OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [gdb-5.0/] [gdb/] [lynx-nat.c] - Diff between revs 105 and 1765

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 105 Rev 1765
/* Native-dependent code for LynxOS.
/* Native-dependent code for LynxOS.
   Copyright 1993, 1994 Free Software Foundation, Inc.
   Copyright 1993, 1994 Free Software Foundation, Inc.
 
 
   This file is part of GDB.
   This file is part of GDB.
 
 
   This program is free software; you can redistribute it and/or modify
   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2 of the License, or
   the Free Software Foundation; either version 2 of the License, or
   (at your option) any later version.
   (at your option) any later version.
 
 
   This program is distributed in the hope that it will be useful,
   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.
   GNU General Public License for more details.
 
 
   You should have received a copy of the GNU General Public License
   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   along with this program; if not, write to the Free Software
   Foundation, Inc., 59 Temple Place - Suite 330,
   Foundation, Inc., 59 Temple Place - Suite 330,
   Boston, MA 02111-1307, USA.  */
   Boston, MA 02111-1307, USA.  */
 
 
#include "defs.h"
#include "defs.h"
#include "frame.h"
#include "frame.h"
#include "inferior.h"
#include "inferior.h"
#include "target.h"
#include "target.h"
#include "gdbcore.h"
#include "gdbcore.h"
 
 
#include <sys/ptrace.h>
#include <sys/ptrace.h>
#include <sys/wait.h>
#include <sys/wait.h>
#include <sys/fpp.h>
#include <sys/fpp.h>
 
 
static unsigned long registers_addr PARAMS ((int pid));
static unsigned long registers_addr PARAMS ((int pid));
static void fetch_core_registers PARAMS ((char *, unsigned, int, CORE_ADDR));
static void fetch_core_registers PARAMS ((char *, unsigned, int, CORE_ADDR));
 
 
#define X(ENTRY)(offsetof(struct econtext, ENTRY))
#define X(ENTRY)(offsetof(struct econtext, ENTRY))
 
 
#ifdef I386
#ifdef I386
/* Mappings from tm-i386v.h */
/* Mappings from tm-i386v.h */
 
 
static int regmap[] =
static int regmap[] =
{
{
  X (eax),
  X (eax),
  X (ecx),
  X (ecx),
  X (edx),
  X (edx),
  X (ebx),
  X (ebx),
  X (esp),                      /* sp */
  X (esp),                      /* sp */
  X (ebp),                      /* fp */
  X (ebp),                      /* fp */
  X (esi),
  X (esi),
  X (edi),
  X (edi),
  X (eip),                      /* pc */
  X (eip),                      /* pc */
  X (flags),                    /* ps */
  X (flags),                    /* ps */
  X (cs),
  X (cs),
  X (ss),
  X (ss),
  X (ds),
  X (ds),
  X (es),
  X (es),
  X (ecode),                    /* Lynx doesn't give us either fs or gs, so */
  X (ecode),                    /* Lynx doesn't give us either fs or gs, so */
  X (fault),                    /* we just substitute these two in the hopes
  X (fault),                    /* we just substitute these two in the hopes
                                   that they are useful. */
                                   that they are useful. */
};
};
#endif /* I386 */
#endif /* I386 */
 
 
#ifdef M68K
#ifdef M68K
/* Mappings from tm-m68k.h */
/* Mappings from tm-m68k.h */
 
 
static int regmap[] =
static int regmap[] =
{
{
  X (regs[0]),                   /* d0 */
  X (regs[0]),                   /* d0 */
  X (regs[1]),                  /* d1 */
  X (regs[1]),                  /* d1 */
  X (regs[2]),                  /* d2 */
  X (regs[2]),                  /* d2 */
  X (regs[3]),                  /* d3 */
  X (regs[3]),                  /* d3 */
  X (regs[4]),                  /* d4 */
  X (regs[4]),                  /* d4 */
  X (regs[5]),                  /* d5 */
  X (regs[5]),                  /* d5 */
  X (regs[6]),                  /* d6 */
  X (regs[6]),                  /* d6 */
  X (regs[7]),                  /* d7 */
  X (regs[7]),                  /* d7 */
  X (regs[8]),                  /* a0 */
  X (regs[8]),                  /* a0 */
  X (regs[9]),                  /* a1 */
  X (regs[9]),                  /* a1 */
  X (regs[10]),                 /* a2 */
  X (regs[10]),                 /* a2 */
  X (regs[11]),                 /* a3 */
  X (regs[11]),                 /* a3 */
  X (regs[12]),                 /* a4 */
  X (regs[12]),                 /* a4 */
  X (regs[13]),                 /* a5 */
  X (regs[13]),                 /* a5 */
  X (regs[14]),                 /* fp */
  X (regs[14]),                 /* fp */
  offsetof (st_t, usp) - offsetof (st_t, ec),   /* sp */
  offsetof (st_t, usp) - offsetof (st_t, ec),   /* sp */
  X (status),                   /* ps */
  X (status),                   /* ps */
  X (pc),
  X (pc),
 
 
  X (fregs[0 * 3]),              /* fp0 */
  X (fregs[0 * 3]),              /* fp0 */
  X (fregs[1 * 3]),             /* fp1 */
  X (fregs[1 * 3]),             /* fp1 */
  X (fregs[2 * 3]),             /* fp2 */
  X (fregs[2 * 3]),             /* fp2 */
  X (fregs[3 * 3]),             /* fp3 */
  X (fregs[3 * 3]),             /* fp3 */
  X (fregs[4 * 3]),             /* fp4 */
  X (fregs[4 * 3]),             /* fp4 */
  X (fregs[5 * 3]),             /* fp5 */
  X (fregs[5 * 3]),             /* fp5 */
  X (fregs[6 * 3]),             /* fp6 */
  X (fregs[6 * 3]),             /* fp6 */
  X (fregs[7 * 3]),             /* fp7 */
  X (fregs[7 * 3]),             /* fp7 */
 
 
  X (fcregs[0]),         /* fpcontrol */
  X (fcregs[0]),         /* fpcontrol */
  X (fcregs[1]),                /* fpstatus */
  X (fcregs[1]),                /* fpstatus */
  X (fcregs[2]),                /* fpiaddr */
  X (fcregs[2]),                /* fpiaddr */
  X (ssw),                      /* fpcode */
  X (ssw),                      /* fpcode */
  X (fault),                    /* fpflags */
  X (fault),                    /* fpflags */
};
};
#endif /* M68K */
#endif /* M68K */
 
 
#ifdef SPARC
#ifdef SPARC
/* Mappings from tm-sparc.h */
/* Mappings from tm-sparc.h */
 
