OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [gdb-5.0/] [gdb/] [mn10300-tdep.c] - Diff between revs 105 and 1765

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 105 Rev 1765
/* Target-dependent code for the Matsushita MN10300 for GDB, the GNU debugger.
/* Target-dependent code for the Matsushita MN10300 for GDB, the GNU debugger.
   Copyright 1996, 1997, 1998 Free Software Foundation, Inc.
   Copyright 1996, 1997, 1998 Free Software Foundation, Inc.
 
 
   This file is part of GDB.
   This file is part of GDB.
 
 
   This program is free software; you can redistribute it and/or modify
   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2 of the License, or
   the Free Software Foundation; either version 2 of the License, or
   (at your option) any later version.
   (at your option) any later version.
 
 
   This program is distributed in the hope that it will be useful,
   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.
   GNU General Public License for more details.
 
 
   You should have received a copy of the GNU General Public License
   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   along with this program; if not, write to the Free Software
   Foundation, Inc., 59 Temple Place - Suite 330,
   Foundation, Inc., 59 Temple Place - Suite 330,
   Boston, MA 02111-1307, USA.  */
   Boston, MA 02111-1307, USA.  */
 
 
#include "defs.h"
#include "defs.h"
#include "frame.h"
#include "frame.h"
#include "inferior.h"
#include "inferior.h"
#include "obstack.h"
#include "obstack.h"
#include "target.h"
#include "target.h"
#include "value.h"
#include "value.h"
#include "bfd.h"
#include "bfd.h"
#include "gdb_string.h"
#include "gdb_string.h"
#include "gdbcore.h"
#include "gdbcore.h"
#include "symfile.h"
#include "symfile.h"
 
 
extern void _initialize_mn10300_tdep (void);
extern void _initialize_mn10300_tdep (void);
static CORE_ADDR mn10300_analyze_prologue PARAMS ((struct frame_info * fi,
static CORE_ADDR mn10300_analyze_prologue PARAMS ((struct frame_info * fi,
                                                   CORE_ADDR pc));
                                                   CORE_ADDR pc));
 
 
/* Additional info used by the frame */
/* Additional info used by the frame */
 
 
struct frame_extra_info
struct frame_extra_info
  {
  {
    int status;
    int status;
    int stack_size;
    int stack_size;
  };
  };
 
 
 
 
static char *mn10300_generic_register_names[] =
static char *mn10300_generic_register_names[] =
{"d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3",
{"d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3",
 "sp", "pc", "mdr", "psw", "lir", "lar", "", "",
 "sp", "pc", "mdr", "psw", "lir", "lar", "", "",
 "", "", "", "", "", "", "", "",
 "", "", "", "", "", "", "", "",
 "", "", "", "", "", "", "", "fp"};
 "", "", "", "", "", "", "", "fp"};
 
 
static char **mn10300_register_names = mn10300_generic_register_names;
static char **mn10300_register_names = mn10300_generic_register_names;
static char *am33_register_names[] =
static char *am33_register_names[] =
{
{
  "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3",
  "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3",
  "sp", "pc", "mdr", "psw", "lir", "lar", "",
  "sp", "pc", "mdr", "psw", "lir", "lar", "",
  "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
  "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
  "ssp", "msp", "usp", "mcrh", "mcrl", "mcvf", "", "", ""};
  "ssp", "msp", "usp", "mcrh", "mcrl", "mcvf", "", "", ""};
static int am33_mode;
static int am33_mode;
 
 
char *
char *
mn10300_register_name (i)
mn10300_register_name (i)
     int i;
     int i;
{
{
  return mn10300_register_names[i];
  return mn10300_register_names[i];
}
}
 
 
CORE_ADDR
CORE_ADDR
mn10300_saved_pc_after_call (fi)
mn10300_saved_pc_after_call (fi)
     struct frame_info *fi;
     struct frame_info *fi;
{
{
  return read_memory_integer (read_register (SP_REGNUM), 4);
  return read_memory_integer (read_register (SP_REGNUM), 4);
}
}
 
 
void
void
mn10300_extract_return_value (type, regbuf, valbuf)
mn10300_extract_return_value (type, regbuf, valbuf)
     struct type *type;
     struct type *type;
     char *regbuf;
     char *regbuf;
     char *valbuf;
     char *valbuf;
{
{
  if (TYPE_CODE (type) == TYPE_CODE_PTR)
  if (TYPE_CODE (type) == TYPE_CODE_PTR)
    memcpy (valbuf, regbuf + REGISTER_BYTE (4), TYPE_LENGTH (type));
    memcpy (valbuf, regbuf + REGISTER_BYTE (4), TYPE_LENGTH (type));
  else
  else
    memcpy (valbuf, regbuf + REGISTER_BYTE (0), TYPE_LENGTH (type));
    memcpy (valbuf, regbuf + REGISTER_BYTE (0), TYPE_LENGTH (type));
}
}
 
 
CORE_ADDR
CORE_ADDR
mn10300_extract_struct_value_address (regbuf)
mn10300_extract_struct_value_address (regbuf)
     char *regbuf;
     char *regbuf;
{
{
  return extract_address (regbuf + REGISTER_BYTE (4),
  return extract_address (regbuf + REGISTER_BYTE (4),
                          REGISTER_RAW_SIZE (4));
                          REGISTER_RAW_SIZE (4));
}
}
 
 
void
void
mn10300_store_return_value (type, valbuf)
mn10300_store_return_value (type, valbuf)
     struct type *type;
     struct type *type;
     char *valbuf;
     char *valbuf;
{
{
  if (TYPE_CODE (type) == TYPE_CODE_PTR)
  if (TYPE_CODE (type) == TYPE_CODE_PTR)
    write_register_bytes (REGISTER_BYTE (4), valbuf, TYPE_LENGTH (type));
    write_register_bytes (REGISTER_BYTE (4), valbuf, TYPE_LENGTH (type));
  else
  else
    write_register_bytes (REGISTER_BYTE (0), valbuf, TYPE_LENGTH (type));
    write_register_bytes (REGISTER_BYTE (0), valbuf, TYPE_LENGTH (type));
}
}
 
