OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [gdb-5.0/] [gdb/] [i386-linux-nat.c] - Diff between revs 105 and 1765

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 105 Rev 1765
/* Native-dependent code for Linux running on i386's, for GDB.
/* Native-dependent code for Linux running on i386's, for GDB.
   Copyright (C) 1999, 2000 Free Software Foundation, Inc.
   Copyright (C) 1999, 2000 Free Software Foundation, Inc.
 
 
   This file is part of GDB.
   This file is part of GDB.
 
 
   This program is free software; you can redistribute it and/or modify
   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2 of the License, or
   the Free Software Foundation; either version 2 of the License, or
   (at your option) any later version.
   (at your option) any later version.
 
 
   This program is distributed in the hope that it will be useful,
   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.
   GNU General Public License for more details.
 
 
   You should have received a copy of the GNU General Public License
   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   along with this program; if not, write to the Free Software
   Foundation, Inc., 59 Temple Place - Suite 330,
   Foundation, Inc., 59 Temple Place - Suite 330,
   Boston, MA 02111-1307, USA.  */
   Boston, MA 02111-1307, USA.  */
 
 
#include "defs.h"
#include "defs.h"
#include "inferior.h"
#include "inferior.h"
#include "gdbcore.h"
#include "gdbcore.h"
 
 
/* For i386_linux_skip_solib_resolver.  */
/* For i386_linux_skip_solib_resolver.  */
#include "symtab.h"
#include "symtab.h"
#include "symfile.h"
#include "symfile.h"
#include "objfiles.h"
#include "objfiles.h"
 
 
#include <sys/ptrace.h>
#include <sys/ptrace.h>
#include <sys/user.h>
#include <sys/user.h>
#include <sys/procfs.h>
#include <sys/procfs.h>
 
 
#ifdef HAVE_SYS_REG_H
#ifdef HAVE_SYS_REG_H
#include <sys/reg.h>
#include <sys/reg.h>
#endif
#endif
 
 
/* On Linux, threads are implemented as pseudo-processes, in which
/* On Linux, threads are implemented as pseudo-processes, in which
   case we may be tracing more than one process at a time.  In that
   case we may be tracing more than one process at a time.  In that
   case, inferior_pid will contain the main process ID and the
   case, inferior_pid will contain the main process ID and the
   individual thread (process) ID mashed together.  These macros are
   individual thread (process) ID mashed together.  These macros are
   used to separate them out.  These definitions should be overridden
   used to separate them out.  These definitions should be overridden
   if thread support is included.  */
   if thread support is included.  */
 
 
#if !defined (PIDGET)   /* Default definition for PIDGET/TIDGET.  */
#if !defined (PIDGET)   /* Default definition for PIDGET/TIDGET.  */
#define PIDGET(PID)     PID
#define PIDGET(PID)     PID
#define TIDGET(PID)     0
#define TIDGET(PID)     0
#endif
#endif
 
 
 
 
/* The register sets used in Linux ELF core-dumps are identical to the
/* The register sets used in Linux ELF core-dumps are identical to the
   register sets in `struct user' that is used for a.out core-dumps,
   register sets in `struct user' that is used for a.out core-dumps,
   and is also used by `ptrace'.  The corresponding types are
   and is also used by `ptrace'.  The corresponding types are
   `elf_gregset_t' for the general-purpose registers (with
   `elf_gregset_t' for the general-purpose registers (with
   `elf_greg_t' the type of a single GP register) and `elf_fpregset_t'
   `elf_greg_t' the type of a single GP register) and `elf_fpregset_t'
   for the floating-point registers.
   for the floating-point registers.
 
 
   Those types used to be available under the names `gregset_t' and
   Those types used to be available under the names `gregset_t' and
   `fpregset_t' too, and this file used those names in the past.  But
   `fpregset_t' too, and this file used those names in the past.  But
   those names are now used for the register sets used in the
   those names are now used for the register sets used in the
   `mcontext_t' type, and have a different size and layout.  */
   `mcontext_t' type, and have a different size and layout.  */
 
 
/* Mapping between the general-purpose registers in `struct user'
/* Mapping between the general-purpose registers in `struct user'
   format and GDB's register array layout.  */
   format and GDB's register array layout.  */
static int regmap[] =
static int regmap[] =
{
{
  EAX, ECX, EDX, EBX,
  EAX, ECX, EDX, EBX,
  UESP, EBP, ESI, EDI,
  UESP, EBP, ESI, EDI,
  EIP, EFL, CS, SS,
  EIP, EFL, CS, SS,
  DS, ES, FS, GS
  DS, ES, FS, GS
};
};
 
 
/* Which ptrace request retrieves which registers?
/* Which ptrace request retrieves which registers?
   These apply to the corresponding SET requests as well.  */
   These apply to the corresponding SET requests as well.  */
#define GETREGS_SUPPLIES(regno) \
#define GETREGS_SUPPLIES(regno) \
  (0 <= (regno) && (regno) <= 15)
  (0 <= (regno) && (regno) <= 15)
#define GETFPREGS_SUPPLIES(regno) \
#define GETFPREGS_SUPPLIES(regno) \
  (FP0_REGNUM <= (regno) && (regno) <= LAST_FPU_CTRL_REGNUM)
  (FP0_REGNUM <= (regno) && (regno) <= LAST_FPU_CTRL_REGNUM)
#define GETXFPREGS_SUPPLIES(regno) \
#define GETXFPREGS_SUPPLIES(regno) \
  (FP0_REGNUM <= (regno) && (regno) <= MXCSR_REGNUM)
  (FP0_REGNUM <= (regno) && (regno) <= MXCSR_REGNUM)
 
 
/* Does the current host support the GETREGS request?  */
/* Does the current host support the GETREGS request?  */
int have_ptrace_getregs =
int have_ptrace_getregs =
#ifdef HAVE_PTRACE_GETREGS
#ifdef HAVE_PTRACE_GETREGS
  1
  1
#else
#else
  0
  0
#endif
#endif
;
;
 
 
/* Does the current host support the GETXFPREGS request?  The header
/* Does the current host support the GETXFPREGS request?  The header
   file may or may not define it, and even if it is defined, the
   file may or may not define it, and even if it is defined, the
   kernel will return EIO if it's running on a pre-SSE processor.
   kernel will return EIO if it's running on a pre-SSE processor.
 
 
   PTRACE_GETXFPREGS is a Cygnus invention, since we wrote our own
   PTRACE_GETXFPREGS is a Cygnus invention, since we wrote our own
   Linux kernel patch for SSE support.  That patch may or may not
   Linux kernel patch for SSE support.  That patch may or may not
   actually make it into the official distribution.  If you find that
   actually make it into the official distribution.  If you find that
   years have gone by since this stuff was added, and Linux isn't
   years have gone by since this stuff was added, and Linux isn't
   using PTRACE_GETXFPREGS, that means that our patch didn't make it,
   using PTRACE_GETXFPREGS, that means that our patch didn't make it,
   and you can delete this, and the related code.
   and you can delete this, and the related code.
 
 
   My instinct is to attach this to some architecture- or
   My instinct is to attach this to some architecture- or
   target-specific data structure, but really, a particular GDB
   target-specific data structure, but really, a particular GDB
   process can only run on top of one kernel at a time.  So it's okay
   process can only run on top of one kernel at a time.  So it's okay
   for this to be a simple variable.  */
   for this to be a simple variable.  */
int have_ptrace_getxfpregs =
int have_ptrace_getxfpregs =
#ifdef HAVE_PTRACE_GETXFPREGS
#ifdef HAVE_PTRACE_GETXFPREGS
  1
  1
#else
#else
  0
  0
#endif
#endif
;
;
 
 


/* Fetching registers directly from the U area, one at a time.  */
/* Fetching registers directly from the U area, one at a time.  */
 
 
/* FIXME: kettenis/2000-03-05: This duplicates code from `inptrace.c'.
/* FIXME: kettenis/2000-03-05: This duplicates code from `inptrace.c'.
   The problem is that we define FETCH_INFERIOR_REGISTERS since we
   The problem is that we define FETCH_INFERIOR_REGISTERS since we
   want to use our own versions of {fetch,store}_inferior_registers
   want to use our own versions of {fetch,store}_inferior_registers
   that use the GETREGS request.  This means that the code in
   that use the GETREGS request.  This means that the code in
   `infptrace.c' is #ifdef'd out.  But we need to fall back on that
   `infptrace.c' is #ifdef'd out.  But we need to fall back on that
   code when GDB is running on top of a kernel that doesn't support
   code when GDB is running on top of a kernel that doesn't support
   the GETREGS request.  I want to avoid changing `infptrace.c' right
   the GETREGS request.  I want to avoid changing `infptrace.c' right
   now.  */
   now.  */
 
