OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [gdb-5.0/] [gdb/] [remote-adapt.c] - Diff between revs 105 and 1765

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 105 Rev 1765
/* Remote debugging interface for AMD 290*0 Adapt Monitor Version 2.1d18.
/* Remote debugging interface for AMD 290*0 Adapt Monitor Version 2.1d18.
   Copyright 1990, 1991, 1992 Free Software Foundation, Inc.
   Copyright 1990, 1991, 1992 Free Software Foundation, Inc.
   Contributed by David Wood at New York University (wood@lab.ultra.nyu.edu).
   Contributed by David Wood at New York University (wood@lab.ultra.nyu.edu).
   Adapted from work done at Cygnus Support in remote-eb.c.
   Adapted from work done at Cygnus Support in remote-eb.c.
 
 
   This file is part of GDB.
   This file is part of GDB.
 
 
   This program is free software; you can redistribute it and/or modify
   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2 of the License, or
   the Free Software Foundation; either version 2 of the License, or
   (at your option) any later version.
   (at your option) any later version.
 
 
   This program is distributed in the hope that it will be useful,
   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.
   GNU General Public License for more details.
 
 
   You should have received a copy of the GNU General Public License
   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   along with this program; if not, write to the Free Software
   Foundation, Inc., 59 Temple Place - Suite 330,
   Foundation, Inc., 59 Temple Place - Suite 330,
   Boston, MA 02111-1307, USA.  */
   Boston, MA 02111-1307, USA.  */
 
 
/* This is like remote.c but is for an esoteric situation--
/* This is like remote.c but is for an esoteric situation--
   having a 29k board attached to an Adapt inline monitor.
   having a 29k board attached to an Adapt inline monitor.
   The  monitor is connected via serial line to a unix machine
   The  monitor is connected via serial line to a unix machine
   running gdb.
   running gdb.
 
 
   3/91 -  developed on Sun3 OS 4.1, by David Wood
   3/91 -  developed on Sun3 OS 4.1, by David Wood
   o - I can't get binary coff to load.
   o - I can't get binary coff to load.
   o - I can't get 19200 baud rate to work.
   o - I can't get 19200 baud rate to work.
   7/91 o - Freeze mode tracing can be done on a 29050.  */
   7/91 o - Freeze mode tracing can be done on a 29050.  */
 
 
 
 
 
 
#include "defs.h"
#include "defs.h"
#include "gdb_string.h"
#include "gdb_string.h"
#include "inferior.h"
#include "inferior.h"
#include "gdb_wait.h"
#include "gdb_wait.h"
#include "value.h"
#include "value.h"
#include <ctype.h>
#include <ctype.h>
#include <fcntl.h>
#include <fcntl.h>
#include <signal.h>
#include <signal.h>
#include <errno.h>
#include <errno.h>
#include "terminal.h"
#include "terminal.h"
#include "target.h"
#include "target.h"
#include "gdbcore.h"
#include "gdbcore.h"
 
 
/* This processor is getting rusty but I am trying to keep it
/* This processor is getting rusty but I am trying to keep it
   up to date at least with data structure changes.
   up to date at least with data structure changes.
   Activate this block to compile just this file.
   Activate this block to compile just this file.
 */
 */
#define COMPILE_CHECK 0
#define COMPILE_CHECK 0
#if COMPILE_CHECK
#if COMPILE_CHECK
#define Q_REGNUM 0
#define Q_REGNUM 0
#define VAB_REGNUM 0
#define VAB_REGNUM 0
#define CPS_REGNUM 0
#define CPS_REGNUM 0
#define IPA_REGNUM 0
#define IPA_REGNUM 0
#define IPB_REGNUM 0
#define IPB_REGNUM 0
#define GR1_REGNUM 0
#define GR1_REGNUM 0
#define LR0_REGNUM 0
#define LR0_REGNUM 0
#define IPC_REGNUM 0
#define IPC_REGNUM 0
#define CR_REGNUM 0
#define CR_REGNUM 0
#define BP_REGNUM 0
#define BP_REGNUM 0
#define FC_REGNUM 0
#define FC_REGNUM 0
#define INTE_REGNUM 0
#define INTE_REGNUM 0
#define EXO_REGNUM 0
#define EXO_REGNUM 0
#define GR96_REGNUM 0
#define GR96_REGNUM 0
#define NPC_REGNUM
#define NPC_REGNUM
#define FPE_REGNUM 0
#define FPE_REGNUM 0
#define PC2_REGNUM 0
#define PC2_REGNUM 0
#define FPS_REGNUM 0
#define FPS_REGNUM 0
#define ALU_REGNUM 0
#define ALU_REGNUM 0
#define LRU_REGNUM 0
#define LRU_REGNUM 0
#define TERMINAL int
#define TERMINAL int
#define RAW 1
#define RAW 1
#define ANYP 1
#define ANYP 1
extern int a29k_freeze_mode;
extern int a29k_freeze_mode;
extern int processor_type;
extern int processor_type;
extern char *processor_name;
extern char *processor_name;
#endif
#endif
 
 
/* External data declarations */
/* External data declarations */
extern int stop_soon_quietly;   /* for wait_for_inferior */
extern int stop_soon_quietly;   /* for wait_for_inferior */
 
 
/* Forward data declarations */
/* Forward data declarations */
extern struct target_ops adapt_ops;     /* Forward declaration */
extern struct target_ops adapt_ops;     /* Forward declaration */
 
 
/* Forward function declarations */
/* Forward function declarations */
static void adapt_fetch_registers ();
static void adapt_fetch_registers ();
static void adapt_store_registers ();
static void adapt_store_registers ();
static void adapt_close ();
static void adapt_close ();
static int adapt_clear_breakpoints ();
static int adapt_clear_breakpoints ();
 
 
#define FREEZE_MODE     (read_register(CPS_REGNUM) && 0x400)
#define FREEZE_MODE     (read_register(CPS_REGNUM) && 0x400)
#define USE_SHADOW_PC   ((processor_type == a29k_freeze_mode) && FREEZE_MODE)
#define USE_SHADOW_PC   ((processor_type == a29k_freeze_mode) && FREEZE_MODE)
 
 
/* Can't seem to get binary coff working */
/* Can't seem to get binary coff working */
#define ASCII_COFF              /* Adapt will be downloaded with ascii coff */
#define ASCII_COFF              /* Adapt will be downloaded with ascii coff */
 
 
/* FIXME: Replace with `set remotedebug'.  */
/* FIXME: Replace with `set remotedebug'.  */
#define LOG_FILE "adapt.log"
#define LOG_FILE "adapt.log"
#if defined (LOG_FILE)
#if defined (LOG_FILE)
FILE *log_file = NULL;
FILE *log_file = NULL;
#endif
#endif
 
 
static int timeout = 5;
static int timeout = 5;
static char *dev_name;
static char *dev_name;
 
 
/* Descriptor for I/O to remote machine.  Initialize it to -1 so that
/* Descriptor for I/O to remote machine.  Initialize it to -1 so that
   adapt_open knows that we don't have a file open when the program
   adapt_open knows that we don't have a file open when the program
   starts.  */
   starts.  */
int adapt_desc = -1;
int adapt_desc = -1;
 
 
/* stream which is fdopen'd from adapt_desc.  Only valid when
/* stream which is fdopen'd from adapt_desc.  Only valid when
   adapt_desc != -1.  */
   adapt_desc != -1.  */
FILE *adapt_stream;
FILE *adapt_stream;
 
 
#define ON      1
#define ON      1
#define OFF     0
#define OFF     0
static void
static void
rawmode (desc, turnon)
rawmode (desc, turnon)
     int desc;
     int desc;
     int turnon;
     int turnon;
{
{
 
 
  TERMINAL sg;
  TERMINAL sg;
 
 
  if (desc < 0)
  if (desc < 0)
    return;
    return;
 
 
  ioctl (desc, TIOCGETP, &sg);
  ioctl (desc, TIOCGETP, &sg);
 
 
  if (turnon)
  if (turnon)
    {
    {
#ifdef HAVE_TERMIO
#ifdef HAVE_TERMIO
      sg.c_lflag &= ~(ICANON);
      sg.c_lflag &= ~(ICANON);
#else
#else
      sg.sg_flags |= RAW;
      sg.sg_flags |= RAW;
#endif
#endif
    }
    }
  else
  else
    {
    {
#ifdef HAVE_TERMIO
#ifdef HAVE_TERMIO
      sg.c_lflag |= ICANON;
      sg.c_lflag |= ICANON;
#else
#else
      sg.sg_flags &= ~(RAW);
      sg.sg_flags &= ~(RAW);
#endif
#endif
    }
    }
  ioctl (desc, TIOCSETP, &sg);
  ioctl (desc, TIOCSETP, &sg);
}
}
 
 
/* Suck up all the input from the adapt */
/* Suck up all the input from the adapt */
slurp_input ()
slurp_input ()
{
{
  char buf[8];
  char buf[8];
 
 
#ifdef HAVE_TERMIO
#ifdef HAVE_TERMIO
  /* termio does the timeout for us.  */
  /* termio does the timeout for us.  */
  while (read (adapt_desc, buf, 8) > 0);
  while (read (adapt_desc, buf, 8) > 0);
#else
#else
  alarm (timeout);
  alarm (timeout);
  while (read (adapt_desc, buf, 8) > 0);
  while (read (adapt_desc, buf, 8) > 0);
  alarm (0);
  alarm (0);
#endif
#endif
}
}
 
 
/* Read a character from the remote system, doing all the fancy
/* Read a character from the remote system, doing all the fancy
   timeout stuff.  */
   timeout stuff.  */
static int
static int
readchar ()
readchar ()
{
{
  char buf;
  char buf;
 
 
  buf = '\0';
  buf = '\0';
#ifdef HAVE_TERMIO
#ifdef HAVE_TERMIO
  /* termio does the timeout for us.  */
  /* termio does the timeout for us.  */
  read (adapt_desc, &buf, 1);
  read (adapt_desc, &buf, 1);
#else
#else
  alarm (timeout);
  alarm (timeout);
  if (read (adapt_desc, &buf, 1) < 0)
  if (read (adapt_desc, &buf, 1) < 0)
    {
    {
      if (errno == EINTR)
      if (errno == EINTR)
        error ("Timeout reading from remote system.");
        error ("Timeout reading from remote system.");
      else
      else
        perror_with_name ("remote");
        perror_with_name ("remote");
    }
    }
  alarm (0);
  alarm (0);
#endif
#endif
 
 
  if (buf == '\0')
  if (buf == '\0')
    error ("Timeout reading from remote system.");
    error ("Timeout reading from remote system.");
#if defined (LOG_FILE)
#if defined (LOG_FILE)
  putc (buf & 0x7f, log_file);
  putc (buf & 0x7f, log_file);
#endif
#endif
  return buf & 0x7f;
  return buf & 0x7f;
}
}
 
 
/* Keep discarding input from the remote system, until STRING is found.
/* Keep discarding input from the remote system, until STRING is found.
   Let the user break out immediately.  */
   Let the user break out immediately.  */
static void
static void
expect (string)
expect (string)
     char *string;
     char *string;
{
{
  char *p = string;
  char *p = string;
 
 
  fflush (adapt_stream);
  fflush (adapt_stream);
  immediate_quit = 1;
  immediate_quit = 1;
  while (1)
  while (1)
    {
    {
      if (readchar () == *p)
      if (readchar () == *p)
        {
        {
          p++;
          p++;
          if (*p == '\0')
          if (*p == '\0')
            {
            {
              immediate_quit = 0;
              immediate_quit = 0;
              return;
              return;
            }
            }
        }
        }
      else
      else
        p = string;
        p = string;
    }
    }
}
}
 
 
/* Keep discarding input until we see the adapt prompt.
/* Keep discarding input until we see the adapt prompt.
 
