame;
     struct frame_info *frame;
{
{
  if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
  if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
    return generic_read_register_dummy (frame->pc, frame->frame, PC_REGNUM);
    return generic_read_register_dummy (frame->pc, frame->frame, PC_REGNUM);
  else
  else
    return frame->from_pc;
    return frame->from_pc;
}
}
 
 
CORE_ADDR
CORE_ADDR
frame_locals_address (fi)
frame_locals_address (fi)
     struct frame_info *fi;
     struct frame_info *fi;
{
{
  if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
  if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
    return (CORE_ADDR) 0;        /* Not sure what else to do... */
    return (CORE_ADDR) 0;        /* Not sure what else to do... */
  if (!fi->locals_pointer)
  if (!fi->locals_pointer)
    {
    {
      struct frame_saved_regs ignore;
      struct frame_saved_regs ignore;
 
 
      get_frame_saved_regs (fi, &ignore);
      get_frame_saved_regs (fi, &ignore);
 
 
    }
    }
  return fi->locals_pointer;
  return fi->locals_pointer;
}
}
 
 
/* Return the address of the argument block for the frame
/* Return the address of the argument block for the frame
   described by FI.  Returns 0 if the address is unknown.  */
   described by FI.  Returns 0 if the address is unknown.  */
 
 
CORE_ADDR
CORE_ADDR
frame_args_address (fi)
frame_args_address (fi)
     struct frame_info *fi;
     struct frame_info *fi;
{
{
  if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
  if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
    return (CORE_ADDR) 0;        /* Not sure what else to do... */
    return (CORE_ADDR) 0;        /* Not sure what else to do... */
  if (!fi->args_pointer)
  if (!fi->args_pointer)
    {
    {
      struct frame_saved_regs ignore;
      struct frame_saved_regs ignore;
 
 
      get_frame_saved_regs (fi, &ignore);
      get_frame_saved_regs (fi, &ignore);
 
 
    }
    }
 
 
  return fi->args_pointer;
  return fi->args_pointer;
}
}
 
 
/* Function: push_arguments
/* Function: push_arguments
   Setup the function arguments for calling a function in the inferior.
   Setup the function arguments for calling a function in the inferior.
 
 
   On the Hitachi H8/300 architecture, there are three registers (R0 to R2)
   On the Hitachi H8/300 architecture, there are three registers (R0 to R2)
   which are dedicated for passing function arguments.  Up to the first
   which are dedicated for passing function arguments.  Up to the first
   three arguments (depending on size) may go into these registers.
   three arguments (depending on size) may go into these registers.
   The rest go on the stack.
   The rest go on the stack.
 
 
   Arguments that are smaller than WORDSIZE bytes will still take up a
   Arguments that are smaller than WORDSIZE bytes will still take up a
   whole register or a whole WORDSIZE word on the stack, and will be
   whole register or a whole WORDSIZE word on the stack, and will be
   right-justified in the register or the stack word.  This includes
   right-justified in the register or the stack word.  This includes
   chars and small aggregate types.  Note that WORDSIZE depends on the
   chars and small aggregate types.  Note that WORDSIZE depends on the
   cpu type.
   cpu type.
 
 
   Arguments that are larger than WORDSIZE bytes will be split between
   Arguments that are larger than WORDSIZE bytes will be split between
   two or more registers as available, but will NOT be split between a
   two or more registers as available, but will NOT be split between a
   register and the stack.
   register and the stack.
 