 
#ifndef PT_READ_U
#ifndef PT_READ_U
#define PT_READ_U PTRACE_PEEKUSR
#define PT_READ_U PTRACE_PEEKUSR
#endif
#endif
#ifndef PT_WRITE_U
#ifndef PT_WRITE_U
#define PT_WRITE_U PTRACE_POKEUSR
#define PT_WRITE_U PTRACE_POKEUSR
#endif
#endif
 
 
/* Default the type of the ptrace transfer to int.  */
/* Default the type of the ptrace transfer to int.  */
#ifndef PTRACE_XFER_TYPE
#ifndef PTRACE_XFER_TYPE
#define PTRACE_XFER_TYPE int
#define PTRACE_XFER_TYPE int
#endif
#endif
 
 
/* Registers we shouldn't try to fetch.  */
/* Registers we shouldn't try to fetch.  */
#if !defined (CANNOT_FETCH_REGISTER)
#if !defined (CANNOT_FETCH_REGISTER)
#define CANNOT_FETCH_REGISTER(regno) 0
#define CANNOT_FETCH_REGISTER(regno) 0
#endif
#endif
 
 
/* Fetch one register.  */
/* Fetch one register.  */
 
 
static void
static void
fetch_register (regno)
fetch_register (regno)
     int regno;
     int regno;
{
{
  /* This isn't really an address.  But ptrace thinks of it as one.  */
  /* This isn't really an address.  But ptrace thinks of it as one.  */
  CORE_ADDR regaddr;
  CORE_ADDR regaddr;
  char mess[128];               /* For messages */
  char mess[128];               /* For messages */
  register int i;
  register int i;
  unsigned int offset;          /* Offset of registers within the u area.  */
  unsigned int offset;          /* Offset of registers within the u area.  */
  char buf[MAX_REGISTER_RAW_SIZE];
  char buf[MAX_REGISTER_RAW_SIZE];
  int tid;
  int tid;
 
 
  if (CANNOT_FETCH_REGISTER (regno))
  if (CANNOT_FETCH_REGISTER (regno))
    {
    {
      memset (buf, '\0', REGISTER_RAW_SIZE (regno));    /* Supply zeroes */
      memset (buf, '\0', REGISTER_RAW_SIZE (regno));    /* Supply zeroes */
      supply_register (regno, buf);
      supply_register (regno, buf);
      return;
      return;
    }
    }
 
 
  /* Overload thread id onto process id */
  /* Overload thread id onto process id */
  if ((tid = TIDGET (inferior_pid)) == 0)
  if ((tid = TIDGET (inferior_pid)) == 0)
    tid = inferior_pid;         /* no thread id, just use process id */
    tid = inferior_pid;         /* no thread id, just use process id */
 
 
  offset = U_REGS_OFFSET;
  offset = U_REGS_OFFSET;
 
 
  regaddr = register_addr (regno, offset);
  regaddr = register_addr (regno, offset);
  for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof (PTRACE_XFER_TYPE))
  for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof (PTRACE_XFER_TYPE))
    {
    {
      errno = 0;
      errno = 0;
      *(PTRACE_XFER_TYPE *) & buf[i] = ptrace (PT_READ_U, tid,
      *(PTRACE_XFER_TYPE *) & buf[i] = ptrace (PT_READ_U, tid,
                                               (PTRACE_ARG3_TYPE) regaddr, 0);
                                               (PTRACE_ARG3_TYPE) regaddr, 0);
      regaddr += sizeof (PTRACE_XFER_TYPE);
      regaddr += sizeof (PTRACE_XFER_TYPE);
      if (errno != 0)
      if (errno != 0)
        {
        {
          sprintf (mess, "reading register %s (#%d)",
          sprintf (mess, "reading register %s (#%d)",
                   REGISTER_NAME (regno), regno);
                   REGISTER_NAME (regno), regno);
          perror_with_name (mess);
          perror_with_name (mess);
        }
        }
    }
    }
  supply_register (regno, buf);
  supply_register (regno, buf);
}
}
 
 
/* Fetch register values from the inferior.
/* Fetch register values from the inferior.
   If REGNO is negative, do this for all registers.
   If REGNO is negative, do this for all registers.
   Otherwise, REGNO specifies which register (so we can save time). */
   Otherwise, REGNO specifies which register (so we can save time). */
 
 
void
void
old_fetch_inferior_registers (regno)
old_fetch_inferior_registers (regno)
     int regno;
     int regno;
{
{
  if (regno >= 0)
  if (regno >= 0)
    {
    {
      fetch_register (regno);
      fetch_register (regno);
    }
    }
  else
  else
    {
    {
      for (regno = 0; regno < ARCH_NUM_REGS; regno++)
      for (regno = 0; regno < ARCH_NUM_REGS; regno++)
        {
        {
          fetch_register (regno);
          fetch_register (regno);
        }
        }
    }
    }
}
}
 
 
/* Registers we shouldn't try to store.  */
/* Registers we shouldn't try to store.  */
#if !defined (CANNOT_STORE_REGISTER)
#if !defined (CANNOT_STORE_REGISTER)
#define CANNOT_STORE_REGISTER(regno) 0
#define CANNOT_STORE_REGISTER(regno) 0
#endif
#endif
 
 
/* Store one register. */
/* Store one register. */
 
 
static void
static void
store_register (regno)
store_register (regno)
     int regno;
     int regno;
{
{
  /* This isn't really an address.  But ptrace thinks of it as one.  */
  /* This isn't really an address.  But ptrace thinks of it as one.  */
  CORE_ADDR regaddr;
  CORE_ADDR regaddr;
  char mess[128];               /* For messages */
  char mess[128];               /* For messages */
  register int i;
  register int i;
  unsigned int offset;          /* Offset of registers within the u area.  */
  unsigned int offset;          /* Offset of registers within the u area.  */
  int tid;
  int tid;
 
 
  if (CANNOT_STORE_REGISTER (regno))
  if (CANNOT_STORE_REGISTER (regno))
    {
    {
      return;
      return;
    }
    }
 
 
  /* Overload thread id onto process id */
  /* Overload thread id onto process id */
  if ((tid = TIDGET (inferior_pid)) == 0)
  if ((tid = TIDGET (inferior_pid)) == 0)
    tid = inferior_pid;         /* no thread id, just use process id */
    tid = inferior_pid;         /* no thread id, just use process id */
 
 
  offset = U_REGS_OFFSET;
  offset = U_REGS_OFFSET;
 
 
  regaddr = register_addr (regno, offset);
  regaddr = register_addr (regno, offset);
  for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof (PTRACE_XFER_TYPE))
  for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof (PTRACE_XFER_TYPE))
    {
    {
      errno = 0;
      errno = 0;
      ptrace (PT_WRITE_U, tid, (PTRACE_ARG3_TYPE) regaddr,
      ptrace (PT_WRITE_U, tid, (PTRACE_ARG3_TYPE) regaddr,
              *(PTRACE_XFER_TYPE *) & registers[REGISTER_BYTE (regno) + i]);
              *(PTRACE_XFER_TYPE *) & registers[REGISTER_BYTE (regno) + i]);
      regaddr += sizeof (PTRACE_XFER_TYPE);
      regaddr += sizeof (PTRACE_XFER_TYPE);
      if (errno != 0)
      if (errno != 0)
        {
        {
          sprintf (mess, "writing register %s (#%d)",
          sprintf (mess, "writing register %s (#%d)",
                   REGISTER_NAME (regno), regno);
                   REGISTER_NAME (regno), regno);
          perror_with_name (mess);
          perror_with_name (mess);
        }
        }
    }
    }
}
}
 
