OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [gdb-5.0/] [gdb/] [stabsread.c] - Diff between revs 105 and 1765

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 105 Rev 1765
/* Support routines for decoding "stabs" debugging information format.
/* Support routines for decoding "stabs" debugging information format.
   Copyright 1986, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 1998
   Copyright 1986, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 1998
   Free Software Foundation, Inc.
   Free Software Foundation, Inc.
 
 
   This file is part of GDB.
   This file is part of GDB.
 
 
   This program is free software; you can redistribute it and/or modify
   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2 of the License, or
   the Free Software Foundation; either version 2 of the License, or
   (at your option) any later version.
   (at your option) any later version.
 
 
   This program is distributed in the hope that it will be useful,
   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.
   GNU General Public License for more details.
 
 
   You should have received a copy of the GNU General Public License
   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   along with this program; if not, write to the Free Software
   Foundation, Inc., 59 Temple Place - Suite 330,
   Foundation, Inc., 59 Temple Place - Suite 330,
   Boston, MA 02111-1307, USA.  */
   Boston, MA 02111-1307, USA.  */
 
 
/* Support routines for reading and decoding debugging information in
/* Support routines for reading and decoding debugging information in
   the "stabs" format.  This format is used with many systems that use
   the "stabs" format.  This format is used with many systems that use
   the a.out object file format, as well as some systems that use
   the a.out object file format, as well as some systems that use
   COFF or ELF where the stabs data is placed in a special section.
   COFF or ELF where the stabs data is placed in a special section.
   Avoid placing any object file format specific code in this file. */
   Avoid placing any object file format specific code in this file. */
 
 
#include "defs.h"
#include "defs.h"
#include "gdb_string.h"
#include "gdb_string.h"
#include "bfd.h"
#include "bfd.h"
#include "obstack.h"
#include "obstack.h"
#include "symtab.h"
#include "symtab.h"
#include "gdbtypes.h"
#include "gdbtypes.h"
#include "expression.h"
#include "expression.h"
#include "symfile.h"
#include "symfile.h"
#include "objfiles.h"
#include "objfiles.h"
#include "aout/stab_gnu.h"      /* We always use GNU stabs, not native */
#include "aout/stab_gnu.h"      /* We always use GNU stabs, not native */
#include "libaout.h"
#include "libaout.h"
#include "aout/aout64.h"
#include "aout/aout64.h"
#include "gdb-stabs.h"
#include "gdb-stabs.h"
#include "buildsym.h"
#include "buildsym.h"
#include "complaints.h"
#include "complaints.h"
#include "demangle.h"
#include "demangle.h"
#include "language.h"
#include "language.h"
 
 
#include <ctype.h>
#include <ctype.h>
 
 
/* Ask stabsread.h to define the vars it normally declares `extern'.  */
/* Ask stabsread.h to define the vars it normally declares `extern'.  */
#define EXTERN
#define EXTERN
/**/
/**/
#include "stabsread.h"          /* Our own declarations */
#include "stabsread.h"          /* Our own declarations */
#undef  EXTERN
#undef  EXTERN
 
 
extern void _initialize_stabsread PARAMS ((void));
extern void _initialize_stabsread PARAMS ((void));
 
 
/* The routines that read and process a complete stabs for a C struct or
/* The routines that read and process a complete stabs for a C struct or
   C++ class pass lists of data member fields and lists of member function
   C++ class pass lists of data member fields and lists of member function
   fields in an instance of a field_info structure, as defined below.
   fields in an instance of a field_info structure, as defined below.
   This is part of some reorganization of low level C++ support and is
   This is part of some reorganization of low level C++ support and is
   expected to eventually go away... (FIXME) */
   expected to eventually go away... (FIXME) */
 
 
struct field_info
struct field_info
  {
  {
    struct nextfield
    struct nextfield
      {
      {
        struct nextfield *next;
        struct nextfield *next;
 
 
        /* This is the raw visibility from the stab.  It is not checked
        /* This is the raw visibility from the stab.  It is not checked
           for being one of the visibilities we recognize, so code which
           for being one of the visibilities we recognize, so code which
           examines this field better be able to deal.  */
           examines this field better be able to deal.  */
        int visibility;
        int visibility;
 
 
        struct field field;
        struct field field;
      }
      }
     *list;
     *list;
    struct next_fnfieldlist
    struct next_fnfieldlist
      {
      {
        struct next_fnfieldlist *next;
        struct next_fnfieldlist *next;
        struct fn_fieldlist fn_fieldlist;
        struct fn_fieldlist fn_fieldlist;
      }
      }
     *fnlist;
     *fnlist;
  };
  };
 
 
static void
static void
read_one_struct_field PARAMS ((struct field_info *, char **, char *,
read_one_struct_field PARAMS ((struct field_info *, char **, char *,
                               struct type *, struct objfile *));
                               struct type *, struct objfile *));
 
 
static char *
static char *
  get_substring PARAMS ((char **, int));
  get_substring PARAMS ((char **, int));
 
 
static struct type *
static struct type *
  dbx_alloc_type PARAMS ((int[2], struct objfile *));
  dbx_alloc_type PARAMS ((int[2], struct objfile *));
 
 
static long read_huge_number PARAMS ((char **, int, int *));
static long read_huge_number PARAMS ((char **, int, int *));
 
 
static struct type *error_type PARAMS ((char **, struct objfile *));
static struct type *error_type PARAMS ((char **, struct objfile *));
 
 
static void
static void
patch_block_stabs PARAMS ((struct pending *, struct pending_stabs *,
patch_block_stabs PARAMS ((struct pending *, struct pending_stabs *,
                           struct objfile *));
                           struct objfile *));
 
 
static void
static void
fix_common_block PARAMS ((struct symbol *, int));
fix_common_block PARAMS ((struct symbol *, int));
 
 
static int
static int
read_type_number PARAMS ((char **, int *));
read_type_number PARAMS ((char **, int *));
 
 
static struct type *
static struct type *
  read_range_type PARAMS ((char **, int[2], struct objfile *));
  read_range_type PARAMS ((char **, int[2], struct objfile *));
 
 
static struct type *
static struct type *
  read_sun_builtin_type PARAMS ((char **, int[2], struct objfile *));
  read_sun_builtin_type PARAMS ((char **, int[2], struct objfile *));
 
 
static struct type *
static struct type *
  read_sun_floating_type PARAMS ((char **, int[2], struct objfile *));
  read_sun_floating_type PARAMS ((char **, int[2], struct objfile *));
 