 
   An exceptional case exists for struct arguments (and possibly other
   An exceptional case exists for struct arguments (and possibly other
   aggregates such as arrays) -- if the size is larger than WORDSIZE
   aggregates such as arrays) -- if the size is larger than WORDSIZE
   bytes but not a multiple of WORDSIZE bytes.  In this case the
   bytes but not a multiple of WORDSIZE bytes.  In this case the
   argument is never split between the registers and the stack, but
   argument is never split between the registers and the stack, but
   instead is copied in its entirety onto the stack, AND also copied
   instead is copied in its entirety onto the stack, AND also copied
   into as many registers as there is room for.  In other words, space
   into as many registers as there is room for.  In other words, space
   in registers permitting, two copies of the same argument are passed
   in registers permitting, two copies of the same argument are passed
   in.  As far as I can tell, only the one on the stack is used,
   in.  As far as I can tell, only the one on the stack is used,
   although that may be a function of the level of compiler
   although that may be a function of the level of compiler
   optimization.  I suspect this is a compiler bug.  Arguments of
   optimization.  I suspect this is a compiler bug.  Arguments of
   these odd sizes are left-justified within the word (as opposed to
   these odd sizes are left-justified within the word (as opposed to
   arguments smaller than WORDSIZE bytes, which are right-justified).
   arguments smaller than WORDSIZE bytes, which are right-justified).
 
 
   If the function is to return an aggregate type such as a struct,
   If the function is to return an aggregate type such as a struct,
   the caller must allocate space into which the callee will copy the
   the caller must allocate space into which the callee will copy the
   return value.  In this case, a pointer to the return value location
   return value.  In this case, a pointer to the return value location
   is passed into the callee in register R0, which displaces one of
   is passed into the callee in register R0, which displaces one of
   the other arguments passed in via registers R0 to R2.  */
   the other arguments passed in via registers R0 to R2.  */
 
 
CORE_ADDR
CORE_ADDR
h8300_push_arguments (nargs, args, sp, struct_return, struct_addr)
h8300_push_arguments (nargs, args, sp, struct_return, struct_addr)
     int nargs;
     int nargs;
     struct value **args;
     struct value **args;
     CORE_ADDR sp;
     CORE_ADDR sp;
     unsigned char struct_return;
     unsigned char struct_return;
     CORE_ADDR struct_addr;
     CORE_ADDR struct_addr;
{
{
  int stack_align, stack_alloc, stack_offset;
  int stack_align, stack_alloc, stack_offset;
  int wordsize;
  int wordsize;
  int argreg;
  int argreg;
  int argnum;
  int argnum;
  struct type *type;
  struct type *type;
  CORE_ADDR regval;
  CORE_ADDR regval;
  char *val;
  char *val;
  char valbuf[4];
  char valbuf[4];
  int len;
  int len;
 
 
  if (h8300hmode || h8300smode)
  if (h8300hmode || h8300smode)
    {
    {
      stack_align = 3;
      stack_align = 3;
      wordsize = 4;
      wordsize = 4;
    }
    }
  else
  else
    {
    {
      stack_align = 1;
      stack_align = 1;
      wordsize = 2;
      wordsize = 2;
    }
    }
 
 
  /* first force sp to a n-byte alignment */
  /* first force sp to a n-byte alignment */
  sp = sp & ~stack_align;
  sp = sp & ~stack_align;
 
 
  /* Now make sure there's space on the stack */
  /* Now make sure there's space on the stack */
  for (argnum = 0, stack_alloc = 0;
  for (argnum = 0, stack_alloc = 0;
       argnum < nargs; argnum++)
       argnum < nargs; argnum++)
    stack_alloc += ((TYPE_LENGTH (VALUE_TYPE (args[argnum])) + stack_align)
    stack_alloc += ((TYPE_LENGTH (VALUE_TYPE (args[argnum])) + stack_align)
                    & ~stack_align);
                    & ~stack_align);
  sp -= stack_alloc;            /* make room on stack for args */
  sp -= stack_alloc;            /* make room on stack for args */
  /* we may over-allocate a little here, but that won't hurt anything */
  /* we may over-allocate a little here, but that won't hurt anything */
 
 
  argreg = ARG0_REGNUM;
  argreg = ARG0_REGNUM;
  if (struct_return)            /* "struct return" pointer takes up one argreg */
  if (struct_return)            /* "struct return" pointer takes up one argreg */
    {
    {
      write_register (argreg++, struct_addr);
      write_register (argreg++, struct_addr);
    }
    }
 