 
/* Store our register values back into the inferior.
/* Store our register values back into the inferior.
   If REGNO is negative, do this for all registers.
   If REGNO is negative, do this for all registers.
   Otherwise, REGNO specifies which register (so we can save time).  */
   Otherwise, REGNO specifies which register (so we can save time).  */
 
 
void
void
old_store_inferior_registers (regno)
old_store_inferior_registers (regno)
     int regno;
     int regno;
{
{
  if (regno >= 0)
  if (regno >= 0)
    {
    {
      store_register (regno);
      store_register (regno);
    }
    }
  else
  else
    {
    {
      for (regno = 0; regno < ARCH_NUM_REGS; regno++)
      for (regno = 0; regno < ARCH_NUM_REGS; regno++)
        {
        {
          store_register (regno);
          store_register (regno);
        }
        }
    }
    }
}
}
 
 


/* Transfering the general-purpose registers between GDB, inferiors
/* Transfering the general-purpose registers between GDB, inferiors
   and core files.  */
   and core files.  */
 
 
/* Fill GDB's register array with the genereal-purpose register values
/* Fill GDB's register array with the genereal-purpose register values
   in *GREGSETP.  */
   in *GREGSETP.  */
 
 
void
void
supply_gregset (elf_gregset_t *gregsetp)
supply_gregset (elf_gregset_t *gregsetp)
{
{
  elf_greg_t *regp = (elf_greg_t *) gregsetp;
  elf_greg_t *regp = (elf_greg_t *) gregsetp;
  int regi;
  int regi;
 
 
  for (regi = 0; regi < NUM_GREGS; regi++)
  for (regi = 0; regi < NUM_GREGS; regi++)
    supply_register (regi, (char *) (regp + regmap[regi]));
    supply_register (regi, (char *) (regp + regmap[regi]));
}
}
 
 
/* Convert the valid general-purpose register values in GDB's register
/* Convert the valid general-purpose register values in GDB's register
   array to `struct user' format and store them in *GREGSETP.  The
   array to `struct user' format and store them in *GREGSETP.  The
   array VALID indicates which register values are valid.  If VALID is
   array VALID indicates which register values are valid.  If VALID is
   NULL, all registers are assumed to be valid.  */
   NULL, all registers are assumed to be valid.  */
 
 
static void
static void
convert_to_gregset (elf_gregset_t *gregsetp, signed char *valid)
convert_to_gregset (elf_gregset_t *gregsetp, signed char *valid)
{
{
  elf_greg_t *regp = (elf_greg_t *) gregsetp;
  elf_greg_t *regp = (elf_greg_t *) gregsetp;
  int regi;
  int regi;
 
 
  for (regi = 0; regi < NUM_GREGS; regi++)
  for (regi = 0; regi < NUM_GREGS; regi++)
    if (! valid || valid[regi])
    if (! valid || valid[regi])
      *(regp + regmap[regi]) = * (int *) &registers[REGISTER_BYTE (regi)];
      *(regp + regmap[regi]) = * (int *) &registers[REGISTER_BYTE (regi)];
}
}
 
 
/* Fill register REGNO (if it is a general-purpose register) in
/* Fill register REGNO (if it is a general-purpose register) in
   *GREGSETPS with the value in GDB's register array.  If REGNO is -1,
   *GREGSETPS with the value in GDB's register array.  If REGNO is -1,
   do this for all registers.  */
   do this for all registers.  */
void
void
fill_gregset (elf_gregset_t *gregsetp, int regno)
fill_gregset (elf_gregset_t *gregsetp, int regno)
{
{
  if (regno == -1)
  if (regno == -1)
    {
    {
      convert_to_gregset (gregsetp, NULL);
      convert_to_gregset (gregsetp, NULL);
      return;
      return;
    }
    }
 
 
  if (GETREGS_SUPPLIES (regno))
  if (GETREGS_SUPPLIES (regno))
    {
    {
      signed char valid[NUM_GREGS];
      signed char valid[NUM_GREGS];
 
 
      memset (valid, 0, sizeof (valid));
      memset (valid, 0, sizeof (valid));
      valid[regno] = 1;
      valid[regno] = 1;
 
 
      convert_to_gregset (gregsetp, valid);
      convert_to_gregset (gregsetp, valid);
    }
    }
}
}
 
 
#ifdef HAVE_PTRACE_GETREGS
#ifdef HAVE_PTRACE_GETREGS
 
 
/* Fetch all general-purpose registers from process/thread TID and
/* Fetch all general-purpose registers from process/thread TID and
   store their values in GDB's register array.  */
   store their values in GDB's register array.  */
 
 
static void
static void
fetch_regs (int tid)
fetch_regs (int tid)
{
{
  elf_gregset_t regs;
  elf_gregset_t regs;
  int ret;
  int ret;
 
 
  ret = ptrace (PTRACE_GETREGS, tid, 0, (int) &regs);
  ret = ptrace (PTRACE_GETREGS, tid, 0, (int) &regs);
  if (ret < 0)
  if (ret < 0)
    {
    {
      if (errno == EIO)
      if (errno == EIO)
        {
        {
          /* The kernel we're running on doesn't support the GETREGS
          /* The kernel we're running on doesn't support the GETREGS
             request.  Reset `have_ptrace_getregs'.  */
             request.  Reset `have_ptrace_getregs'.  */
          have_ptrace_getregs = 0;
          have_ptrace_getregs = 0;
          return;
          return;
        }
        }
 
 
      warning ("Couldn't get registers.");
      warning ("Couldn't get registers.");
      return;
      return;
    }
    }
 
 
  supply_gregset (&regs);
  supply_gregset (&regs);
}
}
 
 
/* Store all valid general-purpose registers in GDB's register array
/* Store all valid general-purpose registers in GDB's register array
   into the process/thread specified by TID.  */
   into the process/thread specified by TID.  */
 
 
static void
static void
store_regs (int tid)
store_regs (int tid)
{
{
  elf_gregset_t regs;
  elf_gregset_t regs;
  int ret;
  int ret;
 
 
  ret = ptrace (PTRACE_GETREGS, tid, 0, (int) &regs);
  ret = ptrace (PTRACE_GETREGS, tid, 0, (int) &regs);
  if (ret < 0)
  if (ret < 0)
    {
    {
      warning ("Couldn't get registers.");
      warning ("Couldn't get registers.");
      return;
      return;
    }
    }
 
 
  convert_to_gregset (&regs, register_valid);
  convert_to_gregset (&regs, register_valid);
 
 
  ret = ptrace (PTRACE_SETREGS, tid, 0, (int) &regs);
  ret = ptrace (PTRACE_SETREGS, tid, 0, (int) &regs);
  if (ret < 0)
  if (ret < 0)
    {
    {
      warning ("Couldn't write registers.");
      warning ("Couldn't write registers.");
      return;
      return;
    }
    }
}
}
 
 
#else
#else
 
 
static void fetch_regs (int tid) {}
static void fetch_regs (int tid) {}
static void store_regs (int tid) {}
static void store_regs (int tid) {}
 
 
#endif
#endif
 
 


/* Transfering floating-point registers between GDB, inferiors and cores.  */
/* Transfering floating-point registers between GDB, inferiors and cores.  */
 
 
/* What is the address of st(N) within the floating-point register set F?  */
/* What is the address of st(N) within the floating-point register set F?  */
#define FPREG_ADDR(f, n) ((char *) &(f)->st_space + (n) * 10)
#define FPREG_ADDR(f, n) ((char *) &(f)->st_space + (n) * 10)
 
 
/* Fill GDB's register array with the floating-point register values in
/* Fill GDB's register array with the floating-point register values in
   *FPREGSETP.  */
   *FPREGSETP.  */
 
 
void
void
supply_fpregset (elf_fpregset_t *fpregsetp)
supply_fpregset (elf_fpregset_t *fpregsetp)
{
{
  int reg;
  int reg;
  long l;
  long l;
 
 
  /* Supply the floating-point registers.  */
  /* Supply the floating-point registers.  */
  for (reg = 0; reg < 8; reg++)
  for (reg = 0; reg < 8; reg++)
    supply_register (FP0_REGNUM + reg, FPREG_ADDR (fpregsetp, reg));
    supply_register (FP0_REGNUM + reg, FPREG_ADDR (fpregsetp, reg));
 