 
#define FX(ENTRY)(offsetof(struct fcontext, ENTRY))
#define FX(ENTRY)(offsetof(struct fcontext, ENTRY))
 
 
static int regmap[] =
static int regmap[] =
{
{
  -1,                           /* g0 */
  -1,                           /* g0 */
  X (g1),
  X (g1),
  X (g2),
  X (g2),
  X (g3),
  X (g3),
  X (g4),
  X (g4),
  -1,                           /* g5->g7 aren't saved by Lynx */
  -1,                           /* g5->g7 aren't saved by Lynx */
  -1,
  -1,
  -1,
  -1,
 
 
  X (o[0]),
  X (o[0]),
  X (o[1]),
  X (o[1]),
  X (o[2]),
  X (o[2]),
  X (o[3]),
  X (o[3]),
  X (o[4]),
  X (o[4]),
  X (o[5]),
  X (o[5]),
  X (o[6]),                     /* sp */
  X (o[6]),                     /* sp */
  X (o[7]),                     /* ra */
  X (o[7]),                     /* ra */
 
 
  -1, -1, -1, -1, -1, -1, -1, -1,       /* l0 -> l7 */
  -1, -1, -1, -1, -1, -1, -1, -1,       /* l0 -> l7 */
 
 
  -1, -1, -1, -1, -1, -1, -1, -1,       /* i0 -> i7 */
  -1, -1, -1, -1, -1, -1, -1, -1,       /* i0 -> i7 */
 
 
  FX (f.fregs[0]),               /* f0 */
  FX (f.fregs[0]),               /* f0 */
  FX (f.fregs[1]),
  FX (f.fregs[1]),
  FX (f.fregs[2]),
  FX (f.fregs[2]),
  FX (f.fregs[3]),
  FX (f.fregs[3]),
  FX (f.fregs[4]),
  FX (f.fregs[4]),
  FX (f.fregs[5]),
  FX (f.fregs[5]),
  FX (f.fregs[6]),
  FX (f.fregs[6]),
  FX (f.fregs[7]),
  FX (f.fregs[7]),
  FX (f.fregs[8]),
  FX (f.fregs[8]),
  FX (f.fregs[9]),
  FX (f.fregs[9]),
  FX (f.fregs[10]),
  FX (f.fregs[10]),
  FX (f.fregs[11]),
  FX (f.fregs[11]),
  FX (f.fregs[12]),
  FX (f.fregs[12]),
  FX (f.fregs[13]),
  FX (f.fregs[13]),
  FX (f.fregs[14]),
  FX (f.fregs[14]),
  FX (f.fregs[15]),
  FX (f.fregs[15]),
  FX (f.fregs[16]),
  FX (f.fregs[16]),
  FX (f.fregs[17]),
  FX (f.fregs[17]),
  FX (f.fregs[18]),
  FX (f.fregs[18]),
  FX (f.fregs[19]),
  FX (f.fregs[19]),
  FX (f.fregs[20]),
  FX (f.fregs[20]),
  FX (f.fregs[21]),
  FX (f.fregs[21]),
  FX (f.fregs[22]),
  FX (f.fregs[22]),
  FX (f.fregs[23]),
  FX (f.fregs[23]),
  FX (f.fregs[24]),
  FX (f.fregs[24]),
  FX (f.fregs[25]),
  FX (f.fregs[25]),
  FX (f.fregs[26]),
  FX (f.fregs[26]),
  FX (f.fregs[27]),
  FX (f.fregs[27]),
  FX (f.fregs[28]),
  FX (f.fregs[28]),
  FX (f.fregs[29]),
  FX (f.fregs[29]),
  FX (f.fregs[30]),
  FX (f.fregs[30]),
  FX (f.fregs[31]),
  FX (f.fregs[31]),
 
 
  X (y),
  X (y),
  X (psr),
  X (psr),
  X (wim),
  X (wim),
  X (tbr),
  X (tbr),
  X (pc),
  X (pc),
  X (npc),
  X (npc),
  FX (fsr),                     /* fpsr */
  FX (fsr),                     /* fpsr */
  -1,                           /* cpsr */
  -1,                           /* cpsr */
};
};
#endif /* SPARC */
#endif /* SPARC */
 
 
#ifdef rs6000
#ifdef rs6000
 
 
static int regmap[] =
static int regmap[] =
{
{
  X (iregs[0]),                  /* r0 */
  X (iregs[0]),                  /* r0 */
  X (iregs[1]),
  X (iregs[1]),
  X (iregs[2]),
  X (iregs[2]),
  X (iregs[3]),
  X (iregs[3]),
  X (iregs[4]),
  X (iregs[4]),
  X (iregs[5]),
  X (iregs[5]),
  X (iregs[6]),
  X (iregs[6]),
  X (iregs[7]),
  X (iregs[7]),
  X (iregs[8]),
  X (iregs[8]),
  X (iregs[9]),
  X (iregs[9]),
  X (iregs[10]),
  X (iregs[10]),
  X (iregs[11]),
  X (iregs[11]),
  X (iregs[12]),
  X (iregs[12]),
  X (iregs[13]),
  X (iregs[13]),
  X (iregs[14]),
  X (iregs[14]),
  X (iregs[15]),
  X (iregs[15]),
  X (iregs[16]),
  X (iregs[16]),
  X (iregs[17]),
  X (iregs[17]),
  X (iregs[18]),
  X (iregs[18]),
  X (iregs[19]),
  X (iregs[19]),
  X (iregs[20]),
  X (iregs[20]),
  X (iregs[21]),
  X (iregs[21]),
  X (iregs[22]),
  X (iregs[22]),
  X (iregs[23]),
  X (iregs[23]),
  X (iregs[24]),
  X (iregs[24]),
  X (iregs[25]),
  X (iregs[25]),
  X (iregs[26]),
  X (iregs[26]),
  X (iregs[27]),
  X (iregs[27]),
  X (iregs[28]),
  X (iregs[28]),
  X (iregs[29]),
  X (iregs[29]),
  X (iregs[30]),
  X (iregs[30]),
  X (iregs[31]),
  X (iregs[31]),
 
 
  X (fregs[0]),                  /* f0 */
  X (fregs[0]),                  /* f0 */
  X (fregs[1]),
  X (fregs[1]),
  X (fregs[2]),
  X (fregs[2]),
  X (fregs[3]),
  X (fregs[3]),
  X (fregs[4]),
  X (fregs[4]),
  X (fregs[5]),
  X (fregs[5]),
  X (fregs[6]),
  X (fregs[6]),
  X (fregs[7]),
  X (fregs[7]),
  X (fregs[8]),
  X (fregs[8]),
  X (fregs[9]),
  X (fregs[9]),
  X (fregs[10]),
  X (fregs[10]),
  X (fregs[11]),
  X (fregs[11]),
  X (fregs[12]),
  X (fregs[12]),
  X (fregs[13]),
  X (fregs[13]),
  X (fregs[14]),
  X (fregs[14]),
  X (fregs[15]),
  X (fregs[15]),
  X (fregs[16]),
  X (fregs[16]),
  X (fregs[17]),
  X (fregs[17]),
  X (fregs[18]),
  X (fregs[18]),
  X (fregs[19]),
  X (fregs[19]),
  X (fregs[20]),
  X (fregs[20]),
  X (fregs[21]),
  X (fregs[21]),
  X (fregs[22]),
  X (fregs[22]),
  X (fregs[23]),
  X (fregs[23]),
  X (fregs[24]),
  X (fregs[24]),
  X (fregs[25]),
  X (fregs[25]),
  X (fregs[26]),
  X (fregs[26]),
  X (fregs[27]),
  X (fregs[27]),
  X (fregs[28]),
  X (fregs[28]),
  X (fregs[29]),
  X (fregs[29]),
  X (fregs[30]),
  X (fregs[30]),
  X (fregs[31]),
  X (fregs[31]),
 
