OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [gdb-5.0/] [gdb/] [objfiles.h] - Diff between revs 104 and 105

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 104 Rev 105
/* Definitions for symbol file management in GDB.
/* Definitions for symbol file management in GDB.
   Copyright (C) 1992, 1993, 1994, 1995, 1999 Free Software Foundation, Inc.
   Copyright (C) 1992, 1993, 1994, 1995, 1999 Free Software Foundation, Inc.
 
 
   This file is part of GDB.
   This file is part of GDB.
 
 
   This program is free software; you can redistribute it and/or modify
   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2 of the License, or
   the Free Software Foundation; either version 2 of the License, or
   (at your option) any later version.
   (at your option) any later version.
 
 
   This program is distributed in the hope that it will be useful,
   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.
   GNU General Public License for more details.
 
 
   You should have received a copy of the GNU General Public License
   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   along with this program; if not, write to the Free Software
   Foundation, Inc., 59 Temple Place - Suite 330,
   Foundation, Inc., 59 Temple Place - Suite 330,
   Boston, MA 02111-1307, USA.  */
   Boston, MA 02111-1307, USA.  */
 
 
#if !defined (OBJFILES_H)
#if !defined (OBJFILES_H)
#define OBJFILES_H
#define OBJFILES_H
 
 
/* This structure maintains information on a per-objfile basis about the
/* This structure maintains information on a per-objfile basis about the
   "entry point" of the objfile, and the scope within which the entry point
   "entry point" of the objfile, and the scope within which the entry point
   exists.  It is possible that gdb will see more than one objfile that is
   exists.  It is possible that gdb will see more than one objfile that is
   executable, each with its own entry point.
   executable, each with its own entry point.
 
 
   For example, for dynamically linked executables in SVR4, the dynamic linker
   For example, for dynamically linked executables in SVR4, the dynamic linker
   code is contained within the shared C library, which is actually executable
   code is contained within the shared C library, which is actually executable
   and is run by the kernel first when an exec is done of a user executable
   and is run by the kernel first when an exec is done of a user executable
   that is dynamically linked.  The dynamic linker within the shared C library
   that is dynamically linked.  The dynamic linker within the shared C library
   then maps in the various program segments in the user executable and jumps
   then maps in the various program segments in the user executable and jumps
   to the user executable's recorded entry point, as if the call had been made
   to the user executable's recorded entry point, as if the call had been made
   directly by the kernel.
   directly by the kernel.
 
 
   The traditional gdb method of using this info is to use the recorded entry
   The traditional gdb method of using this info is to use the recorded entry
   point to set the variables entry_file_lowpc and entry_file_highpc from
   point to set the variables entry_file_lowpc and entry_file_highpc from
   the debugging information, where these values are the starting address
   the debugging information, where these values are the starting address
   (inclusive) and ending address (exclusive) of the instruction space in the
   (inclusive) and ending address (exclusive) of the instruction space in the
   executable which correspond to the "startup file", I.E. crt0.o in most
   executable which correspond to the "startup file", I.E. crt0.o in most
   cases.  This file is assumed to be a startup file and frames with pc's
   cases.  This file is assumed to be a startup file and frames with pc's
   inside it are treated as nonexistent.  Setting these variables is necessary
   inside it are treated as nonexistent.  Setting these variables is necessary
   so that backtraces do not fly off the bottom of the stack.
   so that backtraces do not fly off the bottom of the stack.
 
 
   Gdb also supports an alternate method to avoid running off the bottom
   Gdb also supports an alternate method to avoid running off the bottom
   of the stack.
   of the stack.
 
 
   There are two frames that are "special", the frame for the function
   There are two frames that are "special", the frame for the function
   containing the process entry point, since it has no predecessor frame,
   containing the process entry point, since it has no predecessor frame,
   and the frame for the function containing the user code entry point
   and the frame for the function containing the user code entry point
   (the main() function), since all the predecessor frames are for the
   (the main() function), since all the predecessor frames are for the
   process startup code.  Since we have no guarantee that the linked
   process startup code.  Since we have no guarantee that the linked
   in startup modules have any debugging information that gdb can use,
   in startup modules have any debugging information that gdb can use,
   we need to avoid following frame pointers back into frames that might
   we need to avoid following frame pointers back into frames that might
   have been built in the startup code, as we might get hopelessly
   have been built in the startup code, as we might get hopelessly
   confused.  However, we almost always have debugging information
   confused.  However, we almost always have debugging information
   available for main().
   available for main().
 
 
   These variables are used to save the range of PC values which are valid
   These variables are used to save the range of PC values which are valid
   within the main() function and within the function containing the process
   within the main() function and within the function containing the process
   entry point.  If we always consider the frame for main() as the outermost
   entry point.  If we always consider the frame for main() as the outermost
   frame when debugging user code, and the frame for the process entry
   frame when debugging user code, and the frame for the process entry
   point function as the outermost frame when debugging startup code, then
   point function as the outermost frame when debugging startup code, then
   all we have to do is have FRAME_CHAIN_VALID return false whenever a
   all we have to do is have FRAME_CHAIN_VALID return false whenever a
   frame's current PC is within the range specified by these variables.
   frame's current PC is within the range specified by these variables.
   In essence, we set "ceilings" in the frame chain beyond which we will
   In essence, we set "ceilings" in the frame chain beyond which we will
   not proceed when following the frame chain back up the stack.
   not proceed when following the frame chain back up the stack.
 
