OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [gdb-5.0/] [gdb/] [infcmd.c] - Diff between revs 105 and 1765

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 105 Rev 1765
/* Memory-access and commands for "inferior" process, for GDB.
/* Memory-access and commands for "inferior" process, for GDB.
   Copyright 1986, 87, 88, 89, 91, 92, 95, 96, 1998, 1999
   Copyright 1986, 87, 88, 89, 91, 92, 95, 96, 1998, 1999
   Free Software Foundation, Inc.
   Free Software Foundation, Inc.
 
 
   This file is part of GDB.
   This file is part of GDB.
 
 
   This program is free software; you can redistribute it and/or modify
   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2 of the License, or
   the Free Software Foundation; either version 2 of the License, or
   (at your option) any later version.
   (at your option) any later version.
 
 
   This program is distributed in the hope that it will be useful,
   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.
   GNU General Public License for more details.
 
 
   You should have received a copy of the GNU General Public License
   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   along with this program; if not, write to the Free Software
   Foundation, Inc., 59 Temple Place - Suite 330,
   Foundation, Inc., 59 Temple Place - Suite 330,
   Boston, MA 02111-1307, USA.  */
   Boston, MA 02111-1307, USA.  */
 
 
#include "defs.h"
#include "defs.h"
#include <signal.h>
#include <signal.h>
#include "gdb_string.h"
#include "gdb_string.h"
#include "symtab.h"
#include "symtab.h"
#include "gdbtypes.h"
#include "gdbtypes.h"
#include "frame.h"
#include "frame.h"
#include "inferior.h"
#include "inferior.h"
#include "environ.h"
#include "environ.h"
#include "value.h"
#include "value.h"
#include "gdbcmd.h"
#include "gdbcmd.h"
#include "gdbcore.h"
#include "gdbcore.h"
#include "target.h"
#include "target.h"
#include "language.h"
#include "language.h"
#include "symfile.h"
#include "symfile.h"
#include "objfiles.h"
#include "objfiles.h"
#ifdef UI_OUT
#ifdef UI_OUT
#include "ui-out.h"
#include "ui-out.h"
#endif
#endif
#include "event-top.h"
#include "event-top.h"
#include "parser-defs.h"
#include "parser-defs.h"
 
 
/* Functions exported for general use: */
/* Functions exported for general use: */
 
 
void nofp_registers_info PARAMS ((char *, int));
void nofp_registers_info PARAMS ((char *, int));
 
 
void all_registers_info PARAMS ((char *, int));
void all_registers_info PARAMS ((char *, int));
 
 
void registers_info PARAMS ((char *, int));
void registers_info PARAMS ((char *, int));
 
 
/* Local functions: */
/* Local functions: */
 
 
void continue_command PARAMS ((char *, int));
void continue_command PARAMS ((char *, int));
 
 
static void print_return_value (int struct_return, struct type *value_type);
static void print_return_value (int struct_return, struct type *value_type);
 
 
static void finish_command_continuation PARAMS ((struct continuation_arg *));
static void finish_command_continuation PARAMS ((struct continuation_arg *));
 
 
static void until_next_command PARAMS ((int));
static void until_next_command PARAMS ((int));
 
 
static void until_command PARAMS ((char *, int));
static void until_command PARAMS ((char *, int));
 
 
static void path_info PARAMS ((char *, int));
static void path_info PARAMS ((char *, int));
 
 
static void path_command PARAMS ((char *, int));
static void path_command PARAMS ((char *, int));
 
 
static void unset_command PARAMS ((char *, int));
static void unset_command PARAMS ((char *, int));
 
 
static void float_info PARAMS ((char *, int));
static void float_info PARAMS ((char *, int));
 
 
static void detach_command PARAMS ((char *, int));
static void detach_command PARAMS ((char *, int));
 
 
static void interrupt_target_command (char *args, int from_tty);
static void interrupt_target_command (char *args, int from_tty);
 
 
#if !defined (DO_REGISTERS_INFO)
#if !defined (DO_REGISTERS_INFO)
static void do_registers_info PARAMS ((int, int));
static void do_registers_info PARAMS ((int, int));
#endif
#endif
 
 
static void unset_environment_command PARAMS ((char *, int));
static void unset_environment_command PARAMS ((char *, int));
 
 
static void set_environment_command PARAMS ((char *, int));
static void set_environment_command PARAMS ((char *, int));
 
 
static void environment_info PARAMS ((char *, int));
static void environment_info PARAMS ((char *, int));
 
 
static void program_info PARAMS ((char *, int));
static void program_info PARAMS ((char *, int));
 
 
static void finish_command PARAMS ((char *, int));
static void finish_command PARAMS ((char *, int));
 
 
static void signal_command PARAMS ((char *, int));
static void signal_command PARAMS ((char *, int));
 
 
static void jump_command PARAMS ((char *, int));
static void jump_command PARAMS ((char *, int));
 
 
static void step_1 PARAMS ((int, int, char *));
static void step_1 PARAMS ((int, int, char *));
static void step_once (int skip_subroutines, int single_inst, int count);
static void step_once (int skip_subroutines, int single_inst, int count);
static void step_1_continuation (struct continuation_arg *arg);
static void step_1_continuation (struct continuation_arg *arg);
 
 
void nexti_command PARAMS ((char *, int));
void nexti_command PARAMS ((char *, int));
 
 
void stepi_command PARAMS ((char *, int));
void stepi_command PARAMS ((char *, int));
 
 
static void next_command PARAMS ((char *, int));
static void next_command PARAMS ((char *, int));
 
 
static void step_command PARAMS ((char *, int));
static void step_command PARAMS ((char *, int));
 
 
static void run_command PARAMS ((char *, int));
static void run_command PARAMS ((char *, int));
 
 
static void run_no_args_command PARAMS ((char *args, int from_tty));
static void run_no_args_command PARAMS ((char *args, int from_tty));
 
 
static void go_command PARAMS ((char *line_no, int from_tty));
static void go_command PARAMS ((char *line_no, int from_tty));
 
 
static int strip_bg_char PARAMS ((char **));
static int strip_bg_char PARAMS ((char **));
 
 
void _initialize_infcmd PARAMS ((void));
void _initialize_infcmd PARAMS ((void));
 
 
#define GO_USAGE   "Usage: go <location>\n"
#define GO_USAGE   "Usage: go <location>\n"
 
 
static void breakpoint_auto_delete_contents PARAMS ((PTR));
static void breakpoint_auto_delete_contents PARAMS ((PTR));
 
 
#define ERROR_NO_INFERIOR \
#define ERROR_NO_INFERIOR \
   if (!target_has_execution) error ("The program is not being run.");
   if (!target_has_execution) error ("The program is not being run.");
 
 
/* String containing arguments to give to the program, separated by spaces.
/* String containing arguments to give to the program, separated by spaces.
   Empty string (pointer to '\0') means no args.  */
   Empty string (pointer to '\0') means no args.  */
 
 
static char *inferior_args;
static char *inferior_args;
 
 
/* File name for default use for standard in/out in the inferior.  */
/* File name for default use for standard in/out in the inferior.  */
 
 
char *inferior_io_terminal;
char *inferior_io_terminal;
 
 
/* Pid of our debugged inferior, or 0 if no inferior now.
/* Pid of our debugged inferior, or 0 if no inferior now.
   Since various parts of infrun.c test this to see whether there is a program
   Since various parts of infrun.c test this to see whether there is a program
   being debugged it should be nonzero (currently 3 is used) for remote
   being debugged it should be nonzero (currently 3 is used) for remote
   debugging.  */
   debugging.  */
 
 
int inferior_pid;
int inferior_pid;
 
 
/* Last signal that the inferior received (why it stopped).  */
/* Last signal that the inferior received (why it stopped).  */
 
 
enum target_signal stop_signal;
enum target_signal stop_signal;
 
 
/* Address at which inferior stopped.  */
/* Address at which inferior stopped.  */
 
 
CORE_ADDR stop_pc;
CORE_ADDR stop_pc;
 
 
/* Chain containing status of breakpoint(s) that we have stopped at.  */
/* Chain containing status of breakpoint(s) that we have stopped at.  */
 
 
bpstat stop_bpstat;
bpstat stop_bpstat;
 
 
/* Flag indicating that a command has proceeded the inferior past the
/* Flag indicating that a command has proceeded the inferior past the
   current breakpoint.  */
   current breakpoint.  */
 
 
int breakpoint_proceeded;
int breakpoint_proceeded;
 
 
/* Nonzero if stopped due to a step command.  */
/* Nonzero if stopped due to a step command.  */
 
 
int stop_step;
int stop_step;
 
 
/* Nonzero if stopped due to completion of a stack dummy routine.  */
/* Nonzero if stopped due to completion of a stack dummy routine.  */
 
 
int stop_stack_dummy;
int stop_stack_dummy;
 
 
/* Nonzero if stopped due to a random (unexpected) signal in inferior
/* Nonzero if stopped due to a random (unexpected) signal in inferior
   process.  */
   process.  */
 
 
int stopped_by_random_signal;
int stopped_by_random_signal;
 
 
/* Range to single step within.
/* Range to single step within.
   If this is nonzero, respond to a single-step signal
   If this is nonzero, respond to a single-step signal
   by continuing to step if the pc is in this range.  */
   by continuing to step if the pc is in this range.  */
 
 
CORE_ADDR step_range_start;     /* Inclusive */
CORE_ADDR step_range_start;     /* Inclusive */
CORE_ADDR step_range_end;       /* Exclusive */
CORE_ADDR step_range_end;       /* Exclusive */
 
 
/* Stack frame address as of when stepping command was issued.
/* Stack frame address as of when stepping command was issued.
   This is how we know when we step into a subroutine call,
   This is how we know when we step into a subroutine call,
   and how to set the frame for the breakpoint used to step out.  */
   and how to set the frame for the breakpoint used to step out.  */
 
 
CORE_ADDR step_frame_address;
CORE_ADDR step_frame_address;
 
 
/* Our notion of the current stack pointer.  */
/* Our notion of the current stack pointer.  */
 
 
CORE_ADDR step_sp;
CORE_ADDR step_sp;
 
 
/* 1 means step over all subroutine calls.
/* 1 means step over all subroutine calls.
   0 means don't step over calls (used by stepi).
   0 means don't step over calls (used by stepi).
   -1 means step over calls to undebuggable functions.  */
   -1 means step over calls to undebuggable functions.  */
 
 
int step_over_calls;
int step_over_calls;
 
 
/* If stepping, nonzero means step count is > 1
/* If stepping, nonzero means step count is > 1
   so don't print frame next time inferior stops
   so don't print frame next time inferior stops
   if it stops due to stepping.  */
   if it stops due to stepping.  */
 
 
int step_multi;
int step_multi;
 
 
/* Environment to use for running inferior,
/* Environment to use for running inferior,
   in format described in environ.h.  */
   in format described in environ.h.  */
 
 
struct environ *inferior_environ;
struct environ *inferior_environ;


 
 
/* This function detects whether or not a '&' character (indicating
/* This function detects whether or not a '&' character (indicating
   background execution) has been added as *the last* of the arguments ARGS
   background execution) has been added as *the last* of the arguments ARGS
   of a command. If it has, it removes it and returns 1. Otherwise it
   of a command. If it has, it removes it and returns 1. Otherwise it
   does nothing and returns 0. */
   does nothing and returns 0. */
static int
static int
strip_bg_char (args)
strip_bg_char (args)
     char **args;
     char **args;
{
{
  char *p = NULL;
  char *p = NULL;
 
 
  p = strchr (*args, '&');
  p = strchr (*args, '&');
 
 
  if (p)
  if (p)
    {
    {
      if (p == (*args + strlen (*args) - 1))
      if (p == (*args + strlen (*args) - 1))
        {
        {
          if (strlen (*args) > 1)
          if (strlen (*args) > 1)
            {
            {
              do
              do
                p--;
                p--;
              while (*p == ' ' || *p == '\t');
              while (*p == ' ' || *p == '\t');
              *(p + 1) = '\0';
              *(p + 1) = '\0';
            }
            }
          else
          else
            *args = 0;
            *args = 0;
          return 1;
          return 1;
        }
        }
    }
    }
  return 0;
  return 0;
}
}
 
 
/* ARGSUSED */
/* ARGSUSED */
void
void
tty_command (file, from_tty)
tty_command (file, from_tty)
     char *file;
     char *file;
     int from_tty;
     int from_tty;
{
{
  if (file == 0)
  if (file == 0)
    error_no_arg ("terminal name for running target process");
    error_no_arg ("terminal name for running target process");
 
 
  inferior_io_terminal = savestring (file, strlen (file));
  inferior_io_terminal = savestring (file, strlen (file));
}
}
 
 
static void
static void
run_command (args, from_tty)
run_command (args, from_tty)
     char *args;
     char *args;
     int from_tty;
     int from_tty;
{
{
  char *exec_file;
  char *exec_file;
 
 
  dont_repeat ();
  dont_repeat ();
 
 
  if (inferior_pid != 0 && target_has_execution)
  if (inferior_pid != 0 && target_has_execution)
    {
    {
      if (from_tty
      if (from_tty
          && !query ("The program being debugged has been started already.\n\
          && !query ("The program being debugged has been started already.\n\
Start it from the beginning? "))
Start it from the beginning? "))
        error ("Program not restarted.");
        error ("Program not restarted.");
      target_kill ();
      target_kill ();
#if defined(SOLIB_RESTART)
#if defined(SOLIB_RESTART)
      SOLIB_RESTART ();
      SOLIB_RESTART ();
#endif
#endif
      init_wait_for_inferior ();
      init_wait_for_inferior ();
    }
    }
 
 
  clear_breakpoint_hit_counts ();
  clear_breakpoint_hit_counts ();
 
 
  exec_file = (char *) get_exec_file (0);
  exec_file = (char *) get_exec_file (0);
 
 
  /* Purge old solib objfiles. */
  /* Purge old solib objfiles. */
  objfile_purge_solibs ();
  objfile_purge_solibs ();
 
 
  do_run_cleanups (NULL);
  do_run_cleanups (NULL);
 
 
  /* The exec file is re-read every time we do a generic_mourn_inferior, so
  /* The exec file is re-read every time we do a generic_mourn_inferior, so
     we just have to worry about the symbol file.  */
     we just have to worry about the symbol file.  */
  reread_symbols ();
  reread_symbols ();
 