 
  X (srr0),                     /* IAR (PC) */
  X (srr0),                     /* IAR (PC) */
  X (srr1),                     /* MSR (PS) */
  X (srr1),                     /* MSR (PS) */
  X (cr),                       /* CR */
  X (cr),                       /* CR */
  X (lr),                       /* LR */
  X (lr),                       /* LR */
  X (ctr),                      /* CTR */
  X (ctr),                      /* CTR */
  X (xer),                      /* XER */
  X (xer),                      /* XER */
  X (mq)                        /* MQ */
  X (mq)                        /* MQ */
};
};
 
 
#endif /* rs6000 */
#endif /* rs6000 */
 
 
#ifdef SPARC
#ifdef SPARC
 
 
/* This routine handles some oddball cases for Sparc registers and LynxOS.
/* This routine handles some oddball cases for Sparc registers and LynxOS.
   In partucular, it causes refs to G0, g5->7, and all fp regs to return zero.
   In partucular, it causes refs to G0, g5->7, and all fp regs to return zero.
   It also handles knows where to find the I & L regs on the stack.  */
   It also handles knows where to find the I & L regs on the stack.  */
 
 
void
void
fetch_inferior_registers (regno)
fetch_inferior_registers (regno)
     int regno;
     int regno;
{
{
  int whatregs = 0;
  int whatregs = 0;
 
 
#define WHATREGS_FLOAT 1
#define WHATREGS_FLOAT 1
#define WHATREGS_GEN 2
#define WHATREGS_GEN 2
#define WHATREGS_STACK 4
#define WHATREGS_STACK 4
 
 
  if (regno == -1)
  if (regno == -1)
    whatregs = WHATREGS_FLOAT | WHATREGS_GEN | WHATREGS_STACK;
    whatregs = WHATREGS_FLOAT | WHATREGS_GEN | WHATREGS_STACK;
  else if (regno >= L0_REGNUM && regno <= I7_REGNUM)
  else if (regno >= L0_REGNUM && regno <= I7_REGNUM)
    whatregs = WHATREGS_STACK;
    whatregs = WHATREGS_STACK;
  else if (regno >= FP0_REGNUM && regno < FP0_REGNUM + 32)
  else if (regno >= FP0_REGNUM && regno < FP0_REGNUM + 32)
    whatregs = WHATREGS_FLOAT;
    whatregs = WHATREGS_FLOAT;
  else
  else
    whatregs = WHATREGS_GEN;
    whatregs = WHATREGS_GEN;
 
 
  if (whatregs & WHATREGS_GEN)
  if (whatregs & WHATREGS_GEN)
    {
    {
      struct econtext ec;       /* general regs */
      struct econtext ec;       /* general regs */
      char buf[MAX_REGISTER_RAW_SIZE];
      char buf[MAX_REGISTER_RAW_SIZE];
      int retval;
      int retval;
      int i;
      int i;
 
 
      errno = 0;
      errno = 0;
      retval = ptrace (PTRACE_GETREGS, inferior_pid, (PTRACE_ARG3_TYPE) & ec,
      retval = ptrace (PTRACE_GETREGS, inferior_pid, (PTRACE_ARG3_TYPE) & ec,
                       0);
                       0);
      if (errno)
      if (errno)
        perror_with_name ("ptrace(PTRACE_GETREGS)");
        perror_with_name ("ptrace(PTRACE_GETREGS)");
 
 
      memset (buf, 0, REGISTER_RAW_SIZE (G0_REGNUM));
      memset (buf, 0, REGISTER_RAW_SIZE (G0_REGNUM));
      supply_register (G0_REGNUM, buf);
      supply_register (G0_REGNUM, buf);
      supply_register (TBR_REGNUM, (char *) &ec.tbr);
      supply_register (TBR_REGNUM, (char *) &ec.tbr);
 
 
      memcpy (&registers[REGISTER_BYTE (G1_REGNUM)], &ec.g1,
      memcpy (&registers[REGISTER_BYTE (G1_REGNUM)], &ec.g1,
              4 * REGISTER_RAW_SIZE (G1_REGNUM));
              4 * REGISTER_RAW_SIZE (G1_REGNUM));
      for (i = G1_REGNUM; i <= G1_REGNUM + 3; i++)
      for (i = G1_REGNUM; i <= G1_REGNUM + 3; i++)
        register_valid[i] = 1;
        register_valid[i] = 1;
 
 
      supply_register (PS_REGNUM, (char *) &ec.psr);
      supply_register (PS_REGNUM, (char *) &ec.psr);
      supply_register (Y_REGNUM, (char *) &ec.y);
      supply_register (Y_REGNUM, (char *) &ec.y);
      supply_register (PC_REGNUM, (char *) &ec.pc);
      supply_register (PC_REGNUM, (char *) &ec.pc);
      supply_register (NPC_REGNUM, (char *) &ec.npc);
      supply_register (NPC_REGNUM, (char *) &ec.npc);
      supply_register (WIM_REGNUM, (char *) &ec.wim);
      supply_register (WIM_REGNUM, (char *) &ec.wim);
 
 
      memcpy (&registers[REGISTER_BYTE (O0_REGNUM)], ec.o,
      memcpy (&registers[REGISTER_BYTE (O0_REGNUM)], ec.o,
              8 * REGISTER_RAW_SIZE (O0_REGNUM));
              8 * REGISTER_RAW_SIZE (O0_REGNUM));
      for (i = O0_REGNUM; i <= O0_REGNUM + 7; i++)
      for (i = O0_REGNUM; i <= O0_REGNUM + 7; i++)
        register_valid[i] = 1;
        register_valid[i] = 1;
    }
    }
 
 
  if (whatregs & WHATREGS_STACK)
  if (whatregs & WHATREGS_STACK)
    {
    {
      CORE_ADDR sp;
      CORE_ADDR sp;
      int i;
      int i;
 
 
      sp = read_register (SP_REGNUM);
      sp = read_register (SP_REGNUM);
 