 
static struct type *
static struct type *
  read_enum_type PARAMS ((char **, struct type *, struct objfile *));
  read_enum_type PARAMS ((char **, struct type *, struct objfile *));
 
 
static struct type *
static struct type *
  rs6000_builtin_type PARAMS ((int));
  rs6000_builtin_type PARAMS ((int));
 
 
static int
static int
read_member_functions PARAMS ((struct field_info *, char **, struct type *,
read_member_functions PARAMS ((struct field_info *, char **, struct type *,
                               struct objfile *));
                               struct objfile *));
 
 
static int
static int
read_struct_fields PARAMS ((struct field_info *, char **, struct type *,
read_struct_fields PARAMS ((struct field_info *, char **, struct type *,
                            struct objfile *));
                            struct objfile *));
 
 
static int
static int
read_baseclasses PARAMS ((struct field_info *, char **, struct type *,
read_baseclasses PARAMS ((struct field_info *, char **, struct type *,
                          struct objfile *));
                          struct objfile *));
 
 
static int
static int
read_tilde_fields PARAMS ((struct field_info *, char **, struct type *,
read_tilde_fields PARAMS ((struct field_info *, char **, struct type *,
                           struct objfile *));
                           struct objfile *));
 
 
static int
static int
attach_fn_fields_to_type PARAMS ((struct field_info *, struct type *));
attach_fn_fields_to_type PARAMS ((struct field_info *, struct type *));
 
 
static int
static int
attach_fields_to_type PARAMS ((struct field_info *, struct type *,
attach_fields_to_type PARAMS ((struct field_info *, struct type *,
                               struct objfile *));
                               struct objfile *));
 
 
static struct type *
static struct type *
  read_struct_type PARAMS ((char **, struct type *, struct objfile *));
  read_struct_type PARAMS ((char **, struct type *, struct objfile *));
 
 
static struct type *
static struct type *
  read_array_type PARAMS ((char **, struct type *, struct objfile *));
  read_array_type PARAMS ((char **, struct type *, struct objfile *));
 
 
static struct type **
static struct type **
  read_args PARAMS ((char **, int, struct objfile *));
  read_args PARAMS ((char **, int, struct objfile *));
 
 
static int
static int
read_cpp_abbrev PARAMS ((struct field_info *, char **, struct type *,
read_cpp_abbrev PARAMS ((struct field_info *, char **, struct type *,
                         struct objfile *));
                         struct objfile *));
 
 
/* new functions added for cfront support */
/* new functions added for cfront support */
 
 
static int
static int
copy_cfront_struct_fields PARAMS ((struct field_info *, struct type *,
copy_cfront_struct_fields PARAMS ((struct field_info *, struct type *,
                                   struct objfile *));
                                   struct objfile *));
 
 
static char *
static char *
  get_cfront_method_physname PARAMS ((char *));
  get_cfront_method_physname PARAMS ((char *));
 
 
static int
static int
read_cfront_baseclasses PARAMS ((struct field_info *, char **,
read_cfront_baseclasses PARAMS ((struct field_info *, char **,
                                 struct type *, struct objfile *));
                                 struct type *, struct objfile *));
 
 
static int
static int
read_cfront_static_fields PARAMS ((struct field_info *, char **,
read_cfront_static_fields PARAMS ((struct field_info *, char **,
                                   struct type *, struct objfile *));
                                   struct type *, struct objfile *));
static int
static int
read_cfront_member_functions PARAMS ((struct field_info *, char **,
read_cfront_member_functions PARAMS ((struct field_info *, char **,
                                      struct type *, struct objfile *));
                                      struct type *, struct objfile *));
 
 
/* end new functions added for cfront support */
/* end new functions added for cfront support */
 
 
static void
static void
add_live_range PARAMS ((struct objfile *, struct symbol *,
add_live_range PARAMS ((struct objfile *, struct symbol *,
                        CORE_ADDR, CORE_ADDR));
                        CORE_ADDR, CORE_ADDR));
 
 
static int
static int
resolve_live_range PARAMS ((struct objfile *, struct symbol *, char *));
resolve_live_range PARAMS ((struct objfile *, struct symbol *, char *));
 
 
static int
static int
process_reference PARAMS ((char **string));
process_reference PARAMS ((char **string));
 
 
static CORE_ADDR
static CORE_ADDR
  ref_search_value PARAMS ((int refnum));
  ref_search_value PARAMS ((int refnum));
 
 
static int
static int
resolve_symbol_reference PARAMS ((struct objfile *, struct symbol *, char *));
resolve_symbol_reference PARAMS ((struct objfile *, struct symbol *, char *));
 
 
void stabsread_clear_cache PARAMS ((void));
void stabsread_clear_cache PARAMS ((void));
 
 
static const char vptr_name[] =
static const char vptr_name[] =
{'_', 'v', 'p', 't', 'r', CPLUS_MARKER, '\0'};
{'_', 'v', 'p', 't', 'r', CPLUS_MARKER, '\0'};
static const char vb_name[] =
static const char vb_name[] =
{'_', 'v', 'b', CPLUS_MARKER, '\0'};
{'_', 'v', 'b', CPLUS_MARKER, '\0'};
 
 
/* Define this as 1 if a pcc declaration of a char or short argument
/* Define this as 1 if a pcc declaration of a char or short argument
   gives the correct address.  Otherwise assume pcc gives the
   gives the correct address.  Otherwise assume pcc gives the
   address of the corresponding int, which is not the same on a
   address of the corresponding int, which is not the same on a
   big-endian machine.  */
   big-endian machine.  */
 