 
  /* We keep symbols from add-symbol-file, on the grounds that the
  /* We keep symbols from add-symbol-file, on the grounds that the
     user might want to add some symbols before running the program
     user might want to add some symbols before running the program
     (right?).  But sometimes (dynamic loading where the user manually
     (right?).  But sometimes (dynamic loading where the user manually
     introduces the new symbols with add-symbol-file), the code which
     introduces the new symbols with add-symbol-file), the code which
     the symbols describe does not persist between runs.  Currently
     the symbols describe does not persist between runs.  Currently
     the user has to manually nuke all symbols between runs if they
     the user has to manually nuke all symbols between runs if they
     want them to go away (PR 2207).  This is probably reasonable.  */
     want them to go away (PR 2207).  This is probably reasonable.  */
 
 
  if (!args)
  if (!args)
    {
    {
      if (event_loop_p && target_can_async_p ())
      if (event_loop_p && target_can_async_p ())
        async_disable_stdin ();
        async_disable_stdin ();
    }
    }
  else
  else
    {
    {
      char *cmd;
      char *cmd;
      int async_exec = strip_bg_char (&args);
      int async_exec = strip_bg_char (&args);
 
 
      /* If we get a request for running in the bg but the target
      /* If we get a request for running in the bg but the target
         doesn't support it, error out. */
         doesn't support it, error out. */
      if (event_loop_p && async_exec && !target_can_async_p ())
      if (event_loop_p && async_exec && !target_can_async_p ())
        error ("Asynchronous execution not supported on this target.");
        error ("Asynchronous execution not supported on this target.");
 
 
      /* If we don't get a request of running in the bg, then we need
      /* If we don't get a request of running in the bg, then we need
         to simulate synchronous (fg) execution. */
         to simulate synchronous (fg) execution. */
      if (event_loop_p && !async_exec && target_can_async_p ())
      if (event_loop_p && !async_exec && target_can_async_p ())
        {
        {
          /* Simulate synchronous execution */
          /* Simulate synchronous execution */
          async_disable_stdin ();
          async_disable_stdin ();
        }
        }
 
 
      /* If there were other args, beside '&', process them. */
      /* If there were other args, beside '&', process them. */
      if (args)
      if (args)
        {
        {
          cmd = concat ("set args ", args, NULL);
          cmd = concat ("set args ", args, NULL);
          make_cleanup (free, cmd);
          make_cleanup (free, cmd);
          execute_command (cmd, from_tty);
          execute_command (cmd, from_tty);
        }
        }
    }
    }
 
 
  if (from_tty)
  if (from_tty)
    {
    {
#ifdef UI_OUT
#ifdef UI_OUT
      ui_out_field_string (uiout, NULL, "Starting program");
      ui_out_field_string (uiout, NULL, "Starting program");
      ui_out_text (uiout, ": ");
      ui_out_text (uiout, ": ");
      if (exec_file)
      if (exec_file)
        ui_out_field_string (uiout, "execfile", exec_file);
        ui_out_field_string (uiout, "execfile", exec_file);
      ui_out_spaces (uiout, 1);
      ui_out_spaces (uiout, 1);
      ui_out_field_string (uiout, "infargs", inferior_args);
      ui_out_field_string (uiout, "infargs", inferior_args);
      ui_out_text (uiout, "\n");
      ui_out_text (uiout, "\n");
      ui_out_flush (uiout);
      ui_out_flush (uiout);
#else
#else
      puts_filtered ("Starting program: ");
      puts_filtered ("Starting program: ");
      if (exec_file)
      if (exec_file)
        puts_filtered (exec_file);
        puts_filtered (exec_file);
      puts_filtered (" ");
      puts_filtered (" ");
      puts_filtered (inferior_args);
      puts_filtered (inferior_args);
      puts_filtered ("\n");
      puts_filtered ("\n");
      gdb_flush (gdb_stdout);
      gdb_flush (gdb_stdout);
#endif
#endif
    }
    }
 
 
  target_create_inferior (exec_file, inferior_args,
  target_create_inferior (exec_file, inferior_args,
                          environ_vector (inferior_environ));
                          environ_vector (inferior_environ));
}
}
 
 
 
 
static void
static void
run_no_args_command (args, from_tty)
run_no_args_command (args, from_tty)
     char *args;
     char *args;
     int from_tty;
     int from_tty;
{
{
  execute_command ("set args", from_tty);
  execute_command ("set args", from_tty);
  run_command ((char *) NULL, from_tty);
  run_command ((char *) NULL, from_tty);
}
}


 
 
void
void
continue_command (proc_count_exp, from_tty)
continue_command (proc_count_exp, from_tty)
     char *proc_count_exp;
     char *proc_count_exp;
     int from_tty;
     int from_tty;
{
{
  int async_exec = 0;
  int async_exec = 0;
  ERROR_NO_INFERIOR;
  ERROR_NO_INFERIOR;
 
 
  /* Find out whether we must run in the background. */
  /* Find out whether we must run in the background. */
  if (proc_count_exp != NULL)
  if (proc_count_exp != NULL)
    async_exec = strip_bg_char (&proc_count_exp);
    async_exec = strip_bg_char (&proc_count_exp);
 
 
  /* If we must run in the background, but the target can't do it,
  /* If we must run in the background, but the target can't do it,
     error out. */
     error out. */
  if (event_loop_p && async_exec && !target_can_async_p ())
  if (event_loop_p && async_exec && !target_can_async_p ())
    error ("Asynchronous execution not supported on this target.");
    error ("Asynchronous execution not supported on this target.");
 
 
  /* If we are not asked to run in the bg, then prepare to run in the
  /* If we are not asked to run in the bg, then prepare to run in the
     foreground, synchronously. */
     foreground, synchronously. */
  if (event_loop_p && !async_exec && target_can_async_p ())
  if (event_loop_p && !async_exec && target_can_async_p ())
    {
    {
      /* Simulate synchronous execution */
      /* Simulate synchronous execution */
      async_disable_stdin ();
      async_disable_stdin ();
    }
    }
 
 
  /* If have argument (besides '&'), set proceed count of breakpoint
  /* If have argument (besides '&'), set proceed count of breakpoint
     we stopped at.  */
     we stopped at.  */
  if (proc_count_exp != NULL)
  if (proc_count_exp != NULL)
    {
    {
      bpstat bs = stop_bpstat;
      bpstat bs = stop_bpstat;
      int num = bpstat_num (&bs);
      int num = bpstat_num (&bs);
      if (num == 0 && from_tty)
      if (num == 0 && from_tty)
        {
        {
          printf_filtered
          printf_filtered
            ("Not stopped at any breakpoint; argument ignored.\n");
            ("Not stopped at any breakpoint; argument ignored.\n");
        }
        }
      while (num != 0)
      while (num != 0)
        {
        {
          set_ignore_count (num,
          set_ignore_count (num,
                            parse_and_eval_address (proc_count_exp) - 1,
                            parse_and_eval_address (proc_count_exp) - 1,
                            from_tty);
                            from_tty);
          /* set_ignore_count prints a message ending with a period.
          /* set_ignore_count prints a message ending with a period.
             So print two spaces before "Continuing.".  */
             So print two spaces before "Continuing.".  */
          if (from_tty)
          if (from_tty)
            printf_filtered ("  ");
            printf_filtered ("  ");
          num = bpstat_num (&bs);
          num = bpstat_num (&bs);
        }
        }
    }
    }
 
 
  if (from_tty)
  if (from_tty)
    printf_filtered ("Continuing.\n");
    printf_filtered ("Continuing.\n");
 
 
  clear_proceed_status ();
  clear_proceed_status ();
 
 
  proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);
  proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);
}
}


/* Step until outside of current statement.  */
/* Step until outside of current statement.  */
 
 
/* ARGSUSED */
/* ARGSUSED */
static void
static void
step_command (count_string, from_tty)
step_command (count_string, from_tty)
     char *count_string;
     char *count_string;
     int from_tty;
     int from_tty;
{
{
  step_1 (0, 0, count_string);
  step_1 (0, 0, count_string);
}
}
 
 
/* Likewise, but skip over subroutine calls as if single instructions.  */
/* Likewise, but skip over subroutine calls as if single instructions.  */
 
 
/* ARGSUSED */
/* ARGSUSED */
static void
static void
next_command (count_string, from_tty)
next_command (count_string, from_tty)
     char *count_string;
     char *count_string;
     int from_tty;
     int from_tty;
{
{
  step_1 (1, 0, count_string);
  step_1 (1, 0, count_string);
}
}
 
 
/* Likewise, but step only one instruction.  */
/* Likewise, but step only one instruction.  */
 
 
/* ARGSUSED */
/* ARGSUSED */
void
void
stepi_command (count_string, from_tty)
stepi_command (count_string, from_tty)
     char *count_string;
     char *count_string;
     int from_tty;
     int from_tty;
{
{
  step_1 (0, 1, count_string);
  step_1 (0, 1, count_string);
}
}
 
 
/* ARGSUSED */
/* ARGSUSED */
void
void
nexti_command (count_string, from_tty)
nexti_command (count_string, from_tty)
     char *count_string;
     char *count_string;
     int from_tty;
     int from_tty;
{
{
  step_1 (1, 1, count_string);
  step_1 (1, 1, count_string);
}
}
 
 
static void
static void
step_1 (skip_subroutines, single_inst, count_string)
step_1 (skip_subroutines, single_inst, count_string)
     int skip_subroutines;
     int skip_subroutines;
     int single_inst;
     int single_inst;
     char *count_string;
     char *count_string;
{
{
  register int count = 1;
  register int count = 1;
  struct frame_info *frame;
  struct frame_info *frame;
  struct cleanup *cleanups = 0;
  struct cleanup *cleanups = 0;
  int async_exec = 0;
  int async_exec = 0;
 
 
  ERROR_NO_INFERIOR;
  ERROR_NO_INFERIOR;
 
 
  if (count_string)
  if (count_string)
    async_exec = strip_bg_char (&count_string);
    async_exec = strip_bg_char (&count_string);
 
 
  /* If we get a request for running in the bg but the target
  /* If we get a request for running in the bg but the target
     doesn't support it, error out. */
     doesn't support it, error out. */
  if (event_loop_p && async_exec && !target_can_async_p ())
  if (event_loop_p && async_exec && !target_can_async_p ())
    error ("Asynchronous execution not supported on this target.");
    error ("Asynchronous execution not supported on this target.");
 
 
  /* If we don't get a request of running in the bg, then we need
  /* If we don't get a request of running in the bg, then we need
     to simulate synchronous (fg) execution. */
     to simulate synchronous (fg) execution. */
  if (event_loop_p && !async_exec && target_can_async_p ())
  if (event_loop_p && !async_exec && target_can_async_p ())
    {
    {
      /* Simulate synchronous execution */
      /* Simulate synchronous execution */
      async_disable_stdin ();
      async_disable_stdin ();
    }
    }
 
 
  count = count_string ? parse_and_eval_address (count_string) : 1;
  count = count_string ? parse_and_eval_address (count_string) : 1;
 
 
  if (!single_inst || skip_subroutines)         /* leave si command alone */
  if (!single_inst || skip_subroutines)         /* leave si command alone */
    {
    {
      enable_longjmp_breakpoint ();
      enable_longjmp_breakpoint ();
      if (!event_loop_p || !target_can_async_p ())
      if (!event_loop_p || !target_can_async_p ())
        cleanups = make_cleanup ((make_cleanup_func) disable_longjmp_breakpoint,
        cleanups = make_cleanup ((make_cleanup_func) disable_longjmp_breakpoint,
                                 0);
                                 0);
      else
      else
        make_exec_cleanup ((make_cleanup_func) disable_longjmp_breakpoint, 0);
        make_exec_cleanup ((make_cleanup_func) disable_longjmp_breakpoint, 0);
    }
    }
 
 
  /* In synchronous case, all is well, just use the regular for loop. */
  /* In synchronous case, all is well, just use the regular for loop. */
  if (!event_loop_p || !target_can_async_p ())
  if (!event_loop_p || !target_can_async_p ())
    {
    {
      for (; count > 0; count--)
      for (; count > 0; count--)
        {
        {
          clear_proceed_status ();
          clear_proceed_status ();
 
 
          frame = get_current_frame ();
          frame = get_current_frame ();
          if (!frame)           /* Avoid coredump here.  Why tho? */
          if (!frame)           /* Avoid coredump here.  Why tho? */
            error ("No current frame");
            error ("No current frame");
          step_frame_address = FRAME_FP (frame);
          step_frame_address = FRAME_FP (frame);
          step_sp = read_sp ();
          step_sp = read_sp ();
 
 
          if (!single_inst)
          if (!single_inst)
            {
            {
              find_pc_line_pc_range (stop_pc, &step_range_start, &step_range_end);
              find_pc_line_pc_range (stop_pc, &step_range_start, &step_range_end);
              if (step_range_end == 0)
              if (step_range_end == 0)
                {
                {
                  char *name;
                  char *name;
                  if (find_pc_partial_function (stop_pc, &name, &step_range_start,
                  if (find_pc_partial_function (stop_pc, &name, &step_range_start,
                                                &step_range_end) == 0)
                                                &step_range_end) == 0)
                    error ("Cannot find bounds of current function");
                    error ("Cannot find bounds of current function");
 
 
                  target_terminal_ours ();
                  target_terminal_ours ();
                  printf_filtered ("\
                  printf_filtered ("\
Single stepping until exit from function %s, \n\
Single stepping until exit from function %s, \n\
which has no line number information.\n", name);
which has no line number information.\n", name);
                }
                }
            }
            }
          else
          else
            {
            {
              /* Say we are stepping, but stop after one insn whatever it does.  */
              /* Say we are stepping, but stop after one insn whatever it does.  */
              step_range_start = step_range_end = 1;
              step_range_start = step_range_end = 1;
              if (!skip_subroutines)
              if (!skip_subroutines)
                /* It is stepi.
                /* It is stepi.
                   Don't step over function calls, not even to functions lacking
                   Don't step over function calls, not even to functions lacking
                   line numbers.  */
                   line numbers.  */
                step_over_calls = 0;
                step_over_calls = 0;
            }
            }
 
 
          if (skip_subroutines)
          if (skip_subroutines)
            step_over_calls = 1;
            step_over_calls = 1;
 
 
          step_multi = (count > 1);
          step_multi = (count > 1);
          proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 1);
          proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 1);
 
 
          if (!stop_step)
          if (!stop_step)
            break;
            break;
 
 
          /* FIXME: On nexti, this may have already been done (when we hit the
          /* FIXME: On nexti, this may have already been done (when we hit the
             step resume break, I think).  Probably this should be moved to
             step resume break, I think).  Probably this should be moved to
             wait_for_inferior (near the top).  */
             wait_for_inferior (near the top).  */
#if defined (SHIFT_INST_REGS)
#if defined (SHIFT_INST_REGS)
          SHIFT_INST_REGS ();
          SHIFT_INST_REGS ();
#endif
#endif
        }
        }
 
 
      if (!single_inst || skip_subroutines)
      if (!single_inst || skip_subroutines)
        do_cleanups (cleanups);
        do_cleanups (cleanups);
      return;
      return;
    }
    }
  /* In case of asynchronous target things get complicated, do only
  /* In case of asynchronous target things get complicated, do only
     one step for now, before returning control to the event loop. Let
     one step for now, before returning control to the event loop. Let
     the continuation figure out how many other steps we need to do,
     the continuation figure out how many other steps we need to do,
     and handle them one at the time, through step_once(). */
     and handle them one at the time, through step_once(). */
  else
  else
    {
    {
      if (event_loop_p && target_can_async_p ())
      if (event_loop_p && target_can_async_p ())
        step_once (skip_subroutines, single_inst, count);
        step_once (skip_subroutines, single_inst, count);
    }
    }
}
}
 