 
      target_read_memory (sp + FRAME_SAVED_I0,
      target_read_memory (sp + FRAME_SAVED_I0,
                          &registers[REGISTER_BYTE (I0_REGNUM)],
                          &registers[REGISTER_BYTE (I0_REGNUM)],
                          8 * REGISTER_RAW_SIZE (I0_REGNUM));
                          8 * REGISTER_RAW_SIZE (I0_REGNUM));
      for (i = I0_REGNUM; i <= I7_REGNUM; i++)
      for (i = I0_REGNUM; i <= I7_REGNUM; i++)
        register_valid[i] = 1;
        register_valid[i] = 1;
 
 
      target_read_memory (sp + FRAME_SAVED_L0,
      target_read_memory (sp + FRAME_SAVED_L0,
                          &registers[REGISTER_BYTE (L0_REGNUM)],
                          &registers[REGISTER_BYTE (L0_REGNUM)],
                          8 * REGISTER_RAW_SIZE (L0_REGNUM));
                          8 * REGISTER_RAW_SIZE (L0_REGNUM));
      for (i = L0_REGNUM; i <= L0_REGNUM + 7; i++)
      for (i = L0_REGNUM; i <= L0_REGNUM + 7; i++)
        register_valid[i] = 1;
        register_valid[i] = 1;
    }
    }
 
 
  if (whatregs & WHATREGS_FLOAT)
  if (whatregs & WHATREGS_FLOAT)
    {
    {
      struct fcontext fc;       /* fp regs */
      struct fcontext fc;       /* fp regs */
      int retval;
      int retval;
      int i;
      int i;
 
 
      errno = 0;
      errno = 0;
      retval = ptrace (PTRACE_GETFPREGS, inferior_pid, (PTRACE_ARG3_TYPE) & fc,
      retval = ptrace (PTRACE_GETFPREGS, inferior_pid, (PTRACE_ARG3_TYPE) & fc,
                       0);
                       0);
      if (errno)
      if (errno)
        perror_with_name ("ptrace(PTRACE_GETFPREGS)");
        perror_with_name ("ptrace(PTRACE_GETFPREGS)");
 
 
      memcpy (&registers[REGISTER_BYTE (FP0_REGNUM)], fc.f.fregs,
      memcpy (&registers[REGISTER_BYTE (FP0_REGNUM)], fc.f.fregs,
              32 * REGISTER_RAW_SIZE (FP0_REGNUM));
              32 * REGISTER_RAW_SIZE (FP0_REGNUM));
      for (i = FP0_REGNUM; i <= FP0_REGNUM + 31; i++)
      for (i = FP0_REGNUM; i <= FP0_REGNUM + 31; i++)
        register_valid[i] = 1;
        register_valid[i] = 1;
 
 
      supply_register (FPS_REGNUM, (char *) &fc.fsr);
      supply_register (FPS_REGNUM, (char *) &fc.fsr);
    }
    }
}
}
 
 
/* This routine handles storing of the I & L regs for the Sparc.  The trick
/* This routine handles storing of the I & L regs for the Sparc.  The trick
   here is that they actually live on the stack.  The really tricky part is
   here is that they actually live on the stack.  The really tricky part is
   that when changing the stack pointer, the I & L regs must be written to
   that when changing the stack pointer, the I & L regs must be written to
   where the new SP points, otherwise the regs will be incorrect when the
   where the new SP points, otherwise the regs will be incorrect when the
   process is started up again.   We assume that the I & L regs are valid at
   process is started up again.   We assume that the I & L regs are valid at
   this point.  */
   this point.  */
 
 
void
void
store_inferior_registers (regno)
store_inferior_registers (regno)
     int regno;
     int regno;
{
{
  int whatregs = 0;
  int whatregs = 0;
 
 
  if (regno == -1)
  if (regno == -1)
    whatregs = WHATREGS_FLOAT | WHATREGS_GEN | WHATREGS_STACK;
    whatregs = WHATREGS_FLOAT | WHATREGS_GEN | WHATREGS_STACK;
  else if (regno >= L0_REGNUM && regno <= I7_REGNUM)
  else if (regno >= L0_REGNUM && regno <= I7_REGNUM)
    whatregs = WHATREGS_STACK;
    whatregs = WHATREGS_STACK;
  else if (regno >= FP0_REGNUM && regno < FP0_REGNUM + 32)
  else if (regno >= FP0_REGNUM && regno < FP0_REGNUM + 32)
    whatregs = WHATREGS_FLOAT;
    whatregs = WHATREGS_FLOAT;
  else if (regno == SP_REGNUM)
  else if (regno == SP_REGNUM)
    whatregs = WHATREGS_STACK | WHATREGS_GEN;
    whatregs = WHATREGS_STACK | WHATREGS_GEN;
  else
  else
    whatregs = WHATREGS_GEN;
    whatregs = WHATREGS_GEN;
 
 
  if (whatregs & WHATREGS_GEN)
  if (whatregs & WHATREGS_GEN)
    {
    {
      struct econtext ec;       /* general regs */
      struct econtext ec;       /* general regs */
      int retval;
      int retval;
 
 
      ec.tbr = read_register (TBR_REGNUM);
      ec.tbr = read_register (TBR_REGNUM);
      memcpy (&ec.g1, &registers[REGISTER_BYTE (G1_REGNUM)],
      memcpy (&ec.g1, &registers[REGISTER_BYTE (G1_REGNUM)],
              4 * REGISTER_RAW_SIZE (G1_REGNUM));
              4 * REGISTER_RAW_SIZE (G1_REGNUM));
 
 
      ec.psr = read_register (PS_REGNUM);
      ec.psr = read_register (PS_REGNUM);
      ec.y = read_register (Y_REGNUM);
      ec.y = read_register (Y_REGNUM);
      ec.pc = read_register (PC_REGNUM);
      ec.pc = read_register (PC_REGNUM);
      ec.npc = read_register (NPC_REGNUM);
      ec.npc = read_register (NPC_REGNUM);
      ec.wim = read_register (WIM_REGNUM);
      ec.wim = read_register (WIM_REGNUM);
 
 
      memcpy (ec.o, &registers[REGISTER_BYTE (O0_REGNUM)],
      memcpy (ec.o, &registers[REGISTER_BYTE (O0_REGNUM)],
              8 * REGISTER_RAW_SIZE (O0_REGNUM));
              8 * REGISTER_RAW_SIZE (O0_REGNUM));
 
 
      errno = 0;
      errno = 0;
      retval = ptrace (PTRACE_SETREGS, inferior_pid, (PTRACE_ARG3_TYPE) & ec,
      retval = ptrace (PTRACE_SETREGS, inferior_pid, (PTRACE_ARG3_TYPE) & ec,
                       0);
                       0);
      if (errno)
      if (errno)
        perror_with_name ("ptrace(PTRACE_SETREGS)");
        perror_with_name ("ptrace(PTRACE_SETREGS)");
    }
    }
 