 
  /* Now load as many as possible of the first arguments into
  /* Now load as many as possible of the first arguments into
     registers, and push the rest onto the stack.  There are 3N bytes
     registers, and push the rest onto the stack.  There are 3N bytes
     in three registers available.  Loop thru args from first to last.  */
     in three registers available.  Loop thru args from first to last.  */
 
 
  for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
  for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
    {
    {
      type = VALUE_TYPE (args[argnum]);
      type = VALUE_TYPE (args[argnum]);
      len = TYPE_LENGTH (type);
      len = TYPE_LENGTH (type);
      memset (valbuf, 0, sizeof (valbuf));
      memset (valbuf, 0, sizeof (valbuf));
      if (len < wordsize)
      if (len < wordsize)
        {
        {
          /* the purpose of this is to right-justify the value within the word */
          /* the purpose of this is to right-justify the value within the word */
          memcpy (valbuf + (wordsize - len),
          memcpy (valbuf + (wordsize - len),
                  (char *) VALUE_CONTENTS (args[argnum]), len);
                  (char *) VALUE_CONTENTS (args[argnum]), len);
          val = valbuf;
          val = valbuf;
        }
        }
      else
      else
        val = (char *) VALUE_CONTENTS (args[argnum]);
        val = (char *) VALUE_CONTENTS (args[argnum]);
 
 
      if (len > (ARGLAST_REGNUM + 1 - argreg) * REGISTER_RAW_SIZE (ARG0_REGNUM) ||
      if (len > (ARGLAST_REGNUM + 1 - argreg) * REGISTER_RAW_SIZE (ARG0_REGNUM) ||
          (len > wordsize && (len & stack_align) != 0))
          (len > wordsize && (len & stack_align) != 0))
        {                       /* passed on the stack */
        {                       /* passed on the stack */
          write_memory (sp + stack_offset, val,
          write_memory (sp + stack_offset, val,
                        len < wordsize ? wordsize : len);
                        len < wordsize ? wordsize : len);
          stack_offset += (len + stack_align) & ~stack_align;
          stack_offset += (len + stack_align) & ~stack_align;
        }
        }
      /* NOTE WELL!!!!!  This is not an "else if" clause!!!
      /* NOTE WELL!!!!!  This is not an "else if" clause!!!
         That's because some *&^%$ things get passed on the stack
         That's because some *&^%$ things get passed on the stack
         AND in the registers!   */
         AND in the registers!   */
      if (len <= (ARGLAST_REGNUM + 1 - argreg) * REGISTER_RAW_SIZE (ARG0_REGNUM))
      if (len <= (ARGLAST_REGNUM + 1 - argreg) * REGISTER_RAW_SIZE (ARG0_REGNUM))
        while (len > 0)
        while (len > 0)
          {                     /* there's room in registers */
          {                     /* there's room in registers */
            regval = extract_address (val, wordsize);
            regval = extract_address (val, wordsize);
            write_register (argreg, regval);
            write_register (argreg, regval);
            len -= wordsize;
            len -= wordsize;
            val += wordsize;
            val += wordsize;
            argreg++;
            argreg++;
          }
          }
    }
    }
  return sp;
  return sp;
}
}
 
 
/* Function: push_return_address
/* Function: push_return_address
   Setup the return address for a dummy frame, as called by
   Setup the return address for a dummy frame, as called by
   call_function_by_hand.  Only necessary when you are using an
   call_function_by_hand.  Only necessary when you are using an
   empty CALL_DUMMY, ie. the target will not actually be executing
   empty CALL_DUMMY, ie. the target will not actually be executing
   a JSR/BSR instruction.  */
   a JSR/BSR instruction.  */
 