 
/* Called after we are done with one step operation, to check whether
/* Called after we are done with one step operation, to check whether
   we need to step again, before we print the prompt and return control
   we need to step again, before we print the prompt and return control
   to the user. If count is > 1, we will need to do one more call to
   to the user. If count is > 1, we will need to do one more call to
   proceed(), via step_once(). Basically it is like step_once and
   proceed(), via step_once(). Basically it is like step_once and
   step_1_continuation are co-recursive. */
   step_1_continuation are co-recursive. */
static void
static void
step_1_continuation (arg)
step_1_continuation (arg)
     struct continuation_arg *arg;
     struct continuation_arg *arg;
{
{
  int count;
  int count;
  int skip_subroutines;
  int skip_subroutines;
  int single_inst;
  int single_inst;
 
 
  skip_subroutines = arg->data.integer;
  skip_subroutines = arg->data.integer;
  single_inst      = arg->next->data.integer;
  single_inst      = arg->next->data.integer;
  count            = arg->next->next->data.integer;
  count            = arg->next->next->data.integer;
 
 
  if (stop_step)
  if (stop_step)
    {
    {
      /* FIXME: On nexti, this may have already been done (when we hit the
      /* FIXME: On nexti, this may have already been done (when we hit the
         step resume break, I think).  Probably this should be moved to
         step resume break, I think).  Probably this should be moved to
         wait_for_inferior (near the top).  */
         wait_for_inferior (near the top).  */
#if defined (SHIFT_INST_REGS)
#if defined (SHIFT_INST_REGS)
      SHIFT_INST_REGS ();
      SHIFT_INST_REGS ();
#endif
#endif
      step_once (skip_subroutines, single_inst, count - 1);
      step_once (skip_subroutines, single_inst, count - 1);
    }
    }
  else
  else
    if (!single_inst || skip_subroutines)
    if (!single_inst || skip_subroutines)
      do_exec_cleanups (ALL_CLEANUPS);
      do_exec_cleanups (ALL_CLEANUPS);
}
}
 
 
/* Do just one step operation. If count >1 we will have to set up a
/* Do just one step operation. If count >1 we will have to set up a
   continuation to be done after the target stops (after this one
   continuation to be done after the target stops (after this one
   step). This is useful to implement the 'step n' kind of commands, in
   step). This is useful to implement the 'step n' kind of commands, in
   case of asynchronous targets. We had to split step_1 into two parts,
   case of asynchronous targets. We had to split step_1 into two parts,
   one to be done before proceed() and one afterwards. This function is
   one to be done before proceed() and one afterwards. This function is
   called in case of step n with n>1, after the first step operation has
   called in case of step n with n>1, after the first step operation has
   been completed.*/
   been completed.*/
static void
static void
step_once (int skip_subroutines, int single_inst, int count)
step_once (int skip_subroutines, int single_inst, int count)
{
{
  struct continuation_arg *arg1;
  struct continuation_arg *arg1;
  struct continuation_arg *arg2;
  struct continuation_arg *arg2;
  struct continuation_arg *arg3;
  struct continuation_arg *arg3;
  struct frame_info *frame;
  struct frame_info *frame;
 
 
  if (count > 0)
  if (count > 0)
    {
    {
      clear_proceed_status ();
      clear_proceed_status ();
 
 
      frame = get_current_frame ();
      frame = get_current_frame ();
      if (!frame)               /* Avoid coredump here.  Why tho? */
      if (!frame)               /* Avoid coredump here.  Why tho? */
        error ("No current frame");
        error ("No current frame");
      step_frame_address = FRAME_FP (frame);
      step_frame_address = FRAME_FP (frame);
      step_sp = read_sp ();
      step_sp = read_sp ();
 
 
      if (!single_inst)
      if (!single_inst)
        {
        {
          find_pc_line_pc_range (stop_pc, &step_range_start, &step_range_end);
          find_pc_line_pc_range (stop_pc, &step_range_start, &step_range_end);
          if (step_range_end == 0)
          if (step_range_end == 0)
            {
            {
              char *name;
              char *name;
              if (find_pc_partial_function (stop_pc, &name, &step_range_start,
              if (find_pc_partial_function (stop_pc, &name, &step_range_start,
                                            &step_range_end) == 0)
                                            &step_range_end) == 0)
                error ("Cannot find bounds of current function");
                error ("Cannot find bounds of current function");
 
 
              target_terminal_ours ();
              target_terminal_ours ();
              printf_filtered ("\
              printf_filtered ("\
Single stepping until exit from function %s, \n\
Single stepping until exit from function %s, \n\
which has no line number information.\n", name);
which has no line number information.\n", name);
            }
            }
        }
        }
      else
      else
        {
        {
          /* Say we are stepping, but stop after one insn whatever it does.  */
          /* Say we are stepping, but stop after one insn whatever it does.  */
          step_range_start = step_range_end = 1;
          step_range_start = step_range_end = 1;
          if (!skip_subroutines)
          if (!skip_subroutines)
            /* It is stepi.
            /* It is stepi.
               Don't step over function calls, not even to functions lacking
               Don't step over function calls, not even to functions lacking
               line numbers.  */
               line numbers.  */
            step_over_calls = 0;
            step_over_calls = 0;
        }
        }
 
 
      if (skip_subroutines)
      if (skip_subroutines)
        step_over_calls = 1;
        step_over_calls = 1;
 
 
      step_multi = (count > 1);
      step_multi = (count > 1);
      arg1 =
      arg1 =
        (struct continuation_arg *) xmalloc (sizeof (struct continuation_arg));
        (struct continuation_arg *) xmalloc (sizeof (struct continuation_arg));
      arg2 =
      arg2 =
        (struct continuation_arg *) xmalloc (sizeof (struct continuation_arg));
        (struct continuation_arg *) xmalloc (sizeof (struct continuation_arg));
      arg3 =
      arg3 =
        (struct continuation_arg *) xmalloc (sizeof (struct continuation_arg));
        (struct continuation_arg *) xmalloc (sizeof (struct continuation_arg));
      arg1->next = arg2;
      arg1->next = arg2;
      arg1->data.integer = skip_subroutines;
      arg1->data.integer = skip_subroutines;
      arg2->next = arg3;
      arg2->next = arg3;
      arg2->data.integer = single_inst;
      arg2->data.integer = single_inst;
      arg3->next = NULL;
      arg3->next = NULL;
      arg3->data.integer = count;
      arg3->data.integer = count;
      add_intermediate_continuation (step_1_continuation, arg1);
      add_intermediate_continuation (step_1_continuation, arg1);
      proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 1);
      proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 1);
    }
    }
}
}
 
 


/* Continue program at specified address.  */
/* Continue program at specified address.  */
 
 
static void
static void
jump_command (arg, from_tty)
jump_command (arg, from_tty)
     char *arg;
     char *arg;
     int from_tty;
     int from_tty;
{
{
  register CORE_ADDR addr;
  register CORE_ADDR addr;
  struct symtabs_and_lines sals;
  struct symtabs_and_lines sals;
  struct symtab_and_line sal;
  struct symtab_and_line sal;
  struct symbol *fn;
  struct symbol *fn;
  struct symbol *sfn;
  struct symbol *sfn;
  int async_exec = 0;
  int async_exec = 0;
 
 
  ERROR_NO_INFERIOR;
  ERROR_NO_INFERIOR;
 
 
  /* Find out whether we must run in the background. */
  /* Find out whether we must run in the background. */
  if (arg != NULL)
  if (arg != NULL)
    async_exec = strip_bg_char (&arg);
    async_exec = strip_bg_char (&arg);
 
 
  /* If we must run in the background, but the target can't do it,
  /* If we must run in the background, but the target can't do it,
     error out. */
     error out. */
  if (event_loop_p && async_exec && !target_can_async_p ())
  if (event_loop_p && async_exec && !target_can_async_p ())
    error ("Asynchronous execution not supported on this target.");
    error ("Asynchronous execution not supported on this target.");
 
 
  /* If we are not asked to run in the bg, then prepare to run in the
  /* If we are not asked to run in the bg, then prepare to run in the
     foreground, synchronously. */
     foreground, synchronously. */
  if (event_loop_p && !async_exec && target_can_async_p ())
  if (event_loop_p && !async_exec && target_can_async_p ())
    {
    {
      /* Simulate synchronous execution */
      /* Simulate synchronous execution */
      async_disable_stdin ();
      async_disable_stdin ();
    }
    }
 
 
  if (!arg)
  if (!arg)
    error_no_arg ("starting address");
    error_no_arg ("starting address");
 
 
  sals = decode_line_spec_1 (arg, 1);
  sals = decode_line_spec_1 (arg, 1);
  if (sals.nelts != 1)
  if (sals.nelts != 1)
    {
    {
      error ("Unreasonable jump request");
      error ("Unreasonable jump request");
    }
    }
 
 
  sal = sals.sals[0];
  sal = sals.sals[0];
  free ((PTR) sals.sals);
  free ((PTR) sals.sals);
 
 
  if (sal.symtab == 0 && sal.pc == 0)
  if (sal.symtab == 0 && sal.pc == 0)
    error ("No source file has been specified.");
    error ("No source file has been specified.");
 
 
  resolve_sal_pc (&sal);        /* May error out */
  resolve_sal_pc (&sal);        /* May error out */
 
 
  /* See if we are trying to jump to another function. */
  /* See if we are trying to jump to another function. */
  fn = get_frame_function (get_current_frame ());
  fn = get_frame_function (get_current_frame ());
  sfn = find_pc_function (sal.pc);
  sfn = find_pc_function (sal.pc);
  if (fn != NULL && sfn != fn)
  if (fn != NULL && sfn != fn)
    {
    {
      if (!query ("Line %d is not in `%s'.  Jump anyway? ", sal.line,
      if (!query ("Line %d is not in `%s'.  Jump anyway? ", sal.line,
                  SYMBOL_SOURCE_NAME (fn)))
                  SYMBOL_SOURCE_NAME (fn)))
        {
        {
          error ("Not confirmed.");
          error ("Not confirmed.");
          /* NOTREACHED */
          /* NOTREACHED */
        }
        }
    }
    }
 
 
  if (sfn != NULL)
  if (sfn != NULL)
    {
    {
      fixup_symbol_section (sfn, 0);
      fixup_symbol_section (sfn, 0);
      if (section_is_overlay (SYMBOL_BFD_SECTION (sfn)) &&
      if (section_is_overlay (SYMBOL_BFD_SECTION (sfn)) &&
          !section_is_mapped (SYMBOL_BFD_SECTION (sfn)))
          !section_is_mapped (SYMBOL_BFD_SECTION (sfn)))
        {
        {
          if (!query ("WARNING!!!  Destination is in unmapped overlay!  Jump anyway? "))
          if (!query ("WARNING!!!  Destination is in unmapped overlay!  Jump anyway? "))
            {
            {
              error ("Not confirmed.");
              error ("Not confirmed.");
              /* NOTREACHED */
              /* NOTREACHED */
            }
            }
        }
        }
    }
    }
 
 
  addr = sal.pc;
  addr = sal.pc;
 
 
  if (from_tty)
  if (from_tty)
    {
    {
      printf_filtered ("Continuing at ");
      printf_filtered ("Continuing at ");
      print_address_numeric (addr, 1, gdb_stdout);
      print_address_numeric (addr, 1, gdb_stdout);
      printf_filtered (".\n");
      printf_filtered (".\n");
    }
    }
 
 
  clear_proceed_status ();
  clear_proceed_status ();
  proceed (addr, TARGET_SIGNAL_0, 0);
  proceed (addr, TARGET_SIGNAL_0, 0);
}
}


 
 
/* Go to line or address in current procedure */
/* Go to line or address in current procedure */
static void
static void
go_command (line_no, from_tty)
go_command (line_no, from_tty)
     char *line_no;
     char *line_no;
     int from_tty;
     int from_tty;
{
{
  if (line_no == (char *) NULL || !*line_no)
  if (line_no == (char *) NULL || !*line_no)
    printf_filtered (GO_USAGE);
    printf_filtered (GO_USAGE);
  else
  else
    {
    {
      tbreak_command (line_no, from_tty);
      tbreak_command (line_no, from_tty);
      jump_command (line_no, from_tty);
      jump_command (line_no, from_tty);
    }
    }
}
}


 
 
/* Continue program giving it specified signal.  */
/* Continue program giving it specified signal.  */
 
 
static void
static void
signal_command (signum_exp, from_tty)
signal_command (signum_exp, from_tty)
     char *signum_exp;
     char *signum_exp;
     int from_tty;
     int from_tty;
{
{
  enum target_signal oursig;
  enum target_signal oursig;
 
 
  dont_repeat ();               /* Too dangerous.  */
  dont_repeat ();               /* Too dangerous.  */
  ERROR_NO_INFERIOR;
  ERROR_NO_INFERIOR;
 
 
  if (!signum_exp)
  if (!signum_exp)
    error_no_arg ("signal number");
    error_no_arg ("signal number");
 
 
  /* It would be even slicker to make signal names be valid expressions,
  /* It would be even slicker to make signal names be valid expressions,
     (the type could be "enum $signal" or some such), then the user could
     (the type could be "enum $signal" or some such), then the user could
     assign them to convenience variables.  */
     assign them to convenience variables.  */
  oursig = target_signal_from_name (signum_exp);
  oursig = target_signal_from_name (signum_exp);
 
 
  if (oursig == TARGET_SIGNAL_UNKNOWN)
  if (oursig == TARGET_SIGNAL_UNKNOWN)
    {
    {
      /* No, try numeric.  */
      /* No, try numeric.  */
      int num = parse_and_eval_address (signum_exp);
      int num = parse_and_eval_address (signum_exp);
 
 
      if (num == 0)
      if (num == 0)
        oursig = TARGET_SIGNAL_0;
        oursig = TARGET_SIGNAL_0;
      else
      else
        oursig = target_signal_from_command (num);
        oursig = target_signal_from_command (num);
    }
    }
 
 
  if (from_tty)
  if (from_tty)
    {
    {
      if (oursig == TARGET_SIGNAL_0)
      if (oursig == TARGET_SIGNAL_0)
        printf_filtered ("Continuing with no signal.\n");
        printf_filtered ("Continuing with no signal.\n");
      else
      else
        printf_filtered ("Continuing with signal %s.\n",
        printf_filtered ("Continuing with signal %s.\n",
                         target_signal_to_name (oursig));
                         target_signal_to_name (oursig));
    }
    }
 
 
  clear_proceed_status ();
  clear_proceed_status ();
  /* "signal 0" should not get stuck if we are stopped at a breakpoint.
  /* "signal 0" should not get stuck if we are stopped at a breakpoint.
     FIXME: Neither should "signal foo" but when I tried passing
     FIXME: Neither should "signal foo" but when I tried passing
     (CORE_ADDR)-1 unconditionally I got a testsuite failure which I haven't
     (CORE_ADDR)-1 unconditionally I got a testsuite failure which I haven't
     tried to track down yet.  */
     tried to track down yet.  */
  proceed (oursig == TARGET_SIGNAL_0 ? (CORE_ADDR) -1 : stop_pc, oursig, 0);
  proceed (oursig == TARGET_SIGNAL_0 ? (CORE_ADDR) -1 : stop_pc, oursig, 0);
}
}
 
 
/* Call breakpoint_auto_delete on the current contents of the bpstat
/* Call breakpoint_auto_delete on the current contents of the bpstat
   pointed to by arg (which is really a bpstat *).  */
   pointed to by arg (which is really a bpstat *).  */
 
 
static void
static void
breakpoint_auto_delete_contents (arg)
breakpoint_auto_delete_contents (arg)
     PTR arg;
     PTR arg;
{
{
  breakpoint_auto_delete (*(bpstat *) arg);
  breakpoint_auto_delete (*(bpstat *) arg);
}
}
 
 
 
 
/* Execute a "stack dummy", a piece of code stored in the stack
/* Execute a "stack dummy", a piece of code stored in the stack
   by the debugger to be executed in the inferior.
   by the debugger to be executed in the inferior.
 