 
#if !defined (BELIEVE_PCC_PROMOTION)
#if !defined (BELIEVE_PCC_PROMOTION)
#define BELIEVE_PCC_PROMOTION 0
#define BELIEVE_PCC_PROMOTION 0
#endif
#endif
#if !defined (BELIEVE_PCC_PROMOTION_TYPE)
#if !defined (BELIEVE_PCC_PROMOTION_TYPE)
#define BELIEVE_PCC_PROMOTION_TYPE 0
#define BELIEVE_PCC_PROMOTION_TYPE 0
#endif
#endif
 
 
static struct complaint invalid_cpp_abbrev_complaint =
static struct complaint invalid_cpp_abbrev_complaint =
{"invalid C++ abbreviation `%s'", 0, 0};
{"invalid C++ abbreviation `%s'", 0, 0};
 
 
static struct complaint invalid_cpp_type_complaint =
static struct complaint invalid_cpp_type_complaint =
{"C++ abbreviated type name unknown at symtab pos %d", 0, 0};
{"C++ abbreviated type name unknown at symtab pos %d", 0, 0};
 
 
static struct complaint member_fn_complaint =
static struct complaint member_fn_complaint =
{"member function type missing, got '%c'", 0, 0};
{"member function type missing, got '%c'", 0, 0};
 
 
static struct complaint const_vol_complaint =
static struct complaint const_vol_complaint =
{"const/volatile indicator missing, got '%c'", 0, 0};
{"const/volatile indicator missing, got '%c'", 0, 0};
 
 
static struct complaint error_type_complaint =
static struct complaint error_type_complaint =
{"debug info mismatch between compiler and debugger", 0, 0};
{"debug info mismatch between compiler and debugger", 0, 0};
 
 
static struct complaint invalid_member_complaint =
static struct complaint invalid_member_complaint =
{"invalid (minimal) member type data format at symtab pos %d.", 0, 0};
{"invalid (minimal) member type data format at symtab pos %d.", 0, 0};
 
 
static struct complaint range_type_base_complaint =
static struct complaint range_type_base_complaint =
{"base type %d of range type is not defined", 0, 0};
{"base type %d of range type is not defined", 0, 0};
 
 
static struct complaint reg_value_complaint =
static struct complaint reg_value_complaint =
{"register number %d too large (max %d) in symbol %s", 0, 0};
{"register number %d too large (max %d) in symbol %s", 0, 0};
 
 
static struct complaint vtbl_notfound_complaint =
static struct complaint vtbl_notfound_complaint =
{"virtual function table pointer not found when defining class `%s'", 0, 0};
{"virtual function table pointer not found when defining class `%s'", 0, 0};
 
 
static struct complaint unrecognized_cplus_name_complaint =
static struct complaint unrecognized_cplus_name_complaint =
{"Unknown C++ symbol name `%s'", 0, 0};
{"Unknown C++ symbol name `%s'", 0, 0};
 
 
static struct complaint rs6000_builtin_complaint =
static struct complaint rs6000_builtin_complaint =
{"Unknown builtin type %d", 0, 0};
{"Unknown builtin type %d", 0, 0};
 
 
static struct complaint unresolved_sym_chain_complaint =
static struct complaint unresolved_sym_chain_complaint =
{"%s: common block `%s' from global_sym_chain unresolved", 0, 0};
{"%s: common block `%s' from global_sym_chain unresolved", 0, 0};
 
 
static struct complaint stabs_general_complaint =
static struct complaint stabs_general_complaint =
{"%s", 0, 0};
{"%s", 0, 0};
 
 
static struct complaint lrs_general_complaint =
static struct complaint lrs_general_complaint =
{"%s", 0, 0};
{"%s", 0, 0};
 
 
/* Make a list of forward references which haven't been defined.  */
/* Make a list of forward references which haven't been defined.  */
 
 
static struct type **undef_types;
static struct type **undef_types;
static int undef_types_allocated;
static int undef_types_allocated;
static int undef_types_length;
static int undef_types_length;
static struct symbol *current_symbol = NULL;
static struct symbol *current_symbol = NULL;
 
 
/* Check for and handle cretinous stabs symbol name continuation!  */
/* Check for and handle cretinous stabs symbol name continuation!  */
#define STABS_CONTINUE(pp,objfile)                              \
#define STABS_CONTINUE(pp,objfile)                              \
  do {                                                  \
  do {                                                  \
    if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
    if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
      *(pp) = next_symbol_text (objfile);       \
      *(pp) = next_symbol_text (objfile);       \
  } while (0)
  } while (0)


/* FIXME: These probably should be our own types (like rs6000_builtin_type
/* FIXME: These probably should be our own types (like rs6000_builtin_type
   has its own types) rather than builtin_type_*.  */
   has its own types) rather than builtin_type_*.  */
static struct type **os9k_type_vector[] =
static struct type **os9k_type_vector[] =
{
{
  0,
  0,
  &builtin_type_int,
  &builtin_type_int,
  &builtin_type_char,
  &builtin_type_char,
  &builtin_type_long,
  &builtin_type_long,
  &builtin_type_short,
  &builtin_type_short,
  &builtin_type_unsigned_char,
  &builtin_type_unsigned_char,
  &builtin_type_unsigned_short,
  &builtin_type_unsigned_short,
  &builtin_type_unsigned_long,
  &builtin_type_unsigned_long,
  &builtin_type_unsigned_int,
  &builtin_type_unsigned_int,
  &builtin_type_float,
  &builtin_type_float,
  &builtin_type_double,
  &builtin_type_double,
  &builtin_type_void,
  &builtin_type_void,
  &builtin_type_long_double
  &builtin_type_long_double
};
};
 
 
static void os9k_init_type_vector PARAMS ((struct type **));
static void os9k_init_type_vector PARAMS ((struct type **));
 
 
static void
static void
os9k_init_type_vector (tv)
os9k_init_type_vector (tv)
     struct type **tv;
     struct type **tv;
{
{
  unsigned int i;
  unsigned int i;
  for (i = 0; i < sizeof (os9k_type_vector) / sizeof (struct type **); i++)
  for (i = 0; i < sizeof (os9k_type_vector) / sizeof (struct type **); i++)
    tv[i] = (os9k_type_vector[i] == 0 ? 0 : *(os9k_type_vector[i]));
    tv[i] = (os9k_type_vector[i] == 0 ? 0 : *(os9k_type_vector[i]));
}
}
 
 
/* Look up a dbx type-number pair.  Return the address of the slot
/* Look up a dbx type-number pair.  Return the address of the slot
   where the type for that number-pair is stored.
   where the type for that number-pair is stored.
   The number-pair is in TYPENUMS.
   The number-pair is in TYPENUMS.
 