 
   A nice side effect is that we can still debug startup code without
   A nice side effect is that we can still debug startup code without
   running off the end of the frame chain, assuming that we have usable
   running off the end of the frame chain, assuming that we have usable
   debugging information in the startup modules, and if we choose to not
   debugging information in the startup modules, and if we choose to not
   use the block at main, or can't find it for some reason, everything
   use the block at main, or can't find it for some reason, everything
   still works as before.  And if we have no startup code debugging
   still works as before.  And if we have no startup code debugging
   information but we do have usable information for main(), backtraces
   information but we do have usable information for main(), backtraces
   from user code don't go wandering off into the startup code.
   from user code don't go wandering off into the startup code.
 
 
   To use this method, define your FRAME_CHAIN_VALID macro like:
   To use this method, define your FRAME_CHAIN_VALID macro like:
 
 
   #define FRAME_CHAIN_VALID(chain, thisframe)     \
   #define FRAME_CHAIN_VALID(chain, thisframe)     \
   (chain != 0                                   \
   (chain != 0                                   \
   && !(inside_main_func ((thisframe)->pc))     \
   && !(inside_main_func ((thisframe)->pc))     \
   && !(inside_entry_func ((thisframe)->pc)))
   && !(inside_entry_func ((thisframe)->pc)))
 
 
   and add initializations of the four scope controlling variables inside
   and add initializations of the four scope controlling variables inside
   the object file / debugging information processing modules.  */
   the object file / debugging information processing modules.  */
 
 
struct entry_info
struct entry_info
  {
  {
 
 
    /* The value we should use for this objects entry point.
    /* The value we should use for this objects entry point.
       The illegal/unknown value needs to be something other than 0, ~0
       The illegal/unknown value needs to be something other than 0, ~0
       for instance, which is much less likely than 0. */
       for instance, which is much less likely than 0. */
 
 
    CORE_ADDR entry_point;
    CORE_ADDR entry_point;
 
 
#define INVALID_ENTRY_POINT (~0)        /* ~0 will not be in any file, we hope.  */
#define INVALID_ENTRY_POINT (~0)        /* ~0 will not be in any file, we hope.  */
 
 
    /* Start (inclusive) and end (exclusive) of function containing the
    /* Start (inclusive) and end (exclusive) of function containing the
       entry point. */
       entry point. */
 
 
    CORE_ADDR entry_func_lowpc;
    CORE_ADDR entry_func_lowpc;
    CORE_ADDR entry_func_highpc;
    CORE_ADDR entry_func_highpc;
 
 
    /* Start (inclusive) and end (exclusive) of object file containing the
    /* Start (inclusive) and end (exclusive) of object file containing the
       entry point. */
       entry point. */
 
 
    CORE_ADDR entry_file_lowpc;
    CORE_ADDR entry_file_lowpc;
    CORE_ADDR entry_file_highpc;
    CORE_ADDR entry_file_highpc;
 
 
    /* Start (inclusive) and end (exclusive) of the user code main() function. */
    /* Start (inclusive) and end (exclusive) of the user code main() function. */
 
 
    CORE_ADDR main_func_lowpc;
    CORE_ADDR main_func_lowpc;
    CORE_ADDR main_func_highpc;
    CORE_ADDR main_func_highpc;
 
 
/* Use these values when any of the above ranges is invalid.  */
/* Use these values when any of the above ranges is invalid.  */
 
 
/* We use these values because it guarantees that there is no number that is
/* We use these values because it guarantees that there is no number that is
   both >= LOWPC && < HIGHPC.  It is also highly unlikely that 3 is a valid
   both >= LOWPC && < HIGHPC.  It is also highly unlikely that 3 is a valid
   module or function start address (as opposed to 0).  */
   module or function start address (as opposed to 0).  */
 
 
#define INVALID_ENTRY_LOWPC (3)
#define INVALID_ENTRY_LOWPC (3)
#define INVALID_ENTRY_HIGHPC (1)
#define INVALID_ENTRY_HIGHPC (1)
 
 
  };
  };
 
 
/* Sections in an objfile.
/* Sections in an objfile.
 
 
   It is strange that we have both this notion of "sections"
   It is strange that we have both this notion of "sections"
   and the one used by section_offsets.  Section as used
   and the one used by section_offsets.  Section as used
   here, (currently at least) means a BFD section, and the sections
   here, (currently at least) means a BFD section, and the sections
   are set up from the BFD sections in allocate_objfile.
   are set up from the BFD sections in allocate_objfile.
 
 
   The sections in section_offsets have their meaning determined by
   The sections in section_offsets have their meaning determined by
   the symbol format, and they are set up by the sym_offsets function
   the symbol format, and they are set up by the sym_offsets function
   for that symbol file format.
   for that symbol file format.
 
 
   I'm not sure this could or should be changed, however.  */
   I'm not sure this could or should be changed, however.  */
 
 
struct obj_section
struct obj_section
  {
  {
    CORE_ADDR addr;             /* lowest address in section */
    CORE_ADDR addr;             /* lowest address in section */
    CORE_ADDR endaddr;          /* 1+highest address in section */
    CORE_ADDR endaddr;          /* 1+highest address in section */
 
 
    /* This field is being used for nefarious purposes by syms_from_objfile.
    /* This field is being used for nefarious purposes by syms_from_objfile.
       It is said to be redundant with section_offsets; it's not really being
       It is said to be redundant with section_offsets; it's not really being
       used that way, however, it's some sort of hack I don't understand
       used that way, however, it's some sort of hack I don't understand
       and am not going to try to eliminate (yet, anyway).  FIXME.
       and am not going to try to eliminate (yet, anyway).  FIXME.
 