 
   To call: first, do PUSH_DUMMY_FRAME.
   To call: first, do PUSH_DUMMY_FRAME.
   Then push the contents of the dummy.  It should end with a breakpoint insn.
   Then push the contents of the dummy.  It should end with a breakpoint insn.
   Then call here, passing address at which to start the dummy.
   Then call here, passing address at which to start the dummy.
 
 
   The contents of all registers are saved before the dummy frame is popped
   The contents of all registers are saved before the dummy frame is popped
   and copied into the buffer BUFFER.
   and copied into the buffer BUFFER.
 
 
   The dummy's frame is automatically popped whenever that break is hit.
   The dummy's frame is automatically popped whenever that break is hit.
   If that is the first time the program stops, run_stack_dummy
   If that is the first time the program stops, run_stack_dummy
   returns to its caller with that frame already gone and returns 0.
   returns to its caller with that frame already gone and returns 0.
 
 
   Otherwise, run_stack-dummy returns a non-zero value.
   Otherwise, run_stack-dummy returns a non-zero value.
   If the called function receives a random signal, we do not allow the user
   If the called function receives a random signal, we do not allow the user
   to continue executing it as this may not work.  The dummy frame is poped
   to continue executing it as this may not work.  The dummy frame is poped
   and we return 1.
   and we return 1.
   If we hit a breakpoint, we leave the frame in place and return 2 (the frame
   If we hit a breakpoint, we leave the frame in place and return 2 (the frame
   will eventually be popped when we do hit the dummy end breakpoint).  */
   will eventually be popped when we do hit the dummy end breakpoint).  */
 
 
int
int
run_stack_dummy (addr, buffer)
run_stack_dummy (addr, buffer)
     CORE_ADDR addr;
     CORE_ADDR addr;
     char *buffer;
     char *buffer;
{
{
  struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
  struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
  int saved_async = 0;
  int saved_async = 0;
 
 
  /* Now proceed, having reached the desired place.  */
  /* Now proceed, having reached the desired place.  */
  clear_proceed_status ();
  clear_proceed_status ();
 
 
  if (CALL_DUMMY_BREAKPOINT_OFFSET_P)
  if (CALL_DUMMY_BREAKPOINT_OFFSET_P)
    {
    {
      struct breakpoint *bpt;
      struct breakpoint *bpt;
      struct symtab_and_line sal;
      struct symtab_and_line sal;
 
 
      INIT_SAL (&sal);          /* initialize to zeroes */
      INIT_SAL (&sal);          /* initialize to zeroes */
      if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
      if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
        {
        {
          sal.pc = CALL_DUMMY_ADDRESS ();
          sal.pc = CALL_DUMMY_ADDRESS ();
        }
        }
      else
      else
        {
        {
          sal.pc = addr - CALL_DUMMY_START_OFFSET + CALL_DUMMY_BREAKPOINT_OFFSET;
          sal.pc = addr - CALL_DUMMY_START_OFFSET + CALL_DUMMY_BREAKPOINT_OFFSET;
        }
        }
      sal.section = find_pc_overlay (sal.pc);
      sal.section = find_pc_overlay (sal.pc);
 
 
      /* Set up a FRAME for the dummy frame so we can pass it to
      /* Set up a FRAME for the dummy frame so we can pass it to
         set_momentary_breakpoint.  We need to give the breakpoint a
         set_momentary_breakpoint.  We need to give the breakpoint a
         frame in case there is only one copy of the dummy (e.g.
         frame in case there is only one copy of the dummy (e.g.
         CALL_DUMMY_LOCATION == AFTER_TEXT_END).  */
         CALL_DUMMY_LOCATION == AFTER_TEXT_END).  */
      flush_cached_frames ();
      flush_cached_frames ();
      set_current_frame (create_new_frame (read_fp (), sal.pc));
      set_current_frame (create_new_frame (read_fp (), sal.pc));
 
 
      /* If defined, CALL_DUMMY_BREAKPOINT_OFFSET is where we need to put
      /* If defined, CALL_DUMMY_BREAKPOINT_OFFSET is where we need to put
         a breakpoint instruction.  If not, the call dummy already has the
         a breakpoint instruction.  If not, the call dummy already has the
         breakpoint instruction in it.
         breakpoint instruction in it.
 
 
         addr is the address of the call dummy plus the CALL_DUMMY_START_OFFSET,
         addr is the address of the call dummy plus the CALL_DUMMY_START_OFFSET,
         so we need to subtract the CALL_DUMMY_START_OFFSET.  */
         so we need to subtract the CALL_DUMMY_START_OFFSET.  */
      bpt = set_momentary_breakpoint (sal,
      bpt = set_momentary_breakpoint (sal,
                                      get_current_frame (),
                                      get_current_frame (),
                                      bp_call_dummy);
                                      bp_call_dummy);
      bpt->disposition = del;
      bpt->disposition = del;
 
 
      /* If all error()s out of proceed ended up calling normal_stop (and
      /* If all error()s out of proceed ended up calling normal_stop (and
         perhaps they should; it already does in the special case of error
         perhaps they should; it already does in the special case of error
         out of resume()), then we wouldn't need this.  */
         out of resume()), then we wouldn't need this.  */
      make_cleanup (breakpoint_auto_delete_contents, &stop_bpstat);
      make_cleanup (breakpoint_auto_delete_contents, &stop_bpstat);
    }
    }
 
 
  disable_watchpoints_before_interactive_call_start ();
  disable_watchpoints_before_interactive_call_start ();
  proceed_to_finish = 1;        /* We want stop_registers, please... */
  proceed_to_finish = 1;        /* We want stop_registers, please... */
 
 
  if (target_can_async_p ())
  if (target_can_async_p ())
    saved_async = target_async_mask (0);
    saved_async = target_async_mask (0);
 
 
  proceed (addr, TARGET_SIGNAL_0, 0);
  proceed (addr, TARGET_SIGNAL_0, 0);
 
 
  if (saved_async)
  if (saved_async)
    target_async_mask (saved_async);
    target_async_mask (saved_async);
 
 
  enable_watchpoints_after_interactive_call_stop ();
  enable_watchpoints_after_interactive_call_stop ();
 
 
  discard_cleanups (old_cleanups);
  discard_cleanups (old_cleanups);
 
 
  /* We can stop during an inferior call because a signal is received. */
  /* We can stop during an inferior call because a signal is received. */
  if (stopped_by_random_signal)
  if (stopped_by_random_signal)
    return 1;
    return 1;
 
 
  /* We may also stop prematurely because we hit a breakpoint in the
  /* We may also stop prematurely because we hit a breakpoint in the
     called routine. */
     called routine. */
  if (!stop_stack_dummy)
  if (!stop_stack_dummy)
    return 2;
    return 2;
 
 
  /* On normal return, the stack dummy has been popped already.  */
  /* On normal return, the stack dummy has been popped already.  */
 
 
  memcpy (buffer, stop_registers, REGISTER_BYTES);
  memcpy (buffer, stop_registers, REGISTER_BYTES);
  return 0;
  return 0;
}
}


/* Proceed until we reach a different source line with pc greater than
/* Proceed until we reach a different source line with pc greater than
   our current one or exit the function.  We skip calls in both cases.
   our current one or exit the function.  We skip calls in both cases.
 
 
   Note that eventually this command should probably be changed so
   Note that eventually this command should probably be changed so
   that only source lines are printed out when we hit the breakpoint
   that only source lines are printed out when we hit the breakpoint
   we set.  This may involve changes to wait_for_inferior and the
   we set.  This may involve changes to wait_for_inferior and the
   proceed status code.  */
   proceed status code.  */
 
 
/* ARGSUSED */
/* ARGSUSED */
static void
static void
until_next_command (from_tty)
until_next_command (from_tty)
     int from_tty;
     int from_tty;
{
{
  struct frame_info *frame;
  struct frame_info *frame;
  CORE_ADDR pc;
  CORE_ADDR pc;
  struct symbol *func;
  struct symbol *func;
  struct symtab_and_line sal;
  struct symtab_and_line sal;
 
 
  clear_proceed_status ();
  clear_proceed_status ();
 
 
  frame = get_current_frame ();
  frame = get_current_frame ();
 
 
  /* Step until either exited from this function or greater
  /* Step until either exited from this function or greater
     than the current line (if in symbolic section) or pc (if
     than the current line (if in symbolic section) or pc (if
     not). */
     not). */
 
 
  pc = read_pc ();
  pc = read_pc ();
  func = find_pc_function (pc);
  func = find_pc_function (pc);
 
 
  if (!func)
  if (!func)
    {
    {
      struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (pc);
      struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (pc);
 
 
      if (msymbol == NULL)
      if (msymbol == NULL)
        error ("Execution is not within a known function.");
        error ("Execution is not within a known function.");
 
 
      step_range_start = SYMBOL_VALUE_ADDRESS (msymbol);
      step_range_start = SYMBOL_VALUE_ADDRESS (msymbol);
      step_range_end = pc;
      step_range_end = pc;
    }
    }
  else
  else
    {
    {
      sal = find_pc_line (pc, 0);
      sal = find_pc_line (pc, 0);
 
 
      step_range_start = BLOCK_START (SYMBOL_BLOCK_VALUE (func));
      step_range_start = BLOCK_START (SYMBOL_BLOCK_VALUE (func));
      step_range_end = sal.end;
      step_range_end = sal.end;
    }
    }
 
 
  step_over_calls = 1;
  step_over_calls = 1;
  step_frame_address = FRAME_FP (frame);
  step_frame_address = FRAME_FP (frame);
  step_sp = read_sp ();
  step_sp = read_sp ();
 
 
  step_multi = 0;                /* Only one call to proceed */
  step_multi = 0;                /* Only one call to proceed */
 
 
  proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 1);
  proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 1);
}
}
 
 
static void
static void
until_command (arg, from_tty)
until_command (arg, from_tty)
     char *arg;
     char *arg;
     int from_tty;
     int from_tty;
{
{
  int async_exec = 0;
  int async_exec = 0;
 
 
  if (!target_has_execution)
  if (!target_has_execution)
    error ("The program is not running.");
    error ("The program is not running.");
 
 
  /* Find out whether we must run in the background. */
  /* Find out whether we must run in the background. */
  if (arg != NULL)
  if (arg != NULL)
    async_exec = strip_bg_char (&arg);
    async_exec = strip_bg_char (&arg);
 
 
  /* If we must run in the background, but the target can't do it,
  /* If we must run in the background, but the target can't do it,
     error out. */
     error out. */
  if (event_loop_p && async_exec && !target_can_async_p ())
  if (event_loop_p && async_exec && !target_can_async_p ())
    error ("Asynchronous execution not supported on this target.");
    error ("Asynchronous execution not supported on this target.");
 
 
  /* If we are not asked to run in the bg, then prepare to run in the
  /* If we are not asked to run in the bg, then prepare to run in the
     foreground, synchronously. */
     foreground, synchronously. */
  if (event_loop_p && !async_exec && target_can_async_p ())
  if (event_loop_p && !async_exec && target_can_async_p ())
    {
    {
      /* Simulate synchronous execution */
      /* Simulate synchronous execution */
      async_disable_stdin ();
      async_disable_stdin ();
    }
    }
 
 
  if (arg)
  if (arg)
    until_break_command (arg, from_tty);
    until_break_command (arg, from_tty);
  else
  else
    until_next_command (from_tty);
    until_next_command (from_tty);
}
}


 
 