 
static struct frame_info *analyze_dummy_frame PARAMS ((CORE_ADDR, CORE_ADDR));
static struct frame_info *analyze_dummy_frame PARAMS ((CORE_ADDR, CORE_ADDR));
static struct frame_info *
static struct frame_info *
analyze_dummy_frame (pc, frame)
analyze_dummy_frame (pc, frame)
     CORE_ADDR pc;
     CORE_ADDR pc;
     CORE_ADDR frame;
     CORE_ADDR frame;
{
{
  static struct frame_info *dummy = NULL;
  static struct frame_info *dummy = NULL;
  if (dummy == NULL)
  if (dummy == NULL)
    {
    {
      dummy = xmalloc (sizeof (struct frame_info));
      dummy = xmalloc (sizeof (struct frame_info));
      dummy->saved_regs = xmalloc (SIZEOF_FRAME_SAVED_REGS);
      dummy->saved_regs = xmalloc (SIZEOF_FRAME_SAVED_REGS);
      dummy->extra_info = xmalloc (sizeof (struct frame_extra_info));
      dummy->extra_info = xmalloc (sizeof (struct frame_extra_info));
    }
    }
  dummy->next = NULL;
  dummy->next = NULL;
  dummy->prev = NULL;
  dummy->prev = NULL;
  dummy->pc = pc;
  dummy->pc = pc;
  dummy->frame = frame;
  dummy->frame = frame;
  dummy->extra_info->status = 0;
  dummy->extra_info->status = 0;
  dummy->extra_info->stack_size = 0;
  dummy->extra_info->stack_size = 0;
  memset (dummy->saved_regs, '\000', SIZEOF_FRAME_SAVED_REGS);
  memset (dummy->saved_regs, '\000', SIZEOF_FRAME_SAVED_REGS);
  mn10300_analyze_prologue (dummy, 0);
  mn10300_analyze_prologue (dummy, 0);
  return dummy;
  return dummy;
}
}
 
 
/* Values for frame_info.status */
/* Values for frame_info.status */
 
 
#define MY_FRAME_IN_SP 0x1
#define MY_FRAME_IN_SP 0x1
#define MY_FRAME_IN_FP 0x2
#define MY_FRAME_IN_FP 0x2
#define NO_MORE_FRAMES 0x4
#define NO_MORE_FRAMES 0x4
 
 
 
 
/* Should call_function allocate stack space for a struct return?  */
/* Should call_function allocate stack space for a struct return?  */
int
int
mn10300_use_struct_convention (gcc_p, type)
mn10300_use_struct_convention (gcc_p, type)
     int gcc_p;
     int gcc_p;
     struct type *type;
     struct type *type;
{
{
  return (TYPE_NFIELDS (type) > 1 || TYPE_LENGTH (type) > 8);
  return (TYPE_NFIELDS (type) > 1 || TYPE_LENGTH (type) > 8);
}
}
 
 
/* The breakpoint instruction must be the same size as the smallest
/* The breakpoint instruction must be the same size as the smallest
   instruction in the instruction set.
   instruction in the instruction set.
 
 
   The Matsushita mn10x00 processors have single byte instructions
   The Matsushita mn10x00 processors have single byte instructions
   so we need a single byte breakpoint.  Matsushita hasn't defined
   so we need a single byte breakpoint.  Matsushita hasn't defined
   one, so we defined it ourselves.  */
   one, so we defined it ourselves.  */
 
 
unsigned char *
unsigned char *
mn10300_breakpoint_from_pc (bp_addr, bp_size)
mn10300_breakpoint_from_pc (bp_addr, bp_size)
     CORE_ADDR *bp_addr;
     CORE_ADDR *bp_addr;
     int *bp_size;
     int *bp_size;
{
{
  static char breakpoint[] =
  static char breakpoint[] =
  {0xff};
  {0xff};
  *bp_size = 1;
  *bp_size = 1;
  return breakpoint;
  return breakpoint;
}
}
 
 
 
 
/* Fix fi->frame if it's bogus at this point.  This is a helper
/* Fix fi->frame if it's bogus at this point.  This is a helper
   function for mn10300_analyze_prologue. */
   function for mn10300_analyze_prologue. */
 
 
static void
static void
fix_frame_pointer (fi, stack_size)
fix_frame_pointer (fi, stack_size)
     struct frame_info *fi;
     struct frame_info *fi;
     int stack_size;
     int stack_size;
{
{
  if (fi && fi->next == NULL)
  if (fi && fi->next == NULL)
    {
    {
      if (fi->extra_info->status & MY_FRAME_IN_SP)
      if (fi->extra_info->status & MY_FRAME_IN_SP)
        fi->frame = read_sp () - stack_size;
        fi->frame = read_sp () - stack_size;
      else if (fi->extra_info->status & MY_FRAME_IN_FP)
      else if (fi->extra_info->status & MY_FRAME_IN_FP)
        fi->frame = read_register (A3_REGNUM);
        fi->frame = read_register (A3_REGNUM);
    }
    }
}
}
 
 
 
 
/* Set offsets of registers saved by movm instruction.
/* Set offsets of registers saved by movm instruction.
   This is a helper function for mn10300_analyze_prologue.  */
   This is a helper function for mn10300_analyze_prologue.  */
 
 
static void
static void
set_movm_offsets (fi, movm_args)
set_movm_offsets (fi, movm_args)
     struct frame_info *fi;
     struct frame_info *fi;
     int movm_args;
     int movm_args;
{
{
  int offset = 0;
  int offset = 0;
 
 
  if (fi == NULL || movm_args == 0)
  if (fi == NULL || movm_args == 0)
    return;
    return;
 
 
  if (movm_args & 0x10)
  if (movm_args & 0x10)
    {
    {
      fi->saved_regs[A3_REGNUM] = fi->frame + offset;
      fi->saved_regs[A3_REGNUM] = fi->frame + offset;
      offset += 4;
      offset += 4;
    }
    }
  if (movm_args & 0x20)
  if (movm_args & 0x20)
    {
    {
      fi->saved_regs[A2_REGNUM] = fi->frame + offset;
      fi->saved_regs[A2_REGNUM] = fi->frame + offset;
      offset += 4;
      offset += 4;
    }
    }
  if (movm_args & 0x40)
  if (movm_args & 0x40)
    {
    {
      fi->saved_regs[D3_REGNUM] = fi->frame + offset;
      fi->saved_regs[D3_REGNUM] = fi->frame + offset;
      offset += 4;
      offset += 4;
    }
    }
  if (movm_args & 0x80)
  if (movm_args & 0x80)
    {
    {
      fi->saved_regs[D2_REGNUM] = fi->frame + offset;
      fi->saved_regs[D2_REGNUM] = fi->frame + offset;
      offset += 4;
      offset += 4;
    }
    }
  if (am33_mode && movm_args & 0x02)
  if (am33_mode && movm_args & 0x02)
    {
    {
      fi->saved_regs[E0_REGNUM + 5] = fi->frame + offset;
      fi->saved_regs[E0_REGNUM + 5] = fi->frame + offset;
      fi->saved_regs[E0_REGNUM + 4] = fi->frame + offset + 4;
      fi->saved_regs[E0_REGNUM + 4] = fi->frame + offset + 4;
      fi->saved_regs[E0_REGNUM + 3] = fi->frame + offset + 8;
      fi->saved_regs[E0_REGNUM + 3] = fi->frame + offset + 8;
      fi->saved_regs[E0_REGNUM + 2] = fi->frame + offset + 12;
      fi->saved_regs[E0_REGNUM + 2] = fi->frame + offset + 12;
    }
    }
}
}
 
 
 
 
/* The main purpose of this file is dealing with prologues to extract
/* The main purpose of this file is dealing with prologues to extract
   information about stack frames and saved registers.
   information about stack frames and saved registers.
 