 
  if (whatregs & WHATREGS_STACK)
  if (whatregs & WHATREGS_STACK)
    {
    {
      int regoffset;
      int regoffset;
      CORE_ADDR sp;
      CORE_ADDR sp;
 
 
      sp = read_register (SP_REGNUM);
      sp = read_register (SP_REGNUM);
 
 
      if (regno == -1 || regno == SP_REGNUM)
      if (regno == -1 || regno == SP_REGNUM)
        {
        {
          if (!register_valid[L0_REGNUM + 5])
          if (!register_valid[L0_REGNUM + 5])
            abort ();
            abort ();
          target_write_memory (sp + FRAME_SAVED_I0,
          target_write_memory (sp + FRAME_SAVED_I0,
                              &registers[REGISTER_BYTE (I0_REGNUM)],
                              &registers[REGISTER_BYTE (I0_REGNUM)],
                              8 * REGISTER_RAW_SIZE (I0_REGNUM));
                              8 * REGISTER_RAW_SIZE (I0_REGNUM));
 
 
          target_write_memory (sp + FRAME_SAVED_L0,
          target_write_memory (sp + FRAME_SAVED_L0,
                              &registers[REGISTER_BYTE (L0_REGNUM)],
                              &registers[REGISTER_BYTE (L0_REGNUM)],
                              8 * REGISTER_RAW_SIZE (L0_REGNUM));
                              8 * REGISTER_RAW_SIZE (L0_REGNUM));
        }
        }
      else if (regno >= L0_REGNUM && regno <= I7_REGNUM)
      else if (regno >= L0_REGNUM && regno <= I7_REGNUM)
        {
        {
          if (!register_valid[regno])
          if (!register_valid[regno])
            abort ();
            abort ();
          if (regno >= L0_REGNUM && regno <= L0_REGNUM + 7)
          if (regno >= L0_REGNUM && regno <= L0_REGNUM + 7)
            regoffset = REGISTER_BYTE (regno) - REGISTER_BYTE (L0_REGNUM)
            regoffset = REGISTER_BYTE (regno) - REGISTER_BYTE (L0_REGNUM)
              + FRAME_SAVED_L0;
              + FRAME_SAVED_L0;
          else
          else
            regoffset = REGISTER_BYTE (regno) - REGISTER_BYTE (I0_REGNUM)
            regoffset = REGISTER_BYTE (regno) - REGISTER_BYTE (I0_REGNUM)
              + FRAME_SAVED_I0;
              + FRAME_SAVED_I0;
          target_write_memory (sp + regoffset,
          target_write_memory (sp + regoffset,
                              &registers[REGISTER_BYTE (regno)],
                              &registers[REGISTER_BYTE (regno)],
                              REGISTER_RAW_SIZE (regno));
                              REGISTER_RAW_SIZE (regno));
        }
        }
    }
    }
 
 
  if (whatregs & WHATREGS_FLOAT)
  if (whatregs & WHATREGS_FLOAT)
    {
    {
      struct fcontext fc;       /* fp regs */
      struct fcontext fc;       /* fp regs */
      int retval;
      int retval;
 
 
/* We read fcontext first so that we can get good values for fq_t... */
/* We read fcontext first so that we can get good values for fq_t... */
      errno = 0;
      errno = 0;
      retval = ptrace (PTRACE_GETFPREGS, inferior_pid, (PTRACE_ARG3_TYPE) & fc,
      retval = ptrace (PTRACE_GETFPREGS, inferior_pid, (PTRACE_ARG3_TYPE) & fc,
                       0);
                       0);
      if (errno)
      if (errno)
        perror_with_name ("ptrace(PTRACE_GETFPREGS)");
        perror_with_name ("ptrace(PTRACE_GETFPREGS)");
 
 
      memcpy (fc.f.fregs, &registers[REGISTER_BYTE (FP0_REGNUM)],
      memcpy (fc.f.fregs, &registers[REGISTER_BYTE (FP0_REGNUM)],
              32 * REGISTER_RAW_SIZE (FP0_REGNUM));
              32 * REGISTER_RAW_SIZE (FP0_REGNUM));
 
 
      fc.fsr = read_register (FPS_REGNUM);
      fc.fsr = read_register (FPS_REGNUM);
 
 
      errno = 0;
      errno = 0;
      retval = ptrace (PTRACE_SETFPREGS, inferior_pid, (PTRACE_ARG3_TYPE) & fc,
      retval = ptrace (PTRACE_SETFPREGS, inferior_pid, (PTRACE_ARG3_TYPE) & fc,
                       0);
                       0);
      if (errno)
      if (errno)
        perror_with_name ("ptrace(PTRACE_SETFPREGS)");
        perror_with_name ("ptrace(PTRACE_SETFPREGS)");
    }
    }
}
}
#endif /* SPARC */
#endif /* SPARC */
 
 
#if defined (I386) || defined (M68K) || defined (rs6000)
#if defined (I386) || defined (M68K) || defined (rs6000)
 
 
/* Return the offset relative to the start of the per-thread data to the
/* Return the offset relative to the start of the per-thread data to the
   saved context block.  */
   saved context block.  */
 
 
static unsigned long
static unsigned long
registers_addr (pid)
registers_addr (pid)
     int pid;
     int pid;
{
{
  CORE_ADDR stblock;
  CORE_ADDR stblock;
  int ecpoff = offsetof (st_t, ecp);
  int ecpoff = offsetof (st_t, ecp);
  CORE_ADDR ecp;
  CORE_ADDR ecp;
 
 
  errno = 0;
  errno = 0;
  stblock = (CORE_ADDR) ptrace (PTRACE_THREADUSER, pid, (PTRACE_ARG3_TYPE) 0,
  stblock = (CORE_ADDR) ptrace (PTRACE_THREADUSER, pid, (PTRACE_ARG3_TYPE) 0,
                                0);
                                0);
  if (errno)
  if (errno)
    perror_with_name ("ptrace(PTRACE_THREADUSER)");
    perror_with_name ("ptrace(PTRACE_THREADUSER)");
 
 
  ecp = (CORE_ADDR) ptrace (PTRACE_PEEKTHREAD, pid, (PTRACE_ARG3_TYPE) ecpoff,
  ecp = (CORE_ADDR) ptrace (PTRACE_PEEKTHREAD, pid, (PTRACE_ARG3_TYPE) ecpoff,
                            0);
                            0);
  if (errno)
  if (errno)
    perror_with_name ("ptrace(PTRACE_PEEKTHREAD)");
    perror_with_name ("ptrace(PTRACE_PEEKTHREAD)");
 
 
  return ecp - stblock;
  return ecp - stblock;
}
}
 
 
/* Fetch one or more registers from the inferior.  REGNO == -1 to get
/* Fetch one or more registers from the inferior.  REGNO == -1 to get
   them all.  We actually fetch more than requested, when convenient,
   them all.  We actually fetch more than requested, when convenient,
   marking them as valid so we won't fetch them again.  */
   marking them as valid so we won't fetch them again.  */
 