 
  /* We have to mask off the reserved bits in *FPREGSETP before
  /* We have to mask off the reserved bits in *FPREGSETP before
     storing the values in GDB's register file.  */
     storing the values in GDB's register file.  */
#define supply(REGNO, MEMBER)                                           \
#define supply(REGNO, MEMBER)                                           \
  l = fpregsetp->MEMBER & 0xffff;                                       \
  l = fpregsetp->MEMBER & 0xffff;                                       \
  supply_register (REGNO, (char *) &l)
  supply_register (REGNO, (char *) &l)
 
 
  supply (FCTRL_REGNUM, cwd);
  supply (FCTRL_REGNUM, cwd);
  supply (FSTAT_REGNUM, swd);
  supply (FSTAT_REGNUM, swd);
  supply (FTAG_REGNUM, twd);
  supply (FTAG_REGNUM, twd);
  supply_register (FCOFF_REGNUM, (char *) &fpregsetp->fip);
  supply_register (FCOFF_REGNUM, (char *) &fpregsetp->fip);
  supply (FDS_REGNUM, fos);
  supply (FDS_REGNUM, fos);
  supply_register (FDOFF_REGNUM, (char *) &fpregsetp->foo);
  supply_register (FDOFF_REGNUM, (char *) &fpregsetp->foo);
 
 
#undef supply
#undef supply
 
 
  /* Extract the code segment and opcode from the  "fcs" member.  */
  /* Extract the code segment and opcode from the  "fcs" member.  */
  l = fpregsetp->fcs & 0xffff;
  l = fpregsetp->fcs & 0xffff;
  supply_register (FCS_REGNUM, (char *) &l);
  supply_register (FCS_REGNUM, (char *) &l);
 
 
  l = (fpregsetp->fcs >> 16) & ((1 << 11) - 1);
  l = (fpregsetp->fcs >> 16) & ((1 << 11) - 1);
  supply_register (FOP_REGNUM, (char *) &l);
  supply_register (FOP_REGNUM, (char *) &l);
}
}
 
 
/* Convert the valid floating-point register values in GDB's register
/* Convert the valid floating-point register values in GDB's register
   array to `struct user' format and store them in *FPREGSETP.  The
   array to `struct user' format and store them in *FPREGSETP.  The
   array VALID indicates which register values are valid.  If VALID is
   array VALID indicates which register values are valid.  If VALID is
   NULL, all registers are assumed to be valid.  */
   NULL, all registers are assumed to be valid.  */
 
 
static void
static void
convert_to_fpregset (elf_fpregset_t *fpregsetp, signed char *valid)
convert_to_fpregset (elf_fpregset_t *fpregsetp, signed char *valid)
{
{
  int reg;
  int reg;
 
 
  /* Fill in the floating-point registers.  */
  /* Fill in the floating-point registers.  */
  for (reg = 0; reg < 8; reg++)
  for (reg = 0; reg < 8; reg++)
    if (!valid || valid[reg])
    if (!valid || valid[reg])
      memcpy (FPREG_ADDR (fpregsetp, reg),
      memcpy (FPREG_ADDR (fpregsetp, reg),
              &registers[REGISTER_BYTE (FP0_REGNUM + reg)],
              &registers[REGISTER_BYTE (FP0_REGNUM + reg)],
              REGISTER_RAW_SIZE(FP0_REGNUM + reg));
              REGISTER_RAW_SIZE(FP0_REGNUM + reg));
 
 
  /* We're not supposed to touch the reserved bits in *FPREGSETP.  */
  /* We're not supposed to touch the reserved bits in *FPREGSETP.  */
 
 
#define fill(MEMBER, REGNO)                                             \
#define fill(MEMBER, REGNO)                                             \
  if (! valid || valid[(REGNO)])                                        \
  if (! valid || valid[(REGNO)])                                        \
    fpregsetp->MEMBER                                                   \
    fpregsetp->MEMBER                                                   \
      = ((fpregsetp->MEMBER & ~0xffff)                                  \
      = ((fpregsetp->MEMBER & ~0xffff)                                  \
         | (* (int *) &registers[REGISTER_BYTE (REGNO)] & 0xffff))
         | (* (int *) &registers[REGISTER_BYTE (REGNO)] & 0xffff))
 
 
#define fill_register(MEMBER, REGNO)                                    \
#define fill_register(MEMBER, REGNO)                                    \
  if (! valid || valid[(REGNO)])                                        \
  if (! valid || valid[(REGNO)])                                        \
    memcpy (&fpregsetp->MEMBER, &registers[REGISTER_BYTE (REGNO)],      \
    memcpy (&fpregsetp->MEMBER, &registers[REGISTER_BYTE (REGNO)],      \
            sizeof (fpregsetp->MEMBER))
            sizeof (fpregsetp->MEMBER))
 
 
  fill (cwd, FCTRL_REGNUM);
  fill (cwd, FCTRL_REGNUM);
  fill (swd, FSTAT_REGNUM);
  fill (swd, FSTAT_REGNUM);
  fill (twd, FTAG_REGNUM);
  fill (twd, FTAG_REGNUM);
  fill_register (fip, FCOFF_REGNUM);
  fill_register (fip, FCOFF_REGNUM);
  fill (foo, FDOFF_REGNUM);
  fill (foo, FDOFF_REGNUM);
  fill_register (fos, FDS_REGNUM);
  fill_register (fos, FDS_REGNUM);
 
 
#undef fill
#undef fill
#undef fill_register
#undef fill_register
 
 
  if (! valid || valid[FCS_REGNUM])
  if (! valid || valid[FCS_REGNUM])
    fpregsetp->fcs
    fpregsetp->fcs
      = ((fpregsetp->fcs & ~0xffff)
      = ((fpregsetp->fcs & ~0xffff)
         | (* (int *) &registers[REGISTER_BYTE (FCS_REGNUM)] & 0xffff));
         | (* (int *) &registers[REGISTER_BYTE (FCS_REGNUM)] & 0xffff));
 
 
  if (! valid || valid[FOP_REGNUM])
  if (! valid || valid[FOP_REGNUM])
    fpregsetp->fcs
    fpregsetp->fcs
      = ((fpregsetp->fcs & 0xffff)
      = ((fpregsetp->fcs & 0xffff)
         | ((*(int *) &registers[REGISTER_BYTE (FOP_REGNUM)] & ((1 << 11) - 1))
         | ((*(int *) &registers[REGISTER_BYTE (FOP_REGNUM)] & ((1 << 11) - 1))
            << 16));
            << 16));
}
}
 
 
/* Fill register REGNO (if it is a floating-point register) in
/* Fill register REGNO (if it is a floating-point register) in
   *FPREGSETP with the value in GDB's register array.  If REGNO is -1,
   *FPREGSETP with the value in GDB's register array.  If REGNO is -1,
   do this for all registers.  */
   do this for all registers.  */
 
 
void
void
fill_fpregset (elf_fpregset_t *fpregsetp, int regno)
fill_fpregset (elf_fpregset_t *fpregsetp, int regno)
{
{
  if (regno == -1)
  if (regno == -1)
    {
    {
      convert_to_fpregset (fpregsetp, NULL);
      convert_to_fpregset (fpregsetp, NULL);
      return;
      return;
    }
    }
 
 
  if (GETFPREGS_SUPPLIES(regno))
  if (GETFPREGS_SUPPLIES(regno))
    {
    {
      signed char valid[MAX_NUM_REGS];
      signed char valid[MAX_NUM_REGS];
 
 
      memset (valid, 0, sizeof (valid));
      memset (valid, 0, sizeof (valid));
      valid[regno] = 1;
      valid[regno] = 1;
 
 
      convert_to_fpregset (fpregsetp, valid);
      convert_to_fpregset (fpregsetp, valid);
    }
    }
}
}
 