 
   The convention for dealing with the prompt is that you
   The convention for dealing with the prompt is that you
   o give your command
   o give your command
   o *then* wait for the prompt.
   o *then* wait for the prompt.
 
 
   Thus the last thing that a procedure does with the serial line
   Thus the last thing that a procedure does with the serial line
   will be an expect_prompt().  Exception:  adapt_resume does not
   will be an expect_prompt().  Exception:  adapt_resume does not
   wait for the prompt, because the terminal is being handed over
   wait for the prompt, because the terminal is being handed over
   to the inferior.  However, the next thing which happens after that
   to the inferior.  However, the next thing which happens after that
   is a adapt_wait which does wait for the prompt.
   is a adapt_wait which does wait for the prompt.
   Note that this includes abnormal exit, e.g. error().  This is
   Note that this includes abnormal exit, e.g. error().  This is
   necessary to prevent getting into states from which we can't
   necessary to prevent getting into states from which we can't
   recover.  */
   recover.  */
static void
static void
expect_prompt ()
expect_prompt ()
{
{
#if defined (LOG_FILE)
#if defined (LOG_FILE)
  /* This is a convenient place to do this.  The idea is to do it often
  /* This is a convenient place to do this.  The idea is to do it often
     enough that we never lose much data if we terminate abnormally.  */
     enough that we never lose much data if we terminate abnormally.  */
  fflush (log_file);
  fflush (log_file);
#endif
#endif
  fflush (adapt_stream);
  fflush (adapt_stream);
  expect ("\n# ");
  expect ("\n# ");
}
}
 
 
/* Get a hex digit from the remote system & return its value.
/* Get a hex digit from the remote system & return its value.
   If ignore_space is nonzero, ignore spaces (not newline, tab, etc).  */
   If ignore_space is nonzero, ignore spaces (not newline, tab, etc).  */
static int
static int
get_hex_digit (ignore_space)
get_hex_digit (ignore_space)
     int ignore_space;
     int ignore_space;
{
{
  int ch;
  int ch;
  while (1)
  while (1)
    {
    {
      ch = readchar ();
      ch = readchar ();
      if (ch >= '0' && ch <= '9')
      if (ch >= '0' && ch <= '9')
        return ch - '0';
        return ch - '0';
      else if (ch >= 'A' && ch <= 'F')
      else if (ch >= 'A' && ch <= 'F')
        return ch - 'A' + 10;
        return ch - 'A' + 10;
      else if (ch >= 'a' && ch <= 'f')
      else if (ch >= 'a' && ch <= 'f')
        return ch - 'a' + 10;
        return ch - 'a' + 10;
      else if (ch == ' ' && ignore_space)
      else if (ch == ' ' && ignore_space)
        ;
        ;
      else
      else
        {
        {
          expect_prompt ();
          expect_prompt ();
          error ("Invalid hex digit from remote system.");
          error ("Invalid hex digit from remote system.");
        }
        }
    }
    }
}
}
 
 
/* Get a byte from adapt_desc and put it in *BYT.  Accept any number
/* Get a byte from adapt_desc and put it in *BYT.  Accept any number
   leading spaces.  */
   leading spaces.  */
static void
static void
get_hex_byte (byt)
get_hex_byte (byt)
     char *byt;
     char *byt;
{
{
  int val;
  int val;
 
 
  val = get_hex_digit (1) << 4;
  val = get_hex_digit (1) << 4;
  val |= get_hex_digit (0);
  val |= get_hex_digit (0);
  *byt = val;
  *byt = val;
}
}
 
 
/* Read a 32-bit hex word from the adapt, preceded by a space  */
/* Read a 32-bit hex word from the adapt, preceded by a space  */
static long
static long
get_hex_word ()
get_hex_word ()
{
{
  long val;
  long val;
  int j;
  int j;
 
 
  val = 0;
  val = 0;
  for (j = 0; j < 8; j++)
  for (j = 0; j < 8; j++)
    val = (val << 4) + get_hex_digit (j == 0);
    val = (val << 4) + get_hex_digit (j == 0);
  return val;
  return val;
}
}
/* Get N 32-bit hex words from remote, each preceded by a space
/* Get N 32-bit hex words from remote, each preceded by a space
   and put them in registers starting at REGNO.  */
   and put them in registers starting at REGNO.  */
static void
static void
get_hex_regs (n, regno)
get_hex_regs (n, regno)
     int n;
     int n;
     int regno;
     int regno;
{
{
  long val;
  long val;
  while (n--)
  while (n--)
    {
    {
      val = get_hex_word ();
      val = get_hex_word ();
      supply_register (regno++, (char *) &val);
      supply_register (regno++, (char *) &val);
    }
    }
}
}
/* Called when SIGALRM signal sent due to alarm() timeout.  */
/* Called when SIGALRM signal sent due to alarm() timeout.  */
#ifndef HAVE_TERMIO
#ifndef HAVE_TERMIO
 
 
#ifndef __STDC__
#ifndef __STDC__
#ifndef volatile
#ifndef volatile
#define volatile
#define volatile
/**/
/**/
# endif
# endif
#endif
#endif
volatile int n_alarms;
volatile int n_alarms;
 
 
void
void
adapt_timer ()
adapt_timer ()
{
{
#if 0
#if 0
  if (kiodebug)
  if (kiodebug)
    printf ("adapt_timer called\n");
    printf ("adapt_timer called\n");
#endif
#endif
  n_alarms++;
  n_alarms++;
}
}
#endif
#endif
 
 
/* malloc'd name of the program on the remote system.  */
/* malloc'd name of the program on the remote system.  */
static char *prog_name = NULL;
static char *prog_name = NULL;
 
 
/* Number of SIGTRAPs we need to simulate.  That is, the next
/* Number of SIGTRAPs we need to simulate.  That is, the next
   NEED_ARTIFICIAL_TRAP calls to adapt_wait should just return
   NEED_ARTIFICIAL_TRAP calls to adapt_wait should just return
   SIGTRAP without actually waiting for anything.  */
   SIGTRAP without actually waiting for anything.  */
 
 
static int need_artificial_trap = 0;
static int need_artificial_trap = 0;
 
 
void
void
adapt_kill (arg, from_tty)
adapt_kill (arg, from_tty)
     char *arg;
     char *arg;
     int from_tty;
     int from_tty;
{
{
  fprintf (adapt_stream, "K");
  fprintf (adapt_stream, "K");
  fprintf (adapt_stream, "\r");
  fprintf (adapt_stream, "\r");
  expect_prompt ();
  expect_prompt ();
}
}
/*
/*
 * Download a file specified in 'args', to the adapt.
 * Download a file specified in 'args', to the adapt.
 * FIXME: Assumes the file to download is a binary coff file.
 * FIXME: Assumes the file to download is a binary coff file.
 */
 */
static void
static void
adapt_load (args, fromtty)
adapt_load (args, fromtty)
     char *args;
     char *args;
     int fromtty;
     int fromtty;
{
{
  FILE *fp;
  FILE *fp;
  int n;
  int n;
  char buffer[1024];
  char buffer[1024];
 
 
  if (!adapt_stream)
  if (!adapt_stream)
    {
    {
      printf_filtered ("Adapt not open. Use 'target' command to open adapt\n");
      printf_filtered ("Adapt not open. Use 'target' command to open adapt\n");
      return;
      return;
    }
    }
 
 
  /* OK, now read in the file.  Y=read, C=COFF, T=dTe port
  /* OK, now read in the file.  Y=read, C=COFF, T=dTe port
     0=start address.  */
     0=start address.  */
 
 
#ifdef ASCII_COFF               /* Ascii coff */
#ifdef ASCII_COFF               /* Ascii coff */
  fprintf (adapt_stream, "YA T,0\r");
  fprintf (adapt_stream, "YA T,0\r");
  fflush (adapt_stream);        /* Just in case */
  fflush (adapt_stream);        /* Just in case */
  /* FIXME: should check args for only 1 argument */
  /* FIXME: should check args for only 1 argument */
  sprintf (buffer, "cat %s | btoa > /tmp/#adapt-btoa", args);
  sprintf (buffer, "cat %s | btoa > /tmp/#adapt-btoa", args);
  system (buffer);
  system (buffer);
  fp = fopen ("/tmp/#adapt-btoa", "r");
  fp = fopen ("/tmp/#adapt-btoa", "r");
  rawmode (adapt_desc, OFF);
  rawmode (adapt_desc, OFF);
  while (n = fread (buffer, 1, 1024, fp))
  while (n = fread (buffer, 1, 1024, fp))
    {
    {
      do
      do
        {
        {
          n -= write (adapt_desc, buffer, n);
          n -= write (adapt_desc, buffer, n);
        }
        }
      while (n > 0);
      while (n > 0);
      if (n < 0)
      if (n < 0)
        {
        {
          perror ("writing ascii coff");
          perror ("writing ascii coff");
          break;
          break;
        }
        }
    }
    }
  fclose (fp);
  fclose (fp);
  rawmode (adapt_desc, ON);
  rawmode (adapt_desc, ON);
  system ("rm /tmp/#adapt-btoa");
  system ("rm /tmp/#adapt-btoa");
#else /* Binary coff - can't get it to work . */
#else /* Binary coff - can't get it to work . */
  fprintf (adapt_stream, "YC T,0\r");
  fprintf (adapt_stream, "YC T,0\r");
  fflush (adapt_stream);        /* Just in case */
  fflush (adapt_stream);        /* Just in case */
  if (!(fp = fopen (args, "r")))
  if (!(fp = fopen (args, "r")))
    {
    {
      printf_filtered ("Can't open %s\n", args);
      printf_filtered ("Can't open %s\n", args);
      return;
      return;
    }
    }
  while (n = fread (buffer, 1, 512, fp))
  while (n = fread (buffer, 1, 512, fp))
    {
    {
      do
      do
        {
        {
          n -= write (adapt_desc, buffer, n);
          n -= write (adapt_desc, buffer, n);
        }
        }
      while (n > 0);
      while (n > 0);
      if (n < 0)
      if (n < 0)
        {
        {
          perror ("writing ascii coff");
          perror ("writing ascii coff");
          break;
          break;
        }
        }
    }
    }
  fclose (fp);
  fclose (fp);
#endif
#endif
  expect_prompt ();             /* Skip garbage that comes out */
  expect_prompt ();             /* Skip garbage that comes out */
  fprintf (adapt_stream, "\r");
  fprintf (adapt_stream, "\r");
  expect_prompt ();
  expect_prompt ();
}
}
 