 
       It was documented as "offset between (end)addr and actual memory
       It was documented as "offset between (end)addr and actual memory
       addresses", but that's not true; addr & endaddr are actual memory
       addresses", but that's not true; addr & endaddr are actual memory
       addresses.  */
       addresses.  */
    CORE_ADDR offset;
    CORE_ADDR offset;
 
 
    sec_ptr the_bfd_section;    /* BFD section pointer */
    sec_ptr the_bfd_section;    /* BFD section pointer */
 
 
    /* Objfile this section is part of.  */
    /* Objfile this section is part of.  */
    struct objfile *objfile;
    struct objfile *objfile;
 
 
    /* True if this "overlay section" is mapped into an "overlay region". */
    /* True if this "overlay section" is mapped into an "overlay region". */
    int ovly_mapped;
    int ovly_mapped;
  };
  };
 
 
/* An import entry contains information about a symbol that
/* An import entry contains information about a symbol that
   is used in this objfile but not defined in it, and so needs
   is used in this objfile but not defined in it, and so needs
   to be imported from some other objfile */
   to be imported from some other objfile */
/* Currently we just store the name; no attributes. 1997-08-05 */
/* Currently we just store the name; no attributes. 1997-08-05 */
typedef char *ImportEntry;
typedef char *ImportEntry;
 
 
 
 
/* An export entry contains information about a symbol that
/* An export entry contains information about a symbol that
   is defined in this objfile and available for use in other
   is defined in this objfile and available for use in other
   objfiles */
   objfiles */
typedef struct
typedef struct
  {
  {
    char *name;                 /* name of exported symbol */
    char *name;                 /* name of exported symbol */
    int address;                /* offset subject to relocation */
    int address;                /* offset subject to relocation */
    /* Currently no other attributes 1997-08-05 */
    /* Currently no other attributes 1997-08-05 */
  }
  }
ExportEntry;
ExportEntry;
 
 
 
 
/* The "objstats" structure provides a place for gdb to record some
/* The "objstats" structure provides a place for gdb to record some
   interesting information about its internal state at runtime, on a
   interesting information about its internal state at runtime, on a
   per objfile basis, such as information about the number of symbols
   per objfile basis, such as information about the number of symbols
   read, size of string table (if any), etc. */
   read, size of string table (if any), etc. */
 
 
struct objstats
struct objstats
  {
  {
    int n_minsyms;              /* Number of minimal symbols read */
    int n_minsyms;              /* Number of minimal symbols read */
    int n_psyms;                /* Number of partial symbols read */
    int n_psyms;                /* Number of partial symbols read */
    int n_syms;                 /* Number of full symbols read */
    int n_syms;                 /* Number of full symbols read */
    int n_stabs;                /* Number of ".stabs" read (if applicable) */
    int n_stabs;                /* Number of ".stabs" read (if applicable) */
    int n_types;                /* Number of types */
    int n_types;                /* Number of types */
    int sz_strtab;              /* Size of stringtable, (if applicable) */
    int sz_strtab;              /* Size of stringtable, (if applicable) */
  };
  };
 
 
#define OBJSTAT(objfile, expr) (objfile -> stats.expr)
#define OBJSTAT(objfile, expr) (objfile -> stats.expr)
#define OBJSTATS struct objstats stats
#define OBJSTATS struct objstats stats
extern void print_objfile_statistics PARAMS ((void));
extern void print_objfile_statistics PARAMS ((void));
extern void print_symbol_bcache_statistics PARAMS ((void));
extern void print_symbol_bcache_statistics PARAMS ((void));
 
 
/* Number of entries in the minimal symbol hash table.  */
/* Number of entries in the minimal symbol hash table.  */
#define MINIMAL_SYMBOL_HASH_SIZE 349
#define MINIMAL_SYMBOL_HASH_SIZE 349
 
 
/* Master structure for keeping track of each file from which
/* Master structure for keeping track of each file from which
   gdb reads symbols.  There are several ways these get allocated: 1.
   gdb reads symbols.  There are several ways these get allocated: 1.
   The main symbol file, symfile_objfile, set by the symbol-file command,
   The main symbol file, symfile_objfile, set by the symbol-file command,
   2.  Additional symbol files added by the add-symbol-file command,
   2.  Additional symbol files added by the add-symbol-file command,
   3.  Shared library objfiles, added by ADD_SOLIB,  4.  symbol files
   3.  Shared library objfiles, added by ADD_SOLIB,  4.  symbol files
   for modules that were loaded when GDB attached to a remote system
   for modules that were loaded when GDB attached to a remote system
   (see remote-vx.c).  */
   (see remote-vx.c).  */
 
 
struct objfile
struct objfile
  {
  {
 
 
    /* All struct objfile's are chained together by their next pointers.
    /* All struct objfile's are chained together by their next pointers.
       The global variable "object_files" points to the first link in this
       The global variable "object_files" points to the first link in this
       chain.
       chain.
 