 
#ifdef HAVE_PTRACE_GETREGS
#ifdef HAVE_PTRACE_GETREGS
 
 
/* Fetch all floating-point registers from process/thread TID and store
/* Fetch all floating-point registers from process/thread TID and store
   thier values in GDB's register array.  */
   thier values in GDB's register array.  */
 
 
static void
static void
fetch_fpregs (int tid)
fetch_fpregs (int tid)
{
{
  elf_fpregset_t fpregs;
  elf_fpregset_t fpregs;
  int ret;
  int ret;
 
 
  ret = ptrace (PTRACE_GETFPREGS, tid, 0, (int) &fpregs);
  ret = ptrace (PTRACE_GETFPREGS, tid, 0, (int) &fpregs);
  if (ret < 0)
  if (ret < 0)
    {
    {
      warning ("Couldn't get floating point status.");
      warning ("Couldn't get floating point status.");
      return;
      return;
    }
    }
 
 
  supply_fpregset (&fpregs);
  supply_fpregset (&fpregs);
}
}
 
 
/* Store all valid floating-point registers in GDB's register array
/* Store all valid floating-point registers in GDB's register array
   into the process/thread specified by TID.  */
   into the process/thread specified by TID.  */
 
 
static void
static void
store_fpregs (int tid)
store_fpregs (int tid)
{
{
  elf_fpregset_t fpregs;
  elf_fpregset_t fpregs;
  int ret;
  int ret;
 
 
  ret = ptrace (PTRACE_GETFPREGS, tid, 0, (int) &fpregs);
  ret = ptrace (PTRACE_GETFPREGS, tid, 0, (int) &fpregs);
  if (ret < 0)
  if (ret < 0)
    {
    {
      warning ("Couldn't get floating point status.");
      warning ("Couldn't get floating point status.");
      return;
      return;
    }
    }
 
 
  convert_to_fpregset (&fpregs, register_valid);
  convert_to_fpregset (&fpregs, register_valid);
 
 
  ret = ptrace (PTRACE_SETFPREGS, tid, 0, (int) &fpregs);
  ret = ptrace (PTRACE_SETFPREGS, tid, 0, (int) &fpregs);
  if (ret < 0)
  if (ret < 0)
    {
    {
      warning ("Couldn't write floating point status.");
      warning ("Couldn't write floating point status.");
      return;
      return;
    }
    }
}
}
 
 
#else
#else
 
 
static void fetch_fpregs (int tid) {}
static void fetch_fpregs (int tid) {}
static void store_fpregs (int tid) {}
static void store_fpregs (int tid) {}
 
 
#endif
#endif
 
 


/* Transfering floating-point and SSE registers to and from GDB.  */
/* Transfering floating-point and SSE registers to and from GDB.  */
 
 
/* PTRACE_GETXFPREGS is a Cygnus invention, since we wrote our own
/* PTRACE_GETXFPREGS is a Cygnus invention, since we wrote our own
   Linux kernel patch for SSE support.  That patch may or may not
   Linux kernel patch for SSE support.  That patch may or may not
   actually make it into the official distribution.  If you find that
   actually make it into the official distribution.  If you find that
   years have gone by since this code was added, and Linux isn't using
   years have gone by since this code was added, and Linux isn't using
   PTRACE_GETXFPREGS, that means that our patch didn't make it, and
   PTRACE_GETXFPREGS, that means that our patch didn't make it, and
   you can delete this code.  */
   you can delete this code.  */
 
 
#ifdef HAVE_PTRACE_GETXFPREGS
#ifdef HAVE_PTRACE_GETXFPREGS
 
 
/* Fill GDB's register array with the floating-point and SSE register
/* Fill GDB's register array with the floating-point and SSE register
   values in *XFPREGS.  */
   values in *XFPREGS.  */
 
 
static void
static void
supply_xfpregset (struct user_xfpregs_struct *xfpregs)
supply_xfpregset (struct user_xfpregs_struct *xfpregs)
{
{
  int reg;
  int reg;
 
 
  /* Supply the floating-point registers.  */
  /* Supply the floating-point registers.  */
  for (reg = 0; reg < 8; reg++)
  for (reg = 0; reg < 8; reg++)
    supply_register (FP0_REGNUM + reg, (char *) &xfpregs->st_space[reg]);
    supply_register (FP0_REGNUM + reg, (char *) &xfpregs->st_space[reg]);
 
 
  {
  {
    supply_register (FCTRL_REGNUM, (char *) &xfpregs->cwd);
    supply_register (FCTRL_REGNUM, (char *) &xfpregs->cwd);
    supply_register (FSTAT_REGNUM, (char *) &xfpregs->swd);
    supply_register (FSTAT_REGNUM, (char *) &xfpregs->swd);
    supply_register (FTAG_REGNUM,  (char *) &xfpregs->twd);
    supply_register (FTAG_REGNUM,  (char *) &xfpregs->twd);
    supply_register (FCOFF_REGNUM, (char *) &xfpregs->fip);
    supply_register (FCOFF_REGNUM, (char *) &xfpregs->fip);
    supply_register (FDS_REGNUM,   (char *) &xfpregs->fos);
    supply_register (FDS_REGNUM,   (char *) &xfpregs->fos);
    supply_register (FDOFF_REGNUM, (char *) &xfpregs->foo);
    supply_register (FDOFF_REGNUM, (char *) &xfpregs->foo);
 
 
    /* Extract the code segment and opcode from the  "fcs" member.  */
    /* Extract the code segment and opcode from the  "fcs" member.  */
    {
    {
      long l;
      long l;
 
 
      l = xfpregs->fcs & 0xffff;
      l = xfpregs->fcs & 0xffff;
      supply_register (FCS_REGNUM, (char *) &l);
      supply_register (FCS_REGNUM, (char *) &l);
 
 
      l = (xfpregs->fcs >> 16) & ((1 << 11) - 1);
      l = (xfpregs->fcs >> 16) & ((1 << 11) - 1);
      supply_register (FOP_REGNUM, (char *) &l);
      supply_register (FOP_REGNUM, (char *) &l);
    }
    }
  }
  }
 
 
  /* Supply the SSE registers.  */
  /* Supply the SSE registers.  */
  for (reg = 0; reg < 8; reg++)
  for (reg = 0; reg < 8; reg++)
    supply_register (XMM0_REGNUM + reg, (char *) &xfpregs->xmm_space[reg]);
    supply_register (XMM0_REGNUM + reg, (char *) &xfpregs->xmm_space[reg]);
  supply_register (MXCSR_REGNUM, (char *) &xfpregs->mxcsr);
  supply_register (MXCSR_REGNUM, (char *) &xfpregs->mxcsr);
}
}
 
 
/* Convert the valid floating-point and SSE registers in GDB's
/* Convert the valid floating-point and SSE registers in GDB's
   register array to `struct user' format and store them in *XFPREGS.
   register array to `struct user' format and store them in *XFPREGS.
   The array VALID indicates which registers are valid.  If VALID is
   The array VALID indicates which registers are valid.  If VALID is
   NULL, all registers are assumed to be valid.  */
   NULL, all registers are assumed to be valid.  */
 
 
static void
static void
convert_to_xfpregset (struct user_xfpregs_struct *xfpregs,
convert_to_xfpregset (struct user_xfpregs_struct *xfpregs,
                      signed char *valid)
                      signed char *valid)
{
{
  int reg;
  int reg;
 
 
  /* Fill in the floating-point registers.  */
  /* Fill in the floating-point registers.  */
  for (reg = 0; reg < 8; reg++)
  for (reg = 0; reg < 8; reg++)
    if (!valid || valid[reg])
    if (!valid || valid[reg])
      memcpy (&xfpregs->st_space[reg],
      memcpy (&xfpregs->st_space[reg],
              &registers[REGISTER_BYTE (FP0_REGNUM + reg)],
              &registers[REGISTER_BYTE (FP0_REGNUM + reg)],
              REGISTER_RAW_SIZE(FP0_REGNUM + reg));
              REGISTER_RAW_SIZE(FP0_REGNUM + reg));
 
 
#define fill(MEMBER, REGNO)                                             \
#define fill(MEMBER, REGNO)                                             \
  if (! valid || valid[(REGNO)])                                        \
  if (! valid || valid[(REGNO)])                                        \
    memcpy (&xfpregs->MEMBER, &registers[REGISTER_BYTE (REGNO)],        \
    memcpy (&xfpregs->MEMBER, &registers[REGISTER_BYTE (REGNO)],        \
            sizeof (xfpregs->MEMBER))
            sizeof (xfpregs->MEMBER))
 
 
  fill (cwd, FCTRL_REGNUM);
  fill (cwd, FCTRL_REGNUM);
  fill (swd, FSTAT_REGNUM);
  fill (swd, FSTAT_REGNUM);
  fill (twd, FTAG_REGNUM);
  fill (twd, FTAG_REGNUM);
  fill (fip, FCOFF_REGNUM);
  fill (fip, FCOFF_REGNUM);
  fill (foo, FDOFF_REGNUM);
  fill (foo, FDOFF_REGNUM);
  fill (fos, FDS_REGNUM);
  fill (fos, FDS_REGNUM);
 