 
void
void
fetch_inferior_registers (regno)
fetch_inferior_registers (regno)
     int regno;
     int regno;
{
{
  int reglo, reghi;
  int reglo, reghi;
  int i;
  int i;
  unsigned long ecp;
  unsigned long ecp;
 
 
  if (regno == -1)
  if (regno == -1)
    {
    {
      reglo = 0;
      reglo = 0;
      reghi = NUM_REGS - 1;
      reghi = NUM_REGS - 1;
    }
    }
  else
  else
    reglo = reghi = regno;
    reglo = reghi = regno;
 
 
  ecp = registers_addr (inferior_pid);
  ecp = registers_addr (inferior_pid);
 
 
  for (regno = reglo; regno <= reghi; regno++)
  for (regno = reglo; regno <= reghi; regno++)
    {
    {
      char buf[MAX_REGISTER_RAW_SIZE];
      char buf[MAX_REGISTER_RAW_SIZE];
      int ptrace_fun = PTRACE_PEEKTHREAD;
      int ptrace_fun = PTRACE_PEEKTHREAD;
 
 
#ifdef M68K
#ifdef M68K
      ptrace_fun = regno == SP_REGNUM ? PTRACE_PEEKUSP : PTRACE_PEEKTHREAD;
      ptrace_fun = regno == SP_REGNUM ? PTRACE_PEEKUSP : PTRACE_PEEKTHREAD;
#endif
#endif
 
 
      for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof (int))
      for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof (int))
        {
        {
          unsigned int reg;
          unsigned int reg;
 
 
          errno = 0;
          errno = 0;
          reg = ptrace (ptrace_fun, inferior_pid,
          reg = ptrace (ptrace_fun, inferior_pid,
                        (PTRACE_ARG3_TYPE) (ecp + regmap[regno] + i), 0);
                        (PTRACE_ARG3_TYPE) (ecp + regmap[regno] + i), 0);
          if (errno)
          if (errno)
            perror_with_name ("ptrace(PTRACE_PEEKUSP)");
            perror_with_name ("ptrace(PTRACE_PEEKUSP)");
 
 
          *(int *) &buf[i] = reg;
          *(int *) &buf[i] = reg;
        }
        }
      supply_register (regno, buf);
      supply_register (regno, buf);
    }
    }
}
}
 
 
/* Store our register values back into the inferior.
/* Store our register values back into the inferior.
   If REGNO is -1, do this for all registers.
   If REGNO is -1, do this for all registers.
   Otherwise, REGNO specifies which register (so we can save time).  */
   Otherwise, REGNO specifies which register (so we can save time).  */
 
 
/* Registers we shouldn't try to store.  */
/* Registers we shouldn't try to store.  */
#if !defined (CANNOT_STORE_REGISTER)
#if !defined (CANNOT_STORE_REGISTER)
#define CANNOT_STORE_REGISTER(regno) 0
#define CANNOT_STORE_REGISTER(regno) 0
#endif
#endif
 
 
void
void
store_inferior_registers (regno)
store_inferior_registers (regno)
     int regno;
     int regno;
{
{
  int reglo, reghi;
  int reglo, reghi;
  int i;
  int i;
  unsigned long ecp;
  unsigned long ecp;
 
 
  if (regno == -1)
  if (regno == -1)
    {
    {
      reglo = 0;
      reglo = 0;
      reghi = NUM_REGS - 1;
      reghi = NUM_REGS - 1;
    }
    }
  else
  else
    reglo = reghi = regno;
    reglo = reghi = regno;
 
 
  ecp = registers_addr (inferior_pid);
  ecp = registers_addr (inferior_pid);
 
 
  for (regno = reglo; regno <= reghi; regno++)
  for (regno = reglo; regno <= reghi; regno++)
    {
    {
      int ptrace_fun = PTRACE_POKEUSER;
      int ptrace_fun = PTRACE_POKEUSER;
 
 
      if (CANNOT_STORE_REGISTER (regno))
      if (CANNOT_STORE_REGISTER (regno))
        continue;
        continue;
 
 
#ifdef M68K
#ifdef M68K
      ptrace_fun = regno == SP_REGNUM ? PTRACE_POKEUSP : PTRACE_POKEUSER;
      ptrace_fun = regno == SP_REGNUM ? PTRACE_POKEUSP : PTRACE_POKEUSER;
#endif
#endif
 
 
      for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof (int))
      for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof (int))
        {
        {
          unsigned int reg;
          unsigned int reg;
 
 
          reg = *(unsigned int *) &registers[REGISTER_BYTE (regno) + i];
          reg = *(unsigned int *) &registers[REGISTER_BYTE (regno) + i];
 
 
          errno = 0;
          errno = 0;
          ptrace (ptrace_fun, inferior_pid,
          ptrace (ptrace_fun, inferior_pid,
                  (PTRACE_ARG3_TYPE) (ecp + regmap[regno] + i), reg);
                  (PTRACE_ARG3_TYPE) (ecp + regmap[regno] + i), reg);
          if (errno)
          if (errno)
            perror_with_name ("ptrace(PTRACE_POKEUSP)");
            perror_with_name ("ptrace(PTRACE_POKEUSP)");
        }
        }
    }
    }
}
}
#endif /* defined (I386) || defined (M68K) || defined (rs6000) */
#endif /* defined (I386) || defined (M68K) || defined (rs6000) */
 
 
/* Wait for child to do something.  Return pid of child, or -1 in case
/* Wait for child to do something.  Return pid of child, or -1 in case
   of error; store status through argument pointer OURSTATUS.  */
   of error; store status through argument pointer OURSTATUS.  */
 
 
int
int
child_wait (pid, ourstatus)
child_wait (pid, ourstatus)
     int pid;
     int pid;
     struct target_waitstatus *ourstatus;
     struct target_waitstatus *ourstatus;
{
{
  int save_errno;
  int save_errno;
  int thread;
  int thread;
  union wait status;
  union wait status;
 
 
  while (1)
  while (1)
    {
    {
      int sig;
      int sig;
 
 
      set_sigint_trap ();       /* Causes SIGINT to be passed on to the
      set_sigint_trap ();       /* Causes SIGINT to be passed on to the
                                   attached process. */
                                   attached process. */
      pid = wait (&status);
      pid = wait (&status);
 
 
      save_errno = errno;
      save_errno = errno;
 
 
      clear_sigint_trap ();
      clear_sigint_trap ();
 
 
      if (pid == -1)
      if (pid == -1)
        {
        {
          if (save_errno == EINTR)
          if (save_errno == EINTR)
            continue;
            continue;
          fprintf_unfiltered (gdb_stderr, "Child process unexpectedly missing: %s.\n",
          fprintf_unfiltered (gdb_stderr, "Child process unexpectedly missing: %s.\n",
                              safe_strerror (save_errno));
                              safe_strerror (save_errno));
          /* Claim it exited with unknown signal.  */
          /* Claim it exited with unknown signal.  */
          ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
          ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
          ourstatus->value.sig = TARGET_SIGNAL_UNKNOWN;
          ourstatus->value.sig = TARGET_SIGNAL_UNKNOWN;
          return -1;
          return -1;
        }
        }
 
 
      if (pid != PIDGET (inferior_pid))         /* Some other process?!? */
      if (pid != PIDGET (inferior_pid))         /* Some other process?!? */
        continue;
        continue;
 
 
      thread = status.w_tid;    /* Get thread id from status */
      thread = status.w_tid;    /* Get thread id from status */
 