 
       FIXME:  There is a problem here if the objfile is reusable, and if
       FIXME:  There is a problem here if the objfile is reusable, and if
       multiple users are to be supported.  The problem is that the objfile
       multiple users are to be supported.  The problem is that the objfile
       list is linked through a member of the objfile struct itself, which
       list is linked through a member of the objfile struct itself, which
       is only valid for one gdb process.  The list implementation needs to
       is only valid for one gdb process.  The list implementation needs to
       be changed to something like:
       be changed to something like:
 
 
       struct list {struct list *next; struct objfile *objfile};
       struct list {struct list *next; struct objfile *objfile};
 
 
       where the list structure is completely maintained separately within
       where the list structure is completely maintained separately within
       each gdb process. */
       each gdb process. */
 
 
    struct objfile *next;
    struct objfile *next;
 
 
    /* The object file's name.  Malloc'd; free it if you free this struct.  */
    /* The object file's name.  Malloc'd; free it if you free this struct.  */
 
 
    char *name;
    char *name;
 
 
    /* Some flag bits for this objfile. */
    /* Some flag bits for this objfile. */
 
 
    unsigned short flags;
    unsigned short flags;
 
 
    /* Each objfile points to a linked list of symtabs derived from this file,
    /* Each objfile points to a linked list of symtabs derived from this file,
       one symtab structure for each compilation unit (source file).  Each link
       one symtab structure for each compilation unit (source file).  Each link
       in the symtab list contains a backpointer to this objfile. */
       in the symtab list contains a backpointer to this objfile. */
 
 
    struct symtab *symtabs;
    struct symtab *symtabs;
 
 
    /* Each objfile points to a linked list of partial symtabs derived from
    /* Each objfile points to a linked list of partial symtabs derived from
       this file, one partial symtab structure for each compilation unit
       this file, one partial symtab structure for each compilation unit
       (source file). */
       (source file). */
 
 
    struct partial_symtab *psymtabs;
    struct partial_symtab *psymtabs;
 
 
    /* List of freed partial symtabs, available for re-use */
    /* List of freed partial symtabs, available for re-use */
 
 
    struct partial_symtab *free_psymtabs;
    struct partial_symtab *free_psymtabs;
 
 
    /* The object file's BFD.  Can be null if the objfile contains only
    /* The object file's BFD.  Can be null if the objfile contains only
       minimal symbols, e.g. the run time common symbols for SunOS4.  */
       minimal symbols, e.g. the run time common symbols for SunOS4.  */
 
 
    bfd *obfd;
    bfd *obfd;
 
 
    /* The modification timestamp of the object file, as of the last time
    /* The modification timestamp of the object file, as of the last time
       we read its symbols.  */
       we read its symbols.  */
 
 
    long mtime;
    long mtime;
 
 
    /* Obstacks to hold objects that should be freed when we load a new symbol
    /* Obstacks to hold objects that should be freed when we load a new symbol
       table from this object file. */
       table from this object file. */
 
 
    struct obstack psymbol_obstack;     /* Partial symbols */
    struct obstack psymbol_obstack;     /* Partial symbols */
    struct obstack symbol_obstack;      /* Full symbols */
    struct obstack symbol_obstack;      /* Full symbols */
    struct obstack type_obstack;        /* Types */
    struct obstack type_obstack;        /* Types */
 
 
    /* A byte cache where we can stash arbitrary "chunks" of bytes that
    /* A byte cache where we can stash arbitrary "chunks" of bytes that
       will not change. */
       will not change. */
 
 
    struct bcache psymbol_cache;        /* Byte cache for partial syms */
    struct bcache psymbol_cache;        /* Byte cache for partial syms */
 
 
    /* Vectors of all partial symbols read in from file.  The actual data
    /* Vectors of all partial symbols read in from file.  The actual data
       is stored in the psymbol_obstack. */
       is stored in the psymbol_obstack. */
 
 
    struct psymbol_allocation_list global_psymbols;
    struct psymbol_allocation_list global_psymbols;
    struct psymbol_allocation_list static_psymbols;
    struct psymbol_allocation_list static_psymbols;
 
 
    /* Each file contains a pointer to an array of minimal symbols for all
    /* Each file contains a pointer to an array of minimal symbols for all
       global symbols that are defined within the file.  The array is terminated
       global symbols that are defined within the file.  The array is terminated
       by a "null symbol", one that has a NULL pointer for the name and a zero
       by a "null symbol", one that has a NULL pointer for the name and a zero
       value for the address.  This makes it easy to walk through the array
       value for the address.  This makes it easy to walk through the array
       when passed a pointer to somewhere in the middle of it.  There is also
       when passed a pointer to somewhere in the middle of it.  There is also
       a count of the number of symbols, which does not include the terminating
       a count of the number of symbols, which does not include the terminating
       null symbol.  The array itself, as well as all the data that it points
       null symbol.  The array itself, as well as all the data that it points
       to, should be allocated on the symbol_obstack for this file. */
       to, should be allocated on the symbol_obstack for this file. */
 
 
    struct minimal_symbol *msymbols;
    struct minimal_symbol *msymbols;
    int minimal_symbol_count;
    int minimal_symbol_count;
 