 
   For reference here's how prologues look on the mn10300:
   For reference here's how prologues look on the mn10300:
 
 
   With frame pointer:
   With frame pointer:
   movm [d2,d3,a2,a3],sp
   movm [d2,d3,a2,a3],sp
   mov sp,a3
   mov sp,a3
   add <size>,sp
   add <size>,sp
 
 
   Without frame pointer:
   Without frame pointer:
   movm [d2,d3,a2,a3],sp (if needed)
   movm [d2,d3,a2,a3],sp (if needed)
   add <size>,sp
   add <size>,sp
 
 
   One day we might keep the stack pointer constant, that won't
   One day we might keep the stack pointer constant, that won't
   change the code for prologues, but it will make the frame
   change the code for prologues, but it will make the frame
   pointerless case much more common.  */
   pointerless case much more common.  */
 
 
/* Analyze the prologue to determine where registers are saved,
/* Analyze the prologue to determine where registers are saved,
   the end of the prologue, etc etc.  Return the end of the prologue
   the end of the prologue, etc etc.  Return the end of the prologue
   scanned.
   scanned.
 
 
   We store into FI (if non-null) several tidbits of information:
   We store into FI (if non-null) several tidbits of information:
 
 
   * stack_size -- size of this stack frame.  Note that if we stop in
   * stack_size -- size of this stack frame.  Note that if we stop in
   certain parts of the prologue/epilogue we may claim the size of the
   certain parts of the prologue/epilogue we may claim the size of the
   current frame is zero.  This happens when the current frame has
   current frame is zero.  This happens when the current frame has
   not been allocated yet or has already been deallocated.
   not been allocated yet or has already been deallocated.
 
 
   * fsr -- Addresses of registers saved in the stack by this frame.
   * fsr -- Addresses of registers saved in the stack by this frame.
 
 
   * status -- A (relatively) generic status indicator.  It's a bitmask
   * status -- A (relatively) generic status indicator.  It's a bitmask
   with the following bits:
   with the following bits:
 
 
   MY_FRAME_IN_SP: The base of the current frame is actually in
   MY_FRAME_IN_SP: The base of the current frame is actually in
   the stack pointer.  This can happen for frame pointerless
   the stack pointer.  This can happen for frame pointerless
   functions, or cases where we're stopped in the prologue/epilogue
   functions, or cases where we're stopped in the prologue/epilogue
   itself.  For these cases mn10300_analyze_prologue will need up
   itself.  For these cases mn10300_analyze_prologue will need up
   update fi->frame before returning or analyzing the register
   update fi->frame before returning or analyzing the register
   save instructions.
   save instructions.
 
 
   MY_FRAME_IN_FP: The base of the current frame is in the
   MY_FRAME_IN_FP: The base of the current frame is in the
   frame pointer register ($a2).
   frame pointer register ($a2).
 
 
   NO_MORE_FRAMES: Set this if the current frame is "start" or
   NO_MORE_FRAMES: Set this if the current frame is "start" or
   if the first instruction looks like mov <imm>,sp.  This tells
   if the first instruction looks like mov <imm>,sp.  This tells
   frame chain to not bother trying to unwind past this frame.  */
   frame chain to not bother trying to unwind past this frame.  */
 
 
static CORE_ADDR
static CORE_ADDR
mn10300_analyze_prologue (fi, pc)
mn10300_analyze_prologue (fi, pc)
     struct frame_info *fi;
     struct frame_info *fi;
     CORE_ADDR pc;
     CORE_ADDR pc;
{
{
  CORE_ADDR func_addr, func_end, addr, stop;
  CORE_ADDR func_addr, func_end, addr, stop;
  CORE_ADDR stack_size;
  CORE_ADDR stack_size;
  int imm_size;
  int imm_size;
  unsigned char buf[4];
  unsigned char buf[4];
  int status, movm_args = 0;
  int status, movm_args = 0;
  char *name;
  char *name;
 
 
  /* Use the PC in the frame if it's provided to look up the
  /* Use the PC in the frame if it's provided to look up the
     start of this function.  */
     start of this function.  */
  pc = (fi ? fi->pc : pc);
  pc = (fi ? fi->pc : pc);
 
 
  /* Find the start of this function.  */
  /* Find the start of this function.  */
  status = find_pc_partial_function (pc, &name, &func_addr, &func_end);
  status = find_pc_partial_function (pc, &name, &func_addr, &func_end);
 
 
  /* Do nothing if we couldn't find the start of this function or if we're
  /* Do nothing if we couldn't find the start of this function or if we're
     stopped at the first instruction in the prologue.  */
     stopped at the first instruction in the prologue.  */
  if (status == 0)
  if (status == 0)
    {
    {
      return pc;
      return pc;
    }
    }
 
 
  /* If we're in start, then give up.  */
  /* If we're in start, then give up.  */
  if (strcmp (name, "start") == 0)
  if (strcmp (name, "start") == 0)
    {
    {
      if (fi != NULL)
      if (fi != NULL)
        fi->extra_info->status = NO_MORE_FRAMES;
        fi->extra_info->status = NO_MORE_FRAMES;
      return pc;
      return pc;
    }
    }
 
 
  /* At the start of a function our frame is in the stack pointer.  */
  /* At the start of a function our frame is in the stack pointer.  */
  if (fi)
  if (fi)
    fi->extra_info->status = MY_FRAME_IN_SP;
    fi->extra_info->status = MY_FRAME_IN_SP;
 
 
  /* Get the next two bytes into buf, we need two because rets is a two
  /* Get the next two bytes into buf, we need two because rets is a two
     byte insn and the first isn't enough to uniquely identify it.  */
     byte insn and the first isn't enough to uniquely identify it.  */
  status = read_memory_nobpt (pc, buf, 2);
  status = read_memory_nobpt (pc, buf, 2);
  if (status != 0)
  if (status != 0)
    return pc;
    return pc;
 
 
  /* If we're physically on an "rets" instruction, then our frame has
  /* If we're physically on an "rets" instruction, then our frame has
     already been deallocated.  Note this can also be true for retf
     already been deallocated.  Note this can also be true for retf
     and ret if they specify a size of zero.
     and ret if they specify a size of zero.
 