 
CORE_ADDR
CORE_ADDR
h8300_push_return_address (pc, sp)
h8300_push_return_address (pc, sp)
     CORE_ADDR pc;
     CORE_ADDR pc;
     CORE_ADDR sp;
     CORE_ADDR sp;
{
{
  unsigned char buf[4];
  unsigned char buf[4];
  int wordsize;
  int wordsize;
 
 
  if (h8300hmode || h8300smode)
  if (h8300hmode || h8300smode)
    wordsize = 4;
    wordsize = 4;
  else
  else
    wordsize = 2;
    wordsize = 2;
 
 
  sp -= wordsize;
  sp -= wordsize;
  store_unsigned_integer (buf, wordsize, CALL_DUMMY_ADDRESS ());
  store_unsigned_integer (buf, wordsize, CALL_DUMMY_ADDRESS ());
  write_memory (sp, buf, wordsize);
  write_memory (sp, buf, wordsize);
  return sp;
  return sp;
}
}
 
 
/* Function: pop_frame
/* Function: pop_frame
   Restore the machine to the state it had before the current frame
   Restore the machine to the state it had before the current frame
   was created.  Usually used either by the "RETURN" command, or by
   was created.  Usually used either by the "RETURN" command, or by
   call_function_by_hand after the dummy_frame is finished. */
   call_function_by_hand after the dummy_frame is finished. */
 
 
void
void
h8300_pop_frame ()
h8300_pop_frame ()
{
{
  unsigned regnum;
  unsigned regnum;
  struct frame_saved_regs fsr;
  struct frame_saved_regs fsr;
  struct frame_info *frame = get_current_frame ();
  struct frame_info *frame = get_current_frame ();
 
 
  if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
  if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
    {
    {
      generic_pop_dummy_frame ();
      generic_pop_dummy_frame ();
    }
    }
  else
  else
    {
    {
      get_frame_saved_regs (frame, &fsr);
      get_frame_saved_regs (frame, &fsr);
 
 
      for (regnum = 0; regnum < 8; regnum++)
      for (regnum = 0; regnum < 8; regnum++)
        {
        {
          /* Don't forget SP_REGNUM is a frame_saved_regs struct is the
          /* Don't forget SP_REGNUM is a frame_saved_regs struct is the
             actual value we want, not the address of the value we want.  */
             actual value we want, not the address of the value we want.  */
          if (fsr.regs[regnum] && regnum != SP_REGNUM)
          if (fsr.regs[regnum] && regnum != SP_REGNUM)
            write_register (regnum,
            write_register (regnum,
                            read_memory_integer (fsr.regs[regnum], BINWORD));
                            read_memory_integer (fsr.regs[regnum], BINWORD));
          else if (fsr.regs[regnum] && regnum == SP_REGNUM)
          else if (fsr.regs[regnum] && regnum == SP_REGNUM)
            write_register (regnum, frame->frame + 2 * BINWORD);
            write_register (regnum, frame->frame + 2 * BINWORD);
        }
        }
 
 
      /* Don't forget the update the PC too!  */
      /* Don't forget the update the PC too!  */
      write_pc (frame->from_pc);
      write_pc (frame->from_pc);
    }
    }
  flush_cached_frames ();
  flush_cached_frames ();
}
}
 
 
/* Function: extract_return_value
/* Function: extract_return_value
   Figure out where in REGBUF the called function has left its return value.
   Figure out where in REGBUF the called function has left its return value.
   Copy that into VALBUF.  Be sure to account for CPU type.   */
   Copy that into VALBUF.  Be sure to account for CPU type.   */
 
 
void
void
h8300_extract_return_value (type, regbuf, valbuf)
h8300_extract_return_value (type, regbuf, valbuf)
     struct type *type;
     struct type *type;
     char *regbuf;
     char *regbuf;
     char *valbuf;
     char *valbuf;
{
{
  int wordsize, len;
  int wordsize, len;
 
 
  if (h8300smode || h8300hmode)
  if (h8300smode || h8300hmode)
    wordsize = 4;
    wordsize = 4;
  else
  else
    wordsize = 2;
    wordsize = 2;
 
 
  len = TYPE_LENGTH (type);
  len = TYPE_LENGTH (type);
 