 
    /* This is a hash table used to index the minimal symbols by name.  */
    /* This is a hash table used to index the minimal symbols by name.  */
 
 
    struct minimal_symbol *msymbol_hash[MINIMAL_SYMBOL_HASH_SIZE];
    struct minimal_symbol *msymbol_hash[MINIMAL_SYMBOL_HASH_SIZE];
 
 
    /* This hash table is used to index the minimal symbols by their
    /* This hash table is used to index the minimal symbols by their
       demangled names.  */
       demangled names.  */
 
 
    struct minimal_symbol *msymbol_demangled_hash[MINIMAL_SYMBOL_HASH_SIZE];
    struct minimal_symbol *msymbol_demangled_hash[MINIMAL_SYMBOL_HASH_SIZE];
 
 
    /* For object file formats which don't specify fundamental types, gdb
    /* For object file formats which don't specify fundamental types, gdb
       can create such types.  For now, it maintains a vector of pointers
       can create such types.  For now, it maintains a vector of pointers
       to these internally created fundamental types on a per objfile basis,
       to these internally created fundamental types on a per objfile basis,
       however it really should ultimately keep them on a per-compilation-unit
       however it really should ultimately keep them on a per-compilation-unit
       basis, to account for linkage-units that consist of a number of
       basis, to account for linkage-units that consist of a number of
       compilation units that may have different fundamental types, such as
       compilation units that may have different fundamental types, such as
       linking C modules with ADA modules, or linking C modules that are
       linking C modules with ADA modules, or linking C modules that are
       compiled with 32-bit ints with C modules that are compiled with 64-bit
       compiled with 32-bit ints with C modules that are compiled with 64-bit
       ints (not inherently evil with a smarter linker). */
       ints (not inherently evil with a smarter linker). */
 
 
    struct type **fundamental_types;
    struct type **fundamental_types;
 
 
    /* The mmalloc() malloc-descriptor for this objfile if we are using
    /* The mmalloc() malloc-descriptor for this objfile if we are using
       the memory mapped malloc() package to manage storage for this objfile's
       the memory mapped malloc() package to manage storage for this objfile's
       data.  NULL if we are not. */
       data.  NULL if we are not. */
 
 
    PTR md;
    PTR md;
 
 
    /* The file descriptor that was used to obtain the mmalloc descriptor
    /* The file descriptor that was used to obtain the mmalloc descriptor
       for this objfile.  If we call mmalloc_detach with the malloc descriptor
       for this objfile.  If we call mmalloc_detach with the malloc descriptor
       we should then close this file descriptor. */
       we should then close this file descriptor. */
 
 
    int mmfd;
    int mmfd;
 
 
    /* Structure which keeps track of functions that manipulate objfile's
    /* Structure which keeps track of functions that manipulate objfile's
       of the same type as this objfile.  I.E. the function to read partial
       of the same type as this objfile.  I.E. the function to read partial
       symbols for example.  Note that this structure is in statically
       symbols for example.  Note that this structure is in statically
       allocated memory, and is shared by all objfiles that use the
       allocated memory, and is shared by all objfiles that use the
       object module reader of this type. */
       object module reader of this type. */
 
 
    struct sym_fns *sf;
    struct sym_fns *sf;
 
 
    /* The per-objfile information about the entry point, the scope (file/func)
    /* The per-objfile information about the entry point, the scope (file/func)
       containing the entry point, and the scope of the user's main() func. */
       containing the entry point, and the scope of the user's main() func. */
 
 
    struct entry_info ei;
    struct entry_info ei;
 
 
    /* Information about stabs.  Will be filled in with a dbx_symfile_info
    /* Information about stabs.  Will be filled in with a dbx_symfile_info
       struct by those readers that need it. */
       struct by those readers that need it. */
 
 
    struct dbx_symfile_info *sym_stab_info;
    struct dbx_symfile_info *sym_stab_info;
 
 
    /* Hook for information for use by the symbol reader (currently used
    /* Hook for information for use by the symbol reader (currently used
       for information shared by sym_init and sym_read).  It is
       for information shared by sym_init and sym_read).  It is
       typically a pointer to malloc'd memory.  The symbol reader's finish
       typically a pointer to malloc'd memory.  The symbol reader's finish
       function is responsible for freeing the memory thusly allocated.  */
       function is responsible for freeing the memory thusly allocated.  */
 
 
    PTR sym_private;
    PTR sym_private;
 
 
    /* Hook for target-architecture-specific information.  This must
    /* Hook for target-architecture-specific information.  This must
       point to memory allocated on one of the obstacks in this objfile,
       point to memory allocated on one of the obstacks in this objfile,
       so that it gets freed automatically when reading a new object
       so that it gets freed automatically when reading a new object
       file. */
       file. */
 
 
    PTR obj_private;
    PTR obj_private;
 
 
    /* Set of relocation offsets to apply to each section.
    /* Set of relocation offsets to apply to each section.
       Currently on the psymbol_obstack (which makes no sense, but I'm
       Currently on the psymbol_obstack (which makes no sense, but I'm
       not sure it's harming anything).
       not sure it's harming anything).
 