 
     In this case fi->frame is bogus, we need to fix it.  */
     In this case fi->frame is bogus, we need to fix it.  */
  if (fi && buf[0] == 0xf0 && buf[1] == 0xfc)
  if (fi && buf[0] == 0xf0 && buf[1] == 0xfc)
    {
    {
      if (fi->next == NULL)
      if (fi->next == NULL)
        fi->frame = read_sp ();
        fi->frame = read_sp ();
      return fi->pc;
      return fi->pc;
    }
    }
 
 
  /* Similarly if we're stopped on the first insn of a prologue as our
  /* Similarly if we're stopped on the first insn of a prologue as our
     frame hasn't been allocated yet.  */
     frame hasn't been allocated yet.  */
  if (fi && fi->pc == func_addr)
  if (fi && fi->pc == func_addr)
    {
    {
      if (fi->next == NULL)
      if (fi->next == NULL)
        fi->frame = read_sp ();
        fi->frame = read_sp ();
      return fi->pc;
      return fi->pc;
    }
    }
 
 
  /* Figure out where to stop scanning.  */
  /* Figure out where to stop scanning.  */
  stop = fi ? fi->pc : func_end;
  stop = fi ? fi->pc : func_end;
 
 
  /* Don't walk off the end of the function.  */
  /* Don't walk off the end of the function.  */
  stop = stop > func_end ? func_end : stop;
  stop = stop > func_end ? func_end : stop;
 
 
  /* Start scanning on the first instruction of this function.  */
  /* Start scanning on the first instruction of this function.  */
  addr = func_addr;
  addr = func_addr;
 
 
  /* Suck in two bytes.  */
  /* Suck in two bytes.  */
  status = read_memory_nobpt (addr, buf, 2);
  status = read_memory_nobpt (addr, buf, 2);
  if (status != 0)
  if (status != 0)
    {
    {
      fix_frame_pointer (fi, 0);
      fix_frame_pointer (fi, 0);
      return addr;
      return addr;
    }
    }
 
 
  /* First see if this insn sets the stack pointer; if so, it's something
  /* First see if this insn sets the stack pointer; if so, it's something
     we won't understand, so quit now.   */
     we won't understand, so quit now.   */
  if (buf[0] == 0xf2 && (buf[1] & 0xf3) == 0xf0)
  if (buf[0] == 0xf2 && (buf[1] & 0xf3) == 0xf0)
    {
    {
      if (fi)
      if (fi)
        fi->extra_info->status = NO_MORE_FRAMES;
        fi->extra_info->status = NO_MORE_FRAMES;
      return addr;
      return addr;
    }
    }
 
 
  /* Now look for movm [regs],sp, which saves the callee saved registers.
  /* Now look for movm [regs],sp, which saves the callee saved registers.
 
 
     At this time we don't know if fi->frame is valid, so we only note
     At this time we don't know if fi->frame is valid, so we only note
     that we encountered a movm instruction.  Later, we'll set the entries
     that we encountered a movm instruction.  Later, we'll set the entries
     in fsr.regs as needed.  */
     in fsr.regs as needed.  */
  if (buf[0] == 0xcf)
  if (buf[0] == 0xcf)
    {
    {
      /* Extract the register list for the movm instruction.  */
      /* Extract the register list for the movm instruction.  */
      status = read_memory_nobpt (addr + 1, buf, 1);
      status = read_memory_nobpt (addr + 1, buf, 1);
      movm_args = *buf;
      movm_args = *buf;
 
 
      addr += 2;
      addr += 2;
 
 
      /* Quit now if we're beyond the stop point.  */
      /* Quit now if we're beyond the stop point.  */
      if (addr >= stop)
      if (addr >= stop)
        {
        {
          /* Fix fi->frame since it's bogus at this point.  */
          /* Fix fi->frame since it's bogus at this point.  */
          if (fi && fi->next == NULL)
          if (fi && fi->next == NULL)
            fi->frame = read_sp ();
            fi->frame = read_sp ();
 
 
          /* Note if/where callee saved registers were saved.  */
          /* Note if/where callee saved registers were saved.  */
          set_movm_offsets (fi, movm_args);
          set_movm_offsets (fi, movm_args);
          return addr;
          return addr;
        }
        }
 
 
      /* Get the next two bytes so the prologue scan can continue.  */
      /* Get the next two bytes so the prologue scan can continue.  */
      status = read_memory_nobpt (addr, buf, 2);
      status = read_memory_nobpt (addr, buf, 2);
      if (status != 0)
      if (status != 0)
        {
        {
          /* Fix fi->frame since it's bogus at this point.  */
          /* Fix fi->frame since it's bogus at this point.  */
          if (fi && fi->next == NULL)
          if (fi && fi->next == NULL)
            fi->frame = read_sp ();
            fi->frame = read_sp ();
 
 
          /* Note if/where callee saved registers were saved.  */
          /* Note if/where callee saved registers were saved.  */
          set_movm_offsets (fi, movm_args);
          set_movm_offsets (fi, movm_args);
          return addr;
          return addr;
        }
        }
    }
    }
 
 
  /* Now see if we set up a frame pointer via "mov sp,a3" */
  /* Now see if we set up a frame pointer via "mov sp,a3" */
  if (buf[0] == 0x3f)
  if (buf[0] == 0x3f)
    {
    {
      addr += 1;
      addr += 1;
 
 
      /* The frame pointer is now valid.  */
      /* The frame pointer is now valid.  */
      if (fi)
      if (fi)
        {
        {
          fi->extra_info->status |= MY_FRAME_IN_FP;
          fi->extra_info->status |= MY_FRAME_IN_FP;
          fi->extra_info->status &= ~MY_FRAME_IN_SP;
          fi->extra_info->status &= ~MY_FRAME_IN_SP;
        }
        }
 
 
      /* Quit now if we're beyond the stop point.  */
      /* Quit now if we're beyond the stop point.  */
      if (addr >= stop)
      if (addr >= stop)
        {
        {
          /* Fix fi->frame if it's bogus at this point.  */
          /* Fix fi->frame if it's bogus at this point.  */
          fix_frame_pointer (fi, 0);
          fix_frame_pointer (fi, 0);
 
 
          /* Note if/where callee saved registers were saved.  */
          /* Note if/where callee saved registers were saved.  */
          set_movm_offsets (fi, movm_args);
          set_movm_offsets (fi, movm_args);
          return addr;
          return addr;
        }
        }
 
 
      /* Get two more bytes so scanning can continue.  */
      /* Get two more bytes so scanning can continue.  */
      status = read_memory_nobpt (addr, buf, 2);
      status = read_memory_nobpt (addr, buf, 2);
      if (status != 0)
      if (status != 0)
        {
        {
          /* Fix fi->frame if it's bogus at this point.  */
          /* Fix fi->frame if it's bogus at this point.  */
          fix_frame_pointer (fi, 0);
          fix_frame_pointer (fi, 0);
 
 
          /* Note if/where callee saved registers were saved.  */
          /* Note if/where callee saved registers were saved.  */
          set_movm_offsets (fi, movm_args);
          set_movm_offsets (fi, movm_args);
          return addr;
          return addr;
        }
        }
    }
    }
 
 
  /* Next we should allocate the local frame.  No more prologue insns
  /* Next we should allocate the local frame.  No more prologue insns
     are found after allocating the local frame.
     are found after allocating the local frame.
 