 
/* This is called not only when we first attach, but also when the
/* This is called not only when we first attach, but also when the
   user types "run" after having attached.  */
   user types "run" after having attached.  */
void
void
adapt_create_inferior (execfile, args, env)
adapt_create_inferior (execfile, args, env)
     char *execfile;
     char *execfile;
     char *args;
     char *args;
     char **env;
     char **env;
{
{
  int entry_pt;
  int entry_pt;
 
 
  if (args && *args)
  if (args && *args)
    error ("Can't pass arguments to remote adapt process.");
    error ("Can't pass arguments to remote adapt process.");
 
 
  if (execfile == 0 || exec_bfd == 0)
  if (execfile == 0 || exec_bfd == 0)
    error ("No executable file specified");
    error ("No executable file specified");
 
 
  entry_pt = (int) bfd_get_start_address (exec_bfd);
  entry_pt = (int) bfd_get_start_address (exec_bfd);
 
 
  if (adapt_stream)
  if (adapt_stream)
    {
    {
      adapt_kill (NULL, NULL);
      adapt_kill (NULL, NULL);
      adapt_clear_breakpoints ();
      adapt_clear_breakpoints ();
      init_wait_for_inferior ();
      init_wait_for_inferior ();
      /* Clear the input because what the adapt sends back is different
      /* Clear the input because what the adapt sends back is different
       * depending on whether it was running or not.
       * depending on whether it was running or not.
       */
       */
      slurp_input ();           /* After this there should be a prompt */
      slurp_input ();           /* After this there should be a prompt */
      fprintf (adapt_stream, "\r");
      fprintf (adapt_stream, "\r");
      expect_prompt ();
      expect_prompt ();
      printf_filtered ("Do you want to download '%s' (y/n)? [y] : ", prog_name);
      printf_filtered ("Do you want to download '%s' (y/n)? [y] : ", prog_name);
      {
      {
        char buffer[10];
        char buffer[10];
        gets (buffer);
        gets (buffer);
        if (*buffer != 'n')
        if (*buffer != 'n')
          {
          {
            adapt_load (prog_name, 0);
            adapt_load (prog_name, 0);
          }
          }
      }
      }
 
 
#ifdef NOTDEF
#ifdef NOTDEF
      /* Set the PC and wait for a go/cont */
      /* Set the PC and wait for a go/cont */
      fprintf (adapt_stream, "G %x,N\r", entry_pt);
      fprintf (adapt_stream, "G %x,N\r", entry_pt);
      printf_filtered ("Now use the 'continue' command to start.\n");
      printf_filtered ("Now use the 'continue' command to start.\n");
      expect_prompt ();
      expect_prompt ();
#else
#else
      insert_breakpoints ();    /* Needed to get correct instruction in cache */
      insert_breakpoints ();    /* Needed to get correct instruction in cache */
      proceed (entry_pt, TARGET_SIGNAL_DEFAULT, 0);
      proceed (entry_pt, TARGET_SIGNAL_DEFAULT, 0);
#endif
#endif
 
 
    }
    }
  else
  else
    {
    {
      printf_filtered ("Adapt not open yet.\n");
      printf_filtered ("Adapt not open yet.\n");
    }
    }
}
}
 
 
/* Translate baud rates from integers to damn B_codes.  Unix should
/* Translate baud rates from integers to damn B_codes.  Unix should
   have outgrown this crap years ago, but even POSIX wouldn't buck it.  */
   have outgrown this crap years ago, but even POSIX wouldn't buck it.  */
 
 
#ifndef B19200
#ifndef B19200
#define B19200 EXTA
#define B19200 EXTA
#endif
#endif
#ifndef B38400
#ifndef B38400
#define B38400 EXTB
#define B38400 EXTB
#endif
#endif
 
 
static struct
static struct
{
{
  int rate, damn_b;
  int rate, damn_b;
}
}
baudtab[] =
baudtab[] =
{
{
  {
  {
    0, B0
    0, B0
  }
  }
  ,
  ,
  {
  {
    50, B50
    50, B50
  }
  }
  ,
  ,
  {
  {
    75, B75
    75, B75
  }
  }
  ,
  ,
  {
  {
    110, B110
    110, B110
  }
  }
  ,
  ,
  {
  {
    134, B134
    134, B134
  }
  }
  ,
  ,
  {
  {
    150, B150
    150, B150
  }
  }
  ,
  ,
  {
  {
    200, B200
    200, B200
  }
  }
  ,
  ,
  {
  {
    300, B300
    300, B300
  }
  }
  ,
  ,
  {
  {
    600, B600
    600, B600
  }
  }
  ,
  ,
  {
  {
    1200, B1200
    1200, B1200
  }
  }
  ,
  ,
  {
  {
    1800, B1800
    1800, B1800
  }
  }
  ,
  ,
  {
  {
    2400, B2400
    2400, B2400
  }
  }
  ,
  ,
  {
  {
    4800, B4800
    4800, B4800
  }
  }
  ,
  ,
  {
  {
    9600, B9600
    9600, B9600
  }
  }
  ,
  ,
  {
  {
    19200, B19200
    19200, B19200
  }
  }
  ,
  ,
  {
  {
    38400, B38400
    38400, B38400
  }
  }
  ,
  ,
  {
  {
    -1, -1
    -1, -1
  }
  }
  ,
  ,
};
};
 
 
static int
static int
damn_b (rate)
damn_b (rate)
     int rate;
     int rate;
{
{
  int i;
  int i;
 
 
  for (i = 0; baudtab[i].rate != -1; i++)
  for (i = 0; baudtab[i].rate != -1; i++)
    if (rate == baudtab[i].rate)
    if (rate == baudtab[i].rate)
      return baudtab[i].damn_b;
      return baudtab[i].damn_b;
  return B38400;                /* Random */
  return B38400;                /* Random */
}
}
 
 
 
 
/* Open a connection to a remote debugger.
/* Open a connection to a remote debugger.
   NAME is the filename used for communication, then a space,
   NAME is the filename used for communication, then a space,
   then the baud rate.
   then the baud rate.
 */
 */
 
 
static int baudrate = 9600;
static int baudrate = 9600;
static void
static void
adapt_open (name, from_tty)
adapt_open (name, from_tty)
     char *name;
     char *name;
     int from_tty;
     int from_tty;
{
{
  TERMINAL sg;
  TERMINAL sg;
  unsigned int prl;
  unsigned int prl;
  char *p;
  char *p;
 
 
  /* Find the first whitespace character, it separates dev_name from
  /* Find the first whitespace character, it separates dev_name from
     prog_name.  */
     prog_name.  */
  if (name == 0)
  if (name == 0)
    goto erroid;
    goto erroid;
 
 
  for (p = name;
  for (p = name;
       *p != '\0' && !isspace (*p); p++)
       *p != '\0' && !isspace (*p); p++)
    ;
    ;
  if (*p == '\0')
  if (*p == '\0')
  erroid:
  erroid:
    error ("\
    error ("\
Please include the name of the device for the serial port,\n\
Please include the name of the device for the serial port,\n\
the baud rate, and the name of the program to run on the remote system.");
the baud rate, and the name of the program to run on the remote system.");
  dev_name = (char *) xmalloc (p - name + 1);
  dev_name = (char *) xmalloc (p - name + 1);
  strncpy (dev_name, name, p - name);
  strncpy (dev_name, name, p - name);
  dev_name[p - name] = '\0';
  dev_name[p - name] = '\0';
 
 
  /* Skip over the whitespace after dev_name */
  /* Skip over the whitespace after dev_name */
  for (; isspace (*p); p++)
  for (; isspace (*p); p++)
    /*EMPTY */ ;
    /*EMPTY */ ;
 
 
  if (1 != sscanf (p, "%d ", &baudrate))
  if (1 != sscanf (p, "%d ", &baudrate))
    goto erroid;
    goto erroid;
 
 
  /* Skip the number and then the spaces */
  /* Skip the number and then the spaces */
  for (; isdigit (*p); p++)
  for (; isdigit (*p); p++)
    /*EMPTY */ ;
    /*EMPTY */ ;
  for (; isspace (*p); p++)
  for (; isspace (*p); p++)
    /*EMPTY */ ;
    /*EMPTY */ ;
 
 
  if (prog_name != NULL)
  if (prog_name != NULL)
    free (prog_name);
    free (prog_name);
  prog_name = savestring (p, strlen (p));
  prog_name = savestring (p, strlen (p));
 
 
  adapt_close (0);
  adapt_close (0);
 
 
  adapt_desc = open (dev_name, O_RDWR);
  adapt_desc = open (dev_name, O_RDWR);
  if (adapt_desc < 0)
  if (adapt_desc < 0)
    perror_with_name (dev_name);
    perror_with_name (dev_name);
  ioctl (adapt_desc, TIOCGETP, &sg);
  ioctl (adapt_desc, TIOCGETP, &sg);
#if ! defined(COMPILE_CHECK)
#if ! defined(COMPILE_CHECK)
#ifdef HAVE_TERMIO
#ifdef HAVE_TERMIO
  sg.c_cc[VMIN] = 0;             /* read with timeout.  */
  sg.c_cc[VMIN] = 0;             /* read with timeout.  */
  sg.c_cc[VTIME] = timeout * 10;
  sg.c_cc[VTIME] = timeout * 10;
  sg.c_lflag &= ~(ICANON | ECHO);
  sg.c_lflag &= ~(ICANON | ECHO);
  sg.c_cflag = (sg.c_cflag & ~CBAUD) | damn_b (baudrate);
  sg.c_cflag = (sg.c_cflag & ~CBAUD) | damn_b (baudrate);
#else
#else
  sg.sg_ispeed = damn_b (baudrate);
  sg.sg_ispeed = damn_b (baudrate);
  sg.sg_ospeed = damn_b (baudrate);
  sg.sg_ospeed = damn_b (baudrate);
  sg.sg_flags |= RAW | ANYP;
  sg.sg_flags |= RAW | ANYP;
  sg.sg_flags &= ~ECHO;
  sg.sg_flags &= ~ECHO;
#endif
#endif
 
 
  ioctl (adapt_desc, TIOCSETP, &sg);
  ioctl (adapt_desc, TIOCSETP, &sg);
  adapt_stream = fdopen (adapt_desc, "r+");
  adapt_stream = fdopen (adapt_desc, "r+");
#endif /* compile_check */
#endif /* compile_check */
  push_target (&adapt_ops);
  push_target (&adapt_ops);
 
 
#ifndef HAVE_TERMIO
#ifndef HAVE_TERMIO
#ifndef NO_SIGINTERRUPT
#ifndef NO_SIGINTERRUPT
  /* Cause SIGALRM's to make reads fail with EINTR instead of resuming
  /* Cause SIGALRM's to make reads fail with EINTR instead of resuming
     the read.  */
     the read.  */
  if (siginterrupt (SIGALRM, 1) != 0)
  if (siginterrupt (SIGALRM, 1) != 0)
    perror ("adapt_open: error in siginterrupt");
    perror ("adapt_open: error in siginterrupt");
#endif
#endif
 
 
  /* Set up read timeout timer.  */
  /* Set up read timeout timer.  */
  if ((void (*)) signal (SIGALRM, adapt_timer) == (void (*)) -1)
  if ((void (*)) signal (SIGALRM, adapt_timer) == (void (*)) -1)
    perror ("adapt_open: error in signal");
    perror ("adapt_open: error in signal");
#endif
#endif
 
 
#if defined (LOG_FILE)
#if defined (LOG_FILE)
  log_file = fopen (LOG_FILE, "w");
  log_file = fopen (LOG_FILE, "w");
  if (log_file == NULL)
  if (log_file == NULL)
    perror_with_name (LOG_FILE);
    perror_with_name (LOG_FILE);
#endif
#endif
 
 
  /* Put this port into NORMAL mode, send the 'normal' character */
  /* Put this port into NORMAL mode, send the 'normal' character */
  write (adapt_desc, "", 1);   /* Control A */
  write (adapt_desc, "", 1);   /* Control A */
  write (adapt_desc, "\r", 1);
  write (adapt_desc, "\r", 1);
  expect_prompt ();
  expect_prompt ();
 
 
  /* Hello?  Are you there?  */
  /* Hello?  Are you there?  */
  write (adapt_desc, "\r", 1);
  write (adapt_desc, "\r", 1);
 
 
  expect_prompt ();
  expect_prompt ();
 