 
#undef fill
#undef fill
 
 
  if (! valid || valid[FCS_REGNUM])
  if (! valid || valid[FCS_REGNUM])
    xfpregs->fcs
    xfpregs->fcs
      = ((xfpregs->fcs & ~0xffff)
      = ((xfpregs->fcs & ~0xffff)
         | (* (int *) &registers[REGISTER_BYTE (FCS_REGNUM)] & 0xffff));
         | (* (int *) &registers[REGISTER_BYTE (FCS_REGNUM)] & 0xffff));
 
 
  if (! valid || valid[FOP_REGNUM])
  if (! valid || valid[FOP_REGNUM])
    xfpregs->fcs
    xfpregs->fcs
      = ((xfpregs->fcs & 0xffff)
      = ((xfpregs->fcs & 0xffff)
         | ((*(int *) &registers[REGISTER_BYTE (FOP_REGNUM)] & ((1 << 11) - 1))
         | ((*(int *) &registers[REGISTER_BYTE (FOP_REGNUM)] & ((1 << 11) - 1))
            << 16));
            << 16));
 
 
  /* Fill in the XMM registers.  */
  /* Fill in the XMM registers.  */
  for (reg = 0; reg < 8; reg++)
  for (reg = 0; reg < 8; reg++)
    if (! valid || valid[reg])
    if (! valid || valid[reg])
      memcpy (&xfpregs->xmm_space[reg],
      memcpy (&xfpregs->xmm_space[reg],
              &registers[REGISTER_BYTE (XMM0_REGNUM + reg)],
              &registers[REGISTER_BYTE (XMM0_REGNUM + reg)],
              REGISTER_RAW_SIZE (XMM0_REGNUM + reg));
              REGISTER_RAW_SIZE (XMM0_REGNUM + reg));
}
}
 
 
/* Fetch all registers covered by the PTRACE_SETXFPREGS request from
/* Fetch all registers covered by the PTRACE_SETXFPREGS request from
   process/thread TID and store their values in GDB's register array.
   process/thread TID and store their values in GDB's register array.
   Return non-zero if successful, zero otherwise.  */
   Return non-zero if successful, zero otherwise.  */
 
 
static int
static int
fetch_xfpregs (int tid)
fetch_xfpregs (int tid)
{
{
  struct user_xfpregs_struct xfpregs;
  struct user_xfpregs_struct xfpregs;
  int ret;
  int ret;
 
 
  if (! have_ptrace_getxfpregs)
  if (! have_ptrace_getxfpregs)
    return 0;
    return 0;
 
 
  ret = ptrace (PTRACE_GETXFPREGS, tid, 0, &xfpregs);
  ret = ptrace (PTRACE_GETXFPREGS, tid, 0, &xfpregs);
  if (ret == -1)
  if (ret == -1)
    {
    {
      if (errno == EIO)
      if (errno == EIO)
        {
        {
          have_ptrace_getxfpregs = 0;
          have_ptrace_getxfpregs = 0;
          return 0;
          return 0;
        }
        }
 
 
      warning ("Couldn't read floating-point and SSE registers.");
      warning ("Couldn't read floating-point and SSE registers.");
      return 0;
      return 0;
    }
    }
 
 
  supply_xfpregset (&xfpregs);
  supply_xfpregset (&xfpregs);
  return 1;
  return 1;
}
}
 
 
/* Store all valid registers in GDB's register array covered by the
/* Store all valid registers in GDB's register array covered by the
   PTRACE_SETXFPREGS request into the process/thread specified by TID.
   PTRACE_SETXFPREGS request into the process/thread specified by TID.
   Return non-zero if successful, zero otherwise.  */
   Return non-zero if successful, zero otherwise.  */
 
 
static int
static int
store_xfpregs (int tid)
store_xfpregs (int tid)
{
{
  struct user_xfpregs_struct xfpregs;
  struct user_xfpregs_struct xfpregs;
  int ret;
  int ret;
 
 
  if (! have_ptrace_getxfpregs)
  if (! have_ptrace_getxfpregs)
    return 0;
    return 0;
 
 
  ret = ptrace (PTRACE_GETXFPREGS, tid, 0, &xfpregs);
  ret = ptrace (PTRACE_GETXFPREGS, tid, 0, &xfpregs);
  if (ret == -1)
  if (ret == -1)
    {
    {
      if (errno == EIO)
      if (errno == EIO)
        {
        {
          have_ptrace_getxfpregs = 0;
          have_ptrace_getxfpregs = 0;
          return 0;
          return 0;
        }
        }
 
 
      warning ("Couldn't read floating-point and SSE registers.");
      warning ("Couldn't read floating-point and SSE registers.");
      return 0;
      return 0;
    }
    }
 
 
  convert_to_xfpregset (&xfpregs, register_valid);
  convert_to_xfpregset (&xfpregs, register_valid);
 
 
  if (ptrace (PTRACE_SETXFPREGS, tid, 0, &xfpregs) < 0)
  if (ptrace (PTRACE_SETXFPREGS, tid, 0, &xfpregs) < 0)
    {
    {
      warning ("Couldn't write floating-point and SSE registers.");
      warning ("Couldn't write floating-point and SSE registers.");
      return 0;
      return 0;
    }
    }
 
 
  return 1;
  return 1;
}
}
 
 
/* Fill the XMM registers in the register array with dummy values.  For
/* Fill the XMM registers in the register array with dummy values.  For
   cases where we don't have access to the XMM registers.  I think
   cases where we don't have access to the XMM registers.  I think
   this is cleaner than printing a warning.  For a cleaner solution,
   this is cleaner than printing a warning.  For a cleaner solution,
   we should gdbarchify the i386 family.  */
   we should gdbarchify the i386 family.  */
 
 
static void
static void
dummy_sse_values (void)
dummy_sse_values (void)
{
{
  /* C doesn't have a syntax for NaN's, so write it out as an array of
  /* C doesn't have a syntax for NaN's, so write it out as an array of
     longs.  */
     longs.  */
  static long dummy[4] = { 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff };
  static long dummy[4] = { 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff };
  static long mxcsr = 0x1f80;
  static long mxcsr = 0x1f80;
  int reg;
  int reg;
 
 
  for (reg = 0; reg < 8; reg++)
  for (reg = 0; reg < 8; reg++)
    supply_register (XMM0_REGNUM + reg, (char *) dummy);
    supply_register (XMM0_REGNUM + reg, (char *) dummy);
  supply_register (MXCSR_REGNUM, (char *) &mxcsr);
  supply_register (MXCSR_REGNUM, (char *) &mxcsr);
}
}
 
 
#else
#else
 
 
/* Stub versions of the above routines, for systems that don't have
/* Stub versions of the above routines, for systems that don't have
   PTRACE_GETXFPREGS.  */
   PTRACE_GETXFPREGS.  */
static int store_xfpregs (int tid) { return 0; }
static int store_xfpregs (int tid) { return 0; }
static int fetch_xfpregs (int tid) { return 0; }
static int fetch_xfpregs (int tid) { return 0; }
static void dummy_sse_values (void) {}
static void dummy_sse_values (void) {}
 
 
#endif
#endif
 
 


/* Transferring arbitrary registers between GDB and inferior.  */
/* Transferring arbitrary registers between GDB and inferior.  */
 
 
/* Fetch register REGNO from the child process.  If REGNO is -1, do
/* Fetch register REGNO from the child process.  If REGNO is -1, do
   this for all registers (including the floating point and SSE
   this for all registers (including the floating point and SSE
   registers).  */
   registers).  */
 
 
void
void
fetch_inferior_registers (int regno)
fetch_inferior_registers (int regno)
{
{
  int tid;
  int tid;
 
 
  /* Use the old method of peeking around in `struct user' if the
  /* Use the old method of peeking around in `struct user' if the
     GETREGS request isn't available.  */
     GETREGS request isn't available.  */
  if (! have_ptrace_getregs)
  if (! have_ptrace_getregs)
    {
    {
      old_fetch_inferior_registers (regno);
      old_fetch_inferior_registers (regno);
      return;
      return;
    }
    }
 
 
  /* Linux LWP ID's are process ID's.  */
  /* Linux LWP ID's are process ID's.  */
  if ((tid = TIDGET (inferior_pid)) == 0)
  if ((tid = TIDGET (inferior_pid)) == 0)
    tid = inferior_pid;         /* Not a threaded program.  */
    tid = inferior_pid;         /* Not a threaded program.  */
 