 
      /* Initial thread value can only be acquired via wait, so we have to
      /* Initial thread value can only be acquired via wait, so we have to
         resort to this hack.  */
         resort to this hack.  */
 
 
      if (TIDGET (inferior_pid) == 0 && thread != 0)
      if (TIDGET (inferior_pid) == 0 && thread != 0)
        {
        {
          inferior_pid = BUILDPID (inferior_pid, thread);
          inferior_pid = BUILDPID (inferior_pid, thread);
          add_thread (inferior_pid);
          add_thread (inferior_pid);
        }
        }
 
 
      pid = BUILDPID (pid, thread);
      pid = BUILDPID (pid, thread);
 
 
      /* We've become a single threaded process again.  */
      /* We've become a single threaded process again.  */
      if (thread == 0)
      if (thread == 0)
        inferior_pid = pid;
        inferior_pid = pid;
 
 
      /* Check for thread creation.  */
      /* Check for thread creation.  */
      if (WIFSTOPPED (status)
      if (WIFSTOPPED (status)
          && WSTOPSIG (status) == SIGTRAP
          && WSTOPSIG (status) == SIGTRAP
          && !in_thread_list (pid))
          && !in_thread_list (pid))
        {
        {
          int realsig;
          int realsig;
 
 
          realsig = ptrace (PTRACE_GETTRACESIG, pid, (PTRACE_ARG3_TYPE) 0, 0);
          realsig = ptrace (PTRACE_GETTRACESIG, pid, (PTRACE_ARG3_TYPE) 0, 0);
 
 
          if (realsig == SIGNEWTHREAD)
          if (realsig == SIGNEWTHREAD)
            {
            {
              /* It's a new thread notification.  We don't want to much with
              /* It's a new thread notification.  We don't want to much with
                 realsig -- the code in wait_for_inferior expects SIGTRAP. */
                 realsig -- the code in wait_for_inferior expects SIGTRAP. */
              ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
              ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
              ourstatus->value.sig = TARGET_SIGNAL_0;
              ourstatus->value.sig = TARGET_SIGNAL_0;
              return pid;
              return pid;
            }
            }
          else
          else
            error ("Signal for unknown thread was not SIGNEWTHREAD");
            error ("Signal for unknown thread was not SIGNEWTHREAD");
        }
        }
 
 
      /* Check for thread termination.  */
      /* Check for thread termination.  */
      else if (WIFSTOPPED (status)
      else if (WIFSTOPPED (status)
               && WSTOPSIG (status) == SIGTRAP
               && WSTOPSIG (status) == SIGTRAP
               && in_thread_list (pid))
               && in_thread_list (pid))
        {
        {
          int realsig;
          int realsig;
 
 
          realsig = ptrace (PTRACE_GETTRACESIG, pid, (PTRACE_ARG3_TYPE) 0, 0);
          realsig = ptrace (PTRACE_GETTRACESIG, pid, (PTRACE_ARG3_TYPE) 0, 0);
 
 
          if (realsig == SIGTHREADEXIT)
          if (realsig == SIGTHREADEXIT)
            {
            {
              ptrace (PTRACE_CONT, PIDGET (pid), (PTRACE_ARG3_TYPE) 0, 0);
              ptrace (PTRACE_CONT, PIDGET (pid), (PTRACE_ARG3_TYPE) 0, 0);
              continue;
              continue;
            }
            }
        }
        }
 
 
#ifdef SPARC
#ifdef SPARC
      /* SPARC Lynx uses an byte reversed wait status; we must use the
      /* SPARC Lynx uses an byte reversed wait status; we must use the
         host macros to access it.  These lines just a copy of
         host macros to access it.  These lines just a copy of
         store_waitstatus.  We can't use CHILD_SPECIAL_WAITSTATUS
         store_waitstatus.  We can't use CHILD_SPECIAL_WAITSTATUS
         because target.c can't include the Lynx <sys/wait.h>.  */
         because target.c can't include the Lynx <sys/wait.h>.  */
      if (WIFEXITED (status))
      if (WIFEXITED (status))
        {
        {
          ourstatus->kind = TARGET_WAITKIND_EXITED;
          ourstatus->kind = TARGET_WAITKIND_EXITED;
          ourstatus->value.integer = WEXITSTATUS (status);
          ourstatus->value.integer = WEXITSTATUS (status);
        }
        }
      else if (!WIFSTOPPED (status))
      else if (!WIFSTOPPED (status))
        {
        {
          ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
          ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
          ourstatus->value.sig =
          ourstatus->value.sig =
            target_signal_from_host (WTERMSIG (status));
            target_signal_from_host (WTERMSIG (status));
        }
        }
      else
      else
        {
        {
          ourstatus->kind = TARGET_WAITKIND_STOPPED;
          ourstatus->kind = TARGET_WAITKIND_STOPPED;
          ourstatus->value.sig =
          ourstatus->value.sig =
            target_signal_from_host (WSTOPSIG (status));
            target_signal_from_host (WSTOPSIG (status));
        }
        }
#else
#else
      store_waitstatus (ourstatus, status.w_status);
      store_waitstatus (ourstatus, status.w_status);
#endif
#endif
 
 
      return pid;
      return pid;
    }
    }
}
}
 
 
/* Return nonzero if the given thread is still alive.  */
/* Return nonzero if the given thread is still alive.  */
int
int
child_thread_alive (pid)
child_thread_alive (pid)
     int pid;
     int pid;
{
{
  /* Arggh.  Apparently pthread_kill only works for threads within
  /* Arggh.  Apparently pthread_kill only works for threads within
     the process that calls pthread_kill.
     the process that calls pthread_kill.
 
 
     We want to avoid the lynx signal extensions as they simply don't
     We want to avoid the lynx signal extensions as they simply don't
     map well to the generic gdb interface we want to keep.
     map well to the generic gdb interface we want to keep.
 