 
  /* Clear any break points */
  /* Clear any break points */
  adapt_clear_breakpoints ();
  adapt_clear_breakpoints ();
 
 
  /* Print out some stuff, letting the user now what's going on */
  /* Print out some stuff, letting the user now what's going on */
  printf_filtered ("Connected to an Adapt via %s.\n", dev_name);
  printf_filtered ("Connected to an Adapt via %s.\n", dev_name);
  /* FIXME: can this restriction be removed? */
  /* FIXME: can this restriction be removed? */
  printf_filtered ("Remote debugging using virtual addresses works only\n");
  printf_filtered ("Remote debugging using virtual addresses works only\n");
  printf_filtered ("\twhen virtual addresses map 1:1 to physical addresses.\n");
  printf_filtered ("\twhen virtual addresses map 1:1 to physical addresses.\n");
  if (processor_type != a29k_freeze_mode)
  if (processor_type != a29k_freeze_mode)
    {
    {
      fprintf_filtered (gdb_stderr,
      fprintf_filtered (gdb_stderr,
                        "Freeze-mode debugging not available, and can only be done on an A29050.\n");
                        "Freeze-mode debugging not available, and can only be done on an A29050.\n");
    }
    }
}
}
 
 
/* Close out all files and local state before this target loses control. */
/* Close out all files and local state before this target loses control. */
 
 
static void
static void
adapt_close (quitting)
adapt_close (quitting)
     int quitting;
     int quitting;
{
{
 
 
  /* Clear any break points */
  /* Clear any break points */
  adapt_clear_breakpoints ();
  adapt_clear_breakpoints ();
 
 
  /* Put this port back into REMOTE mode */
  /* Put this port back into REMOTE mode */
  if (adapt_stream)
  if (adapt_stream)
    {
    {
      fflush (adapt_stream);
      fflush (adapt_stream);
      sleep (1);                /* Let any output make it all the way back */
      sleep (1);                /* Let any output make it all the way back */
      write (adapt_desc, "R\r", 2);
      write (adapt_desc, "R\r", 2);
    }
    }
 
 
  /* Due to a bug in Unix, fclose closes not only the stdio stream,
  /* Due to a bug in Unix, fclose closes not only the stdio stream,
     but also the file descriptor.  So we don't actually close
     but also the file descriptor.  So we don't actually close
     adapt_desc.  */
     adapt_desc.  */
  if (adapt_stream)
  if (adapt_stream)
    fclose (adapt_stream);      /* This also closes adapt_desc */
    fclose (adapt_stream);      /* This also closes adapt_desc */
  if (adapt_desc >= 0)
  if (adapt_desc >= 0)
    /* close (adapt_desc); */
    /* close (adapt_desc); */
 
 
    /* Do not try to close adapt_desc again, later in the program.  */
    /* Do not try to close adapt_desc again, later in the program.  */
    adapt_stream = NULL;
    adapt_stream = NULL;
  adapt_desc = -1;
  adapt_desc = -1;
 
 
#if defined (LOG_FILE)
#if defined (LOG_FILE)
  if (log_file)
  if (log_file)
    {
    {
      if (ferror (log_file))
      if (ferror (log_file))
        printf_filtered ("Error writing log file.\n");
        printf_filtered ("Error writing log file.\n");
      if (fclose (log_file) != 0)
      if (fclose (log_file) != 0)
        printf_filtered ("Error closing log file.\n");
        printf_filtered ("Error closing log file.\n");
      log_file = NULL;
      log_file = NULL;
    }
    }
#endif
#endif
}
}
 
 
/* Attach to the target that is already loaded and possibly running */
/* Attach to the target that is already loaded and possibly running */
static void
static void
adapt_attach (args, from_tty)
adapt_attach (args, from_tty)
     char *args;
     char *args;
     int from_tty;
     int from_tty;
{
{
 
 
  if (from_tty)
  if (from_tty)
    printf_filtered ("Attaching to remote program %s.\n", prog_name);
    printf_filtered ("Attaching to remote program %s.\n", prog_name);
 
 
  /* Send the adapt a kill. It is ok if it is not already running */
  /* Send the adapt a kill. It is ok if it is not already running */
  fprintf (adapt_stream, "K\r");
  fprintf (adapt_stream, "K\r");
  fflush (adapt_stream);
  fflush (adapt_stream);
  expect_prompt ();             /* Slurp the echo */
  expect_prompt ();             /* Slurp the echo */
}
}
 
 
 
 
/* Terminate the open connection to the remote debugger.
/* Terminate the open connection to the remote debugger.
   Use this when you want to detach and do something else
   Use this when you want to detach and do something else
   with your gdb.  */
   with your gdb.  */
void
void
adapt_detach (args, from_tty)
adapt_detach (args, from_tty)
     char *args;
     char *args;
     int from_tty;
     int from_tty;
{
{
 
 
  if (adapt_stream)
  if (adapt_stream)
    {                           /* Send it on its way (tell it to continue)  */
    {                           /* Send it on its way (tell it to continue)  */
      adapt_clear_breakpoints ();
      adapt_clear_breakpoints ();
      fprintf (adapt_stream, "G\r");
      fprintf (adapt_stream, "G\r");
    }
    }
 
 
  pop_target ();                /* calls adapt_close to do the real work */
  pop_target ();                /* calls adapt_close to do the real work */
  if (from_tty)
  if (from_tty)
    printf_filtered ("Ending remote %s debugging\n", target_shortname);
    printf_filtered ("Ending remote %s debugging\n", target_shortname);
}
}
 
 
/* Tell the remote machine to resume.  */
/* Tell the remote machine to resume.  */
 
 
void
void
adapt_resume (pid, step, sig)
adapt_resume (pid, step, sig)
     int pid, step;
     int pid, step;
     enum target_signal sig;
     enum target_signal sig;
{
{
  if (step)
  if (step)
    {
    {
      write (adapt_desc, "t 1,s\r", 6);
      write (adapt_desc, "t 1,s\r", 6);
      /* Wait for the echo.  */
      /* Wait for the echo.  */
      expect ("t 1,s\r\n");
      expect ("t 1,s\r\n");
      /* Then comes a line containing the instruction we stepped to.  */
      /* Then comes a line containing the instruction we stepped to.  */
      expect ("@");
      expect ("@");
      /* Then we get the prompt.  */
      /* Then we get the prompt.  */
      expect_prompt ();
      expect_prompt ();
 
 
      /* Force the next adapt_wait to return a trap.  Not doing anything
      /* Force the next adapt_wait to return a trap.  Not doing anything
         about I/O from the target means that the user has to type
         about I/O from the target means that the user has to type
         "continue" to see any.  FIXME, this should be fixed.  */
         "continue" to see any.  FIXME, this should be fixed.  */
      need_artificial_trap = 1;
      need_artificial_trap = 1;
    }
    }
  else
  else
    {
    {
      write (adapt_desc, "G\r", 2);
      write (adapt_desc, "G\r", 2);
      /* Swallow the echo.  */
      /* Swallow the echo.  */
      expect_prompt ();
      expect_prompt ();
    }
    }
}
}
 
 
/* Wait until the remote machine stops, then return,
/* Wait until the remote machine stops, then return,
   storing status in STATUS just as `wait' would.  */
   storing status in STATUS just as `wait' would.  */
 
 
int
int
adapt_wait (status)
adapt_wait (status)
     struct target_waitstatus *status;
     struct target_waitstatus *status;
{
{
  /* Strings to look for.  '?' means match any single character.
  /* Strings to look for.  '?' means match any single character.
     Note that with the algorithm we use, the initial character
     Note that with the algorithm we use, the initial character
     of the string cannot recur in the string, or we will not
     of the string cannot recur in the string, or we will not
     find some cases of the string in the input.  */
     find some cases of the string in the input.  */
 
 
  static char bpt[] = "@";
  static char bpt[] = "@";
  /* It would be tempting to look for "\n[__exit + 0x8]\n"
  /* It would be tempting to look for "\n[__exit + 0x8]\n"
     but that requires loading symbols with "yc i" and even if
     but that requires loading symbols with "yc i" and even if
     we did do that we don't know that the file has symbols.  */
     we did do that we don't know that the file has symbols.  */
  static char exitmsg[] = "@????????I    JMPTI     GR121,LR0";
  static char exitmsg[] = "@????????I    JMPTI     GR121,LR0";
  char *bp = bpt;
  char *bp = bpt;
  char *ep = exitmsg;
  char *ep = exitmsg;
 
 
  /* Large enough for either sizeof (bpt) or sizeof (exitmsg) chars.  */
  /* Large enough for either sizeof (bpt) or sizeof (exitmsg) chars.  */
  char swallowed[50];
  char swallowed[50];
  /* Current position in swallowed.  */
  /* Current position in swallowed.  */
  char *swallowed_p = swallowed;
  char *swallowed_p = swallowed;
 
 
  int ch;
  int ch;
  int ch_handled;
  int ch_handled;
  int old_timeout = timeout;
  int old_timeout = timeout;
  int old_immediate_quit = immediate_quit;
  int old_immediate_quit = immediate_quit;
 
 
  status->kind = TARGET_WAITKIND_EXITED;
  status->kind = TARGET_WAITKIND_EXITED;
  status->value.integer = 0;
  status->value.integer = 0;
 
 
  if (need_artificial_trap != 0)
  if (need_artificial_trap != 0)
    {
    {
      status->kind = TARGET_WAITKIND_STOPPED;
      status->kind = TARGET_WAITKIND_STOPPED;
      status->value.sig = TARGET_SIGNAL_TRAP;
      status->value.sig = TARGET_SIGNAL_TRAP;
      need_artificial_trap--;
      need_artificial_trap--;
      return 0;
      return 0;
    }
    }
 
 
  timeout = 0;                   /* Don't time out -- user program is running. */
  timeout = 0;                   /* Don't time out -- user program is running. */
  immediate_quit = 1;           /* Helps ability to QUIT */
  immediate_quit = 1;           /* Helps ability to QUIT */
  while (1)
  while (1)
    {
    {
      QUIT;                     /* Let user quit and leave process running */
      QUIT;                     /* Let user quit and leave process running */
      ch_handled = 0;
      ch_handled = 0;
      ch = readchar ();
      ch = readchar ();
      if (ch == *bp)
      if (ch == *bp)
        {
        {
          bp++;
          bp++;
          if (*bp == '\0')
          if (*bp == '\0')
            break;
            break;
          ch_handled = 1;
          ch_handled = 1;
 
 
          *swallowed_p++ = ch;
          *swallowed_p++ = ch;
        }
        }
      else
      else
        bp = bpt;
        bp = bpt;
      if (ch == *ep || *ep == '?')
      if (ch == *ep || *ep == '?')
        {
        {
          ep++;
          ep++;
          if (*ep == '\0')
          if (*ep == '\0')
            break;
            break;
 
 
          if (!ch_handled)
          if (!ch_handled)
            *swallowed_p++ = ch;
            *swallowed_p++ = ch;
          ch_handled = 1;
          ch_handled = 1;
        }
        }
      else
      else
        ep = exitmsg;
        ep = exitmsg;
      if (!ch_handled)
      if (!ch_handled)
        {
        {
          char *p;
          char *p;
          /* Print out any characters which have been swallowed.  */
          /* Print out any characters which have been swallowed.  */
          for (p = swallowed; p < swallowed_p; ++p)
          for (p = swallowed; p < swallowed_p; ++p)
            putc (*p, stdout);
            putc (*p, stdout);
          swallowed_p = swallowed;
          swallowed_p = swallowed;
          putc (ch, stdout);
          putc (ch, stdout);
        }
        }
    }
    }
  expect_prompt ();
  expect_prompt ();
  if (*bp == '\0')
  if (*bp == '\0')
    {
    {
      status->kind = TARGET_WAITKIND_STOPPED;
      status->kind = TARGET_WAITKIND_STOPPED;
      status->value.sig = TARGET_SIGNAL_TRAP;
      status->value.sig = TARGET_SIGNAL_TRAP;
    }
    }
  else
  else
    {
    {
      status->kind = TARGET_WAITKIND_EXITED;
      status->kind = TARGET_WAITKIND_EXITED;
      status->value.integer = 0;
      status->value.integer = 0;
    }
    }
  timeout = old_timeout;
  timeout = old_timeout;
  immediate_quit = old_immediate_quit;
  immediate_quit = old_immediate_quit;
  return 0;
  return 0;
}
}
 
 
/* Return the name of register number REGNO
/* Return the name of register number REGNO
   in the form input and output by adapt.
   in the form input and output by adapt.
 