 
   This can be used for finding the type associated with that pair
   This can be used for finding the type associated with that pair
   or for associating a new type with the pair.  */
   or for associating a new type with the pair.  */
 
 
struct type **
struct type **
dbx_lookup_type (typenums)
dbx_lookup_type (typenums)
     int typenums[2];
     int typenums[2];
{
{
  register int filenum = typenums[0];
  register int filenum = typenums[0];
  register int index = typenums[1];
  register int index = typenums[1];
  unsigned old_len;
  unsigned old_len;
  register int real_filenum;
  register int real_filenum;
  register struct header_file *f;
  register struct header_file *f;
  int f_orig_length;
  int f_orig_length;
 
 
  if (filenum == -1)            /* -1,-1 is for temporary types.  */
  if (filenum == -1)            /* -1,-1 is for temporary types.  */
    return 0;
    return 0;
 
 
  if (filenum < 0 || filenum >= n_this_object_header_files)
  if (filenum < 0 || filenum >= n_this_object_header_files)
    {
    {
      static struct complaint msg =
      static struct complaint msg =
      {"\
      {"\
Invalid symbol data: type number (%d,%d) out of range at symtab pos %d.",
Invalid symbol data: type number (%d,%d) out of range at symtab pos %d.",
       0, 0};
       0, 0};
      complain (&msg, filenum, index, symnum);
      complain (&msg, filenum, index, symnum);
      goto error_return;
      goto error_return;
    }
    }
 
 
  if (filenum == 0)
  if (filenum == 0)
    {
    {
      if (index < 0)
      if (index < 0)
        {
        {
          /* Caller wants address of address of type.  We think
          /* Caller wants address of address of type.  We think
             that negative (rs6k builtin) types will never appear as
             that negative (rs6k builtin) types will never appear as
             "lvalues", (nor should they), so we stuff the real type
             "lvalues", (nor should they), so we stuff the real type
             pointer into a temp, and return its address.  If referenced,
             pointer into a temp, and return its address.  If referenced,
             this will do the right thing.  */
             this will do the right thing.  */
          static struct type *temp_type;
          static struct type *temp_type;
 
 
          temp_type = rs6000_builtin_type (index);
          temp_type = rs6000_builtin_type (index);
          return &temp_type;
          return &temp_type;
        }
        }
 
 
      /* Type is defined outside of header files.
      /* Type is defined outside of header files.
         Find it in this object file's type vector.  */
         Find it in this object file's type vector.  */
      if (index >= type_vector_length)
      if (index >= type_vector_length)
        {
        {
          old_len = type_vector_length;
          old_len = type_vector_length;
          if (old_len == 0)
          if (old_len == 0)
            {
            {
              type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
              type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
              type_vector = (struct type **)
              type_vector = (struct type **)
                xmalloc (type_vector_length * sizeof (struct type *));
                xmalloc (type_vector_length * sizeof (struct type *));
            }
            }
          while (index >= type_vector_length)
          while (index >= type_vector_length)
            {
            {
              type_vector_length *= 2;
              type_vector_length *= 2;
            }
            }
          type_vector = (struct type **)
          type_vector = (struct type **)
            xrealloc ((char *) type_vector,
            xrealloc ((char *) type_vector,
                      (type_vector_length * sizeof (struct type *)));
                      (type_vector_length * sizeof (struct type *)));
          memset (&type_vector[old_len], 0,
          memset (&type_vector[old_len], 0,
                  (type_vector_length - old_len) * sizeof (struct type *));
                  (type_vector_length - old_len) * sizeof (struct type *));
 
 
          if (os9k_stabs)
          if (os9k_stabs)
            /* Deal with OS9000 fundamental types.  */
            /* Deal with OS9000 fundamental types.  */
            os9k_init_type_vector (type_vector);
            os9k_init_type_vector (type_vector);
        }
        }
      return (&type_vector[index]);
      return (&type_vector[index]);
    }
    }
  else
  else
    {
    {
      real_filenum = this_object_header_files[filenum];
      real_filenum = this_object_header_files[filenum];
 
 
      if (real_filenum >= N_HEADER_FILES (current_objfile))
      if (real_filenum >= N_HEADER_FILES (current_objfile))
        {
        {
          struct type *temp_type;
          struct type *temp_type;
          struct type **temp_type_p;
          struct type **temp_type_p;
 
 
          warning ("GDB internal error: bad real_filenum");
          warning ("GDB internal error: bad real_filenum");
 
 
        error_return:
        error_return:
          temp_type = init_type (TYPE_CODE_ERROR, 0, 0, NULL, NULL);
          temp_type = init_type (TYPE_CODE_ERROR, 0, 0, NULL, NULL);
          temp_type_p = (struct type **) xmalloc (sizeof (struct type *));
          temp_type_p = (struct type **) xmalloc (sizeof (struct type *));
          *temp_type_p = temp_type;
          *temp_type_p = temp_type;
          return temp_type_p;
          return temp_type_p;
        }
        }
 
 
      f = HEADER_FILES (current_objfile) + real_filenum;
      f = HEADER_FILES (current_objfile) + real_filenum;
 
 
      f_orig_length = f->length;
      f_orig_length = f->length;
      if (index >= f_orig_length)
      if (index >= f_orig_length)
        {
        {
          while (index >= f->length)
          while (index >= f->length)
            {
            {
              f->length *= 2;
              f->length *= 2;
            }
            }
          f->vector = (struct type **)
          f->vector = (struct type **)
            xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
            xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
          memset (&f->vector[f_orig_length], 0,
          memset (&f->vector[f_orig_length], 0,
                  (f->length - f_orig_length) * sizeof (struct type *));
                  (f->length - f_orig_length) * sizeof (struct type *));
        }
        }
      return (&f->vector[index]);
      return (&f->vector[index]);
    }
    }
}
}
 
 
/* Make sure there is a type allocated for type numbers TYPENUMS
/* Make sure there is a type allocated for type numbers TYPENUMS
   and return the type object.
   and return the type object.
   This can create an empty (zeroed) type object.
   This can create an empty (zeroed) type object.
   TYPENUMS may be (-1, -1) to return a new type object that is not
   TYPENUMS may be (-1, -1) to return a new type object that is not
   put into the type vector, and so may not be referred to by number. */
   put into the type vector, and so may not be referred to by number. */
 
 
static struct type *
static struct type *
dbx_alloc_type (typenums, objfile)
dbx_alloc_type (typenums, objfile)
     int typenums[2];
     int typenums[2];
     struct objfile *objfile;
     struct objfile *objfile;
{
{
  register struct type **type_addr;
  register struct type **type_addr;
 
 
  if (typenums[0] == -1)
  if (typenums[0] == -1)
    {
    {
      return (alloc_type (objfile));
      return (alloc_type (objfile));
    }
    }
 
 
  type_addr = dbx_lookup_type (typenums);
  type_addr = dbx_lookup_type (typenums);
 