/* Print the result of a function at the end of a 'finish' command. */
/* Print the result of a function at the end of a 'finish' command. */
static void
static void
print_return_value (int structure_return, struct type *value_type)
print_return_value (int structure_return, struct type *value_type)
{
{
  register value_ptr value;
  register value_ptr value;
#ifdef UI_OUT
#ifdef UI_OUT
  static struct ui_stream *stb = NULL;
  static struct ui_stream *stb = NULL;
#endif /* UI_OUT */
#endif /* UI_OUT */
 
 
  if (!structure_return)
  if (!structure_return)
    {
    {
      value = value_being_returned (value_type, stop_registers, structure_return);
      value = value_being_returned (value_type, stop_registers, structure_return);
#ifdef UI_OUT
#ifdef UI_OUT
      stb = ui_out_stream_new (uiout);
      stb = ui_out_stream_new (uiout);
      ui_out_text (uiout, "Value returned is ");
      ui_out_text (uiout, "Value returned is ");
      ui_out_field_fmt (uiout, "gdb-result-var", "$%d", record_latest_value (value));
      ui_out_field_fmt (uiout, "gdb-result-var", "$%d", record_latest_value (value));
      ui_out_text (uiout, "= ");
      ui_out_text (uiout, "= ");
      value_print (value, stb->stream, 0, Val_no_prettyprint);
      value_print (value, stb->stream, 0, Val_no_prettyprint);
      ui_out_field_stream (uiout, "return-value", stb);
      ui_out_field_stream (uiout, "return-value", stb);
      ui_out_text (uiout, "\n");
      ui_out_text (uiout, "\n");
#else /* UI_OUT */
#else /* UI_OUT */
      printf_filtered ("Value returned is $%d = ", record_latest_value (value));
      printf_filtered ("Value returned is $%d = ", record_latest_value (value));
      value_print (value, gdb_stdout, 0, Val_no_prettyprint);
      value_print (value, gdb_stdout, 0, Val_no_prettyprint);
      printf_filtered ("\n");
      printf_filtered ("\n");
#endif /* UI_OUT */
#endif /* UI_OUT */
    }
    }
  else
  else
    {
    {
      /* We cannot determine the contents of the structure because
      /* We cannot determine the contents of the structure because
         it is on the stack, and we don't know where, since we did not
         it is on the stack, and we don't know where, since we did not
         initiate the call, as opposed to the call_function_by_hand case */
         initiate the call, as opposed to the call_function_by_hand case */
#ifdef VALUE_RETURNED_FROM_STACK
#ifdef VALUE_RETURNED_FROM_STACK
      value = 0;
      value = 0;
#ifdef UI_OUT
#ifdef UI_OUT
      ui_out_text (uiout, "Value returned has type: ");
      ui_out_text (uiout, "Value returned has type: ");
      ui_out_field_string (uiout, "return-type", TYPE_NAME (value_type));
      ui_out_field_string (uiout, "return-type", TYPE_NAME (value_type));
      ui_out_text (uiout, ".");
      ui_out_text (uiout, ".");
      ui_out_text (uiout, " Cannot determine contents\n");
      ui_out_text (uiout, " Cannot determine contents\n");
#else /* UI_OUT */
#else /* UI_OUT */
      printf_filtered ("Value returned has type: %s.", TYPE_NAME (value_type));
      printf_filtered ("Value returned has type: %s.", TYPE_NAME (value_type));
      printf_filtered (" Cannot determine contents\n");
      printf_filtered (" Cannot determine contents\n");
#endif /* UI_OUT */
#endif /* UI_OUT */
#else
#else
      value = value_being_returned (value_type, stop_registers, structure_return);
      value = value_being_returned (value_type, stop_registers, structure_return);
#ifdef UI_OUT
#ifdef UI_OUT
      stb = ui_out_stream_new (uiout);
      stb = ui_out_stream_new (uiout);
      ui_out_text (uiout, "Value returned is ");
      ui_out_text (uiout, "Value returned is ");
      ui_out_field_fmt (uiout, "gdb-result-var", "$%d", record_latest_value (value));
      ui_out_field_fmt (uiout, "gdb-result-var", "$%d", record_latest_value (value));
      ui_out_text (uiout, "= ");
      ui_out_text (uiout, "= ");
      value_print (value, stb->stream, 0, Val_no_prettyprint);
      value_print (value, stb->stream, 0, Val_no_prettyprint);
      ui_out_field_stream (uiout, "return-value", stb);
      ui_out_field_stream (uiout, "return-value", stb);
      ui_out_text (uiout, "\n");
      ui_out_text (uiout, "\n");
#else
#else
      printf_filtered ("Value returned is $%d = ", record_latest_value (value));
      printf_filtered ("Value returned is $%d = ", record_latest_value (value));
      value_print (value, gdb_stdout, 0, Val_no_prettyprint);
      value_print (value, gdb_stdout, 0, Val_no_prettyprint);
      printf_filtered ("\n");
      printf_filtered ("\n");
#endif
#endif
#endif
#endif
    }
    }
}
}
 
 
/* Stuff that needs to be done by the finish command after the target
/* Stuff that needs to be done by the finish command after the target
   has stopped.  In asynchronous mode, we wait for the target to stop in
   has stopped.  In asynchronous mode, we wait for the target to stop in
   the call to poll or select in the event loop, so it is impossible to
   the call to poll or select in the event loop, so it is impossible to
   do all the stuff as part of the finish_command function itself. The
   do all the stuff as part of the finish_command function itself. The
   only chance we have to complete this command is in
   only chance we have to complete this command is in
   fetch_inferior_event, which is called by the event loop as soon as it
   fetch_inferior_event, which is called by the event loop as soon as it
   detects that the target has stopped. This function is called via the
   detects that the target has stopped. This function is called via the
   cmd_continaution pointer. */
   cmd_continaution pointer. */
void
void
finish_command_continuation (arg)
finish_command_continuation (arg)
     struct continuation_arg *arg;
     struct continuation_arg *arg;
{
{
  register struct symbol *function;
  register struct symbol *function;
  struct breakpoint *breakpoint;
  struct breakpoint *breakpoint;
  struct cleanup *cleanups;
  struct cleanup *cleanups;
 
 
  breakpoint = (struct breakpoint *) arg->data.pointer;
  breakpoint = (struct breakpoint *) arg->data.pointer;
  function   = (struct symbol *)     arg->next->data.pointer;
  function   = (struct symbol *)     arg->next->data.pointer;
  cleanups   = (struct cleanup *)    arg->next->next->data.pointer;
  cleanups   = (struct cleanup *)    arg->next->next->data.pointer;
 
 
  if (bpstat_find_breakpoint (stop_bpstat, breakpoint) != NULL
  if (bpstat_find_breakpoint (stop_bpstat, breakpoint) != NULL
      && function != 0)
      && function != 0)
    {
    {
      struct type *value_type;
      struct type *value_type;
      CORE_ADDR funcaddr;
      CORE_ADDR funcaddr;
      int struct_return;
      int struct_return;
 
 
      value_type = TYPE_TARGET_TYPE (SYMBOL_TYPE (function));
      value_type = TYPE_TARGET_TYPE (SYMBOL_TYPE (function));
      if (!value_type)
      if (!value_type)
        internal_error ("finish_command: function has no target type");
        internal_error ("finish_command: function has no target type");
 
 
      if (TYPE_CODE (value_type) == TYPE_CODE_VOID)
      if (TYPE_CODE (value_type) == TYPE_CODE_VOID)
        {
        {
          do_exec_cleanups (cleanups);
          do_exec_cleanups (cleanups);
          return;
          return;
        }
        }
 
 
      funcaddr = BLOCK_START (SYMBOL_BLOCK_VALUE (function));
      funcaddr = BLOCK_START (SYMBOL_BLOCK_VALUE (function));
 
 
      struct_return = using_struct_return (value_of_variable (function, NULL),
      struct_return = using_struct_return (value_of_variable (function, NULL),
                                           funcaddr,
                                           funcaddr,
                                           check_typedef (value_type),
                                           check_typedef (value_type),
                                           BLOCK_GCC_COMPILED (SYMBOL_BLOCK_VALUE (function)));
                                           BLOCK_GCC_COMPILED (SYMBOL_BLOCK_VALUE (function)));
 
 
      print_return_value (struct_return, value_type);
      print_return_value (struct_return, value_type);
    }
    }
  do_exec_cleanups (cleanups);
  do_exec_cleanups (cleanups);
}
}
 
 
/* "finish": Set a temporary breakpoint at the place
/* "finish": Set a temporary breakpoint at the place
   the selected frame will return to, then continue.  */
   the selected frame will return to, then continue.  */
 
 
static void
static void
finish_command (arg, from_tty)
finish_command (arg, from_tty)
     char *arg;
     char *arg;
     int from_tty;
     int from_tty;
{
{
  struct symtab_and_line sal;
  struct symtab_and_line sal;
  register struct frame_info *frame;
  register struct frame_info *frame;
  register struct symbol *function;
  register struct symbol *function;
  struct breakpoint *breakpoint;
  struct breakpoint *breakpoint;
  struct cleanup *old_chain;
  struct cleanup *old_chain;
  struct continuation_arg *arg1, *arg2, *arg3;
  struct continuation_arg *arg1, *arg2, *arg3;
 
 
  int async_exec = 0;
  int async_exec = 0;
 
 
  /* Find out whether we must run in the background. */
  /* Find out whether we must run in the background. */
  if (arg != NULL)
  if (arg != NULL)
    async_exec = strip_bg_char (&arg);
    async_exec = strip_bg_char (&arg);
 
 
  /* If we must run in the background, but the target can't do it,
  /* If we must run in the background, but the target can't do it,
     error out. */
     error out. */
  if (event_loop_p && async_exec && !target_can_async_p ())
  if (event_loop_p && async_exec && !target_can_async_p ())
    error ("Asynchronous execution not supported on this target.");
    error ("Asynchronous execution not supported on this target.");
 
 
  /* If we are not asked to run in the bg, then prepare to run in the
  /* If we are not asked to run in the bg, then prepare to run in the
     foreground, synchronously. */
     foreground, synchronously. */
  if (event_loop_p && !async_exec && target_can_async_p ())
  if (event_loop_p && !async_exec && target_can_async_p ())
    {
    {
      /* Simulate synchronous execution */
      /* Simulate synchronous execution */
      async_disable_stdin ();
      async_disable_stdin ();
    }
    }
 
 
  if (arg)
  if (arg)
    error ("The \"finish\" command does not take any arguments.");
    error ("The \"finish\" command does not take any arguments.");
  if (!target_has_execution)
  if (!target_has_execution)
    error ("The program is not running.");
    error ("The program is not running.");
  if (selected_frame == NULL)
  if (selected_frame == NULL)
    error ("No selected frame.");
    error ("No selected frame.");
 
 
  frame = get_prev_frame (selected_frame);
  frame = get_prev_frame (selected_frame);
  if (frame == 0)
  if (frame == 0)
    error ("\"finish\" not meaningful in the outermost frame.");
    error ("\"finish\" not meaningful in the outermost frame.");
 
 
  clear_proceed_status ();
  clear_proceed_status ();
 
 
  sal = find_pc_line (frame->pc, 0);
  sal = find_pc_line (frame->pc, 0);
  sal.pc = frame->pc;
  sal.pc = frame->pc;
 
 
  breakpoint = set_momentary_breakpoint (sal, frame, bp_finish);
  breakpoint = set_momentary_breakpoint (sal, frame, bp_finish);
 
 
  if (!event_loop_p || !target_can_async_p ())
  if (!event_loop_p || !target_can_async_p ())
    old_chain = make_cleanup ((make_cleanup_func) delete_breakpoint, breakpoint);
    old_chain = make_cleanup ((make_cleanup_func) delete_breakpoint, breakpoint);
  else
  else
    old_chain = make_exec_cleanup ((make_cleanup_func) delete_breakpoint, breakpoint);
    old_chain = make_exec_cleanup ((make_cleanup_func) delete_breakpoint, breakpoint);
 
 
  /* Find the function we will return from.  */
  /* Find the function we will return from.  */
 
 
  function = find_pc_function (selected_frame->pc);
  function = find_pc_function (selected_frame->pc);
 
 
  /* Print info on the selected frame, including level number
  /* Print info on the selected frame, including level number
     but not source.  */
     but not source.  */
  if (from_tty)
  if (from_tty)
    {
    {
      printf_filtered ("Run till exit from ");
      printf_filtered ("Run till exit from ");
      print_stack_frame (selected_frame, selected_frame_level, 0);
      print_stack_frame (selected_frame, selected_frame_level, 0);
    }
    }
 
 
  /* If running asynchronously and the target support asynchronous
  /* If running asynchronously and the target support asynchronous
     execution, set things up for the rest of the finish command to be
     execution, set things up for the rest of the finish command to be
     completed later on, when gdb has detected that the target has
     completed later on, when gdb has detected that the target has
     stopped, in fetch_inferior_event. */
     stopped, in fetch_inferior_event. */
  if (event_loop_p && target_can_async_p ())
  if (event_loop_p && target_can_async_p ())
    {
    {
      arg1 =
      arg1 =
        (struct continuation_arg *) xmalloc (sizeof (struct continuation_arg));
        (struct continuation_arg *) xmalloc (sizeof (struct continuation_arg));
      arg2 =
      arg2 =
        (struct continuation_arg *) xmalloc (sizeof (struct continuation_arg));
        (struct continuation_arg *) xmalloc (sizeof (struct continuation_arg));
      arg3 =
      arg3 =
        (struct continuation_arg *) xmalloc (sizeof (struct continuation_arg));
        (struct continuation_arg *) xmalloc (sizeof (struct continuation_arg));
      arg1->next = arg2;
      arg1->next = arg2;
      arg2->next = arg3;
      arg2->next = arg3;
      arg3->next = NULL;
      arg3->next = NULL;
      arg1->data.pointer = breakpoint;
      arg1->data.pointer = breakpoint;
      arg2->data.pointer = function;
      arg2->data.pointer = function;
      arg3->data.pointer = old_chain;
      arg3->data.pointer = old_chain;
      add_continuation (finish_command_continuation, arg1);
      add_continuation (finish_command_continuation, arg1);
    }
    }
 
 
  proceed_to_finish = 1;        /* We want stop_registers, please... */
  proceed_to_finish = 1;        /* We want stop_registers, please... */
  proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);
  proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);
 
 
  /* Do this only if not running asynchronously or if the target
  /* Do this only if not running asynchronously or if the target
     cannot do async execution. Otherwise, complete this command when
     cannot do async execution. Otherwise, complete this command when
     the target actually stops, in fetch_inferior_event. */
     the target actually stops, in fetch_inferior_event. */
  if (!event_loop_p || !target_can_async_p ())
  if (!event_loop_p || !target_can_async_p ())
    {
    {
 
 
      /* Did we stop at our breakpoint? */
      /* Did we stop at our breakpoint? */
      if (bpstat_find_breakpoint (stop_bpstat, breakpoint) != NULL
      if (bpstat_find_breakpoint (stop_bpstat, breakpoint) != NULL
          && function != 0)
          && function != 0)
        {
        {
          struct type *value_type;
          struct type *value_type;
          CORE_ADDR funcaddr;
          CORE_ADDR funcaddr;
          int struct_return;
          int struct_return;
 
 
          value_type = TYPE_TARGET_TYPE (SYMBOL_TYPE (function));
          value_type = TYPE_TARGET_TYPE (SYMBOL_TYPE (function));
          if (!value_type)
          if (!value_type)
            internal_error ("finish_command: function has no target type");
            internal_error ("finish_command: function has no target type");
 
 
          /* FIXME: Shouldn't we do the cleanups before returning? */
          /* FIXME: Shouldn't we do the cleanups before returning? */
          if (TYPE_CODE (value_type) == TYPE_CODE_VOID)
          if (TYPE_CODE (value_type) == TYPE_CODE_VOID)
            return;
            return;
 
 
          funcaddr = BLOCK_START (SYMBOL_BLOCK_VALUE (function));
          funcaddr = BLOCK_START (SYMBOL_BLOCK_VALUE (function));
 
 
          struct_return =
          struct_return =
            using_struct_return (value_of_variable (function, NULL),
            using_struct_return (value_of_variable (function, NULL),
                                 funcaddr,
                                 funcaddr,
                                 check_typedef (value_type),
                                 check_typedef (value_type),
                        BLOCK_GCC_COMPILED (SYMBOL_BLOCK_VALUE (function)));
                        BLOCK_GCC_COMPILED (SYMBOL_BLOCK_VALUE (function)));
 
 
          print_return_value (struct_return, value_type);
          print_return_value (struct_return, value_type);
        }
        }
      do_cleanups (old_chain);
      do_cleanups (old_chain);
    }
    }
}
}