 
   Returns a pointer to a static buffer containing the answer.  */
   Returns a pointer to a static buffer containing the answer.  */
static char *
static char *
get_reg_name (regno)
get_reg_name (regno)
     int regno;
     int regno;
{
{
  static char buf[80];
  static char buf[80];
  if (regno >= GR96_REGNUM && regno < GR96_REGNUM + 32)
  if (regno >= GR96_REGNUM && regno < GR96_REGNUM + 32)
    sprintf (buf, "GR%03d", regno - GR96_REGNUM + 96);
    sprintf (buf, "GR%03d", regno - GR96_REGNUM + 96);
#if defined(GR64_REGNUM)
#if defined(GR64_REGNUM)
  else if (regno >= GR64_REGNUM && regno < GR64_REGNUM + 32)
  else if (regno >= GR64_REGNUM && regno < GR64_REGNUM + 32)
    sprintf (buf, "GR%03d", regno - GR64_REGNUM + 64);
    sprintf (buf, "GR%03d", regno - GR64_REGNUM + 64);
#endif
#endif
  else if (regno >= LR0_REGNUM && regno < LR0_REGNUM + 128)
  else if (regno >= LR0_REGNUM && regno < LR0_REGNUM + 128)
    sprintf (buf, "LR%03d", regno - LR0_REGNUM);
    sprintf (buf, "LR%03d", regno - LR0_REGNUM);
  else if (regno == Q_REGNUM)
  else if (regno == Q_REGNUM)
    strcpy (buf, "SR131");
    strcpy (buf, "SR131");
  else if (regno >= BP_REGNUM && regno <= CR_REGNUM)
  else if (regno >= BP_REGNUM && regno <= CR_REGNUM)
    sprintf (buf, "SR%03d", regno - BP_REGNUM + 133);
    sprintf (buf, "SR%03d", regno - BP_REGNUM + 133);
  else if (regno == ALU_REGNUM)
  else if (regno == ALU_REGNUM)
    strcpy (buf, "SR132");
    strcpy (buf, "SR132");
  else if (regno >= IPC_REGNUM && regno <= IPB_REGNUM)
  else if (regno >= IPC_REGNUM && regno <= IPB_REGNUM)
    sprintf (buf, "SR%03d", regno - IPC_REGNUM + 128);
    sprintf (buf, "SR%03d", regno - IPC_REGNUM + 128);
  else if (regno >= VAB_REGNUM && regno <= LRU_REGNUM)
  else if (regno >= VAB_REGNUM && regno <= LRU_REGNUM)
    {
    {
      /* When a 29050 is in freeze-mode, read shadow pcs instead */
      /* When a 29050 is in freeze-mode, read shadow pcs instead */
      if ((regno >= NPC_REGNUM && regno <= PC2_REGNUM) && USE_SHADOW_PC)
      if ((regno >= NPC_REGNUM && regno <= PC2_REGNUM) && USE_SHADOW_PC)
        sprintf (buf, "SR%03d", regno - NPC_REGNUM + 20);
        sprintf (buf, "SR%03d", regno - NPC_REGNUM + 20);
      else
      else
        sprintf (buf, "SR%03d", regno - VAB_REGNUM);
        sprintf (buf, "SR%03d", regno - VAB_REGNUM);
    }
    }
  else if (regno == GR1_REGNUM)
  else if (regno == GR1_REGNUM)
    strcpy (buf, "GR001");
    strcpy (buf, "GR001");
  return buf;
  return buf;
}
}
 
 
/* Read the remote registers.  */
/* Read the remote registers.  */
 
 
static void
static void
adapt_fetch_registers ()
adapt_fetch_registers ()
{
{
  int reg_index;
  int reg_index;
  int regnum_index;
  int regnum_index;
  char tempbuf[10];
  char tempbuf[10];
  int sreg_buf[16];
  int sreg_buf[16];
  int i, j;
  int i, j;
 
 
/*
/*
 * Global registers
 * Global registers
 */
 */
#if defined(GR64_REGNUM)
#if defined(GR64_REGNUM)
  write (adapt_desc, "dw gr64,gr95\r", 13);
  write (adapt_desc, "dw gr64,gr95\r", 13);
  for (reg_index = 64, regnum_index = GR64_REGNUM;
  for (reg_index = 64, regnum_index = GR64_REGNUM;
       reg_index < 96;
       reg_index < 96;
       reg_index += 4, regnum_index += 4)
       reg_index += 4, regnum_index += 4)
    {
    {
      sprintf (tempbuf, "GR%03d ", reg_index);
      sprintf (tempbuf, "GR%03d ", reg_index);
      expect (tempbuf);
      expect (tempbuf);
      get_hex_regs (4, regnum_index);
      get_hex_regs (4, regnum_index);
      expect ("\n");
      expect ("\n");
    }
    }
#endif
#endif
  write (adapt_desc, "dw gr96,gr127\r", 14);
  write (adapt_desc, "dw gr96,gr127\r", 14);
  for (reg_index = 96, regnum_index = GR96_REGNUM;
  for (reg_index = 96, regnum_index = GR96_REGNUM;
       reg_index < 128;
       reg_index < 128;
       reg_index += 4, regnum_index += 4)
       reg_index += 4, regnum_index += 4)
    {
    {
      sprintf (tempbuf, "GR%03d ", reg_index);
      sprintf (tempbuf, "GR%03d ", reg_index);
      expect (tempbuf);
      expect (tempbuf);
      get_hex_regs (4, regnum_index);
      get_hex_regs (4, regnum_index);
      expect ("\n");
      expect ("\n");
    }
    }
 
 
/*
/*
 * Local registers
 * Local registers
 */
 */
  for (i = 0; i < 128; i += 32)
  for (i = 0; i < 128; i += 32)
    {
    {
      /* The PC has a tendency to hang if we get these
      /* The PC has a tendency to hang if we get these
         all in one fell swoop ("dw lr0,lr127").  */
         all in one fell swoop ("dw lr0,lr127").  */
      sprintf (tempbuf, "dw lr%d\r", i);
      sprintf (tempbuf, "dw lr%d\r", i);
      write (adapt_desc, tempbuf, strlen (tempbuf));
      write (adapt_desc, tempbuf, strlen (tempbuf));
      for (reg_index = i, regnum_index = LR0_REGNUM + i;
      for (reg_index = i, regnum_index = LR0_REGNUM + i;
           reg_index < i + 32;
           reg_index < i + 32;
           reg_index += 4, regnum_index += 4)
           reg_index += 4, regnum_index += 4)
        {
        {
          sprintf (tempbuf, "LR%03d ", reg_index);
          sprintf (tempbuf, "LR%03d ", reg_index);
          expect (tempbuf);
          expect (tempbuf);
          get_hex_regs (4, regnum_index);
          get_hex_regs (4, regnum_index);
          expect ("\n");
          expect ("\n");
        }
        }
    }
    }
 
 
/*
/*
 * Special registers
 * Special registers
 */
 */
  sprintf (tempbuf, "dw sr0\r");
  sprintf (tempbuf, "dw sr0\r");
  write (adapt_desc, tempbuf, strlen (tempbuf));
  write (adapt_desc, tempbuf, strlen (tempbuf));
  for (i = 0; i < 4; i++)
  for (i = 0; i < 4; i++)
    {                           /* SR0 - SR14 */
    {                           /* SR0 - SR14 */
      sprintf (tempbuf, "SR%3d", i * 4);
      sprintf (tempbuf, "SR%3d", i * 4);
      expect (tempbuf);
      expect (tempbuf);
      for (j = 0; j < (i == 3 ? 3 : 4); j++)
      for (j = 0; j < (i == 3 ? 3 : 4); j++)
        sreg_buf[i * 4 + j] = get_hex_word ();
        sreg_buf[i * 4 + j] = get_hex_word ();
    }
    }
  expect_prompt ();
  expect_prompt ();
  /*
  /*
   * Read the pcs individually if we are in freeze mode.
   * Read the pcs individually if we are in freeze mode.
   * See get_reg_name(), it translates the register names for the pcs to
   * See get_reg_name(), it translates the register names for the pcs to
   * the names of the shadow pcs.
   * the names of the shadow pcs.
   */
   */
  if (USE_SHADOW_PC)
  if (USE_SHADOW_PC)
    {
    {
      sreg_buf[10] = read_register (NPC_REGNUM);        /* pc0 */
      sreg_buf[10] = read_register (NPC_REGNUM);        /* pc0 */
      sreg_buf[11] = read_register (PC_REGNUM);         /* pc1 */
      sreg_buf[11] = read_register (PC_REGNUM);         /* pc1 */
      sreg_buf[12] = read_register (PC2_REGNUM);        /* pc2 */
      sreg_buf[12] = read_register (PC2_REGNUM);        /* pc2 */
    }
    }
  for (i = 0; i < 14; i++)       /* Supply vab -> lru */
  for (i = 0; i < 14; i++)       /* Supply vab -> lru */
    supply_register (VAB_REGNUM + i, (char *) &sreg_buf[i]);
    supply_register (VAB_REGNUM + i, (char *) &sreg_buf[i]);
  sprintf (tempbuf, "dw sr128\r");
  sprintf (tempbuf, "dw sr128\r");
  write (adapt_desc, tempbuf, strlen (tempbuf));
  write (adapt_desc, tempbuf, strlen (tempbuf));
  for (i = 0; i < 2; i++)
  for (i = 0; i < 2; i++)
    {                           /* SR128 - SR135 */
    {                           /* SR128 - SR135 */
      sprintf (tempbuf, "SR%3d", 128 + i * 4);
      sprintf (tempbuf, "SR%3d", 128 + i * 4);
      expect (tempbuf);
      expect (tempbuf);
      for (j = 0; j < 4; j++)
      for (j = 0; j < 4; j++)
        sreg_buf[i * 4 + j] = get_hex_word ();
        sreg_buf[i * 4 + j] = get_hex_word ();
    }
    }
  expect_prompt ();
  expect_prompt ();
  supply_register (IPC_REGNUM, (char *) &sreg_buf[0]);
  supply_register (IPC_REGNUM, (char *) &sreg_buf[0]);
  supply_register (IPA_REGNUM, (char *) &sreg_buf[1]);
  supply_register (IPA_REGNUM, (char *) &sreg_buf[1]);
  supply_register (IPB_REGNUM, (char *) &sreg_buf[2]);
  supply_register (IPB_REGNUM, (char *) &sreg_buf[2]);
  supply_register (Q_REGNUM, (char *) &sreg_buf[3]);
  supply_register (Q_REGNUM, (char *) &sreg_buf[3]);
  /* Skip ALU */
  /* Skip ALU */
  supply_register (BP_REGNUM, (char *) &sreg_buf[5]);
  supply_register (BP_REGNUM, (char *) &sreg_buf[5]);
  supply_register (FC_REGNUM, (char *) &sreg_buf[6]);
  supply_register (FC_REGNUM, (char *) &sreg_buf[6]);
  supply_register (CR_REGNUM, (char *) &sreg_buf[7]);
  supply_register (CR_REGNUM, (char *) &sreg_buf[7]);
 