 
     Search for add imm8,sp (0xf8feXX)
     Search for add imm8,sp (0xf8feXX)
     or add imm16,sp (0xfafeXXXX)
     or add imm16,sp (0xfafeXXXX)
     or add imm32,sp (0xfcfeXXXXXXXX).
     or add imm32,sp (0xfcfeXXXXXXXX).
 
 
     If none of the above was found, then this prologue has no
     If none of the above was found, then this prologue has no
     additional stack.  */
     additional stack.  */
 
 
  status = read_memory_nobpt (addr, buf, 2);
  status = read_memory_nobpt (addr, buf, 2);
  if (status != 0)
  if (status != 0)
    {
    {
      /* Fix fi->frame if it's bogus at this point.  */
      /* Fix fi->frame if it's bogus at this point.  */
      fix_frame_pointer (fi, 0);
      fix_frame_pointer (fi, 0);
 
 
      /* Note if/where callee saved registers were saved.  */
      /* Note if/where callee saved registers were saved.  */
      set_movm_offsets (fi, movm_args);
      set_movm_offsets (fi, movm_args);
      return addr;
      return addr;
    }
    }
 
 
  imm_size = 0;
  imm_size = 0;
  if (buf[0] == 0xf8 && buf[1] == 0xfe)
  if (buf[0] == 0xf8 && buf[1] == 0xfe)
    imm_size = 1;
    imm_size = 1;
  else if (buf[0] == 0xfa && buf[1] == 0xfe)
  else if (buf[0] == 0xfa && buf[1] == 0xfe)
    imm_size = 2;
    imm_size = 2;
  else if (buf[0] == 0xfc && buf[1] == 0xfe)
  else if (buf[0] == 0xfc && buf[1] == 0xfe)
    imm_size = 4;
    imm_size = 4;
 
 
  if (imm_size != 0)
  if (imm_size != 0)
    {
    {
      /* Suck in imm_size more bytes, they'll hold the size of the
      /* Suck in imm_size more bytes, they'll hold the size of the
         current frame.  */
         current frame.  */
      status = read_memory_nobpt (addr + 2, buf, imm_size);
      status = read_memory_nobpt (addr + 2, buf, imm_size);
      if (status != 0)
      if (status != 0)
        {
        {
          /* Fix fi->frame if it's bogus at this point.  */
          /* Fix fi->frame if it's bogus at this point.  */
          fix_frame_pointer (fi, 0);
          fix_frame_pointer (fi, 0);
 
 
          /* Note if/where callee saved registers were saved.  */
          /* Note if/where callee saved registers were saved.  */
          set_movm_offsets (fi, movm_args);
          set_movm_offsets (fi, movm_args);
          return addr;
          return addr;
        }
        }
 
 
      /* Note the size of the stack in the frame info structure.  */
      /* Note the size of the stack in the frame info structure.  */
      stack_size = extract_signed_integer (buf, imm_size);
      stack_size = extract_signed_integer (buf, imm_size);
      if (fi)
      if (fi)
        fi->extra_info->stack_size = stack_size;
        fi->extra_info->stack_size = stack_size;
 
 
      /* We just consumed 2 + imm_size bytes.  */
      /* We just consumed 2 + imm_size bytes.  */
      addr += 2 + imm_size;
      addr += 2 + imm_size;
 
 
      /* No more prologue insns follow, so begin preparation to return.  */
      /* No more prologue insns follow, so begin preparation to return.  */
      /* Fix fi->frame if it's bogus at this point.  */
      /* Fix fi->frame if it's bogus at this point.  */
      fix_frame_pointer (fi, stack_size);
      fix_frame_pointer (fi, stack_size);
 
 
      /* Note if/where callee saved registers were saved.  */
      /* Note if/where callee saved registers were saved.  */
      set_movm_offsets (fi, movm_args);
      set_movm_offsets (fi, movm_args);
      return addr;
      return addr;
    }
    }
 
 
  /* We never found an insn which allocates local stack space, regardless
  /* We never found an insn which allocates local stack space, regardless
     this is the end of the prologue.  */
     this is the end of the prologue.  */
  /* Fix fi->frame if it's bogus at this point.  */
  /* Fix fi->frame if it's bogus at this point.  */
  fix_frame_pointer (fi, 0);
  fix_frame_pointer (fi, 0);
 
 
  /* Note if/where callee saved registers were saved.  */
  /* Note if/where callee saved registers were saved.  */
  set_movm_offsets (fi, movm_args);
  set_movm_offsets (fi, movm_args);
  return addr;
  return addr;
}
}
 
 
/* Function: frame_chain
/* Function: frame_chain
   Figure out and return the caller's frame pointer given current
   Figure out and return the caller's frame pointer given current
   frame_info struct.
   frame_info struct.
 
 
   We don't handle dummy frames yet but we would probably just return the
   We don't handle dummy frames yet but we would probably just return the
   stack pointer that was in use at the time the function call was made?  */
   stack pointer that was in use at the time the function call was made?  */
 
 
CORE_ADDR
CORE_ADDR
mn10300_frame_chain (fi)
mn10300_frame_chain (fi)
     struct frame_info *fi;
     struct frame_info *fi;
{
{
  struct frame_info *dummy;
  struct frame_info *dummy;
  /* Walk through the prologue to determine the stack size,
  /* Walk through the prologue to determine the stack size,
     location of saved registers, end of the prologue, etc.  */
     location of saved registers, end of the prologue, etc.  */
  if (fi->extra_info->status == 0)
  if (fi->extra_info->status == 0)
    mn10300_analyze_prologue (fi, (CORE_ADDR) 0);
    mn10300_analyze_prologue (fi, (CORE_ADDR) 0);
 
 
  /* Quit now if mn10300_analyze_prologue set NO_MORE_FRAMES.  */
  /* Quit now if mn10300_analyze_prologue set NO_MORE_FRAMES.  */
  if (fi->extra_info->status & NO_MORE_FRAMES)
  if (fi->extra_info->status & NO_MORE_FRAMES)
    return 0;
    return 0;
 
 
  /* Now that we've analyzed our prologue, determine the frame
  /* Now that we've analyzed our prologue, determine the frame
     pointer for our caller.
     pointer for our caller.
 
 
     If our caller has a frame pointer, then we need to
     If our caller has a frame pointer, then we need to
     find the entry value of $a3 to our function.
     find the entry value of $a3 to our function.
 
 
     If fsr.regs[A3_REGNUM] is nonzero, then it's at the memory
     If fsr.regs[A3_REGNUM] is nonzero, then it's at the memory
     location pointed to by fsr.regs[A3_REGNUM].
     location pointed to by fsr.regs[A3_REGNUM].
 
 
     Else it's still in $a3.
     Else it's still in $a3.
 