 
  /* If we are referring to a type not known at all yet,
  /* If we are referring to a type not known at all yet,
     allocate an empty type for it.
     allocate an empty type for it.
     We will fill it in later if we find out how.  */
     We will fill it in later if we find out how.  */
  if (*type_addr == 0)
  if (*type_addr == 0)
    {
    {
      *type_addr = alloc_type (objfile);
      *type_addr = alloc_type (objfile);
    }
    }
 
 
  return (*type_addr);
  return (*type_addr);
}
}
 
 
/* for all the stabs in a given stab vector, build appropriate types
/* for all the stabs in a given stab vector, build appropriate types
   and fix their symbols in given symbol vector. */
   and fix their symbols in given symbol vector. */
 
 
static void
static void
patch_block_stabs (symbols, stabs, objfile)
patch_block_stabs (symbols, stabs, objfile)
     struct pending *symbols;
     struct pending *symbols;
     struct pending_stabs *stabs;
     struct pending_stabs *stabs;
     struct objfile *objfile;
     struct objfile *objfile;
{
{
  int ii;
  int ii;
  char *name;
  char *name;
  char *pp;
  char *pp;
  struct symbol *sym;
  struct symbol *sym;
 
 
  if (stabs)
  if (stabs)
    {
    {
 
 
      /* for all the stab entries, find their corresponding symbols and
      /* for all the stab entries, find their corresponding symbols and
         patch their types! */
         patch their types! */
 
 
      for (ii = 0; ii < stabs->count; ++ii)
      for (ii = 0; ii < stabs->count; ++ii)
        {
        {
          name = stabs->stab[ii];
          name = stabs->stab[ii];
          pp = (char *) strchr (name, ':');
          pp = (char *) strchr (name, ':');
          while (pp[1] == ':')
          while (pp[1] == ':')
            {
            {
              pp += 2;
              pp += 2;
              pp = (char *) strchr (pp, ':');
              pp = (char *) strchr (pp, ':');
            }
            }
          sym = find_symbol_in_list (symbols, name, pp - name);
          sym = find_symbol_in_list (symbols, name, pp - name);
          if (!sym)
          if (!sym)
            {
            {
              /* FIXME-maybe: it would be nice if we noticed whether
              /* FIXME-maybe: it would be nice if we noticed whether
                 the variable was defined *anywhere*, not just whether
                 the variable was defined *anywhere*, not just whether
                 it is defined in this compilation unit.  But neither
                 it is defined in this compilation unit.  But neither
                 xlc or GCC seem to need such a definition, and until
                 xlc or GCC seem to need such a definition, and until
                 we do psymtabs (so that the minimal symbols from all
                 we do psymtabs (so that the minimal symbols from all
                 compilation units are available now), I'm not sure
                 compilation units are available now), I'm not sure
                 how to get the information.  */
                 how to get the information.  */
 
 
              /* On xcoff, if a global is defined and never referenced,
              /* On xcoff, if a global is defined and never referenced,
                 ld will remove it from the executable.  There is then
                 ld will remove it from the executable.  There is then
                 a N_GSYM stab for it, but no regular (C_EXT) symbol.  */
                 a N_GSYM stab for it, but no regular (C_EXT) symbol.  */
              sym = (struct symbol *)
              sym = (struct symbol *)
                obstack_alloc (&objfile->symbol_obstack,
                obstack_alloc (&objfile->symbol_obstack,
                               sizeof (struct symbol));
                               sizeof (struct symbol));
 
 
              memset (sym, 0, sizeof (struct symbol));
              memset (sym, 0, sizeof (struct symbol));
              SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
              SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
              SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
              SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
              SYMBOL_NAME (sym) =
              SYMBOL_NAME (sym) =
                obsavestring (name, pp - name, &objfile->symbol_obstack);
                obsavestring (name, pp - name, &objfile->symbol_obstack);
              pp += 2;
              pp += 2;
              if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
              if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
                {
                {
                  /* I don't think the linker does this with functions,
                  /* I don't think the linker does this with functions,
                     so as far as I know this is never executed.
                     so as far as I know this is never executed.
                     But it doesn't hurt to check.  */
                     But it doesn't hurt to check.  */
                  SYMBOL_TYPE (sym) =
                  SYMBOL_TYPE (sym) =
                    lookup_function_type (read_type (&pp, objfile));
                    lookup_function_type (read_type (&pp, objfile));
                }
                }
              else
              else
                {
                {
                  SYMBOL_TYPE (sym) = read_type (&pp, objfile);
                  SYMBOL_TYPE (sym) = read_type (&pp, objfile);
                }
                }
              add_symbol_to_list (sym, &global_symbols);
              add_symbol_to_list (sym, &global_symbols);
            }
            }
          else
          else
            {
            {
              pp += 2;
              pp += 2;
              if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
              if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
                {
                {
                  SYMBOL_TYPE (sym) =
                  SYMBOL_TYPE (sym) =
                    lookup_function_type (read_type (&pp, objfile));
                    lookup_function_type (read_type (&pp, objfile));
                }
                }
              else
              else
                {
                {
                  SYMBOL_TYPE (sym) = read_type (&pp, objfile);
                  SYMBOL_TYPE (sym) = read_type (&pp, objfile);
                }
                }
            }
            }
        }
        }
    }
    }
}
}


 
 
/* Read a number by which a type is referred to in dbx data,
/* Read a number by which a type is referred to in dbx data,
   or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
   or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
   Just a single number N is equivalent to (0,N).
   Just a single number N is equivalent to (0,N).
   Return the two numbers by storing them in the vector TYPENUMS.
   Return the two numbers by storing them in the vector TYPENUMS.
   TYPENUMS will then be used as an argument to dbx_lookup_type.
   TYPENUMS will then be used as an argument to dbx_lookup_type.
 