 
  /* There doesn't seem to be any way to get these.  */
  /* There doesn't seem to be any way to get these.  */
  {
  {
    int val = -1;
    int val = -1;
    supply_register (FPE_REGNUM, (char *) &val);
    supply_register (FPE_REGNUM, (char *) &val);
    supply_register (INTE_REGNUM, (char *) &val);
    supply_register (INTE_REGNUM, (char *) &val);
    supply_register (FPS_REGNUM, (char *) &val);
    supply_register (FPS_REGNUM, (char *) &val);
    supply_register (EXO_REGNUM, (char *) &val);
    supply_register (EXO_REGNUM, (char *) &val);
  }
  }
 
 
  write (adapt_desc, "dw gr1,gr1\r", 11);
  write (adapt_desc, "dw gr1,gr1\r", 11);
  expect ("GR001 ");
  expect ("GR001 ");
  get_hex_regs (1, GR1_REGNUM);
  get_hex_regs (1, GR1_REGNUM);
  expect_prompt ();
  expect_prompt ();
}
}
 
 
/* Fetch register REGNO, or all registers if REGNO is -1.
/* Fetch register REGNO, or all registers if REGNO is -1.
 */
 */
static void
static void
adapt_fetch_register (regno)
adapt_fetch_register (regno)
     int regno;
     int regno;
{
{
  if (regno == -1)
  if (regno == -1)
    adapt_fetch_registers ();
    adapt_fetch_registers ();
  else
  else
    {
    {
      char *name = get_reg_name (regno);
      char *name = get_reg_name (regno);
      fprintf (adapt_stream, "dw %s,%s\r", name, name);
      fprintf (adapt_stream, "dw %s,%s\r", name, name);
      expect (name);
      expect (name);
      expect (" ");
      expect (" ");
      get_hex_regs (1, regno);
      get_hex_regs (1, regno);
      expect_prompt ();
      expect_prompt ();
    }
    }
}
}
 
 
/* Store the remote registers from the contents of the block REGS.  */
/* Store the remote registers from the contents of the block REGS.  */
 
 
static void
static void
adapt_store_registers ()
adapt_store_registers ()
{
{
  int i, j;
  int i, j;
 
 
  fprintf (adapt_stream, "s gr1,%x\r", read_register (GR1_REGNUM));
  fprintf (adapt_stream, "s gr1,%x\r", read_register (GR1_REGNUM));
  expect_prompt ();
  expect_prompt ();
 
 
#if defined(GR64_REGNUM)
#if defined(GR64_REGNUM)
  for (j = 0; j < 32; j += 16)
  for (j = 0; j < 32; j += 16)
    {
    {
      fprintf (adapt_stream, "s gr%d,", j + 64);
      fprintf (adapt_stream, "s gr%d,", j + 64);
      for (i = 0; i < 15; ++i)
      for (i = 0; i < 15; ++i)
        fprintf (adapt_stream, "%x,", read_register (GR64_REGNUM + j + i));
        fprintf (adapt_stream, "%x,", read_register (GR64_REGNUM + j + i));
      fprintf (adapt_stream, "%x\r", read_register (GR64_REGNUM + j + 15));
      fprintf (adapt_stream, "%x\r", read_register (GR64_REGNUM + j + 15));
      expect_prompt ();
      expect_prompt ();
    }
    }
#endif
#endif
  for (j = 0; j < 32; j += 16)
  for (j = 0; j < 32; j += 16)
    {
    {
      fprintf (adapt_stream, "s gr%d,", j + 96);
      fprintf (adapt_stream, "s gr%d,", j + 96);
      for (i = 0; i < 15; ++i)
      for (i = 0; i < 15; ++i)
        fprintf (adapt_stream, "%x,", read_register (GR96_REGNUM + j + i));
        fprintf (adapt_stream, "%x,", read_register (GR96_REGNUM + j + i));
      fprintf (adapt_stream, "%x\r", read_register (GR96_REGNUM + j + 15));
      fprintf (adapt_stream, "%x\r", read_register (GR96_REGNUM + j + 15));
      expect_prompt ();
      expect_prompt ();
    }
    }
 
 
  for (j = 0; j < 128; j += 16)
  for (j = 0; j < 128; j += 16)
    {
    {
      fprintf (adapt_stream, "s lr%d,", j);
      fprintf (adapt_stream, "s lr%d,", j);
      for (i = 0; i < 15; ++i)
      for (i = 0; i < 15; ++i)
        fprintf (adapt_stream, "%x,", read_register (LR0_REGNUM + j + i));
        fprintf (adapt_stream, "%x,", read_register (LR0_REGNUM + j + i));
      fprintf (adapt_stream, "%x\r", read_register (LR0_REGNUM + j + 15));
      fprintf (adapt_stream, "%x\r", read_register (LR0_REGNUM + j + 15));
      expect_prompt ();
      expect_prompt ();
    }
    }
 
 
  fprintf (adapt_stream, "s sr128,%x,%x,%x\r", read_register (IPC_REGNUM),
  fprintf (adapt_stream, "s sr128,%x,%x,%x\r", read_register (IPC_REGNUM),
           read_register (IPA_REGNUM), read_register (IPB_REGNUM));
           read_register (IPA_REGNUM), read_register (IPB_REGNUM));
  expect_prompt ();
  expect_prompt ();
  fprintf (adapt_stream, "s sr133,%x,%x,%x\r", read_register (BP_REGNUM),
  fprintf (adapt_stream, "s sr133,%x,%x,%x\r", read_register (BP_REGNUM),
           read_register (FC_REGNUM), read_register (CR_REGNUM));
           read_register (FC_REGNUM), read_register (CR_REGNUM));
  expect_prompt ();
  expect_prompt ();
  fprintf (adapt_stream, "s sr131,%x\r", read_register (Q_REGNUM));
  fprintf (adapt_stream, "s sr131,%x\r", read_register (Q_REGNUM));
  expect_prompt ();
  expect_prompt ();
  fprintf (adapt_stream, "s sr0,");
  fprintf (adapt_stream, "s sr0,");
  for (i = 0; i < 7; ++i)
  for (i = 0; i < 7; ++i)
    fprintf (adapt_stream, "%x,", read_register (VAB_REGNUM + i));
    fprintf (adapt_stream, "%x,", read_register (VAB_REGNUM + i));
  expect_prompt ();
  expect_prompt ();
  fprintf (adapt_stream, "s sr7,");
  fprintf (adapt_stream, "s sr7,");
  for (i = 7; i < 14; ++i)
  for (i = 7; i < 14; ++i)
    fprintf (adapt_stream, "%x,", read_register (VAB_REGNUM + i));
    fprintf (adapt_stream, "%x,", read_register (VAB_REGNUM + i));
  expect_prompt ();
  expect_prompt ();
}
}
 
 
/* Store register REGNO, or all if REGNO == -1.
/* Store register REGNO, or all if REGNO == -1.
   Return errno value.  */
   Return errno value.  */
void
void
adapt_store_register (regno)
adapt_store_register (regno)
     int regno;
     int regno;
{
{
  /* printf("adapt_store_register() called.\n"); fflush(stdout); /* */
  /* printf("adapt_store_register() called.\n"); fflush(stdout); /* */
  if (regno == -1)
  if (regno == -1)
    adapt_store_registers ();
    adapt_store_registers ();
  else
  else
    {
    {
      char *name = get_reg_name (regno);
      char *name = get_reg_name (regno);
      fprintf (adapt_stream, "s %s,%x\r", name, read_register (regno));
      fprintf (adapt_stream, "s %s,%x\r", name, read_register (regno));
      /* Setting GR1 changes the numbers of all the locals, so
      /* Setting GR1 changes the numbers of all the locals, so
         invalidate the register cache.  Do this *after* calling
         invalidate the register cache.  Do this *after* calling
         read_register, because we want read_register to return the
         read_register, because we want read_register to return the
         value that write_register has just stuffed into the registers
         value that write_register has just stuffed into the registers
         array, not the value of the register fetched from the
         array, not the value of the register fetched from the
         inferior.  */
         inferior.  */
      if (regno == GR1_REGNUM)
      if (regno == GR1_REGNUM)
        registers_changed ();
        registers_changed ();
      expect_prompt ();
      expect_prompt ();
    }
    }
}
}
 
 
/* Get ready to modify the registers array.  On machines which store
/* Get ready to modify the registers array.  On machines which store
   individual registers, this doesn't need to do anything.  On machines
   individual registers, this doesn't need to do anything.  On machines
   which store all the registers in one fell swoop, this makes sure
   which store all the registers in one fell swoop, this makes sure
   that registers contains all the registers from the program being
   that registers contains all the registers from the program being
   debugged.  */
   debugged.  */
 
 
void
void
adapt_prepare_to_store ()
adapt_prepare_to_store ()
{
{
  /* Do nothing, since we can store individual regs */
  /* Do nothing, since we can store individual regs */
}
}
 
 
static CORE_ADDR
static CORE_ADDR
translate_addr (addr)
translate_addr (addr)
     CORE_ADDR addr;
     CORE_ADDR addr;
{
{
#if defined(KERNEL_DEBUGGING)
#if defined(KERNEL_DEBUGGING)
  /* Check for a virtual address in the kernel */
  /* Check for a virtual address in the kernel */
  /* Assume physical address of ublock is in  paddr_u register */
  /* Assume physical address of ublock is in  paddr_u register */
  if (addr >= UVADDR)
  if (addr >= UVADDR)
    {
    {
      /* PADDR_U register holds the physical address of the ublock */
      /* PADDR_U register holds the physical address of the ublock */
      CORE_ADDR i = (CORE_ADDR) read_register (PADDR_U_REGNUM);
      CORE_ADDR i = (CORE_ADDR) read_register (PADDR_U_REGNUM);
      return (i + addr - (CORE_ADDR) UVADDR);
      return (i + addr - (CORE_ADDR) UVADDR);
    }
    }
  else
  else
    {
    {
      return (addr);
      return (addr);
    }
    }
#else
#else
  return (addr);
  return (addr);
#endif
#endif
}
}
 
 
 
 
/* FIXME!  Merge these two.  */
/* FIXME!  Merge these two.  */
int
int
adapt_xfer_inferior_memory (memaddr, myaddr, len, write)
adapt_xfer_inferior_memory (memaddr, myaddr, len, write)
     CORE_ADDR memaddr;
     CORE_ADDR memaddr;
     char *myaddr;
     char *myaddr;
     int len;
     int len;
     int write;
     int write;
{
{
 
 
  memaddr = translate_addr (memaddr);
  memaddr = translate_addr (memaddr);
 
 
  if (write)
  if (write)
    return adapt_write_inferior_memory (memaddr, myaddr, len);
    return adapt_write_inferior_memory (memaddr, myaddr, len);
  else
  else
    return adapt_read_inferior_memory (memaddr, myaddr, len);
    return adapt_read_inferior_memory (memaddr, myaddr, len);
}
}
 
 
void
void
adapt_files_info ()
adapt_files_info ()
{
{
  printf_filtered ("\tAttached to %s at %d baud and running program %s\n",
  printf_filtered ("\tAttached to %s at %d baud and running program %s\n",
                   dev_name, baudrate, prog_name);
                   dev_name, baudrate, prog_name);
  printf_filtered ("\ton an %s processor.\n", processor_name[processor_type]);
  printf_filtered ("\ton an %s processor.\n", processor_name[processor_type]);
}
}
 