 
     If our caller does not have a frame pointer, then his
     If our caller does not have a frame pointer, then his
     frame base is fi->frame + -caller's stack size.  */
     frame base is fi->frame + -caller's stack size.  */
 
 
  /* The easiest way to get that info is to analyze our caller's frame.
  /* The easiest way to get that info is to analyze our caller's frame.
     So we set up a dummy frame and call mn10300_analyze_prologue to
     So we set up a dummy frame and call mn10300_analyze_prologue to
     find stuff for us.  */
     find stuff for us.  */
  dummy = analyze_dummy_frame (FRAME_SAVED_PC (fi), fi->frame);
  dummy = analyze_dummy_frame (FRAME_SAVED_PC (fi), fi->frame);
 
 
  if (dummy->extra_info->status & MY_FRAME_IN_FP)
  if (dummy->extra_info->status & MY_FRAME_IN_FP)
    {
    {
      /* Our caller has a frame pointer.  So find the frame in $a3 or
      /* Our caller has a frame pointer.  So find the frame in $a3 or
         in the stack.  */
         in the stack.  */
      if (fi->saved_regs[A3_REGNUM])
      if (fi->saved_regs[A3_REGNUM])
        return (read_memory_integer (fi->saved_regs[A3_REGNUM], REGISTER_SIZE));
        return (read_memory_integer (fi->saved_regs[A3_REGNUM], REGISTER_SIZE));
      else
      else
        return read_register (A3_REGNUM);
        return read_register (A3_REGNUM);
    }
    }
  else
  else
    {
    {
      int adjust = 0;
      int adjust = 0;
 
 
      adjust += (fi->saved_regs[D2_REGNUM] ? 4 : 0);
      adjust += (fi->saved_regs[D2_REGNUM] ? 4 : 0);
      adjust += (fi->saved_regs[D3_REGNUM] ? 4 : 0);
      adjust += (fi->saved_regs[D3_REGNUM] ? 4 : 0);
      adjust += (fi->saved_regs[A2_REGNUM] ? 4 : 0);
      adjust += (fi->saved_regs[A2_REGNUM] ? 4 : 0);
      adjust += (fi->saved_regs[A3_REGNUM] ? 4 : 0);
      adjust += (fi->saved_regs[A3_REGNUM] ? 4 : 0);
      if (am33_mode)
      if (am33_mode)
        {
        {
          adjust += (fi->saved_regs[E0_REGNUM + 5] ? 4 : 0);
          adjust += (fi->saved_regs[E0_REGNUM + 5] ? 4 : 0);
          adjust += (fi->saved_regs[E0_REGNUM + 4] ? 4 : 0);
          adjust += (fi->saved_regs[E0_REGNUM + 4] ? 4 : 0);
          adjust += (fi->saved_regs[E0_REGNUM + 3] ? 4 : 0);
          adjust += (fi->saved_regs[E0_REGNUM + 3] ? 4 : 0);
          adjust += (fi->saved_regs[E0_REGNUM + 2] ? 4 : 0);
          adjust += (fi->saved_regs[E0_REGNUM + 2] ? 4 : 0);
        }
        }
 
 
      /* Our caller does not have a frame pointer.  So his frame starts
      /* Our caller does not have a frame pointer.  So his frame starts
         at the base of our frame (fi->frame) + register save space
         at the base of our frame (fi->frame) + register save space
         + <his size>.  */
         + <his size>.  */
      return fi->frame + adjust + -dummy->extra_info->stack_size;
      return fi->frame + adjust + -dummy->extra_info->stack_size;
    }
    }
}
}
 
 
/* Function: skip_prologue
/* Function: skip_prologue
   Return the address of the first inst past the prologue of the function.  */
   Return the address of the first inst past the prologue of the function.  */
 
 
CORE_ADDR
CORE_ADDR
mn10300_skip_prologue (pc)
mn10300_skip_prologue (pc)
     CORE_ADDR pc;
     CORE_ADDR pc;
{
{
  /* We used to check the debug symbols, but that can lose if
  /* We used to check the debug symbols, but that can lose if
     we have a null prologue.  */
     we have a null prologue.  */
  return mn10300_analyze_prologue (NULL, pc);
  return mn10300_analyze_prologue (NULL, pc);
}
}
 
 
 
 
/* Function: pop_frame
/* Function: pop_frame
   This routine gets called when either the user uses the `return'
   This routine gets called when either the user uses the `return'
   command, or the call dummy breakpoint gets hit.  */
   command, or the call dummy breakpoint gets hit.  */
 
 
void
void
mn10300_pop_frame (frame)
mn10300_pop_frame (frame)
     struct frame_info *frame;
     struct frame_info *frame;
{
{
  int regnum;
  int regnum;
 
 
  if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
  if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
    generic_pop_dummy_frame ();
    generic_pop_dummy_frame ();
  else
  else
    {
    {
      write_register (PC_REGNUM, FRAME_SAVED_PC (frame));
      write_register (PC_REGNUM, FRAME_SAVED_PC (frame));
 
 
      /* Restore any saved registers.  */
      /* Restore any saved registers.  */
      for (regnum = 0; regnum < NUM_REGS; regnum++)
      for (regnum = 0; regnum < NUM_REGS; regnum++)
        if (frame->saved_regs[regnum] != 0)
        if (frame->saved_regs[regnum] != 0)
          {
          {
            ULONGEST value;
            ULONGEST value;
 
 
            value = read_memory_unsigned_integer (frame->saved_regs[regnum],
            value = read_memory_unsigned_integer (frame->saved_regs[regnum],
                                                REGISTER_RAW_SIZE (regnum));
                                                REGISTER_RAW_SIZE (regnum));
            write_register (regnum, value);
            write_register (regnum, value);
          }
          }
 
 
      /* Actually cut back the stack.  */
      /* Actually cut back the stack.  */
      write_register (SP_REGNUM, FRAME_FP (frame));
      write_register (SP_REGNUM, FRAME_FP (frame));
 
 
      /* Don't we need to set the PC?!?  XXX FIXME.  */
      /* Don't we need to set the PC?!?  XXX FIXME.  */
    }
    }
 
 
  /* Throw away any cached frame information.  */
  /* Throw away any cached frame information.  */
  flush_cached_frames ();
  flush_cached_frames ();
}
}
 
 
/* Function: push_arguments
/* Function: push_arguments
   Setup arguments for a call to the target.  Arguments go in
   Setup arguments for a call to the target.  Arguments go in
   order on the stack.  */
   order on the stack.  */
 
 
CORE_ADDR
CORE_ADDR
mn10300_push_arguments (nargs, args, sp, struct_return, struct_addr)
mn10300_push_arguments (nargs, args, sp, struct_return, struct_addr)
     int nargs;
     int nargs;
     value_ptr *args;
     value_ptr *args;
     CORE_ADDR sp;
     CORE_ADDR sp;
     unsigned char struct_return;
     unsigned char struct_return;
     CORE_ADDR struct_addr;
     CORE_ADDR struct_addr;
{
{
  int argnum = 0;
  int argnum = 0;
  int len = 0;
  int len = 0;
  int stack_offset = 0;
  int stack_offset = 0;
  int regsused = struct_return ? 1 : 0;
  int regsused = struct_return ? 1 : 0;
 
 
  /* This should be a nop, but align the stack just in case something
  /* This should be a nop, but align the stack just in case something
     went wrong.  Stacks are four byte aligned on the mn10300.  */
     went wrong.  Stacks are four byte aligned on the mn10300.  */
  sp &= ~3;
  sp &= ~3;
 
 
  /* Now make space on the stack for the args.
  /* Now make space on the stack for the args.
 