 
  switch (len)
  switch (len)
    {
    {
    case 1:                     /* (char) */
    case 1:                     /* (char) */
    case 2:                     /* (short), (int) */
    case 2:                     /* (short), (int) */
      memcpy (valbuf, regbuf + REGISTER_BYTE (0) + (wordsize - len), len);
      memcpy (valbuf, regbuf + REGISTER_BYTE (0) + (wordsize - len), len);
      break;
      break;
    case 4:                     /* (long), (float) */
    case 4:                     /* (long), (float) */
      if (h8300smode || h8300hmode)
      if (h8300smode || h8300hmode)
        {
        {
          memcpy (valbuf, regbuf + REGISTER_BYTE (0), 4);
          memcpy (valbuf, regbuf + REGISTER_BYTE (0), 4);
        }
        }
      else
      else
        {
        {
          memcpy (valbuf, regbuf + REGISTER_BYTE (0), 2);
          memcpy (valbuf, regbuf + REGISTER_BYTE (0), 2);
          memcpy (valbuf + 2, regbuf + REGISTER_BYTE (1), 2);
          memcpy (valbuf + 2, regbuf + REGISTER_BYTE (1), 2);
        }
        }
      break;
      break;
    case 8:                     /* (double) (doesn't seem to happen, which is good,
    case 8:                     /* (double) (doesn't seem to happen, which is good,
                                   because this almost certainly isn't right.  */
                                   because this almost certainly isn't right.  */
      error ("I don't know how a double is returned.");
      error ("I don't know how a double is returned.");
      break;
      break;
    }
    }
}
}
 
 
/* Function: store_return_value
/* Function: store_return_value
   Place the appropriate value in the appropriate registers.
   Place the appropriate value in the appropriate registers.
   Primarily used by the RETURN command.  */
   Primarily used by the RETURN command.  */
 
 
void
void
h8300_store_return_value (type, valbuf)
h8300_store_return_value (type, valbuf)
     struct type *type;
     struct type *type;
     char *valbuf;
     char *valbuf;
{
{
  int wordsize, len, regval;
  int wordsize, len, regval;
 
 
  if (h8300hmode || h8300smode)
  if (h8300hmode || h8300smode)
    wordsize = 4;
    wordsize = 4;
  else
  else
    wordsize = 2;
    wordsize = 2;
 
 
  len = TYPE_LENGTH (type);
  len = TYPE_LENGTH (type);
  switch (len)
  switch (len)
    {
    {
    case 1:                     /* char */
    case 1:                     /* char */
    case 2:                     /* short, int */
    case 2:                     /* short, int */
      regval = extract_address (valbuf, len);
      regval = extract_address (valbuf, len);
      write_register (0, regval);
      write_register (0, regval);
      break;
      break;
    case 4:                     /* long, float */
    case 4:                     /* long, float */
      regval = extract_address (valbuf, len);
      regval = extract_address (valbuf, len);
      if (h8300smode || h8300hmode)
      if (h8300smode || h8300hmode)
        {
        {
          write_register (0, regval);
          write_register (0, regval);
        }
        }
      else
      else
        {
        {
          write_register (0, regval >> 16);
          write_register (0, regval >> 16);
          write_register (1, regval & 0xffff);
          write_register (1, regval & 0xffff);
        }
        }
      break;
      break;
    case 8:                     /* presumeably double, but doesn't seem to happen */
    case 8:                     /* presumeably double, but doesn't seem to happen */
      error ("I don't know how to return a double.");
      error ("I don't know how to return a double.");
      break;
      break;
    }
    }
}
}
 
 
struct cmd_list_element *setmemorylist;
struct cmd_list_element *setmemorylist;
 
 
static void
static void
set_register_names ()
set_register_names ()
{
{
  if (h8300hmode != 0)
  if (h8300hmode != 0)
    h8300_register_names = h8300h_register_names;
    h8300_register_names = h8300h_register_names;
  else
  else
    h8300_register_names = original_register_names;
    h8300_register_names = original_register_names;
}
}
 