 
  /* Use the PTRACE_GETXFPREGS request whenever possible, since it
  /* Use the PTRACE_GETXFPREGS request whenever possible, since it
     transfers more registers in one system call, and we'll cache the
     transfers more registers in one system call, and we'll cache the
     results.  But remember that fetch_xfpregs can fail, and return
     results.  But remember that fetch_xfpregs can fail, and return
     zero.  */
     zero.  */
  if (regno == -1)
  if (regno == -1)
    {
    {
      fetch_regs (tid);
      fetch_regs (tid);
 
 
      /* The call above might reset `have_ptrace_getregs'.  */
      /* The call above might reset `have_ptrace_getregs'.  */
      if (! have_ptrace_getregs)
      if (! have_ptrace_getregs)
        {
        {
          old_fetch_inferior_registers (-1);
          old_fetch_inferior_registers (-1);
          return;
          return;
        }
        }
 
 
      if (fetch_xfpregs (tid))
      if (fetch_xfpregs (tid))
        return;
        return;
      fetch_fpregs (tid);
      fetch_fpregs (tid);
      return;
      return;
    }
    }
 
 
  if (GETREGS_SUPPLIES (regno))
  if (GETREGS_SUPPLIES (regno))
    {
    {
      fetch_regs (tid);
      fetch_regs (tid);
      return;
      return;
    }
    }
 
 
  if (GETXFPREGS_SUPPLIES (regno))
  if (GETXFPREGS_SUPPLIES (regno))
    {
    {
      if (fetch_xfpregs (tid))
      if (fetch_xfpregs (tid))
        return;
        return;
 
 
      /* Either our processor or our kernel doesn't support the SSE
      /* Either our processor or our kernel doesn't support the SSE
         registers, so read the FP registers in the traditional way,
         registers, so read the FP registers in the traditional way,
         and fill the SSE registers with dummy values.  It would be
         and fill the SSE registers with dummy values.  It would be
         more graceful to handle differences in the register set using
         more graceful to handle differences in the register set using
         gdbarch.  Until then, this will at least make things work
         gdbarch.  Until then, this will at least make things work
         plausibly.  */
         plausibly.  */
      fetch_fpregs (tid);
      fetch_fpregs (tid);
      dummy_sse_values ();
      dummy_sse_values ();
      return;
      return;
    }
    }
 
 
  internal_error ("i386-linux-nat.c (fetch_inferior_registers): "
  internal_error ("i386-linux-nat.c (fetch_inferior_registers): "
                  "got request for bad register number %d", regno);
                  "got request for bad register number %d", regno);
}
}
 
 
/* Store register REGNO back into the child process.  If REGNO is -1,
/* Store register REGNO back into the child process.  If REGNO is -1,
   do this for all registers (including the floating point and SSE
   do this for all registers (including the floating point and SSE
   registers).  */
   registers).  */
void
void
store_inferior_registers (int regno)
store_inferior_registers (int regno)
{
{
  int tid;
  int tid;
 
 
  /* Use the old method of poking around in `struct user' if the
  /* Use the old method of poking around in `struct user' if the
     SETREGS request isn't available.  */
     SETREGS request isn't available.  */
  if (! have_ptrace_getregs)
  if (! have_ptrace_getregs)
    {
    {
      old_store_inferior_registers (regno);
      old_store_inferior_registers (regno);
      return;
      return;
    }
    }
 
 
  /* Linux LWP ID's are process ID's.  */
  /* Linux LWP ID's are process ID's.  */
  if ((tid = TIDGET (inferior_pid)) == 0)
  if ((tid = TIDGET (inferior_pid)) == 0)
    tid = inferior_pid;         /* Not a threaded program.  */
    tid = inferior_pid;         /* Not a threaded program.  */
 
 
  /* Use the PTRACE_SETXFPREGS requests whenever possibl, since it
  /* Use the PTRACE_SETXFPREGS requests whenever possibl, since it
     transfers more registers in one system call.  But remember that
     transfers more registers in one system call.  But remember that
     store_xfpregs can fail, and return zero.  */
     store_xfpregs can fail, and return zero.  */
  if (regno == -1)
  if (regno == -1)
    {
    {
      store_regs (tid);
      store_regs (tid);
      if (store_xfpregs (tid))
      if (store_xfpregs (tid))
        return;
        return;
      store_fpregs (tid);
      store_fpregs (tid);
      return;
      return;
    }
    }
 
 
  if (GETREGS_SUPPLIES (regno))
  if (GETREGS_SUPPLIES (regno))
    {
    {
      store_regs (tid);
      store_regs (tid);
      return;
      return;
    }
    }
 
 
  if (GETXFPREGS_SUPPLIES (regno))
  if (GETXFPREGS_SUPPLIES (regno))
    {
    {
      if (store_xfpregs (tid))
      if (store_xfpregs (tid))
        return;
        return;
 
 
      /* Either our processor or our kernel doesn't support the SSE
      /* Either our processor or our kernel doesn't support the SSE
         registers, so just write the FP registers in the traditional
         registers, so just write the FP registers in the traditional
         way.  */
         way.  */
      store_fpregs (tid);
      store_fpregs (tid);
      return;
      return;
    }
    }
 
 
  internal_error ("Got request to store bad register number %d.", regno);
  internal_error ("Got request to store bad register number %d.", regno);
}
}
 
 


/* Interpreting register set info found in core files.  */
/* Interpreting register set info found in core files.  */
 
 
/* Provide registers to GDB from a core file.
/* Provide registers to GDB from a core file.
 
 
   (We can't use the generic version of this function in
   (We can't use the generic version of this function in
   core-regset.c, because Linux has *three* different kinds of
   core-regset.c, because Linux has *three* different kinds of
   register set notes.  core-regset.c would have to call
   register set notes.  core-regset.c would have to call
   supply_xfpregset, which most platforms don't have.)
   supply_xfpregset, which most platforms don't have.)
 
 
   CORE_REG_SECT points to an array of bytes, which are the contents
   CORE_REG_SECT points to an array of bytes, which are the contents
   of a `note' from a core file which BFD thinks might contain
   of a `note' from a core file which BFD thinks might contain
   register contents.  CORE_REG_SIZE is its size.
   register contents.  CORE_REG_SIZE is its size.
 
 
   WHICH says which register set corelow suspects this is:
   WHICH says which register set corelow suspects this is:
     0 --- the general-purpose register set, in elf_gregset_t format
     0 --- the general-purpose register set, in elf_gregset_t format
     2 --- the floating-point register set, in elf_fpregset_t format
     2 --- the floating-point register set, in elf_fpregset_t format
     3 --- the extended floating-point register set, in struct
     3 --- the extended floating-point register set, in struct
           user_xfpregs_struct format
           user_xfpregs_struct format
 
 
   REG_ADDR isn't used on Linux.  */
   REG_ADDR isn't used on Linux.  */
 
 
static void
static void
fetch_core_registers (char *core_reg_sect, unsigned core_reg_size,
fetch_core_registers (char *core_reg_sect, unsigned core_reg_size,
                      int which, CORE_ADDR reg_addr)
                      int which, CORE_ADDR reg_addr)
{
{
  elf_gregset_t gregset;
  elf_gregset_t gregset;
  elf_fpregset_t fpregset;
  elf_fpregset_t fpregset;
 
 
  switch (which)
  switch (which)
    {
    {
    case 0:
    case 0:
      if (core_reg_size != sizeof (gregset))
      if (core_reg_size != sizeof (gregset))
        warning ("Wrong size gregset in core file.");
        warning ("Wrong size gregset in core file.");
      else
      else
        {
        {
          memcpy (&gregset, core_reg_sect, sizeof (gregset));
          memcpy (&gregset, core_reg_sect, sizeof (gregset));
          supply_gregset (&gregset);
          supply_gregset (&gregset);
        }
        }
      break;
      break;
 
 
    case 2:
    case 2:
      if (core_reg_size != sizeof (fpregset))
      if (core_reg_size != sizeof (fpregset))
        warning ("Wrong size fpregset in core file.");
        warning ("Wrong size fpregset in core file.");
      else
      else
        {
        {
          memcpy (&fpregset, core_reg_sect, sizeof (fpregset));
          memcpy (&fpregset, core_reg_sect, sizeof (fpregset));
          supply_fpregset (&fpregset);
          supply_fpregset (&fpregset);
        }
        }
      break;
      break;
 