 
     XXX This doesn't appear to handle pass-by-invisible reference
     XXX This doesn't appear to handle pass-by-invisible reference
     arguments.  */
     arguments.  */
  for (argnum = 0; argnum < nargs; argnum++)
  for (argnum = 0; argnum < nargs; argnum++)
    {
    {
      int arg_length = (TYPE_LENGTH (VALUE_TYPE (args[argnum])) + 3) & ~3;
      int arg_length = (TYPE_LENGTH (VALUE_TYPE (args[argnum])) + 3) & ~3;
 
 
      while (regsused < 2 && arg_length > 0)
      while (regsused < 2 && arg_length > 0)
        {
        {
          regsused++;
          regsused++;
          arg_length -= 4;
          arg_length -= 4;
        }
        }
      len += arg_length;
      len += arg_length;
    }
    }
 
 
  /* Allocate stack space.  */
  /* Allocate stack space.  */
  sp -= len;
  sp -= len;
 
 
  regsused = struct_return ? 1 : 0;
  regsused = struct_return ? 1 : 0;
  /* Push all arguments onto the stack. */
  /* Push all arguments onto the stack. */
  for (argnum = 0; argnum < nargs; argnum++)
  for (argnum = 0; argnum < nargs; argnum++)
    {
    {
      int len;
      int len;
      char *val;
      char *val;
 
 
      /* XXX Check this.  What about UNIONS?  */
      /* XXX Check this.  What about UNIONS?  */
      if (TYPE_CODE (VALUE_TYPE (*args)) == TYPE_CODE_STRUCT
      if (TYPE_CODE (VALUE_TYPE (*args)) == TYPE_CODE_STRUCT
          && TYPE_LENGTH (VALUE_TYPE (*args)) > 8)
          && TYPE_LENGTH (VALUE_TYPE (*args)) > 8)
        {
        {
          /* XXX Wrong, we want a pointer to this argument.  */
          /* XXX Wrong, we want a pointer to this argument.  */
          len = TYPE_LENGTH (VALUE_TYPE (*args));
          len = TYPE_LENGTH (VALUE_TYPE (*args));
          val = (char *) VALUE_CONTENTS (*args);
          val = (char *) VALUE_CONTENTS (*args);
        }
        }
      else
      else
        {
        {
          len = TYPE_LENGTH (VALUE_TYPE (*args));
          len = TYPE_LENGTH (VALUE_TYPE (*args));
          val = (char *) VALUE_CONTENTS (*args);
          val = (char *) VALUE_CONTENTS (*args);
        }
        }
 
 
      while (regsused < 2 && len > 0)
      while (regsused < 2 && len > 0)
        {
        {
          write_register (regsused, extract_unsigned_integer (val, 4));
          write_register (regsused, extract_unsigned_integer (val, 4));
          val += 4;
          val += 4;
          len -= 4;
          len -= 4;
          regsused++;
          regsused++;
        }
        }
 
 
      while (len > 0)
      while (len > 0)
        {
        {
          write_memory (sp + stack_offset, val, 4);
          write_memory (sp + stack_offset, val, 4);
          len -= 4;
          len -= 4;
          val += 4;
          val += 4;
          stack_offset += 4;
          stack_offset += 4;
        }
        }
 
 
      args++;
      args++;
    }
    }
 
 
  /* Make space for the flushback area.  */
  /* Make space for the flushback area.  */
  sp -= 8;
  sp -= 8;
  return sp;
  return sp;
}
}
 
 
/* Function: push_return_address (pc)
/* Function: push_return_address (pc)
   Set up the return address for the inferior function call.
   Set up the return address for the inferior function call.
   Needed for targets where we don't actually execute a JSR/BSR instruction */
   Needed for targets where we don't actually execute a JSR/BSR instruction */
 
 
CORE_ADDR
CORE_ADDR
mn10300_push_return_address (pc, sp)
mn10300_push_return_address (pc, sp)
     CORE_ADDR pc;
     CORE_ADDR pc;
     CORE_ADDR sp;
     CORE_ADDR sp;
{
{
  unsigned char buf[4];
  unsigned char buf[4];
 
 
  store_unsigned_integer (buf, 4, CALL_DUMMY_ADDRESS ());
  store_unsigned_integer (buf, 4, CALL_DUMMY_ADDRESS ());
  write_memory (sp - 4, buf, 4);
  write_memory (sp - 4, buf, 4);
  return sp - 4;
  return sp - 4;
}
}
 
 
/* Function: store_struct_return (addr,sp)
/* Function: store_struct_return (addr,sp)
   Store the structure value return address for an inferior function
   Store the structure value return address for an inferior function
   call.  */
   call.  */
 
 
CORE_ADDR
CORE_ADDR
mn10300_store_struct_return (addr, sp)
mn10300_store_struct_return (addr, sp)
     CORE_ADDR addr;
     CORE_ADDR addr;
     CORE_ADDR sp;
     CORE_ADDR sp;
{
{
  /* The structure return address is passed as the first argument.  */
  /* The structure return address is passed as the first argument.  */
  write_register (0, addr);
  write_register (0, addr);
  return sp;
  return sp;
}
}
 
 
/* Function: frame_saved_pc
/* Function: frame_saved_pc
   Find the caller of this frame.  We do this by seeing if RP_REGNUM
   Find the caller of this frame.  We do this by seeing if RP_REGNUM
   is saved in the stack anywhere, otherwise we get it from the
   is saved in the stack anywhere, otherwise we get it from the
   registers.  If the inner frame is a dummy frame, return its PC
   registers.  If the inner frame is a dummy frame, return its PC
   instead of RP, because that's where "caller" of the dummy-frame
   instead of RP, because that's where "caller" of the dummy-frame
   will be found.  */
   will be found.  */
 