/* ARGSUSED */
/* ARGSUSED */
static void
static void
program_info (args, from_tty)
program_info (args, from_tty)
     char *args;
     char *args;
     int from_tty;
     int from_tty;
{
{
  bpstat bs = stop_bpstat;
  bpstat bs = stop_bpstat;
  int num = bpstat_num (&bs);
  int num = bpstat_num (&bs);
 
 
  if (!target_has_execution)
  if (!target_has_execution)
    {
    {
      printf_filtered ("The program being debugged is not being run.\n");
      printf_filtered ("The program being debugged is not being run.\n");
      return;
      return;
    }
    }
 
 
  target_files_info ();
  target_files_info ();
  printf_filtered ("Program stopped at %s.\n",
  printf_filtered ("Program stopped at %s.\n",
                   local_hex_string ((unsigned long) stop_pc));
                   local_hex_string ((unsigned long) stop_pc));
  if (stop_step)
  if (stop_step)
    printf_filtered ("It stopped after being stepped.\n");
    printf_filtered ("It stopped after being stepped.\n");
  else if (num != 0)
  else if (num != 0)
    {
    {
      /* There may be several breakpoints in the same place, so this
      /* There may be several breakpoints in the same place, so this
         isn't as strange as it seems.  */
         isn't as strange as it seems.  */
      while (num != 0)
      while (num != 0)
        {
        {
          if (num < 0)
          if (num < 0)
            {
            {
              printf_filtered ("It stopped at a breakpoint that has ");
              printf_filtered ("It stopped at a breakpoint that has ");
              printf_filtered ("since been deleted.\n");
              printf_filtered ("since been deleted.\n");
            }
            }
          else
          else
            printf_filtered ("It stopped at breakpoint %d.\n", num);
            printf_filtered ("It stopped at breakpoint %d.\n", num);
          num = bpstat_num (&bs);
          num = bpstat_num (&bs);
        }
        }
    }
    }
  else if (stop_signal != TARGET_SIGNAL_0)
  else if (stop_signal != TARGET_SIGNAL_0)
    {
    {
      printf_filtered ("It stopped with signal %s, %s.\n",
      printf_filtered ("It stopped with signal %s, %s.\n",
                       target_signal_to_name (stop_signal),
                       target_signal_to_name (stop_signal),
                       target_signal_to_string (stop_signal));
                       target_signal_to_string (stop_signal));
    }
    }
 
 
  if (!from_tty)
  if (!from_tty)
    {
    {
      printf_filtered ("Type \"info stack\" or \"info registers\" ");
      printf_filtered ("Type \"info stack\" or \"info registers\" ");
      printf_filtered ("for more information.\n");
      printf_filtered ("for more information.\n");
    }
    }
}
}


static void
static void
environment_info (var, from_tty)
environment_info (var, from_tty)
     char *var;
     char *var;
     int from_tty;
     int from_tty;
{
{
  if (var)
  if (var)
    {
    {
      register char *val = get_in_environ (inferior_environ, var);
      register char *val = get_in_environ (inferior_environ, var);
      if (val)
      if (val)
        {
        {
          puts_filtered (var);
          puts_filtered (var);
          puts_filtered (" = ");
          puts_filtered (" = ");
          puts_filtered (val);
          puts_filtered (val);
          puts_filtered ("\n");
          puts_filtered ("\n");
        }
        }
      else
      else
        {
        {
          puts_filtered ("Environment variable \"");
          puts_filtered ("Environment variable \"");
          puts_filtered (var);
          puts_filtered (var);
          puts_filtered ("\" not defined.\n");
          puts_filtered ("\" not defined.\n");
        }
        }
    }
    }
  else
  else
    {
    {
      register char **vector = environ_vector (inferior_environ);
      register char **vector = environ_vector (inferior_environ);
      while (*vector)
      while (*vector)
        {
        {
          puts_filtered (*vector++);
          puts_filtered (*vector++);
          puts_filtered ("\n");
          puts_filtered ("\n");
        }
        }
    }
    }
}
}
 
 
static void
static void
set_environment_command (arg, from_tty)
set_environment_command (arg, from_tty)
     char *arg;
     char *arg;
     int from_tty;
     int from_tty;
{
{
  register char *p, *val, *var;
  register char *p, *val, *var;
  int nullset = 0;
  int nullset = 0;
 
 
  if (arg == 0)
  if (arg == 0)
    error_no_arg ("environment variable and value");
    error_no_arg ("environment variable and value");
 
 
  /* Find seperation between variable name and value */
  /* Find seperation between variable name and value */
  p = (char *) strchr (arg, '=');
  p = (char *) strchr (arg, '=');
  val = (char *) strchr (arg, ' ');
  val = (char *) strchr (arg, ' ');
 
 
  if (p != 0 && val != 0)
  if (p != 0 && val != 0)
    {
    {
      /* We have both a space and an equals.  If the space is before the
      /* We have both a space and an equals.  If the space is before the
         equals, walk forward over the spaces til we see a nonspace
         equals, walk forward over the spaces til we see a nonspace
         (possibly the equals). */
         (possibly the equals). */
      if (p > val)
      if (p > val)
        while (*val == ' ')
        while (*val == ' ')
          val++;
          val++;
 
 
      /* Now if the = is after the char following the spaces,
      /* Now if the = is after the char following the spaces,
         take the char following the spaces.  */
         take the char following the spaces.  */
      if (p > val)
      if (p > val)
        p = val - 1;
        p = val - 1;
    }
    }
  else if (val != 0 && p == 0)
  else if (val != 0 && p == 0)
    p = val;
    p = val;
 
 
  if (p == arg)
  if (p == arg)
    error_no_arg ("environment variable to set");
    error_no_arg ("environment variable to set");
 
 
  if (p == 0 || p[1] == 0)
  if (p == 0 || p[1] == 0)
    {
    {
      nullset = 1;
      nullset = 1;
      if (p == 0)
      if (p == 0)
        p = arg + strlen (arg); /* So that savestring below will work */
        p = arg + strlen (arg); /* So that savestring below will work */
    }
    }
  else
  else
    {
    {
      /* Not setting variable value to null */
      /* Not setting variable value to null */
      val = p + 1;
      val = p + 1;
      while (*val == ' ' || *val == '\t')
      while (*val == ' ' || *val == '\t')
        val++;
        val++;
    }
    }
 
 
  while (p != arg && (p[-1] == ' ' || p[-1] == '\t'))
  while (p != arg && (p[-1] == ' ' || p[-1] == '\t'))
    p--;
    p--;
 
 
  var = savestring (arg, p - arg);
  var = savestring (arg, p - arg);
  if (nullset)
  if (nullset)
    {
    {
      printf_filtered ("Setting environment variable ");
      printf_filtered ("Setting environment variable ");
      printf_filtered ("\"%s\" to null value.\n", var);
      printf_filtered ("\"%s\" to null value.\n", var);
      set_in_environ (inferior_environ, var, "");
      set_in_environ (inferior_environ, var, "");
    }
    }
  else
  else
    set_in_environ (inferior_environ, var, val);
    set_in_environ (inferior_environ, var, val);
  free (var);
  free (var);
}
}
 
 
static void
static void
unset_environment_command (var, from_tty)
unset_environment_command (var, from_tty)
     char *var;
     char *var;
     int from_tty;
     int from_tty;
{
{
  if (var == 0)
  if (var == 0)
    {
    {
      /* If there is no argument, delete all environment variables.
      /* If there is no argument, delete all environment variables.
         Ask for confirmation if reading from the terminal.  */
         Ask for confirmation if reading from the terminal.  */
      if (!from_tty || query ("Delete all environment variables? "))
      if (!from_tty || query ("Delete all environment variables? "))
        {
        {
          free_environ (inferior_environ);
          free_environ (inferior_environ);
          inferior_environ = make_environ ();
          inferior_environ = make_environ ();
        }
        }
    }
    }
  else
  else
    unset_in_environ (inferior_environ, var);
    unset_in_environ (inferior_environ, var);
}
}
 
 
/* Handle the execution path (PATH variable) */
/* Handle the execution path (PATH variable) */
 
 
static const char path_var_name[] = "PATH";
static const char path_var_name[] = "PATH";
 
 
/* ARGSUSED */
/* ARGSUSED */
static void
static void
path_info (args, from_tty)
path_info (args, from_tty)
     char *args;
     char *args;
     int from_tty;
     int from_tty;
{
{
  puts_filtered ("Executable and object file path: ");
  puts_filtered ("Executable and object file path: ");
  puts_filtered (get_in_environ (inferior_environ, path_var_name));
  puts_filtered (get_in_environ (inferior_environ, path_var_name));
  puts_filtered ("\n");
  puts_filtered ("\n");
}
}
 
 
/* Add zero or more directories to the front of the execution path.  */
/* Add zero or more directories to the front of the execution path.  */
 
 
static void
static void
path_command (dirname, from_tty)
path_command (dirname, from_tty)
     char *dirname;
     char *dirname;
     int from_tty;
     int from_tty;
{
{
  char *exec_path;
  char *exec_path;
  char *env;
  char *env;
  dont_repeat ();
  dont_repeat ();
  env = get_in_environ (inferior_environ, path_var_name);
  env = get_in_environ (inferior_environ, path_var_name);
  /* Can be null if path is not set */
  /* Can be null if path is not set */
  if (!env)
  if (!env)
    env = "";
    env = "";
  exec_path = strsave (env);
  exec_path = strsave (env);
  mod_path (dirname, &exec_path);
  mod_path (dirname, &exec_path);
  set_in_environ (inferior_environ, path_var_name, exec_path);
  set_in_environ (inferior_environ, path_var_name, exec_path);
  free (exec_path);
  free (exec_path);
  if (from_tty)
  if (from_tty)
    path_info ((char *) NULL, from_tty);
    path_info ((char *) NULL, from_tty);
}
}


 
 
#ifdef REGISTER_NAMES
#ifdef REGISTER_NAMES
char *gdb_register_names[] = REGISTER_NAMES;
char *gdb_register_names[] = REGISTER_NAMES;
#endif
#endif
/* Print out the machine register regnum. If regnum is -1,
/* Print out the machine register regnum. If regnum is -1,
   print all registers (fpregs == 1) or all non-float registers
   print all registers (fpregs == 1) or all non-float registers
   (fpregs == 0).
   (fpregs == 0).
 
 
   For most machines, having all_registers_info() print the
   For most machines, having all_registers_info() print the
   register(s) one per line is good enough. If a different format
   register(s) one per line is good enough. If a different format
   is required, (eg, for MIPS or Pyramid 90x, which both have
   is required, (eg, for MIPS or Pyramid 90x, which both have
   lots of regs), or there is an existing convention for showing
   lots of regs), or there is an existing convention for showing
   all the registers, define the macro DO_REGISTERS_INFO(regnum, fp)
   all the registers, define the macro DO_REGISTERS_INFO(regnum, fp)
   to provide that format.  */
   to provide that format.  */
 
 
#if !defined (DO_REGISTERS_INFO)
#if !defined (DO_REGISTERS_INFO)
 
 
#define DO_REGISTERS_INFO(regnum, fp) do_registers_info(regnum, fp)
#define DO_REGISTERS_INFO(regnum, fp) do_registers_info(regnum, fp)
 
 
static void
static void
do_registers_info (regnum, fpregs)
do_registers_info (regnum, fpregs)
     int regnum;
     int regnum;
     int fpregs;
     int fpregs;
{
{
  register int i;
  register int i;
  int numregs = ARCH_NUM_REGS;
  int numregs = ARCH_NUM_REGS;
 
 
  for (i = 0; i < numregs; i++)
  for (i = 0; i < numregs; i++)
    {
    {
      char raw_buffer[MAX_REGISTER_RAW_SIZE];
      char raw_buffer[MAX_REGISTER_RAW_SIZE];
      char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
      char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
 
 
      /* Decide between printing all regs, nonfloat regs, or specific reg.  */
      /* Decide between printing all regs, nonfloat regs, or specific reg.  */
      if (regnum == -1)
      if (regnum == -1)
        {
        {
          if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (i)) == TYPE_CODE_FLT && !fpregs)
          if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (i)) == TYPE_CODE_FLT && !fpregs)
            continue;
            continue;
        }
        }
      else
      else
        {
        {
          if (i != regnum)
          if (i != regnum)
            continue;
            continue;
        }
        }
 
 
      /* If the register name is empty, it is undefined for this
      /* If the register name is empty, it is undefined for this
         processor, so don't display anything.  */
         processor, so don't display anything.  */
      if (REGISTER_NAME (i) == NULL || *(REGISTER_NAME (i)) == '\0')
      if (REGISTER_NAME (i) == NULL || *(REGISTER_NAME (i)) == '\0')
        continue;
        continue;
 
 
      fputs_filtered (REGISTER_NAME (i), gdb_stdout);
      fputs_filtered (REGISTER_NAME (i), gdb_stdout);
      print_spaces_filtered (15 - strlen (REGISTER_NAME (i)), gdb_stdout);
      print_spaces_filtered (15 - strlen (REGISTER_NAME (i)), gdb_stdout);
 
 
      /* Get the data in raw format.  */
      /* Get the data in raw format.  */
      if (read_relative_register_raw_bytes (i, raw_buffer))
      if (read_relative_register_raw_bytes (i, raw_buffer))
        {
        {
          printf_filtered ("*value not available*\n");
          printf_filtered ("*value not available*\n");
          continue;
          continue;
        }
        }
 
 
      /* Convert raw data to virtual format if necessary.  */
      /* Convert raw data to virtual format if necessary.  */
      if (REGISTER_CONVERTIBLE (i))
      if (REGISTER_CONVERTIBLE (i))
        {
        {
          REGISTER_CONVERT_TO_VIRTUAL (i, REGISTER_VIRTUAL_TYPE (i),
          REGISTER_CONVERT_TO_VIRTUAL (i, REGISTER_VIRTUAL_TYPE (i),
                                       raw_buffer, virtual_buffer);
                                       raw_buffer, virtual_buffer);
        }
        }
      else
      else
        {
        {
          memcpy (virtual_buffer, raw_buffer,
          memcpy (virtual_buffer, raw_buffer,
                  REGISTER_VIRTUAL_SIZE (i));
                  REGISTER_VIRTUAL_SIZE (i));
        }
        }
 
 
      /* If virtual format is floating, print it that way, and in raw hex.  */
      /* If virtual format is floating, print it that way, and in raw hex.  */
      if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (i)) == TYPE_CODE_FLT)
      if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (i)) == TYPE_CODE_FLT)
        {
        {
          register int j;
          register int j;
 