 
       These offsets indicate that all symbols (including partial and
       These offsets indicate that all symbols (including partial and
       minimal symbols) which have been read have been relocated by this
       minimal symbols) which have been read have been relocated by this
       much.  Symbols which are yet to be read need to be relocated by
       much.  Symbols which are yet to be read need to be relocated by
       it.  */
       it.  */
 
 
    struct section_offsets *section_offsets;
    struct section_offsets *section_offsets;
    int num_sections;
    int num_sections;
 
 
    /* These pointers are used to locate the section table, which
    /* These pointers are used to locate the section table, which
       among other things, is used to map pc addresses into sections.
       among other things, is used to map pc addresses into sections.
       SECTIONS points to the first entry in the table, and
       SECTIONS points to the first entry in the table, and
       SECTIONS_END points to the first location past the last entry
       SECTIONS_END points to the first location past the last entry
       in the table.  Currently the table is stored on the
       in the table.  Currently the table is stored on the
       psymbol_obstack (which makes no sense, but I'm not sure it's
       psymbol_obstack (which makes no sense, but I'm not sure it's
       harming anything).  */
       harming anything).  */
 
 
    struct obj_section
    struct obj_section
     *sections, *sections_end;
     *sections, *sections_end;
 
 
    /* two auxiliary fields, used to hold the fp of separate symbol files */
    /* two auxiliary fields, used to hold the fp of separate symbol files */
    FILE *auxf1, *auxf2;
    FILE *auxf1, *auxf2;
 
 
    /* Imported symbols */
    /* Imported symbols */
    ImportEntry *import_list;
    ImportEntry *import_list;
    int import_list_size;
    int import_list_size;
 
 
    /* Exported symbols */
    /* Exported symbols */
    ExportEntry *export_list;
    ExportEntry *export_list;
    int export_list_size;
    int export_list_size;
 
 
    /* Place to stash various statistics about this objfile */
    /* Place to stash various statistics about this objfile */
      OBJSTATS;
      OBJSTATS;
  };
  };
 
 
/* Defines for the objfile flag word. */
/* Defines for the objfile flag word. */
 
 
/* Gdb can arrange to allocate storage for all objects related to a
/* Gdb can arrange to allocate storage for all objects related to a
   particular objfile in a designated section of its address space,
   particular objfile in a designated section of its address space,
   managed at a low level by mmap() and using a special version of
   managed at a low level by mmap() and using a special version of
   malloc that handles malloc/free/realloc on top of the mmap() interface.
   malloc that handles malloc/free/realloc on top of the mmap() interface.
   This allows the "internal gdb state" for a particular objfile to be
   This allows the "internal gdb state" for a particular objfile to be
   dumped to a gdb state file and subsequently reloaded at a later time. */
   dumped to a gdb state file and subsequently reloaded at a later time. */
 
 
#define OBJF_MAPPED     (1 << 0)        /* Objfile data is mmap'd */
#define OBJF_MAPPED     (1 << 0)        /* Objfile data is mmap'd */
 
 
/* When using mapped/remapped predigested gdb symbol information, we need
/* When using mapped/remapped predigested gdb symbol information, we need
   a flag that indicates that we have previously done an initial symbol
   a flag that indicates that we have previously done an initial symbol
   table read from this particular objfile.  We can't just look for the
   table read from this particular objfile.  We can't just look for the
   absence of any of the three symbol tables (msymbols, psymtab, symtab)
   absence of any of the three symbol tables (msymbols, psymtab, symtab)
   because if the file has no symbols for example, none of these will
   because if the file has no symbols for example, none of these will
   exist. */
   exist. */
 
 
#define OBJF_SYMS       (1 << 1)        /* Have tried to read symbols */
#define OBJF_SYMS       (1 << 1)        /* Have tried to read symbols */
 
 
/* When an object file has its functions reordered (currently Irix-5.2
/* When an object file has its functions reordered (currently Irix-5.2
   shared libraries exhibit this behaviour), we will need an expensive
   shared libraries exhibit this behaviour), we will need an expensive
   algorithm to locate a partial symtab or symtab via an address.
   algorithm to locate a partial symtab or symtab via an address.
   To avoid this penalty for normal object files, we use this flag,
   To avoid this penalty for normal object files, we use this flag,
   whose setting is determined upon symbol table read in.  */
   whose setting is determined upon symbol table read in.  */
 
 
#define OBJF_REORDERED  (1 << 2)        /* Functions are reordered */
#define OBJF_REORDERED  (1 << 2)        /* Functions are reordered */
 
 
/* Distinguish between an objfile for a shared library and a "vanilla"
/* Distinguish between an objfile for a shared library and a "vanilla"
   objfile. (If not set, the objfile may still actually be a solib.
   objfile. (If not set, the objfile may still actually be a solib.
   This can happen if the user created the objfile by using the
   This can happen if the user created the objfile by using the
   add-symbol-file command.  GDB doesn't in that situation actually
   add-symbol-file command.  GDB doesn't in that situation actually
   check whether the file is a solib.  Rather, the target's
   check whether the file is a solib.  Rather, the target's
   implementation of the solib interface is responsible for setting
   implementation of the solib interface is responsible for setting
   this flag when noticing solibs used by an inferior.)  */
   this flag when noticing solibs used by an inferior.)  */
 
 
#define OBJF_SHARED     (1 << 3)        /* From a shared library */
#define OBJF_SHARED     (1 << 3)        /* From a shared library */
 
 
/* User requested that this objfile be read in it's entirety. */
/* User requested that this objfile be read in it's entirety. */
 
 
#define OBJF_READNOW    (1 << 4)        /* Immediate full read */
#define OBJF_READNOW    (1 << 4)        /* Immediate full read */
 