 
CORE_ADDR
CORE_ADDR
mn10300_frame_saved_pc (fi)
mn10300_frame_saved_pc (fi)
     struct frame_info *fi;
     struct frame_info *fi;
{
{
  int adjust = 0;
  int adjust = 0;
 
 
  adjust += (fi->saved_regs[D2_REGNUM] ? 4 : 0);
  adjust += (fi->saved_regs[D2_REGNUM] ? 4 : 0);
  adjust += (fi->saved_regs[D3_REGNUM] ? 4 : 0);
  adjust += (fi->saved_regs[D3_REGNUM] ? 4 : 0);
  adjust += (fi->saved_regs[A2_REGNUM] ? 4 : 0);
  adjust += (fi->saved_regs[A2_REGNUM] ? 4 : 0);
  adjust += (fi->saved_regs[A3_REGNUM] ? 4 : 0);
  adjust += (fi->saved_regs[A3_REGNUM] ? 4 : 0);
  if (am33_mode)
  if (am33_mode)
    {
    {
      adjust += (fi->saved_regs[E0_REGNUM + 5] ? 4 : 0);
      adjust += (fi->saved_regs[E0_REGNUM + 5] ? 4 : 0);
      adjust += (fi->saved_regs[E0_REGNUM + 4] ? 4 : 0);
      adjust += (fi->saved_regs[E0_REGNUM + 4] ? 4 : 0);
      adjust += (fi->saved_regs[E0_REGNUM + 3] ? 4 : 0);
      adjust += (fi->saved_regs[E0_REGNUM + 3] ? 4 : 0);
      adjust += (fi->saved_regs[E0_REGNUM + 2] ? 4 : 0);
      adjust += (fi->saved_regs[E0_REGNUM + 2] ? 4 : 0);
    }
    }
 
 
  return (read_memory_integer (fi->frame + adjust, REGISTER_SIZE));
  return (read_memory_integer (fi->frame + adjust, REGISTER_SIZE));
}
}
 
 
/* Function: mn10300_init_extra_frame_info
/* Function: mn10300_init_extra_frame_info
   Setup the frame's frame pointer, pc, and frame addresses for saved
   Setup the frame's frame pointer, pc, and frame addresses for saved
   registers.  Most of the work is done in mn10300_analyze_prologue().
   registers.  Most of the work is done in mn10300_analyze_prologue().
 
 
   Note that when we are called for the last frame (currently active frame),
   Note that when we are called for the last frame (currently active frame),
   that fi->pc and fi->frame will already be setup.  However, fi->frame will
   that fi->pc and fi->frame will already be setup.  However, fi->frame will
   be valid only if this routine uses FP.  For previous frames, fi-frame will
   be valid only if this routine uses FP.  For previous frames, fi-frame will
   always be correct.  mn10300_analyze_prologue will fix fi->frame if
   always be correct.  mn10300_analyze_prologue will fix fi->frame if
   it's not valid.
   it's not valid.
 
 
   We can be called with the PC in the call dummy under two circumstances.
   We can be called with the PC in the call dummy under two circumstances.
   First, during normal backtracing, second, while figuring out the frame
   First, during normal backtracing, second, while figuring out the frame
   pointer just prior to calling the target function (see run_stack_dummy).  */
   pointer just prior to calling the target function (see run_stack_dummy).  */
 
 
void
void
mn10300_init_extra_frame_info (fi)
mn10300_init_extra_frame_info (fi)
     struct frame_info *fi;
     struct frame_info *fi;
{
{
  if (fi->next)
  if (fi->next)
    fi->pc = FRAME_SAVED_PC (fi->next);
    fi->pc = FRAME_SAVED_PC (fi->next);
 
 
  frame_saved_regs_zalloc (fi);
  frame_saved_regs_zalloc (fi);
  fi->extra_info = (struct frame_extra_info *)
  fi->extra_info = (struct frame_extra_info *)
    frame_obstack_alloc (sizeof (struct frame_extra_info));
    frame_obstack_alloc (sizeof (struct frame_extra_info));
 
 
  fi->extra_info->status = 0;
  fi->extra_info->status = 0;
  fi->extra_info->stack_size = 0;
  fi->extra_info->stack_size = 0;
 
 
  mn10300_analyze_prologue (fi, 0);
  mn10300_analyze_prologue (fi, 0);
}
}
 
 
/* Function: mn10300_virtual_frame_pointer
/* Function: mn10300_virtual_frame_pointer
   Return the register that the function uses for a frame pointer,
   Return the register that the function uses for a frame pointer,
   plus any necessary offset to be applied to the register before
   plus any necessary offset to be applied to the register before
   any frame pointer offsets.  */
   any frame pointer offsets.  */
 
 
void
void
mn10300_virtual_frame_pointer (pc, reg, offset)
mn10300_virtual_frame_pointer (pc, reg, offset)
     CORE_ADDR pc;
     CORE_ADDR pc;
     long *reg;
     long *reg;
     long *offset;
     long *offset;
{
{
  struct frame_info *dummy = analyze_dummy_frame (pc, 0);
  struct frame_info *dummy = analyze_dummy_frame (pc, 0);
  /* Set up a dummy frame_info, Analyze the prolog and fill in the
  /* Set up a dummy frame_info, Analyze the prolog and fill in the
     extra info.  */
     extra info.  */
  /* Results will tell us which type of frame it uses.  */
  /* Results will tell us which type of frame it uses.  */
  if (dummy->extra_info->status & MY_FRAME_IN_SP)
  if (dummy->extra_info->status & MY_FRAME_IN_SP)
    {
    {
      *reg = SP_REGNUM;
      *reg = SP_REGNUM;
      *offset = -(dummy->extra_info->stack_size);
      *offset = -(dummy->extra_info->stack_size);
    }
    }
  else
  else
    {
    {
      *reg = A3_REGNUM;
      *reg = A3_REGNUM;
      *offset = 0;
      *offset = 0;
    }
    }
}
}
 
 
/* This can be made more generic later.  */
/* This can be made more generic later.  */
static void
static void
set_machine_hook (filename)
set_machine_hook (filename)
     char *filename;
     char *filename;
{
{
  int i;
  int i;
 
 
  if (bfd_get_mach (exec_bfd) == bfd_mach_mn10300
  if (bfd_get_mach (exec_bfd) == bfd_mach_mn10300
      || bfd_get_mach (exec_bfd) == 0)
      || bfd_get_mach (exec_bfd) == 0)
    {
    {
      mn10300_register_names = mn10300_generic_register_names;
      mn10300_register_names = mn10300_generic_register_names;
    }
    }
 
 
  am33_mode = 0;
  am33_mode = 0;
  if (bfd_get_mach (exec_bfd) == bfd_mach_am33)
  if (bfd_get_mach (exec_bfd) == bfd_mach_am33)
    {
    {
 
 
      mn10300_register_names = am33_register_names;
      mn10300_register_names = am33_register_names;
      am33_mode = 1;
      am33_mode = 1;
    }
    }
}
}
 
 
void
void
_initialize_mn10300_tdep ()
_initialize_mn10300_tdep ()
{
{
/*  printf("_initialize_mn10300_tdep\n"); */
/*  printf("_initialize_mn10300_tdep\n"); */
 
 
  tm_print_insn = print_insn_mn10300;
  tm_print_insn = print_insn_mn10300;
 
 
  specify_exec_file_hook (set_machine_hook);
  specify_exec_file_hook (set_machine_hook);
}
}
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.