 
#ifdef INVALID_FLOAT
#ifdef INVALID_FLOAT
          if (INVALID_FLOAT (virtual_buffer, REGISTER_VIRTUAL_SIZE (i)))
          if (INVALID_FLOAT (virtual_buffer, REGISTER_VIRTUAL_SIZE (i)))
            printf_filtered ("<invalid float>");
            printf_filtered ("<invalid float>");
          else
          else
#endif
#endif
            val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0,
            val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0,
                       gdb_stdout, 0, 1, 0, Val_pretty_default);
                       gdb_stdout, 0, 1, 0, Val_pretty_default);
 
 
          printf_filtered ("\t(raw 0x");
          printf_filtered ("\t(raw 0x");
          for (j = 0; j < REGISTER_RAW_SIZE (i); j++)
          for (j = 0; j < REGISTER_RAW_SIZE (i); j++)
            {
            {
              register int idx = TARGET_BYTE_ORDER == BIG_ENDIAN ? j
              register int idx = TARGET_BYTE_ORDER == BIG_ENDIAN ? j
              : REGISTER_RAW_SIZE (i) - 1 - j;
              : REGISTER_RAW_SIZE (i) - 1 - j;
              printf_filtered ("%02x", (unsigned char) raw_buffer[idx]);
              printf_filtered ("%02x", (unsigned char) raw_buffer[idx]);
            }
            }
          printf_filtered (")");
          printf_filtered (")");
        }
        }
 
 
/* FIXME!  val_print probably can handle all of these cases now...  */
/* FIXME!  val_print probably can handle all of these cases now...  */
 
 
      /* Else if virtual format is too long for printf,
      /* Else if virtual format is too long for printf,
         print in hex a byte at a time.  */
         print in hex a byte at a time.  */
      else if (REGISTER_VIRTUAL_SIZE (i) > (int) sizeof (long))
      else if (REGISTER_VIRTUAL_SIZE (i) > (int) sizeof (long))
        {
        {
          register int j;
          register int j;
          printf_filtered ("0x");
          printf_filtered ("0x");
          for (j = 0; j < REGISTER_VIRTUAL_SIZE (i); j++)
          for (j = 0; j < REGISTER_VIRTUAL_SIZE (i); j++)
            printf_filtered ("%02x", (unsigned char) virtual_buffer[j]);
            printf_filtered ("%02x", (unsigned char) virtual_buffer[j]);
        }
        }
      /* Else print as integer in hex and in decimal.  */
      /* Else print as integer in hex and in decimal.  */
      else
      else
        {
        {
          val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0,
          val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0,
                     gdb_stdout, 'x', 1, 0, Val_pretty_default);
                     gdb_stdout, 'x', 1, 0, Val_pretty_default);
          printf_filtered ("\t");
          printf_filtered ("\t");
          val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0,
          val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0,
                     gdb_stdout, 0, 1, 0, Val_pretty_default);
                     gdb_stdout, 0, 1, 0, Val_pretty_default);
        }
        }
 
 
      /* The SPARC wants to print even-numbered float regs as doubles
      /* The SPARC wants to print even-numbered float regs as doubles
         in addition to printing them as floats.  */
         in addition to printing them as floats.  */
#ifdef PRINT_REGISTER_HOOK
#ifdef PRINT_REGISTER_HOOK
      PRINT_REGISTER_HOOK (i);
      PRINT_REGISTER_HOOK (i);
#endif
#endif
 
 
      printf_filtered ("\n");
      printf_filtered ("\n");
    }
    }
}
}
#endif /* no DO_REGISTERS_INFO.  */
#endif /* no DO_REGISTERS_INFO.  */
 
 
void
void
registers_info (addr_exp, fpregs)
registers_info (addr_exp, fpregs)
     char *addr_exp;
     char *addr_exp;
     int fpregs;
     int fpregs;
{
{
  int regnum, numregs;
  int regnum, numregs;
  register char *end;
  register char *end;
 
 
  if (!target_has_registers)
  if (!target_has_registers)
    error ("The program has no registers now.");
    error ("The program has no registers now.");
  if (selected_frame == NULL)
  if (selected_frame == NULL)
    error ("No selected frame.");
    error ("No selected frame.");
 
 
  if (!addr_exp)
  if (!addr_exp)
    {
    {
      DO_REGISTERS_INFO (-1, fpregs);
      DO_REGISTERS_INFO (-1, fpregs);
      return;
      return;
    }
    }
 
 
  do
  do
    {
    {
      if (addr_exp[0] == '$')
      if (addr_exp[0] == '$')
        addr_exp++;
        addr_exp++;
      end = addr_exp;
      end = addr_exp;
      while (*end != '\0' && *end != ' ' && *end != '\t')
      while (*end != '\0' && *end != ' ' && *end != '\t')
        ++end;
        ++end;
      numregs = ARCH_NUM_REGS;
      numregs = ARCH_NUM_REGS;
 
 
      regnum = target_map_name_to_register (addr_exp, end - addr_exp);
      regnum = target_map_name_to_register (addr_exp, end - addr_exp);
      if (regnum >= 0)
      if (regnum >= 0)
        goto found;
        goto found;
 
 
      regnum = numregs;
      regnum = numregs;
 
 
      if (*addr_exp >= '0' && *addr_exp <= '9')
      if (*addr_exp >= '0' && *addr_exp <= '9')
        regnum = atoi (addr_exp);       /* Take a number */
        regnum = atoi (addr_exp);       /* Take a number */
      if (regnum >= numregs)    /* Bad name, or bad number */
      if (regnum >= numregs)    /* Bad name, or bad number */
        error ("%.*s: invalid register", end - addr_exp, addr_exp);
        error ("%.*s: invalid register", end - addr_exp, addr_exp);
 
 
    found:
    found:
      DO_REGISTERS_INFO (regnum, fpregs);
      DO_REGISTERS_INFO (regnum, fpregs);
 
 
      addr_exp = end;
      addr_exp = end;
      while (*addr_exp == ' ' || *addr_exp == '\t')
      while (*addr_exp == ' ' || *addr_exp == '\t')
        ++addr_exp;
        ++addr_exp;
    }
    }
  while (*addr_exp != '\0');
  while (*addr_exp != '\0');
}
}
 
 
void
void
all_registers_info (addr_exp, from_tty)
all_registers_info (addr_exp, from_tty)
     char *addr_exp;
     char *addr_exp;
     int from_tty;
     int from_tty;
{
{
  registers_info (addr_exp, 1);
  registers_info (addr_exp, 1);
}
}
 
 
void
void
nofp_registers_info (addr_exp, from_tty)
nofp_registers_info (addr_exp, from_tty)
     char *addr_exp;
     char *addr_exp;
     int from_tty;
     int from_tty;
{
{
  registers_info (addr_exp, 0);
  registers_info (addr_exp, 0);
}
}


 
 
/*
/*
 * TODO:
 * TODO:
 * Should save/restore the tty state since it might be that the
 * Should save/restore the tty state since it might be that the
 * program to be debugged was started on this tty and it wants
 * program to be debugged was started on this tty and it wants
 * the tty in some state other than what we want.  If it's running
 * the tty in some state other than what we want.  If it's running
 * on another terminal or without a terminal, then saving and
 * on another terminal or without a terminal, then saving and
 * restoring the tty state is a harmless no-op.
 * restoring the tty state is a harmless no-op.
 * This only needs to be done if we are attaching to a process.
 * This only needs to be done if we are attaching to a process.
 */
 */
 
 
/*
/*
   attach_command --
   attach_command --
   takes a program started up outside of gdb and ``attaches'' to it.
   takes a program started up outside of gdb and ``attaches'' to it.
   This stops it cold in its tracks and allows us to start debugging it.
   This stops it cold in its tracks and allows us to start debugging it.
   and wait for the trace-trap that results from attaching.  */
   and wait for the trace-trap that results from attaching.  */
 
 
void
void
attach_command (args, from_tty)
attach_command (args, from_tty)
     char *args;
     char *args;
     int from_tty;
     int from_tty;
{
{
#ifdef SOLIB_ADD
#ifdef SOLIB_ADD
  extern int auto_solib_add;
  extern int auto_solib_add;
#endif
#endif
 
 
  char *exec_file;
  char *exec_file;
  char *full_exec_path = NULL;
  char *full_exec_path = NULL;
 
 
  dont_repeat ();               /* Not for the faint of heart */
  dont_repeat ();               /* Not for the faint of heart */
 
 
  if (target_has_execution)
  if (target_has_execution)
    {
    {
      if (query ("A program is being debugged already.  Kill it? "))
      if (query ("A program is being debugged already.  Kill it? "))
        target_kill ();
        target_kill ();
      else
      else
        error ("Not killed.");
        error ("Not killed.");
    }
    }
 
 
  target_attach (args, from_tty);
  target_attach (args, from_tty);
 
 
  /* Set up the "saved terminal modes" of the inferior
  /* Set up the "saved terminal modes" of the inferior
     based on what modes we are starting it with.  */
     based on what modes we are starting it with.  */
  target_terminal_init ();
  target_terminal_init ();
 
 
  /* Install inferior's terminal modes.  */
  /* Install inferior's terminal modes.  */
  target_terminal_inferior ();
  target_terminal_inferior ();
 
 
  /* Set up execution context to know that we should return from
  /* Set up execution context to know that we should return from
     wait_for_inferior as soon as the target reports a stop.  */
     wait_for_inferior as soon as the target reports a stop.  */
  init_wait_for_inferior ();
  init_wait_for_inferior ();
  clear_proceed_status ();
  clear_proceed_status ();
  stop_soon_quietly = 1;
  stop_soon_quietly = 1;
 
 
  /* No traps are generated when attaching to inferior under Mach 3
  /* No traps are generated when attaching to inferior under Mach 3
     or GNU hurd.  */
     or GNU hurd.  */
#ifndef ATTACH_NO_WAIT
#ifndef ATTACH_NO_WAIT
  wait_for_inferior ();
  wait_for_inferior ();
#endif
#endif
 
 
  /*
  /*
   * If no exec file is yet known, try to determine it from the
   * If no exec file is yet known, try to determine it from the
   * process itself.
   * process itself.
   */
   */
  exec_file = (char *) get_exec_file (0);
  exec_file = (char *) get_exec_file (0);
  if (!exec_file)
  if (!exec_file)
    {
    {
      exec_file = target_pid_to_exec_file (inferior_pid);
      exec_file = target_pid_to_exec_file (inferior_pid);
      if (exec_file)
      if (exec_file)
        {
        {
          /* It's possible we don't have a full path, but rather just a
          /* It's possible we don't have a full path, but rather just a
             filename.  Some targets, such as HP-UX, don't provide the
             filename.  Some targets, such as HP-UX, don't provide the
             full path, sigh.
             full path, sigh.
 
 
             Attempt to qualify the filename against the source path.
             Attempt to qualify the filename against the source path.
             (If that fails, we'll just fall back on the original
             (If that fails, we'll just fall back on the original
             filename.  Not much more we can do...)
             filename.  Not much more we can do...)
           */
           */
          if (!source_full_path_of (exec_file, &full_exec_path))
          if (!source_full_path_of (exec_file, &full_exec_path))
            full_exec_path = savestring (exec_file, strlen (exec_file));
            full_exec_path = savestring (exec_file, strlen (exec_file));
 
 
          exec_file_attach (full_exec_path, from_tty);
          exec_file_attach (full_exec_path, from_tty);
          symbol_file_command (full_exec_path, from_tty);
          symbol_file_command (full_exec_path, from_tty);
        }
        }
    }
    }
 
 
#ifdef SOLIB_ADD
#ifdef SOLIB_ADD
  if (auto_solib_add)
  if (auto_solib_add)
    {
    {
      /* Add shared library symbols from the newly attached process, if any.  */
      /* Add shared library symbols from the newly attached process, if any.  */
      SOLIB_ADD ((char *) 0, from_tty, &current_target);
      SOLIB_ADD ((char *) 0, from_tty, &current_target);
      re_enable_breakpoints_in_shlibs ();
      re_enable_breakpoints_in_shlibs ();
    }
    }
#endif
#endif
 
 
  /* Take any necessary post-attaching actions for this platform.
  /* Take any necessary post-attaching actions for this platform.
   */
   */
  target_post_attach (inferior_pid);
  target_post_attach (inferior_pid);
 
 
  normal_stop ();
  normal_stop ();
 
 
  if (attach_hook)
  if (attach_hook)
    attach_hook ();
    attach_hook ();
}
}
 
 
/*
/*
 * detach_command --
 * detach_command --
 * takes a program previously attached to and detaches it.
 * takes a program previously attached to and detaches it.
 * The program resumes execution and will no longer stop
 * The program resumes execution and will no longer stop
 * on signals, etc.  We better not have left any breakpoints
 * on signals, etc.  We better not have left any breakpoints
 * in the program or it'll die when it hits one.  For this
 * in the program or it'll die when it hits one.  For this
 * to work, it may be necessary for the process to have been
 * to work, it may be necessary for the process to have been
 * previously attached.  It *might* work if the program was
 * previously attached.  It *might* work if the program was
 * started via the normal ptrace (PTRACE_TRACEME).
 * started via the normal ptrace (PTRACE_TRACEME).
 */
 */
 
 
static void
static void
detach_command (args, from_tty)
detach_command (args, from_tty)
     char *args;
     char *args;
     int from_tty;
     int from_tty;
{
{
  dont_repeat ();               /* Not for the faint of heart */
  dont_repeat ();               /* Not for the faint of heart */
  target_detach (args, from_tty);
  target_detach (args, from_tty);
#if defined(SOLIB_RESTART)
#if defined(SOLIB_RESTART)
  SOLIB_RESTART ();
  SOLIB_RESTART ();
#endif
#endif
  if (detach_hook)
  if (detach_hook)
    detach_hook ();
    detach_hook ();
}
}
 
 
/* Stop the execution of the target while running in async mode, in
/* Stop the execution of the target while running in async mode, in
   the backgound. */
   the backgound. */
#ifdef UI_OUT
#ifdef UI_OUT
void
void
interrupt_target_command_wrapper (args, from_tty)
interrupt_target_command_wrapper (args, from_tty)
     char *args;
     char *args;
     int from_tty;
     int from_tty;
{
{
  interrupt_target_command (args, from_tty);
  interrupt_target_command (args, from_tty);
}
}
#endif
#endif
static void
static void
interrupt_target_command (args, from_tty)
interrupt_target_command (args, from_tty)
     char *args;
     char *args;
     int from_tty;
     int from_tty;
{
{
  if (event_loop_p && target_can_async_p ())
  if (event_loop_p && target_can_async_p ())
    {
    {
      dont_repeat ();           /* Not for the faint of heart */
      dont_repeat ();           /* Not for the faint of heart */
      target_stop ();
      target_stop ();
    }
    }
}
}
 
 
/* ARGSUSED */
/* ARGSUSED */
static void
static void
float_info (addr_exp, from_tty)
float_info (addr_exp, from_tty)
     char *addr_exp;
     char *addr_exp;
     int from_tty;
     int from_tty;
{
{
#ifdef FLOAT_INFO
#ifdef FLOAT_INFO
  FLOAT_INFO;
  FLOAT_INFO;
#else
#else
  printf_filtered ("No floating point info available for this processor.\n");
  printf_filtered ("No floating point info available for this processor.\n");
#endif
#endif
}
}