 
/* This objfile was created because the user explicitly caused it
/* This objfile was created because the user explicitly caused it
   (e.g., used the add-symbol-file command).  This bit offers a way
   (e.g., used the add-symbol-file command).  This bit offers a way
   for run_command to remove old objfile entries which are no longer
   for run_command to remove old objfile entries which are no longer
   valid (i.e., are associated with an old inferior), but to preserve
   valid (i.e., are associated with an old inferior), but to preserve
   ones that the user explicitly loaded via the add-symbol-file
   ones that the user explicitly loaded via the add-symbol-file
   command. */
   command. */
 
 
#define OBJF_USERLOADED (1 << 5)        /* User loaded */
#define OBJF_USERLOADED (1 << 5)        /* User loaded */
 
 
/* The object file that the main symbol table was loaded from (e.g. the
/* The object file that the main symbol table was loaded from (e.g. the
   argument to the "symbol-file" or "file" command).  */
   argument to the "symbol-file" or "file" command).  */
 
 
extern struct objfile *symfile_objfile;
extern struct objfile *symfile_objfile;
 
 
/* The object file that contains the runtime common minimal symbols
/* The object file that contains the runtime common minimal symbols
   for SunOS4. Note that this objfile has no associated BFD.  */
   for SunOS4. Note that this objfile has no associated BFD.  */
 
 
extern struct objfile *rt_common_objfile;
extern struct objfile *rt_common_objfile;
 
 
/* When we need to allocate a new type, we need to know which type_obstack
/* When we need to allocate a new type, we need to know which type_obstack
   to allocate the type on, since there is one for each objfile.  The places
   to allocate the type on, since there is one for each objfile.  The places
   where types are allocated are deeply buried in function call hierarchies
   where types are allocated are deeply buried in function call hierarchies
   which know nothing about objfiles, so rather than trying to pass a
   which know nothing about objfiles, so rather than trying to pass a
   particular objfile down to them, we just do an end run around them and
   particular objfile down to them, we just do an end run around them and
   set current_objfile to be whatever objfile we expect to be using at the
   set current_objfile to be whatever objfile we expect to be using at the
   time types are being allocated.  For instance, when we start reading
   time types are being allocated.  For instance, when we start reading
   symbols for a particular objfile, we set current_objfile to point to that
   symbols for a particular objfile, we set current_objfile to point to that
   objfile, and when we are done, we set it back to NULL, to ensure that we
   objfile, and when we are done, we set it back to NULL, to ensure that we
   never put a type someplace other than where we are expecting to put it.
   never put a type someplace other than where we are expecting to put it.
   FIXME:  Maybe we should review the entire type handling system and
   FIXME:  Maybe we should review the entire type handling system and
   see if there is a better way to avoid this problem. */
   see if there is a better way to avoid this problem. */
 
 
extern struct objfile *current_objfile;
extern struct objfile *current_objfile;
 
 
/* All known objfiles are kept in a linked list.  This points to the
/* All known objfiles are kept in a linked list.  This points to the
   root of this list. */
   root of this list. */
 
 
extern struct objfile *object_files;
extern struct objfile *object_files;
 
 
/* Declarations for functions defined in objfiles.c */
/* Declarations for functions defined in objfiles.c */
 
 
extern struct objfile *
extern struct objfile *
allocate_objfile PARAMS ((bfd *, int));
allocate_objfile PARAMS ((bfd *, int));
 
 
extern int
extern int
build_objfile_section_table PARAMS ((struct objfile *));
build_objfile_section_table PARAMS ((struct objfile *));
 
 
extern void objfile_to_front PARAMS ((struct objfile *));
extern void objfile_to_front PARAMS ((struct objfile *));
 
 
extern void
extern void
unlink_objfile PARAMS ((struct objfile *));
unlink_objfile PARAMS ((struct objfile *));
 
 
extern void
extern void
free_objfile PARAMS ((struct objfile *));
free_objfile PARAMS ((struct objfile *));
 
 
extern void
extern void
free_all_objfiles PARAMS ((void));
free_all_objfiles PARAMS ((void));
 
 
extern void
extern void
objfile_relocate PARAMS ((struct objfile *, struct section_offsets *));
objfile_relocate PARAMS ((struct objfile *, struct section_offsets *));
 
 
extern int
extern int
have_partial_symbols PARAMS ((void));
have_partial_symbols PARAMS ((void));
 
 
extern int
extern int
have_full_symbols PARAMS ((void));
have_full_symbols PARAMS ((void));
 
 
/* This operation deletes all objfile entries that represent solibs that
/* This operation deletes all objfile entries that represent solibs that
   weren't explicitly loaded by the user, via e.g., the add-symbol-file
   weren't explicitly loaded by the user, via e.g., the add-symbol-file
   command.
   command.
 */
 */
extern void
extern void
objfile_purge_solibs PARAMS ((void));
objfile_purge_solibs PARAMS ((void));
 