 
     All we want to do is determine if a particular thread is alive;
     All we want to do is determine if a particular thread is alive;
     it appears as if we can just make a harmless thread specific
     it appears as if we can just make a harmless thread specific
     ptrace call to do that.  */
     ptrace call to do that.  */
  return (ptrace (PTRACE_THREADUSER, pid, 0, 0) != -1);
  return (ptrace (PTRACE_THREADUSER, pid, 0, 0) != -1);
}
}
 
 
/* Resume execution of the inferior process.
/* Resume execution of the inferior process.
   If STEP is nonzero, single-step it.
   If STEP is nonzero, single-step it.
   If SIGNAL is nonzero, give it that signal.  */
   If SIGNAL is nonzero, give it that signal.  */
 
 
void
void
child_resume (pid, step, signal)
child_resume (pid, step, signal)
     int pid;
     int pid;
     int step;
     int step;
     enum target_signal signal;
     enum target_signal signal;
{
{
  int func;
  int func;
 
 
  errno = 0;
  errno = 0;
 
 
  /* If pid == -1, then we want to step/continue all threads, else
  /* If pid == -1, then we want to step/continue all threads, else
     we only want to step/continue a single thread.  */
     we only want to step/continue a single thread.  */
  if (pid == -1)
  if (pid == -1)
    {
    {
      pid = inferior_pid;
      pid = inferior_pid;
      func = step ? PTRACE_SINGLESTEP : PTRACE_CONT;
      func = step ? PTRACE_SINGLESTEP : PTRACE_CONT;
    }
    }
  else
  else
    func = step ? PTRACE_SINGLESTEP_ONE : PTRACE_CONT_ONE;
    func = step ? PTRACE_SINGLESTEP_ONE : PTRACE_CONT_ONE;
 
 
 
 
  /* An address of (PTRACE_ARG3_TYPE)1 tells ptrace to continue from where
  /* An address of (PTRACE_ARG3_TYPE)1 tells ptrace to continue from where
     it was.  (If GDB wanted it to start some other way, we have already
     it was.  (If GDB wanted it to start some other way, we have already
     written a new PC value to the child.)
     written a new PC value to the child.)
 
 
     If this system does not support PT_STEP, a higher level function will
     If this system does not support PT_STEP, a higher level function will
     have called single_step() to transmute the step request into a
     have called single_step() to transmute the step request into a
     continue request (by setting breakpoints on all possible successor
     continue request (by setting breakpoints on all possible successor
     instructions), so we don't have to worry about that here.  */
     instructions), so we don't have to worry about that here.  */
 
 
  ptrace (func, pid, (PTRACE_ARG3_TYPE) 1, target_signal_to_host (signal));
  ptrace (func, pid, (PTRACE_ARG3_TYPE) 1, target_signal_to_host (signal));
 
 
  if (errno)
  if (errno)
    perror_with_name ("ptrace");
    perror_with_name ("ptrace");
}
}
 
 
/* Convert a Lynx process ID to a string.  Returns the string in a static
/* Convert a Lynx process ID to a string.  Returns the string in a static
   buffer.  */
   buffer.  */
 
 
char *
char *
child_pid_to_str (pid)
child_pid_to_str (pid)
     int pid;
     int pid;
{
{
  static char buf[40];
  static char buf[40];
 
 
  sprintf (buf, "process %d thread %d", PIDGET (pid), TIDGET (pid));
  sprintf (buf, "process %d thread %d", PIDGET (pid), TIDGET (pid));
 
 
  return buf;
  return buf;
}
}
 
 
/* Extract the register values out of the core file and store
/* Extract the register values out of the core file and store
   them where `read_register' will find them.
   them where `read_register' will find them.
 
 
   CORE_REG_SECT points to the register values themselves, read into memory.
   CORE_REG_SECT points to the register values themselves, read into memory.
   CORE_REG_SIZE is the size of that area.
   CORE_REG_SIZE is the size of that area.
   WHICH says which set of registers we are handling (0 = int, 2 = float
   WHICH says which set of registers we are handling (0 = int, 2 = float
   on machines where they are discontiguous).
   on machines where they are discontiguous).
   REG_ADDR is the offset from u.u_ar0 to the register values relative to
   REG_ADDR is the offset from u.u_ar0 to the register values relative to
   core_reg_sect.  This is used with old-fashioned core files to
   core_reg_sect.  This is used with old-fashioned core files to
   locate the registers in a large upage-plus-stack ".reg" section.
   locate the registers in a large upage-plus-stack ".reg" section.
   Original upage address X is at location core_reg_sect+x+reg_addr.
   Original upage address X is at location core_reg_sect+x+reg_addr.
 */
 */
 
 
static void
static void
fetch_core_registers (core_reg_sect, core_reg_size, which, reg_addr)
fetch_core_registers (core_reg_sect, core_reg_size, which, reg_addr)
     char *core_reg_sect;
     char *core_reg_sect;
     unsigned core_reg_size;
     unsigned core_reg_size;
     int which;
     int which;
     CORE_ADDR reg_addr;
     CORE_ADDR reg_addr;
{
{
  struct st_entry s;
  struct st_entry s;
  unsigned int regno;
  unsigned int regno;
 
 
  for (regno = 0; regno < NUM_REGS; regno++)
  for (regno = 0; regno < NUM_REGS; regno++)
    if (regmap[regno] != -1)
    if (regmap[regno] != -1)
      supply_register (regno, core_reg_sect + offsetof (st_t, ec)
      supply_register (regno, core_reg_sect + offsetof (st_t, ec)
                       + regmap[regno]);
                       + regmap[regno]);
 
 
#ifdef SPARC
#ifdef SPARC
/* Fetching this register causes all of the I & L regs to be read from the
/* Fetching this register causes all of the I & L regs to be read from the
   stack and validated.  */
   stack and validated.  */
 
 
  fetch_inferior_registers (I0_REGNUM);
  fetch_inferior_registers (I0_REGNUM);
#endif
#endif
}
}


 
 
/* Register that we are able to handle lynx core file formats.
/* Register that we are able to handle lynx core file formats.
   FIXME: is this really bfd_target_unknown_flavour? */
   FIXME: is this really bfd_target_unknown_flavour? */
 
 
static struct core_fns lynx_core_fns =
static struct core_fns lynx_core_fns =
{
{
  bfd_target_unknown_flavour,           /* core_flavour */
  bfd_target_unknown_flavour,           /* core_flavour */
  default_check_format,                 /* check_format */
  default_check_format,                 /* check_format */
  default_core_sniffer,                 /* core_sniffer */
  default_core_sniffer,                 /* core_sniffer */
  fetch_core_registers,                 /* core_read_registers */
  fetch_core_registers,                 /* core_read_registers */
  NULL                                  /* next */
  NULL                                  /* next */
};
};
 
 
void
void
_initialize_core_lynx ()
_initialize_core_lynx ()
{
{
  add_core_fns (&lynx_core_fns);
  add_core_fns (&lynx_core_fns);
}
}
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.