 
static void
static void
h8300_command (args, from_tty)
h8300_command (args, from_tty)
{
{
  extern int h8300hmode;
  extern int h8300hmode;
  h8300hmode = 0;
  h8300hmode = 0;
  h8300smode = 0;
  h8300smode = 0;
  set_register_names ();
  set_register_names ();
}
}
 
 
static void
static void
h8300h_command (args, from_tty)
h8300h_command (args, from_tty)
{
{
  extern int h8300hmode;
  extern int h8300hmode;
  h8300hmode = 1;
  h8300hmode = 1;
  h8300smode = 0;
  h8300smode = 0;
  set_register_names ();
  set_register_names ();
}
}
 
 
static void
static void
h8300s_command (args, from_tty)
h8300s_command (args, from_tty)
{
{
  extern int h8300smode;
  extern int h8300smode;
  extern int h8300hmode;
  extern int h8300hmode;
  h8300smode = 1;
  h8300smode = 1;
  h8300hmode = 1;
  h8300hmode = 1;
  set_register_names ();
  set_register_names ();
}
}
 
 
 
 
static void
static void
set_machine (args, from_tty)
set_machine (args, from_tty)
     char *args;
     char *args;
     int from_tty;
     int from_tty;
{
{
  printf_unfiltered ("\"set machine\" must be followed by h8300, h8300h");
  printf_unfiltered ("\"set machine\" must be followed by h8300, h8300h");
  printf_unfiltered ("or h8300s");
  printf_unfiltered ("or h8300s");
  help_list (setmemorylist, "set memory ", -1, gdb_stdout);
  help_list (setmemorylist, "set memory ", -1, gdb_stdout);
}
}
 
 
/* set_machine_hook is called as the exec file is being opened, but
/* set_machine_hook is called as the exec file is being opened, but
   before the symbol file is opened.  This allows us to set the
   before the symbol file is opened.  This allows us to set the
   h8300hmode flag based on the machine type specified in the exec
   h8300hmode flag based on the machine type specified in the exec
   file.  This in turn will cause subsequently defined pointer types
   file.  This in turn will cause subsequently defined pointer types
   to be 16 or 32 bits as appropriate for the machine.  */
   to be 16 or 32 bits as appropriate for the machine.  */
 
 
static void
static void
set_machine_hook (filename)
set_machine_hook (filename)
     char *filename;
     char *filename;
{
{
  if (bfd_get_mach (exec_bfd) == bfd_mach_h8300s)
  if (bfd_get_mach (exec_bfd) == bfd_mach_h8300s)
    {
    {
      h8300smode = 1;
      h8300smode = 1;
      h8300hmode = 1;
      h8300hmode = 1;
    }
    }
  else if (bfd_get_mach (exec_bfd) == bfd_mach_h8300h)
  else if (bfd_get_mach (exec_bfd) == bfd_mach_h8300h)
    {
    {
      h8300smode = 0;
      h8300smode = 0;
      h8300hmode = 1;
      h8300hmode = 1;
    }
    }
  else
  else
    {
    {
      h8300smode = 0;
      h8300smode = 0;
      h8300hmode = 0;
      h8300hmode = 0;
    }
    }
  set_register_names ();
  set_register_names ();
}
}
 
 
void
void
_initialize_h8300m ()
_initialize_h8300m ()
{
{
  add_prefix_cmd ("machine", no_class, set_machine,
  add_prefix_cmd ("machine", no_class, set_machine,
                  "set the machine type",
                  "set the machine type",
                  &setmemorylist, "set machine ", 0,
                  &setmemorylist, "set machine ", 0,
                  &setlist);
                  &setlist);
 
 
  add_cmd ("h8300", class_support, h8300_command,
  add_cmd ("h8300", class_support, h8300_command,
           "Set machine to be H8/300.", &setmemorylist);
           "Set machine to be H8/300.", &setmemorylist);
 
 
  add_cmd ("h8300h", class_support, h8300h_command,
  add_cmd ("h8300h", class_support, h8300h_command,
           "Set machine to be H8/300H.", &setmemorylist);
           "Set machine to be H8/300H.", &setmemorylist);
 
 
  add_cmd ("h8300s", class_support, h8300s_command,
  add_cmd ("h8300s", class_support, h8300s_command,
           "Set machine to be H8/300S.", &setmemorylist);
           "Set machine to be H8/300S.", &setmemorylist);
 