 
#ifdef HAVE_PTRACE_GETXFPREGS
#ifdef HAVE_PTRACE_GETXFPREGS
      {
      {
        struct user_xfpregs_struct xfpregset;
        struct user_xfpregs_struct xfpregset;
 
 
      case 3:
      case 3:
        if (core_reg_size != sizeof (xfpregset))
        if (core_reg_size != sizeof (xfpregset))
          warning ("Wrong size user_xfpregs_struct in core file.");
          warning ("Wrong size user_xfpregs_struct in core file.");
        else
        else
          {
          {
            memcpy (&xfpregset, core_reg_sect, sizeof (xfpregset));
            memcpy (&xfpregset, core_reg_sect, sizeof (xfpregset));
            supply_xfpregset (&xfpregset);
            supply_xfpregset (&xfpregset);
          }
          }
        break;
        break;
      }
      }
#endif
#endif
 
 
    default:
    default:
      /* We've covered all the kinds of registers we know about here,
      /* We've covered all the kinds of registers we know about here,
         so this must be something we wouldn't know what to do with
         so this must be something we wouldn't know what to do with
         anyway.  Just ignore it.  */
         anyway.  Just ignore it.  */
      break;
      break;
    }
    }
}
}
 
 


/* Calling functions in shared libraries.  */
/* Calling functions in shared libraries.  */
/* FIXME: kettenis/2000-03-05: Doesn't this belong in a
/* FIXME: kettenis/2000-03-05: Doesn't this belong in a
   target-dependent file?  The function
   target-dependent file?  The function
   `i386_linux_skip_solib_resolver' is mentioned in
   `i386_linux_skip_solib_resolver' is mentioned in
   `config/i386/tm-linux.h'.  */
   `config/i386/tm-linux.h'.  */
 
 
/* Find the minimal symbol named NAME, and return both the minsym
/* Find the minimal symbol named NAME, and return both the minsym
   struct and its objfile.  This probably ought to be in minsym.c, but
   struct and its objfile.  This probably ought to be in minsym.c, but
   everything there is trying to deal with things like C++ and
   everything there is trying to deal with things like C++ and
   SOFUN_ADDRESS_MAYBE_TURQUOISE, ...  Since this is so simple, it may
   SOFUN_ADDRESS_MAYBE_TURQUOISE, ...  Since this is so simple, it may
   be considered too special-purpose for general consumption.  */
   be considered too special-purpose for general consumption.  */
 
 
static struct minimal_symbol *
static struct minimal_symbol *
find_minsym_and_objfile (char *name, struct objfile **objfile_p)
find_minsym_and_objfile (char *name, struct objfile **objfile_p)
{
{
  struct objfile *objfile;
  struct objfile *objfile;
 
 
  ALL_OBJFILES (objfile)
  ALL_OBJFILES (objfile)
    {
    {
      struct minimal_symbol *msym;
      struct minimal_symbol *msym;
 
 
      ALL_OBJFILE_MSYMBOLS (objfile, msym)
      ALL_OBJFILE_MSYMBOLS (objfile, msym)
        {
        {
          if (SYMBOL_NAME (msym)
          if (SYMBOL_NAME (msym)
              && STREQ (SYMBOL_NAME (msym), name))
              && STREQ (SYMBOL_NAME (msym), name))
            {
            {
              *objfile_p = objfile;
              *objfile_p = objfile;
              return msym;
              return msym;
            }
            }
        }
        }
    }
    }
 
 
  return 0;
  return 0;
}
}
 
 
 
 
static CORE_ADDR
static CORE_ADDR
skip_hurd_resolver (CORE_ADDR pc)
skip_hurd_resolver (CORE_ADDR pc)
{
{
  /* The HURD dynamic linker is part of the GNU C library, so many
  /* The HURD dynamic linker is part of the GNU C library, so many
     GNU/Linux distributions use it.  (All ELF versions, as far as I
     GNU/Linux distributions use it.  (All ELF versions, as far as I
     know.)  An unresolved PLT entry points to "_dl_runtime_resolve",
     know.)  An unresolved PLT entry points to "_dl_runtime_resolve",
     which calls "fixup" to patch the PLT, and then passes control to
     which calls "fixup" to patch the PLT, and then passes control to
     the function.
     the function.
 
 
     We look for the symbol `_dl_runtime_resolve', and find `fixup' in
     We look for the symbol `_dl_runtime_resolve', and find `fixup' in
     the same objfile.  If we are at the entry point of `fixup', then
     the same objfile.  If we are at the entry point of `fixup', then
     we set a breakpoint at the return address (at the top of the
     we set a breakpoint at the return address (at the top of the
     stack), and continue.
     stack), and continue.
 
 
     It's kind of gross to do all these checks every time we're
     It's kind of gross to do all these checks every time we're
     called, since they don't change once the executable has gotten
     called, since they don't change once the executable has gotten
     started.  But this is only a temporary hack --- upcoming versions
     started.  But this is only a temporary hack --- upcoming versions
     of Linux will provide a portable, efficient interface for
     of Linux will provide a portable, efficient interface for
     debugging programs that use shared libraries.  */
     debugging programs that use shared libraries.  */
 
 
  struct objfile *objfile;
  struct objfile *objfile;
  struct minimal_symbol *resolver
  struct minimal_symbol *resolver
    = find_minsym_and_objfile ("_dl_runtime_resolve", &objfile);
    = find_minsym_and_objfile ("_dl_runtime_resolve", &objfile);
 
 
  if (resolver)
  if (resolver)
    {
    {
      struct minimal_symbol *fixup
      struct minimal_symbol *fixup
        = lookup_minimal_symbol ("fixup", 0, objfile);
        = lookup_minimal_symbol ("fixup", 0, objfile);
 
 
      if (fixup && SYMBOL_VALUE_ADDRESS (fixup) == pc)
      if (fixup && SYMBOL_VALUE_ADDRESS (fixup) == pc)
        return (SAVED_PC_AFTER_CALL (get_current_frame ()));
        return (SAVED_PC_AFTER_CALL (get_current_frame ()));
    }
    }
 
 
  return 0;
  return 0;
}
}
 
 
/* See the comments for SKIP_SOLIB_RESOLVER at the top of infrun.c.
/* See the comments for SKIP_SOLIB_RESOLVER at the top of infrun.c.
   This function:
   This function:
   1) decides whether a PLT has sent us into the linker to resolve
   1) decides whether a PLT has sent us into the linker to resolve
      a function reference, and
      a function reference, and
   2) if so, tells us where to set a temporary breakpoint that will
   2) if so, tells us where to set a temporary breakpoint that will
      trigger when the dynamic linker is done.  */
      trigger when the dynamic linker is done.  */
 
 
CORE_ADDR
CORE_ADDR
i386_linux_skip_solib_resolver (CORE_ADDR pc)
i386_linux_skip_solib_resolver (CORE_ADDR pc)
{
{
  CORE_ADDR result;
  CORE_ADDR result;
 
 
  /* Plug in functions for other kinds of resolvers here.  */
  /* Plug in functions for other kinds of resolvers here.  */
  result = skip_hurd_resolver (pc);
  result = skip_hurd_resolver (pc);
  if (result)
  if (result)
    return result;
    return result;
 
 
  return 0;
  return 0;
}
}
 
 


/* Register that we are able to handle Linux ELF core file formats.  */
/* Register that we are able to handle Linux ELF core file formats.  */
 
 
static struct core_fns linux_elf_core_fns =
static struct core_fns linux_elf_core_fns =
{
{
  bfd_target_elf_flavour,               /* core_flavour */
  bfd_target_elf_flavour,               /* core_flavour */
  default_check_format,                 /* check_format */
  default_check_format,                 /* check_format */
  default_core_sniffer,                 /* core_sniffer */
  default_core_sniffer,                 /* core_sniffer */
  fetch_core_registers,                 /* core_read_registers */
  fetch_core_registers,                 /* core_read_registers */
  NULL                                  /* next */
  NULL                                  /* next */
};
};
 
 
void
void
_initialize_i386_linux_nat ()
_initialize_i386_linux_nat ()
{
{
  add_core_fns (&linux_elf_core_fns);
  add_core_fns (&linux_elf_core_fns);
}
}
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.