 
   Returns 0 for success, -1 for error.  */
   Returns 0 for success, -1 for error.  */
 
 
static int
static int
read_type_number (pp, typenums)
read_type_number (pp, typenums)
     register char **pp;
     register char **pp;
     register int *typenums;
     register int *typenums;
{
{
  int nbits;
  int nbits;
  if (**pp == '(')
  if (**pp == '(')
    {
    {
      (*pp)++;
      (*pp)++;
      typenums[0] = read_huge_number (pp, ',', &nbits);
      typenums[0] = read_huge_number (pp, ',', &nbits);
      if (nbits != 0)
      if (nbits != 0)
        return -1;
        return -1;
      typenums[1] = read_huge_number (pp, ')', &nbits);
      typenums[1] = read_huge_number (pp, ')', &nbits);
      if (nbits != 0)
      if (nbits != 0)
        return -1;
        return -1;
    }
    }
  else
  else
    {
    {
      typenums[0] = 0;
      typenums[0] = 0;
      typenums[1] = read_huge_number (pp, 0, &nbits);
      typenums[1] = read_huge_number (pp, 0, &nbits);
      if (nbits != 0)
      if (nbits != 0)
        return -1;
        return -1;
    }
    }
  return 0;
  return 0;
}
}


 
 
#if !defined (REG_STRUCT_HAS_ADDR)
#if !defined (REG_STRUCT_HAS_ADDR)
#define REG_STRUCT_HAS_ADDR(gcc_p,type) 0
#define REG_STRUCT_HAS_ADDR(gcc_p,type) 0
#endif
#endif
 
 
#define VISIBILITY_PRIVATE      '0'     /* Stabs character for private field */
#define VISIBILITY_PRIVATE      '0'     /* Stabs character for private field */
#define VISIBILITY_PROTECTED    '1'     /* Stabs character for protected fld */
#define VISIBILITY_PROTECTED    '1'     /* Stabs character for protected fld */
#define VISIBILITY_PUBLIC       '2'     /* Stabs character for public field */
#define VISIBILITY_PUBLIC       '2'     /* Stabs character for public field */
#define VISIBILITY_IGNORE       '9'     /* Optimized out or zero length */
#define VISIBILITY_IGNORE       '9'     /* Optimized out or zero length */
 
 
#define CFRONT_VISIBILITY_PRIVATE       '2'     /* Stabs character for private field */
#define CFRONT_VISIBILITY_PRIVATE       '2'     /* Stabs character for private field */
#define CFRONT_VISIBILITY_PUBLIC        '1'     /* Stabs character for public field */
#define CFRONT_VISIBILITY_PUBLIC        '1'     /* Stabs character for public field */
 
 
/* This code added to support parsing of ARM/Cfront stabs strings */
/* This code added to support parsing of ARM/Cfront stabs strings */
 
 
/* Get substring from string up to char c, advance string pointer past
/* Get substring from string up to char c, advance string pointer past
   suibstring. */
   suibstring. */
 
 
static char *
static char *
get_substring (p, c)
get_substring (p, c)
     char **p;
     char **p;
     int c;
     int c;
{
{
  char *str;
  char *str;
  str = *p;
  str = *p;
  *p = strchr (*p, c);
  *p = strchr (*p, c);
  if (*p)
  if (*p)
    {
    {
      **p = 0;
      **p = 0;
      (*p)++;
      (*p)++;
    }
    }
  else
  else
    str = 0;
    str = 0;
  return str;
  return str;
}
}
 
 
/* Physname gets strcat'd onto sname in order to recreate the mangled
/* Physname gets strcat'd onto sname in order to recreate the mangled
   name (see funtion gdb_mangle_name in gdbtypes.c).  For cfront, make
   name (see funtion gdb_mangle_name in gdbtypes.c).  For cfront, make
   the physname look like that of g++ - take out the initial mangling
   the physname look like that of g++ - take out the initial mangling
   eg: for sname="a" and fname="foo__1aFPFs_i" return "FPFs_i" */
   eg: for sname="a" and fname="foo__1aFPFs_i" return "FPFs_i" */
 
 
static char *
static char *
get_cfront_method_physname (fname)
get_cfront_method_physname (fname)
     char *fname;
     char *fname;
{
{
  int len = 0;
  int len = 0;
  /* FIXME would like to make this generic for g++ too, but
  /* FIXME would like to make this generic for g++ too, but
     that is already handled in read_member_funcctions */
     that is already handled in read_member_funcctions */
  char *p = fname;
  char *p = fname;
 
 
  /* search ahead to find the start of the mangled suffix */
  /* search ahead to find the start of the mangled suffix */
  if (*p == '_' && *(p + 1) == '_')     /* compiler generated; probably a ctor/dtor */
  if (*p == '_' && *(p + 1) == '_')     /* compiler generated; probably a ctor/dtor */
    p += 2;
    p += 2;
  while (p && (unsigned) ((p + 1) - fname) < strlen (fname) && *(p + 1) != '_')
  while (p && (unsigned) ((p + 1) - fname) < strlen (fname) && *(p + 1) != '_')
    p = strchr (p, '_');
    p = strchr (p, '_');
  if (!(p && *p == '_' && *(p + 1) == '_'))
  if (!(p && *p == '_' && *(p + 1) == '_'))
    error ("Invalid mangled function name %s", fname);
    error ("Invalid mangled function name %s", fname);
  p += 2;                       /* advance past '__' */
  p += 2;                       /* advance past '__' */
 
 
  /* struct name length and name of type should come next; advance past it */
  /* struct name length and name of type should come next; advance past it */
  while (isdigit (*p))
  while (isdigit (*p))
    {
    {
      len = len * 10 + (*p - '0');
      len = len * 10 + (*p - '0');
      p++;
      p++;
    }
    }
  p += len;
  p += len;
 
 
  return p;
  return p;
}
}
 
 
/* Read base classes within cfront class definition.
/* Read base classes within cfront class definition.
   eg: A:ZcA;1@Bpub v2@Bvirpri;__ct__1AFv func__1AFv *sfunc__1AFv ;as__1A ;;
   eg: A:ZcA;1@Bpub v2@Bvirpri;__ct__1AFv func__1AFv *sfunc__1AFv ;as__1A ;;
   ^^^^^^^^^^^^^^^^^^
   ^^^^^^^^^^^^^^^^^^
 
 
   A:ZcA;;foopri__1AFv foopro__1AFv __ct__1AFv __ct__1AFRC1A foopub__1AFv ;;;
   A:ZcA;;foopri__1AFv foopro__1AFv __ct__1AFv __ct__1AFRC1A foopub__1AFv ;;;
   ^
   ^
 */
 */
 
 
static int
static int
read_cfront_baseclasses (fip, pp, type, objfile)
read_cfront_baseclasses (fip, pp, type, objfile)
     struct field_info *fip;
     struct field_info *fip;
     struct objfile *objfile;
     struct objfile *objfile;
     char **pp;
     char **pp;
     struct type *type;
     struct type *type;
{
{
  static struct complaint msg_unknown =
  static struct complaint msg_unknown =
  {"\
  {"\
         Unsupported token in stabs string %s.\n",
         Unsupported token in stabs string %s.\n",
   0, 0};
   0, 0};
  static struct complaint msg_notfound =
  static struct complaint msg_notfound =
  {"\
  {"\
                   Unable to find base type for %s.\n",
                   Unable to find base type for %s.\n",
   0, 0};
   0, 0};
  int bnum = 0;
  int bnum = 0;
  char *p;
  char *p;
  int i;
  int i;
  struct nextfield *new;
  struct nextfield *new;
 
 
  if (**pp == ';')              /* no base classes; return */
  if (**pp == ';')              /* no base classes; return */
    {
    {
      ++(*pp);
      ++(*pp);
      return 1;
      return 1;
    }
    }
 