 
  /* Add a hook to set the machine type when we're loading a file. */
  /* Add a hook to set the machine type when we're loading a file. */
 
 
  specify_exec_file_hook (set_machine_hook);
  specify_exec_file_hook (set_machine_hook);
}
}
 
 
 
 
 
 
void
void
print_register_hook (regno)
print_register_hook (regno)
{
{
  if (regno == 8)
  if (regno == 8)
    {
    {
      /* CCR register */
      /* CCR register */
      int C, Z, N, V;
      int C, Z, N, V;
      unsigned char b[4];
      unsigned char b[4];
      unsigned char l;
      unsigned char l;
      read_relative_register_raw_bytes (regno, b);
      read_relative_register_raw_bytes (regno, b);
      l = b[REGISTER_VIRTUAL_SIZE (8) - 1];
      l = b[REGISTER_VIRTUAL_SIZE (8) - 1];
      printf_unfiltered ("\t");
      printf_unfiltered ("\t");
      printf_unfiltered ("I-%d - ", (l & 0x80) != 0);
      printf_unfiltered ("I-%d - ", (l & 0x80) != 0);
      printf_unfiltered ("H-%d - ", (l & 0x20) != 0);
      printf_unfiltered ("H-%d - ", (l & 0x20) != 0);
      N = (l & 0x8) != 0;
      N = (l & 0x8) != 0;
      Z = (l & 0x4) != 0;
      Z = (l & 0x4) != 0;
      V = (l & 0x2) != 0;
      V = (l & 0x2) != 0;
      C = (l & 0x1) != 0;
      C = (l & 0x1) != 0;
      printf_unfiltered ("N-%d ", N);
      printf_unfiltered ("N-%d ", N);
      printf_unfiltered ("Z-%d ", Z);
      printf_unfiltered ("Z-%d ", Z);
      printf_unfiltered ("V-%d ", V);
      printf_unfiltered ("V-%d ", V);
      printf_unfiltered ("C-%d ", C);
      printf_unfiltered ("C-%d ", C);
      if ((C | Z) == 0)
      if ((C | Z) == 0)
        printf_unfiltered ("u> ");
        printf_unfiltered ("u> ");
      if ((C | Z) == 1)
      if ((C | Z) == 1)
        printf_unfiltered ("u<= ");
        printf_unfiltered ("u<= ");
      if ((C == 0))
      if ((C == 0))
        printf_unfiltered ("u>= ");
        printf_unfiltered ("u>= ");
      if (C == 1)
      if (C == 1)
        printf_unfiltered ("u< ");
        printf_unfiltered ("u< ");
      if (Z == 0)
      if (Z == 0)
        printf_unfiltered ("!= ");
        printf_unfiltered ("!= ");
      if (Z == 1)
      if (Z == 1)
        printf_unfiltered ("== ");
        printf_unfiltered ("== ");
      if ((N ^ V) == 0)
      if ((N ^ V) == 0)
        printf_unfiltered (">= ");
        printf_unfiltered (">= ");
      if ((N ^ V) == 1)
      if ((N ^ V) == 1)
        printf_unfiltered ("< ");
        printf_unfiltered ("< ");
      if ((Z | (N ^ V)) == 0)
      if ((Z | (N ^ V)) == 0)
        printf_unfiltered ("> ");
        printf_unfiltered ("> ");
      if ((Z | (N ^ V)) == 1)
      if ((Z | (N ^ V)) == 1)
        printf_unfiltered ("<= ");
        printf_unfiltered ("<= ");
    }
    }
}
}
 
 
void
void
_initialize_h8300_tdep ()
_initialize_h8300_tdep ()
{
{
  tm_print_insn = gdb_print_insn_h8300;
  tm_print_insn = gdb_print_insn_h8300;
}
}
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.