 
/* Copy LEN bytes of data from debugger memory at MYADDR
/* Copy LEN bytes of data from debugger memory at MYADDR
   to inferior's memory at MEMADDR.  Returns errno value.
   to inferior's memory at MEMADDR.  Returns errno value.
   * sb/sh instructions don't work on unaligned addresses, when TU=1.
   * sb/sh instructions don't work on unaligned addresses, when TU=1.
 */
 */
int
int
adapt_write_inferior_memory (memaddr, myaddr, len)
adapt_write_inferior_memory (memaddr, myaddr, len)
     CORE_ADDR memaddr;
     CORE_ADDR memaddr;
     char *myaddr;
     char *myaddr;
     int len;
     int len;
{
{
  int i;
  int i;
  unsigned int cps;
  unsigned int cps;
 
 
  /* Turn TU bit off so we can do 'sb' commands */
  /* Turn TU bit off so we can do 'sb' commands */
  cps = read_register (CPS_REGNUM);
  cps = read_register (CPS_REGNUM);
  if (cps & 0x00000800)
  if (cps & 0x00000800)
    write_register (CPS_REGNUM, cps & ~(0x00000800));
    write_register (CPS_REGNUM, cps & ~(0x00000800));
 
 
  for (i = 0; i < len; i++)
  for (i = 0; i < len; i++)
    {
    {
      if ((i % 16) == 0)
      if ((i % 16) == 0)
        fprintf (adapt_stream, "sb %x,", memaddr + i);
        fprintf (adapt_stream, "sb %x,", memaddr + i);
      if ((i % 16) == 15 || i == len - 1)
      if ((i % 16) == 15 || i == len - 1)
        {
        {
          fprintf (adapt_stream, "%x\r", ((unsigned char *) myaddr)[i]);
          fprintf (adapt_stream, "%x\r", ((unsigned char *) myaddr)[i]);
          expect_prompt ();
          expect_prompt ();
        }
        }
      else
      else
        fprintf (adapt_stream, "%x,", ((unsigned char *) myaddr)[i]);
        fprintf (adapt_stream, "%x,", ((unsigned char *) myaddr)[i]);
    }
    }
  /* Restore the old value of cps if the TU bit was on */
  /* Restore the old value of cps if the TU bit was on */
  if (cps & 0x00000800)
  if (cps & 0x00000800)
    write_register (CPS_REGNUM, cps);
    write_register (CPS_REGNUM, cps);
  return len;
  return len;
}
}
 
 
/* Read LEN bytes from inferior memory at MEMADDR.  Put the result
/* Read LEN bytes from inferior memory at MEMADDR.  Put the result
   at debugger address MYADDR.  Returns errno value.  */
   at debugger address MYADDR.  Returns errno value.  */
int
int
adapt_read_inferior_memory (memaddr, myaddr, len)
adapt_read_inferior_memory (memaddr, myaddr, len)
     CORE_ADDR memaddr;
     CORE_ADDR memaddr;
     char *myaddr;
     char *myaddr;
     int len;
     int len;
{
{
  int i;
  int i;
 
 
  /* Number of bytes read so far.  */
  /* Number of bytes read so far.  */
  int count;
  int count;
 
 
  /* Starting address of this pass.  */
  /* Starting address of this pass.  */
  unsigned long startaddr;
  unsigned long startaddr;
 
 
  /* Number of bytes to read in this pass.  */
  /* Number of bytes to read in this pass.  */
  int len_this_pass;
  int len_this_pass;
 
 
  /* Note that this code works correctly if startaddr is just less
  /* Note that this code works correctly if startaddr is just less
     than UINT_MAX (well, really CORE_ADDR_MAX if there was such a
     than UINT_MAX (well, really CORE_ADDR_MAX if there was such a
     thing).  That is, something like
     thing).  That is, something like
     adapt_read_bytes (CORE_ADDR_MAX - 4, foo, 4)
     adapt_read_bytes (CORE_ADDR_MAX - 4, foo, 4)
     works--it never adds len to memaddr and gets 0.  */
     works--it never adds len to memaddr and gets 0.  */
  /* However, something like
  /* However, something like
     adapt_read_bytes (CORE_ADDR_MAX - 3, foo, 4)
     adapt_read_bytes (CORE_ADDR_MAX - 3, foo, 4)
     doesn't need to work.  Detect it and give up if there's an attempt
     doesn't need to work.  Detect it and give up if there's an attempt
     to do that.  */
     to do that.  */
 
 
  if (((memaddr - 1) + len) < memaddr)
  if (((memaddr - 1) + len) < memaddr)
    return EIO;
    return EIO;
 
 
  startaddr = memaddr;
  startaddr = memaddr;
  count = 0;
  count = 0;
  while (count < len)
  while (count < len)
    {
    {
      len_this_pass = 16;
      len_this_pass = 16;
      if ((startaddr % 16) != 0)
      if ((startaddr % 16) != 0)
        len_this_pass -= startaddr % 16;
        len_this_pass -= startaddr % 16;
      if (len_this_pass > (len - count))
      if (len_this_pass > (len - count))
        len_this_pass = (len - count);
        len_this_pass = (len - count);
 
 
      fprintf (adapt_stream, "db %x,%x\r", startaddr,
      fprintf (adapt_stream, "db %x,%x\r", startaddr,
               (startaddr - 1) + len_this_pass);
               (startaddr - 1) + len_this_pass);
 
 
#ifdef NOTDEF                   /* Why do this */
#ifdef NOTDEF                   /* Why do this */
      expect ("\n");
      expect ("\n");
      /* Look for 8 hex digits.  */
      /* Look for 8 hex digits.  */
      i = 0;
      i = 0;
      while (1)
      while (1)
        {
        {
          if (isxdigit (readchar ()))
          if (isxdigit (readchar ()))
            ++i;
            ++i;
          else
          else
            {
            {
              expect_prompt ();
              expect_prompt ();
              error ("Hex digit expected from remote system.");
              error ("Hex digit expected from remote system.");
            }
            }
          if (i >= 8)
          if (i >= 8)
            break;
            break;
        }
        }
#endif /* NOTDEF */
#endif /* NOTDEF */
 
 
      expect ("  ");
      expect ("  ");
 
 
      for (i = 0; i < len_this_pass; i++)
      for (i = 0; i < len_this_pass; i++)
        get_hex_byte (&myaddr[count++]);
        get_hex_byte (&myaddr[count++]);
 
 
      expect_prompt ();
      expect_prompt ();
 
 
      startaddr += len_this_pass;
      startaddr += len_this_pass;
    }
    }
  return count;
  return count;
}
}
 
 
#define MAX_BREAKS      8
#define MAX_BREAKS      8
static int num_brkpts = 0;
static int num_brkpts = 0;
static int
static int
adapt_insert_breakpoint (addr, save)
adapt_insert_breakpoint (addr, save)
     CORE_ADDR addr;
     CORE_ADDR addr;
     char *save;                /* Throw away, let adapt save instructions */
     char *save;                /* Throw away, let adapt save instructions */
{
{
  if (num_brkpts < MAX_BREAKS)
  if (num_brkpts < MAX_BREAKS)
    {
    {
      num_brkpts++;
      num_brkpts++;
      fprintf (adapt_stream, "B %x", addr);
      fprintf (adapt_stream, "B %x", addr);
      fprintf (adapt_stream, "\r");
      fprintf (adapt_stream, "\r");
      expect_prompt ();
      expect_prompt ();
      return (0);                /* Success */
      return (0);                /* Success */
    }
    }
  else
  else
    {
    {
      fprintf_filtered (gdb_stderr,
      fprintf_filtered (gdb_stderr,
                      "Too many break points, break point not installed\n");
                      "Too many break points, break point not installed\n");
      return (1);               /* Failure */
      return (1);               /* Failure */
    }
    }
 
 
}
}
static int
static int
adapt_remove_breakpoint (addr, save)
adapt_remove_breakpoint (addr, save)
     CORE_ADDR addr;
     CORE_ADDR addr;
     char *save;                /* Throw away, let adapt save instructions */
     char *save;                /* Throw away, let adapt save instructions */
{
{
  if (num_brkpts > 0)
  if (num_brkpts > 0)
    {
    {
      num_brkpts--;
      num_brkpts--;
      fprintf (adapt_stream, "BR %x", addr);
      fprintf (adapt_stream, "BR %x", addr);
      fprintf (adapt_stream, "\r");
      fprintf (adapt_stream, "\r");
      fflush (adapt_stream);
      fflush (adapt_stream);
      expect_prompt ();
      expect_prompt ();
    }
    }
  return (0);
  return (0);
}
}
 
 
/* Clear the adapts notion of what the break points are */
/* Clear the adapts notion of what the break points are */
static int
static int
adapt_clear_breakpoints ()
adapt_clear_breakpoints ()
{
{
  if (adapt_stream)
  if (adapt_stream)
    {
    {
      fprintf (adapt_stream, "BR");     /* Clear all break points */
      fprintf (adapt_stream, "BR");     /* Clear all break points */
      fprintf (adapt_stream, "\r");
      fprintf (adapt_stream, "\r");
      fflush (adapt_stream);
      fflush (adapt_stream);
      expect_prompt ();
      expect_prompt ();
    }
    }
  num_brkpts = 0;
  num_brkpts = 0;
}
}
static void
static void
adapt_mourn ()
adapt_mourn ()
{
{
  adapt_clear_breakpoints ();
  adapt_clear_breakpoints ();
  pop_target ();                /* Pop back to no-child state */
  pop_target ();                /* Pop back to no-child state */
  generic_mourn_inferior ();
  generic_mourn_inferior ();
}
}
 
 
/* Display everthing we read in from the adapt until we match/see the
/* Display everthing we read in from the adapt until we match/see the
 * specified string
 * specified string
 */
 */
static int
static int
display_until (str)
display_until (str)
     char *str;
     char *str;
{
{
  int i = 0, j, c;
  int i = 0, j, c;
 
 
  while (c = readchar ())
  while (c = readchar ())
    {
    {
      if (c == str[i])
      if (c == str[i])
        {
        {
          i++;
          i++;
          if (i == strlen (str))
          if (i == strlen (str))
            return;
            return;
        }
        }
      else
      else
        {
        {
          if (i)
          if (i)
            {
            {
              for (j = 0; j < i; j++)    /* Put everthing we matched */
              for (j = 0; j < i; j++)    /* Put everthing we matched */
                putchar (str[j]);
                putchar (str[j]);
              i = 0;
              i = 0;
            }
            }
          putchar (c);
          putchar (c);
        }
        }
    }
    }
 
 
}
}
 
 
 
 
/* Put a command string, in args, out to the adapt.  The adapt is assumed to
/* Put a command string, in args, out to the adapt.  The adapt is assumed to
   be in raw mode, all writing/reading done through adapt_desc.
   be in raw mode, all writing/reading done through adapt_desc.
   Ouput from the adapt is placed on the users terminal until the
   Ouput from the adapt is placed on the users terminal until the
   prompt from the adapt is seen.
   prompt from the adapt is seen.
   FIXME: Can't handle commands that take input.  */
   FIXME: Can't handle commands that take input.  */
 
 
void
void
adapt_com (args, fromtty)
adapt_com (args, fromtty)
     char *args;
     char *args;
     int fromtty;
     int fromtty;
{
{
  if (!adapt_stream)
  if (!adapt_stream)
    {
    {
      printf_filtered ("Adapt not open.  Use the 'target' command to open.\n");
      printf_filtered ("Adapt not open.  Use the 'target' command to open.\n");
      return;
      return;
    }
    }
 