 
/* Functions for dealing with the minimal symbol table, really a misc
/* Functions for dealing with the minimal symbol table, really a misc
   address<->symbol mapping for things we don't have debug symbols for.  */
   address<->symbol mapping for things we don't have debug symbols for.  */
 
 
extern int
extern int
have_minimal_symbols PARAMS ((void));
have_minimal_symbols PARAMS ((void));
 
 
extern struct obj_section *
extern struct obj_section *
  find_pc_section PARAMS ((CORE_ADDR pc));
  find_pc_section PARAMS ((CORE_ADDR pc));
 
 
extern struct obj_section *
extern struct obj_section *
  find_pc_sect_section PARAMS ((CORE_ADDR pc, asection * section));
  find_pc_sect_section PARAMS ((CORE_ADDR pc, asection * section));
 
 
extern int
extern int
in_plt_section PARAMS ((CORE_ADDR, char *));
in_plt_section PARAMS ((CORE_ADDR, char *));
 
 
extern int
extern int
is_in_import_list PARAMS ((char *, struct objfile *));
is_in_import_list PARAMS ((char *, struct objfile *));
 
 
/* Traverse all object files.  ALL_OBJFILES_SAFE works even if you delete
/* Traverse all object files.  ALL_OBJFILES_SAFE works even if you delete
   the objfile during the traversal.  */
   the objfile during the traversal.  */
 
 
#define ALL_OBJFILES(obj) \
#define ALL_OBJFILES(obj) \
  for ((obj) = object_files; (obj) != NULL; (obj) = (obj)->next)
  for ((obj) = object_files; (obj) != NULL; (obj) = (obj)->next)
 
 
#define ALL_OBJFILES_SAFE(obj,nxt) \
#define ALL_OBJFILES_SAFE(obj,nxt) \
  for ((obj) = object_files;       \
  for ((obj) = object_files;       \
       (obj) != NULL? ((nxt)=(obj)->next,1) :0;  \
       (obj) != NULL? ((nxt)=(obj)->next,1) :0;  \
       (obj) = (nxt))
       (obj) = (nxt))
 
 
/* Traverse all symtabs in one objfile.  */
/* Traverse all symtabs in one objfile.  */
 
 
#define ALL_OBJFILE_SYMTABS(objfile, s) \
#define ALL_OBJFILE_SYMTABS(objfile, s) \
    for ((s) = (objfile) -> symtabs; (s) != NULL; (s) = (s) -> next)
    for ((s) = (objfile) -> symtabs; (s) != NULL; (s) = (s) -> next)
 
 
/* Traverse all psymtabs in one objfile.  */
/* Traverse all psymtabs in one objfile.  */
 
 
#define ALL_OBJFILE_PSYMTABS(objfile, p) \
#define ALL_OBJFILE_PSYMTABS(objfile, p) \
    for ((p) = (objfile) -> psymtabs; (p) != NULL; (p) = (p) -> next)
    for ((p) = (objfile) -> psymtabs; (p) != NULL; (p) = (p) -> next)
 
 
/* Traverse all minimal symbols in one objfile.  */
/* Traverse all minimal symbols in one objfile.  */
 
 
#define ALL_OBJFILE_MSYMBOLS(objfile, m) \
#define ALL_OBJFILE_MSYMBOLS(objfile, m) \
    for ((m) = (objfile) -> msymbols; SYMBOL_NAME(m) != NULL; (m)++)
    for ((m) = (objfile) -> msymbols; SYMBOL_NAME(m) != NULL; (m)++)
 
 
/* Traverse all symtabs in all objfiles.  */
/* Traverse all symtabs in all objfiles.  */
 
 
#define ALL_SYMTABS(objfile, s) \
#define ALL_SYMTABS(objfile, s) \
  ALL_OBJFILES (objfile)         \
  ALL_OBJFILES (objfile)         \
    ALL_OBJFILE_SYMTABS (objfile, s)
    ALL_OBJFILE_SYMTABS (objfile, s)
 
 
/* Traverse all psymtabs in all objfiles.  */
/* Traverse all psymtabs in all objfiles.  */
 
 
#define ALL_PSYMTABS(objfile, p) \
#define ALL_PSYMTABS(objfile, p) \
  ALL_OBJFILES (objfile)         \
  ALL_OBJFILES (objfile)         \
    ALL_OBJFILE_PSYMTABS (objfile, p)
    ALL_OBJFILE_PSYMTABS (objfile, p)
 
 
/* Traverse all minimal symbols in all objfiles.  */
/* Traverse all minimal symbols in all objfiles.  */
 
 
#define ALL_MSYMBOLS(objfile, m) \
#define ALL_MSYMBOLS(objfile, m) \
  ALL_OBJFILES (objfile)         \
  ALL_OBJFILES (objfile)         \
    if ((objfile)->msymbols)     \
    if ((objfile)->msymbols)     \
      ALL_OBJFILE_MSYMBOLS (objfile, m)
      ALL_OBJFILE_MSYMBOLS (objfile, m)
 
 
#define ALL_OBJFILE_OSECTIONS(objfile, osect)   \
#define ALL_OBJFILE_OSECTIONS(objfile, osect)   \
  for (osect = objfile->sections; osect < objfile->sections_end; osect++)
  for (osect = objfile->sections; osect < objfile->sections_end; osect++)
 
 
#define ALL_OBJSECTIONS(objfile, osect)         \
#define ALL_OBJSECTIONS(objfile, osect)         \
  ALL_OBJFILES (objfile)                        \
  ALL_OBJFILES (objfile)                        \
    ALL_OBJFILE_OSECTIONS (objfile, osect)
    ALL_OBJFILE_OSECTIONS (objfile, osect)
 
 
#endif /* !defined (OBJFILES_H) */
#endif /* !defined (OBJFILES_H) */
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.