 
  /* first count base classes so we can allocate space before parsing */
  /* first count base classes so we can allocate space before parsing */
  for (p = *pp; p && *p && *p != ';'; p++)
  for (p = *pp; p && *p && *p != ';'; p++)
    {
    {
      if (*p == ' ')
      if (*p == ' ')
        bnum++;
        bnum++;
    }
    }
  bnum++;                       /* add one more for last one */
  bnum++;                       /* add one more for last one */
 
 
  /* now parse the base classes until we get to the start of the methods
  /* now parse the base classes until we get to the start of the methods
     (code extracted and munged from read_baseclasses) */
     (code extracted and munged from read_baseclasses) */
  ALLOCATE_CPLUS_STRUCT_TYPE (type);
  ALLOCATE_CPLUS_STRUCT_TYPE (type);
  TYPE_N_BASECLASSES (type) = bnum;
  TYPE_N_BASECLASSES (type) = bnum;
 
 
  /* allocate space */
  /* allocate space */
  {
  {
    int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
    int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
    char *pointer;
    char *pointer;
 
 
    pointer = (char *) TYPE_ALLOC (type, num_bytes);
    pointer = (char *) TYPE_ALLOC (type, num_bytes);
    TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
    TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
  }
  }
  B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
  B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
 
 
  for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
  for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
    {
    {
      new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
      new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
      make_cleanup (free, new);
      make_cleanup (free, new);
      memset (new, 0, sizeof (struct nextfield));
      memset (new, 0, sizeof (struct nextfield));
      new->next = fip->list;
      new->next = fip->list;
      fip->list = new;
      fip->list = new;
      FIELD_BITSIZE (new->field) = 0;    /* this should be an unpacked field! */
      FIELD_BITSIZE (new->field) = 0;    /* this should be an unpacked field! */
 
 
      STABS_CONTINUE (pp, objfile);
      STABS_CONTINUE (pp, objfile);
 
 
      /* virtual?  eg: v2@Bvir */
      /* virtual?  eg: v2@Bvir */
      if (**pp == 'v')
      if (**pp == 'v')
        {
        {
          SET_TYPE_FIELD_VIRTUAL (type, i);
          SET_TYPE_FIELD_VIRTUAL (type, i);
          ++(*pp);
          ++(*pp);
        }
        }
 
 
      /* access?  eg: 2@Bvir */
      /* access?  eg: 2@Bvir */
      /* Note: protected inheritance not supported in cfront */
      /* Note: protected inheritance not supported in cfront */
      switch (*(*pp)++)
      switch (*(*pp)++)
        {
        {
        case CFRONT_VISIBILITY_PRIVATE:
        case CFRONT_VISIBILITY_PRIVATE:
          new->visibility = VISIBILITY_PRIVATE;
          new->visibility = VISIBILITY_PRIVATE;
          break;
          break;
        case CFRONT_VISIBILITY_PUBLIC:
        case CFRONT_VISIBILITY_PUBLIC:
          new->visibility = VISIBILITY_PUBLIC;
          new->visibility = VISIBILITY_PUBLIC;
          break;
          break;
        default:
        default:
          /* Bad visibility format.  Complain and treat it as
          /* Bad visibility format.  Complain and treat it as
             public.  */
             public.  */
          {
          {
            static struct complaint msg =
            static struct complaint msg =
            {
            {
              "Unknown visibility `%c' for baseclass", 0, 0};
              "Unknown visibility `%c' for baseclass", 0, 0};
            complain (&msg, new->visibility);
            complain (&msg, new->visibility);
            new->visibility = VISIBILITY_PUBLIC;
            new->visibility = VISIBILITY_PUBLIC;
          }
          }
        }
        }
 
 
      /* "@" comes next - eg: @Bvir */
      /* "@" comes next - eg: @Bvir */
      if (**pp != '@')
      if (**pp != '@')
        {
        {
          complain (&msg_unknown, *pp);
          complain (&msg_unknown, *pp);
          return 1;
          return 1;
        }
        }
      ++(*pp);
      ++(*pp);
 
 
 
 
      /* Set the bit offset of the portion of the object corresponding
      /* Set the bit offset of the portion of the object corresponding
         to this baseclass.  Always zero in the absence of
         to this baseclass.  Always zero in the absence of
         multiple inheritance.  */
         multiple inheritance.  */
      /* Unable to read bit position from stabs;
      /* Unable to read bit position from stabs;
         Assuming no multiple inheritance for now FIXME! */
         Assuming no multiple inheritance for now FIXME! */
      /* We may have read this in the structure definition;
      /* We may have read this in the structure definition;
         now we should fixup the members to be the actual base classes */
         now we should fixup the members to be the actual base classes */
      FIELD_BITPOS (new->field) = 0;
      FIELD_BITPOS (new->field) = 0;
 
 
      /* Get the base class name and type */
      /* Get the base class name and type */
      {
      {
        char *bname;            /* base class name */
        char *bname;            /* base class name */
        struct symbol *bsym;    /* base class */
        struct symbol *bsym;    /* base class */
        char *p1, *p2;
        char *p1, *p2;
        p1 = strchr (*pp, ' ');
        p1 = strchr (*pp, ' ');
        p2 = strchr (*pp, ';');
        p2 = strchr (*pp, ';');
        if (p1 < p2)
        if (p1 < p2)
          bname = get_substring (pp, ' ');
          bname = get_substring (pp, ' ');
        else
        else
          bname = get_substring (pp, ';');
          bname = get_substring (pp, ';');
        if (!bname || !*bname)
        if (!bname || !*bname)
          {
          {
            complain (&msg_unknown, *pp);
            complain (&msg_unknown, *pp);
            return 1;
            return 1;
          }
          }
        /* FIXME! attach base info to type */
        /* FIXME! attach base info to type */
        bsym = lookup_symbol (bname, 0, STRUCT_NAMESPACE, 0, 0);   /*demangled_name */
        bsym = lookup_symbol (bname, 0, STRUCT_NAMESPACE, 0, 0);   /*demangled_name */
        if (bsym)
        if (bsym)
          {
          {
            new->field.type = SYMBOL_TYPE (bsym);
            new->field.type = SYMBOL_TYPE (bsym);
            new->field.name = type_name_no_tag (new->field.type);
            new->field.name = type_name_no_tag (new->field.type);
          }
          }
        else
        else
          {
          {
            complain (&msg_notfound, *pp);
            complain (&msg_notfound, *pp);
            return 1;
            return 1;
          }
          }
      }
      }
 