 
  /* Clear all input so only command relative output is displayed */
  /* Clear all input so only command relative output is displayed */
  slurp_input ();
  slurp_input ();
 
 
  switch (islower (args[0]) ? toupper (args[0]) : args[0])
  switch (islower (args[0]) ? toupper (args[0]) : args[0])
    {
    {
    default:
    default:
      printf_filtered ("Unknown/Unimplemented adapt command '%s'\n", args);
      printf_filtered ("Unknown/Unimplemented adapt command '%s'\n", args);
      break;
      break;
    case 'G':                   /* Go, begin execution */
    case 'G':                   /* Go, begin execution */
      write (adapt_desc, args, strlen (args));
      write (adapt_desc, args, strlen (args));
      write (adapt_desc, "\r", 1);
      write (adapt_desc, "\r", 1);
      expect_prompt ();
      expect_prompt ();
      break;
      break;
    case 'B':                   /* Break points, B or BR */
    case 'B':                   /* Break points, B or BR */
    case 'C':                   /* Check current 29k status (running/halted) */
    case 'C':                   /* Check current 29k status (running/halted) */
    case 'D':                   /* Display data/registers */
    case 'D':                   /* Display data/registers */
    case 'I':                   /* Input from i/o space */
    case 'I':                   /* Input from i/o space */
    case 'J':                   /* Jam an instruction */
    case 'J':                   /* Jam an instruction */
    case 'K':                   /* Kill, stop execution */
    case 'K':                   /* Kill, stop execution */
    case 'L':                   /* Disassemble */
    case 'L':                   /* Disassemble */
    case 'O':                   /* Output to i/o space */
    case 'O':                   /* Output to i/o space */
    case 'T':                   /* Trace */
    case 'T':                   /* Trace */
    case 'P':                   /* Pulse an input line */
    case 'P':                   /* Pulse an input line */
    case 'X':                   /* Examine special purpose registers */
    case 'X':                   /* Examine special purpose registers */
    case 'Z':                   /* Display trace buffer */
    case 'Z':                   /* Display trace buffer */
      write (adapt_desc, args, strlen (args));
      write (adapt_desc, args, strlen (args));
      write (adapt_desc, "\r", 1);
      write (adapt_desc, "\r", 1);
      expect (args);            /* Don't display the command */
      expect (args);            /* Don't display the command */
      display_until ("# ");
      display_until ("# ");
      break;
      break;
      /* Begin commands that take input in the form 'c x,y[,z...]' */
      /* Begin commands that take input in the form 'c x,y[,z...]' */
    case 'S':                   /* Set memory or register */
    case 'S':                   /* Set memory or register */
      if (strchr (args, ','))
      if (strchr (args, ','))
        {                       /* Assume it is properly formatted */
        {                       /* Assume it is properly formatted */
          write (adapt_desc, args, strlen (args));
          write (adapt_desc, args, strlen (args));
          write (adapt_desc, "\r", 1);
          write (adapt_desc, "\r", 1);
          expect_prompt ();
          expect_prompt ();
        }
        }
      break;
      break;
    }
    }
}
}
 
 
/* Define the target subroutine names */
/* Define the target subroutine names */
 
 
struct target_ops adapt_ops;
struct target_ops adapt_ops;
 
 
static void
static void
init_adapt_ops (void)
init_adapt_ops (void)
{
{
  adapt_ops.to_shortname = "adapt";
  adapt_ops.to_shortname = "adapt";
  adapt_ops.to_longname = "Remote AMD `Adapt' target";
  adapt_ops.to_longname = "Remote AMD `Adapt' target";
  adapt_ops.to_doc = "Remote debug an AMD 290*0 using an `Adapt' monitor via RS232";
  adapt_ops.to_doc = "Remote debug an AMD 290*0 using an `Adapt' monitor via RS232";
  adapt_ops.to_open = adapt_open;
  adapt_ops.to_open = adapt_open;
  adapt_ops.to_close = adapt_close;
  adapt_ops.to_close = adapt_close;
  adapt_ops.to_attach = adapt_attach;
  adapt_ops.to_attach = adapt_attach;
  adapt_ops.to_post_attach = NULL;
  adapt_ops.to_post_attach = NULL;
  adapt_ops.to_require_attach = NULL;
  adapt_ops.to_require_attach = NULL;
  adapt_ops.to_detach = adapt_detach;
  adapt_ops.to_detach = adapt_detach;
  adapt_ops.to_require_detach = NULL;
  adapt_ops.to_require_detach = NULL;
  adapt_ops.to_resume = adapt_resume;
  adapt_ops.to_resume = adapt_resume;
  adapt_ops.to_wait = adapt_wait;
  adapt_ops.to_wait = adapt_wait;
  adapt_ops.to_post_wait = NULL;
  adapt_ops.to_post_wait = NULL;
  adapt_ops.to_fetch_registers = adapt_fetch_register;
  adapt_ops.to_fetch_registers = adapt_fetch_register;
  adapt_ops.to_store_registers = adapt_store_register;
  adapt_ops.to_store_registers = adapt_store_register;
  adapt_ops.to_prepare_to_store = adapt_prepare_to_store;
  adapt_ops.to_prepare_to_store = adapt_prepare_to_store;
  adapt_ops.to_xfer_memory = adapt_xfer_inferior_memory;
  adapt_ops.to_xfer_memory = adapt_xfer_inferior_memory;
  adapt_ops.to_files_info = adapt_files_info;
  adapt_ops.to_files_info = adapt_files_info;
  adapt_ops.to_insert_breakpoint = adapt_insert_breakpoint;
  adapt_ops.to_insert_breakpoint = adapt_insert_breakpoint;
  adapt_ops.to_remove_breakpoint = adapt_remove_breakpoint;
  adapt_ops.to_remove_breakpoint = adapt_remove_breakpoint;
  adapt_ops.to_terminal_init = 0;
  adapt_ops.to_terminal_init = 0;
  adapt_ops.to_terminal_inferior = 0;
  adapt_ops.to_terminal_inferior = 0;
  adapt_ops.to_terminal_ours_for_output = 0;
  adapt_ops.to_terminal_ours_for_output = 0;
  adapt_ops.to_terminal_ours = 0;
  adapt_ops.to_terminal_ours = 0;
  adapt_ops.to_terminal_info = 0;
  adapt_ops.to_terminal_info = 0;
  adapt_ops.to_kill = adapt_kill;
  adapt_ops.to_kill = adapt_kill;
  adapt_ops.to_load = adapt_load;
  adapt_ops.to_load = adapt_load;
  adapt_ops.to_lookup_symbol = 0;
  adapt_ops.to_lookup_symbol = 0;
  adapt_ops.to_create_inferior = adapt_create_inferior;
  adapt_ops.to_create_inferior = adapt_create_inferior;
  adapt_ops.to_post_startup_inferior = NULL;
  adapt_ops.to_post_startup_inferior = NULL;
  adapt_ops.to_acknowledge_created_inferior = NULL;
  adapt_ops.to_acknowledge_created_inferior = NULL;
  adapt_ops.to_clone_and_follow_inferior = NULL;
  adapt_ops.to_clone_and_follow_inferior = NULL;
  adapt_ops.to_post_follow_inferior_by_clone = NULL;
  adapt_ops.to_post_follow_inferior_by_clone = NULL;
  adapt_ops.to_insert_fork_catchpoint = NULL;
  adapt_ops.to_insert_fork_catchpoint = NULL;
  adapt_ops.to_remove_fork_catchpoint = NULL;
  adapt_ops.to_remove_fork_catchpoint = NULL;
  adapt_ops.to_insert_vfork_catchpoint = NULL;
  adapt_ops.to_insert_vfork_catchpoint = NULL;
  adapt_ops.to_remove_vfork_catchpoint = NULL;
  adapt_ops.to_remove_vfork_catchpoint = NULL;
  adapt_ops.to_has_forked = NULL;
  adapt_ops.to_has_forked = NULL;
  adapt_ops.to_has_vforked = NULL;
  adapt_ops.to_has_vforked = NULL;
  adapt_ops.to_can_follow_vfork_prior_to_exec = NULL;
  adapt_ops.to_can_follow_vfork_prior_to_exec = NULL;
  adapt_ops.to_post_follow_vfork = NULL;
  adapt_ops.to_post_follow_vfork = NULL;
  adapt_ops.to_insert_exec_catchpoint = NULL;
  adapt_ops.to_insert_exec_catchpoint = NULL;
  adapt_ops.to_remove_exec_catchpoint = NULL;
  adapt_ops.to_remove_exec_catchpoint = NULL;
  adapt_ops.to_has_execd = NULL;
  adapt_ops.to_has_execd = NULL;
  adapt_ops.to_reported_exec_events_per_exec_call = NULL;
  adapt_ops.to_reported_exec_events_per_exec_call = NULL;
  adapt_ops.to_has_exited = NULL;
  adapt_ops.to_has_exited = NULL;
  adapt_ops.to_mourn_inferior = adapt_mourn;
  adapt_ops.to_mourn_inferior = adapt_mourn;
  adapt_ops.to_can_run = 0;
  adapt_ops.to_can_run = 0;
  adapt_ops.to_notice_signals = 0;
  adapt_ops.to_notice_signals = 0;
  adapt_ops.to_thread_alive = 0;
  adapt_ops.to_thread_alive = 0;
  adapt_ops.to_stop = 0; /* process_stratum; */
  adapt_ops.to_stop = 0; /* process_stratum; */
  adapt_ops.to_pid_to_exec_file = NULL;
  adapt_ops.to_pid_to_exec_file = NULL;
  adapt_ops.to_core_file_to_sym_file = NULL;
  adapt_ops.to_core_file_to_sym_file = NULL;
  adapt_ops.to_stratum = 0;
  adapt_ops.to_stratum = 0;
  adapt_ops.DONT_USE = 0;
  adapt_ops.DONT_USE = 0;
  adapt_ops.to_has_all_memory = 1;
  adapt_ops.to_has_all_memory = 1;
  adapt_ops.to_has_memory = 1;
  adapt_ops.to_has_memory = 1;
  adapt_ops.to_has_stack = 1;
  adapt_ops.to_has_stack = 1;
  adapt_ops.to_has_registers = 1;
  adapt_ops.to_has_registers = 1;
  adapt_ops.to_has_execution = 0;
  adapt_ops.to_has_execution = 0;
  adapt_ops.to_sections = 0;
  adapt_ops.to_sections = 0;
  adapt_ops.to_sections_end = 0;
  adapt_ops.to_sections_end = 0;
  adapt_ops.to_magic = OPS_MAGIC;
  adapt_ops.to_magic = OPS_MAGIC;
}                               /* init_adapt_ops */
}                               /* init_adapt_ops */
 
 
void
void
_initialize_remote_adapt ()
_initialize_remote_adapt ()
{
{
  init_adapt_ops ();
  init_adapt_ops ();
  add_target (&adapt_ops);
  add_target (&adapt_ops);
  add_com ("adapt <command>", class_obscure, adapt_com,
  add_com ("adapt <command>", class_obscure, adapt_com,
           "Send a command to the AMD Adapt remote monitor.");
           "Send a command to the AMD Adapt remote monitor.");
}
}
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.