/* ARGSUSED */
/* ARGSUSED */
static void
static void
unset_command (args, from_tty)
unset_command (args, from_tty)
     char *args;
     char *args;
     int from_tty;
     int from_tty;
{
{
  printf_filtered ("\"unset\" must be followed by the name of ");
  printf_filtered ("\"unset\" must be followed by the name of ");
  printf_filtered ("an unset subcommand.\n");
  printf_filtered ("an unset subcommand.\n");
  help_list (unsetlist, "unset ", -1, gdb_stdout);
  help_list (unsetlist, "unset ", -1, gdb_stdout);
}
}
 
 
void
void
_initialize_infcmd ()
_initialize_infcmd ()
{
{
  struct cmd_list_element *c;
  struct cmd_list_element *c;
 
 
  add_com ("tty", class_run, tty_command,
  add_com ("tty", class_run, tty_command,
           "Set terminal for future runs of program being debugged.");
           "Set terminal for future runs of program being debugged.");
 
 
  add_show_from_set
  add_show_from_set
    (add_set_cmd ("args", class_run, var_string_noescape,
    (add_set_cmd ("args", class_run, var_string_noescape,
                  (char *) &inferior_args,
                  (char *) &inferior_args,
                  "Set argument list to give program being debugged when it is started.\n\
                  "Set argument list to give program being debugged when it is started.\n\
Follow this command with any number of args, to be passed to the program.",
Follow this command with any number of args, to be passed to the program.",
                  &setlist),
                  &setlist),
     &showlist);
     &showlist);
 
 
  c = add_cmd
  c = add_cmd
    ("environment", no_class, environment_info,
    ("environment", no_class, environment_info,
     "The environment to give the program, or one variable's value.\n\
     "The environment to give the program, or one variable's value.\n\
With an argument VAR, prints the value of environment variable VAR to\n\
With an argument VAR, prints the value of environment variable VAR to\n\
give the program being debugged.  With no arguments, prints the entire\n\
give the program being debugged.  With no arguments, prints the entire\n\
environment to be given to the program.", &showlist);
environment to be given to the program.", &showlist);
  c->completer = noop_completer;
  c->completer = noop_completer;
 
 
  add_prefix_cmd ("unset", no_class, unset_command,
  add_prefix_cmd ("unset", no_class, unset_command,
                  "Complement to certain \"set\" commands",
                  "Complement to certain \"set\" commands",
                  &unsetlist, "unset ", 0, &cmdlist);
                  &unsetlist, "unset ", 0, &cmdlist);
 
 
  c = add_cmd ("environment", class_run, unset_environment_command,
  c = add_cmd ("environment", class_run, unset_environment_command,
               "Cancel environment variable VAR for the program.\n\
               "Cancel environment variable VAR for the program.\n\
This does not affect the program until the next \"run\" command.",
This does not affect the program until the next \"run\" command.",
               &unsetlist);
               &unsetlist);
  c->completer = noop_completer;
  c->completer = noop_completer;
 
 
  c = add_cmd ("environment", class_run, set_environment_command,
  c = add_cmd ("environment", class_run, set_environment_command,
               "Set environment variable value to give the program.\n\
               "Set environment variable value to give the program.\n\
Arguments are VAR VALUE where VAR is variable name and VALUE is value.\n\
Arguments are VAR VALUE where VAR is variable name and VALUE is value.\n\
VALUES of environment variables are uninterpreted strings.\n\
VALUES of environment variables are uninterpreted strings.\n\
This does not affect the program until the next \"run\" command.",
This does not affect the program until the next \"run\" command.",
               &setlist);
               &setlist);
  c->completer = noop_completer;
  c->completer = noop_completer;
 
 
  add_com ("path", class_files, path_command,
  add_com ("path", class_files, path_command,
           "Add directory DIR(s) to beginning of search path for object files.\n\
           "Add directory DIR(s) to beginning of search path for object files.\n\
$cwd in the path means the current working directory.\n\
$cwd in the path means the current working directory.\n\
This path is equivalent to the $PATH shell variable.  It is a list of\n\
This path is equivalent to the $PATH shell variable.  It is a list of\n\
directories, separated by colons.  These directories are searched to find\n\
directories, separated by colons.  These directories are searched to find\n\
fully linked executable files and separately compiled object files as needed.");
fully linked executable files and separately compiled object files as needed.");
 
 
  c = add_cmd ("paths", no_class, path_info,
  c = add_cmd ("paths", no_class, path_info,
               "Current search path for finding object files.\n\
               "Current search path for finding object files.\n\
$cwd in the path means the current working directory.\n\
$cwd in the path means the current working directory.\n\
This path is equivalent to the $PATH shell variable.  It is a list of\n\
This path is equivalent to the $PATH shell variable.  It is a list of\n\
directories, separated by colons.  These directories are searched to find\n\
directories, separated by colons.  These directories are searched to find\n\
fully linked executable files and separately compiled object files as needed.",
fully linked executable files and separately compiled object files as needed.",
               &showlist);
               &showlist);
  c->completer = noop_completer;
  c->completer = noop_completer;
 
 
  add_com ("attach", class_run, attach_command,
  add_com ("attach", class_run, attach_command,
           "Attach to a process or file outside of GDB.\n\
           "Attach to a process or file outside of GDB.\n\
This command attaches to another target, of the same type as your last\n\
This command attaches to another target, of the same type as your last\n\
\"target\" command (\"info files\" will show your target stack).\n\
\"target\" command (\"info files\" will show your target stack).\n\
The command may take as argument a process id or a device file.\n\
The command may take as argument a process id or a device file.\n\
For a process id, you must have permission to send the process a signal,\n\
For a process id, you must have permission to send the process a signal,\n\
and it must have the same effective uid as the debugger.\n\
and it must have the same effective uid as the debugger.\n\
When using \"attach\" with a process id, the debugger finds the\n\
When using \"attach\" with a process id, the debugger finds the\n\
program running in the process, looking first in the current working\n\
program running in the process, looking first in the current working\n\
directory, or (if not found there) using the source file search path\n\
directory, or (if not found there) using the source file search path\n\
(see the \"directory\" command).  You can also use the \"file\" command\n\
(see the \"directory\" command).  You can also use the \"file\" command\n\
to specify the program, and to load its symbol table.");
to specify the program, and to load its symbol table.");
 
 
  add_com ("detach", class_run, detach_command,
  add_com ("detach", class_run, detach_command,
           "Detach a process or file previously attached.\n\
           "Detach a process or file previously attached.\n\
If a process, it is no longer traced, and it continues its execution.  If\n\
If a process, it is no longer traced, and it continues its execution.  If\n\
you were debugging a file, the file is closed and gdb no longer accesses it.");
you were debugging a file, the file is closed and gdb no longer accesses it.");
 
 
  add_com ("signal", class_run, signal_command,
  add_com ("signal", class_run, signal_command,
           "Continue program giving it signal specified by the argument.\n\
           "Continue program giving it signal specified by the argument.\n\
An argument of \"0\" means continue program without giving it a signal.");
An argument of \"0\" means continue program without giving it a signal.");
 
 
  add_com ("stepi", class_run, stepi_command,
  add_com ("stepi", class_run, stepi_command,
           "Step one instruction exactly.\n\
           "Step one instruction exactly.\n\
Argument N means do this N times (or till program stops for another reason).");
Argument N means do this N times (or till program stops for another reason).");
  add_com_alias ("si", "stepi", class_alias, 0);
  add_com_alias ("si", "stepi", class_alias, 0);
 
 
  add_com ("nexti", class_run, nexti_command,
  add_com ("nexti", class_run, nexti_command,
           "Step one instruction, but proceed through subroutine calls.\n\
           "Step one instruction, but proceed through subroutine calls.\n\
Argument N means do this N times (or till program stops for another reason).");
Argument N means do this N times (or till program stops for another reason).");
  add_com_alias ("ni", "nexti", class_alias, 0);
  add_com_alias ("ni", "nexti", class_alias, 0);
 
 
  add_com ("finish", class_run, finish_command,
  add_com ("finish", class_run, finish_command,
           "Execute until selected stack frame returns.\n\
           "Execute until selected stack frame returns.\n\
Upon return, the value returned is printed and put in the value history.");
Upon return, the value returned is printed and put in the value history.");
 
 
  add_com ("next", class_run, next_command,
  add_com ("next", class_run, next_command,
           "Step program, proceeding through subroutine calls.\n\
           "Step program, proceeding through subroutine calls.\n\
Like the \"step\" command as long as subroutine calls do not happen;\n\
Like the \"step\" command as long as subroutine calls do not happen;\n\
when they do, the call is treated as one instruction.\n\
when they do, the call is treated as one instruction.\n\
Argument N means do this N times (or till program stops for another reason).");
Argument N means do this N times (or till program stops for another reason).");
  add_com_alias ("n", "next", class_run, 1);
  add_com_alias ("n", "next", class_run, 1);
  if (xdb_commands)
  if (xdb_commands)
    add_com_alias ("S", "next", class_run, 1);
    add_com_alias ("S", "next", class_run, 1);
 
 
  add_com ("step", class_run, step_command,
  add_com ("step", class_run, step_command,
           "Step program until it reaches a different source line.\n\
           "Step program until it reaches a different source line.\n\
Argument N means do this N times (or till program stops for another reason).");
Argument N means do this N times (or till program stops for another reason).");
  add_com_alias ("s", "step", class_run, 1);
  add_com_alias ("s", "step", class_run, 1);
 
 
  add_com ("until", class_run, until_command,
  add_com ("until", class_run, until_command,
           "Execute until the program reaches a source line greater than the current\n\
           "Execute until the program reaches a source line greater than the current\n\
or a specified line or address or function (same args as break command).\n\
or a specified line or address or function (same args as break command).\n\
Execution will also stop upon exit from the current stack frame.");
Execution will also stop upon exit from the current stack frame.");
  add_com_alias ("u", "until", class_run, 1);
  add_com_alias ("u", "until", class_run, 1);
 
 
  add_com ("jump", class_run, jump_command,
  add_com ("jump", class_run, jump_command,
           "Continue program being debugged at specified line or address.\n\
           "Continue program being debugged at specified line or address.\n\
Give as argument either LINENUM or *ADDR, where ADDR is an expression\n\
Give as argument either LINENUM or *ADDR, where ADDR is an expression\n\
for an address to start at.");
for an address to start at.");
 
 
  if (xdb_commands)
  if (xdb_commands)
    add_com ("go", class_run, go_command,
    add_com ("go", class_run, go_command,
             "Usage: go <location>\n\
             "Usage: go <location>\n\
Continue program being debugged, stopping at specified line or \n\
Continue program being debugged, stopping at specified line or \n\
address.\n\
address.\n\
Give as argument either LINENUM or *ADDR, where ADDR is an \n\
Give as argument either LINENUM or *ADDR, where ADDR is an \n\
expression for an address to start at.\n\
expression for an address to start at.\n\
This command is a combination of tbreak and jump.");
This command is a combination of tbreak and jump.");
 
 
  if (xdb_commands)
  if (xdb_commands)
    add_com_alias ("g", "go", class_run, 1);
    add_com_alias ("g", "go", class_run, 1);
 
 
  add_com ("continue", class_run, continue_command,
  add_com ("continue", class_run, continue_command,
           "Continue program being debugged, after signal or breakpoint.\n\
           "Continue program being debugged, after signal or breakpoint.\n\
If proceeding from breakpoint, a number N may be used as an argument,\n\
If proceeding from breakpoint, a number N may be used as an argument,\n\
which means to set the ignore count of that breakpoint to N - 1 (so that\n\
which means to set the ignore count of that breakpoint to N - 1 (so that\n\
the breakpoint won't break until the Nth time it is reached).");
the breakpoint won't break until the Nth time it is reached).");
  add_com_alias ("c", "cont", class_run, 1);
  add_com_alias ("c", "cont", class_run, 1);
  add_com_alias ("fg", "cont", class_run, 1);
  add_com_alias ("fg", "cont", class_run, 1);
 
 
  add_com ("run", class_run, run_command,
  add_com ("run", class_run, run_command,
           "Start debugged program.  You may specify arguments to give it.\n\
           "Start debugged program.  You may specify arguments to give it.\n\
Args may include \"*\", or \"[...]\"; they are expanded using \"sh\".\n\
Args may include \"*\", or \"[...]\"; they are expanded using \"sh\".\n\
Input and output redirection with \">\", \"<\", or \">>\" are also allowed.\n\n\
Input and output redirection with \">\", \"<\", or \">>\" are also allowed.\n\n\
With no arguments, uses arguments last specified (with \"run\" or \"set args\").\n\
With no arguments, uses arguments last specified (with \"run\" or \"set args\").\n\
To cancel previous arguments and run with no arguments,\n\
To cancel previous arguments and run with no arguments,\n\
use \"set args\" without arguments.");
use \"set args\" without arguments.");
  add_com_alias ("r", "run", class_run, 1);
  add_com_alias ("r", "run", class_run, 1);
  if (xdb_commands)
  if (xdb_commands)
    add_com ("R", class_run, run_no_args_command,
    add_com ("R", class_run, run_no_args_command,
             "Start debugged program with no arguments.");
             "Start debugged program with no arguments.");
 
 
  add_com ("interrupt", class_run, interrupt_target_command,
  add_com ("interrupt", class_run, interrupt_target_command,
           "Interrupt the execution of the debugged program.");
           "Interrupt the execution of the debugged program.");
 
 
  add_info ("registers", nofp_registers_info,
  add_info ("registers", nofp_registers_info,
            "List of integer registers and their contents, for selected stack frame.\n\
            "List of integer registers and their contents, for selected stack frame.\n\
Register name as argument means describe only that register.");
Register name as argument means describe only that register.");
  add_info_alias ("r", "registers", 1);
  add_info_alias ("r", "registers", 1);
 
 
  if (xdb_commands)
  if (xdb_commands)
    add_com ("lr", class_info, nofp_registers_info,
    add_com ("lr", class_info, nofp_registers_info,
             "List of integer registers and their contents, for selected stack frame.\n\
             "List of integer registers and their contents, for selected stack frame.\n\
  Register name as argument means describe only that register.");
  Register name as argument means describe only that register.");
  add_info ("all-registers", all_registers_info,
  add_info ("all-registers", all_registers_info,
            "List of all registers and their contents, for selected stack frame.\n\
            "List of all registers and their contents, for selected stack frame.\n\
Register name as argument means describe only that register.");
Register name as argument means describe only that register.");
 
 
  add_info ("program", program_info,
  add_info ("program", program_info,
            "Execution status of the program.");
            "Execution status of the program.");
 
 
  add_info ("float", float_info,
  add_info ("float", float_info,
            "Print the status of the floating point unit\n");
            "Print the status of the floating point unit\n");
 
 
  inferior_args = savestring ("", 1);   /* Initially no args */
  inferior_args = savestring ("", 1);   /* Initially no args */
  inferior_environ = make_environ ();
  inferior_environ = make_environ ();
  init_environ (inferior_environ);
  init_environ (inferior_environ);
}
}
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.