 
      /* If more base classes to parse, loop again.
      /* If more base classes to parse, loop again.
         We ate the last ' ' or ';' in get_substring,
         We ate the last ' ' or ';' in get_substring,
         so on exit we will have skipped the trailing ';' */
         so on exit we will have skipped the trailing ';' */
      /* if invalid, return 0; add code to detect  - FIXME! */
      /* if invalid, return 0; add code to detect  - FIXME! */
    }
    }
  return 1;
  return 1;
}
}
 
 
/* read cfront member functions.
/* read cfront member functions.
   pp points to string starting with list of functions
   pp points to string starting with list of functions
   eg: A:ZcA;1@Bpub v2@Bvirpri;__ct__1AFv func__1AFv *sfunc__1AFv ;as__1A ;;
   eg: A:ZcA;1@Bpub v2@Bvirpri;__ct__1AFv func__1AFv *sfunc__1AFv ;as__1A ;;
   ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   A:ZcA;;foopri__1AFv foopro__1AFv __ct__1AFv __ct__1AFRC1A foopub__1AFv ;;;
   A:ZcA;;foopri__1AFv foopro__1AFv __ct__1AFv __ct__1AFRC1A foopub__1AFv ;;;
   ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
 */
 */
 
 
static int
static int
read_cfront_member_functions (fip, pp, type, objfile)
read_cfront_member_functions (fip, pp, type, objfile)
     struct field_info *fip;
     struct field_info *fip;
     char **pp;
     char **pp;
     struct type *type;
     struct type *type;
     struct objfile *objfile;
     struct objfile *objfile;
{
{
  /* This code extracted from read_member_functions
  /* This code extracted from read_member_functions
     so as to do the similar thing for our funcs */
     so as to do the similar thing for our funcs */
 
 
  int nfn_fields = 0;
  int nfn_fields = 0;
  int length = 0;
  int length = 0;
  /* Total number of member functions defined in this class.  If the class
  /* Total number of member functions defined in this class.  If the class
     defines two `f' functions, and one `g' function, then this will have
     defines two `f' functions, and one `g' function, then this will have
     the value 3.  */
     the value 3.  */
  int total_length = 0;
  int total_length = 0;
  int i;
  int i;
  struct next_fnfield
  struct next_fnfield
    {
    {
      struct next_fnfield *next;
      struct next_fnfield *next;
      struct fn_field fn_field;
      struct fn_field fn_field;
    }
    }
   *sublist;
   *sublist;
  struct type *look_ahead_type;
  struct type *look_ahead_type;
  struct next_fnfieldlist *new_fnlist;
  struct next_fnfieldlist *new_fnlist;
  struct next_fnfield *new_sublist;
  struct next_fnfield *new_sublist;
  char *main_fn_name;
  char *main_fn_name;
  char *fname;
  char *fname;
  struct symbol *ref_func = 0;
  struct symbol *ref_func = 0;
 
 
  /* Process each list until we find the end of the member functions.
  /* Process each list until we find the end of the member functions.
     eg: p = "__ct__1AFv foo__1AFv ;;;" */
     eg: p = "__ct__1AFv foo__1AFv ;;;" */
 
 
  STABS_CONTINUE (pp, objfile); /* handle \\ */
  STABS_CONTINUE (pp, objfile); /* handle \\ */
 
 
  while (**pp != ';' && (fname = get_substring (pp, ' '), fname))
  while (**pp != ';' && (fname = get_substring (pp, ' '), fname))
    {
    {
      int is_static = 0;
      int is_static = 0;
      int sublist_count = 0;
      int sublist_count = 0;
      char *pname;
      char *pname;
      if (fname[0] == '*')       /* static member */
      if (fname[0] == '*')       /* static member */
        {
        {
          is_static = 1;
          is_static = 1;
          sublist_count++;
          sublist_count++;
          fname++;
          fname++;
        }
        }
      ref_func = lookup_symbol (fname, 0, VAR_NAMESPACE, 0, 0);            /* demangled name */
      ref_func = lookup_symbol (fname, 0, VAR_NAMESPACE, 0, 0);            /* demangled name */
      if (!ref_func)
      if (!ref_func)
        {
        {
          static struct complaint msg =
          static struct complaint msg =
          {"\
          {"\
                Unable to find function symbol for %s\n",
                Unable to find function symbol for %s\n",
           0, 0};
           0, 0};
          complain (&msg, fname);
          complain (&msg, fname);
          continue;
          continue;
        }
        }
      sublist = NULL;
      sublist = NULL;
      look_ahead_type = NULL;
      look_ahead_type = NULL;
      length = 0;
      length = 0;
 
 
      new_fnlist = (struct next_fnfieldlist *)
      new_fnlist = (struct next_fnfieldlist *)
        xmalloc (sizeof (struct next_fnfieldlist));
        xmalloc (sizeof (struct next_fnfieldlist));
      make_cleanup (free, new_fnlist);
      make_cleanup (free, new_fnlist);
      memset (new_fnlist, 0, sizeof (struct next_fnfieldlist));
      memset (new_fnlist, 0, sizeof (struct next_fnfieldlist));
 
 
      /* The following is code to work around cfront generated stabs.
      /* The following is code to work around cfront generated stabs.
         The stabs contains full mangled name for each field.
         The stabs contains full mangled name for each field.
         We try to demangle the name and extract the field name out of it.  */
         We try to demangle the name and extract the field name out of it.  */
      {
      {
        char *dem, *dem_p, *dem_args;
        char *dem, *dem_p, *dem_args;
        int dem_len;
        int dem_len;
        dem = cplus_demangle (fname, DMGL_ANSI | DMGL_PARAMS);
        dem = cplus_demangle (fname, DMGL_ANSI | DMGL_PARAMS);
        if (dem != NULL)
        if (dem != NULL)
          {
          {
            dem_p = strrchr (dem, ':');
            dem_p = strrchr (dem, ':');
            if (dem_p != 0 && *(dem_p - 1) == ':')
            if (dem_p != 0 && *(dem_p - 1) == ':')
              dem_p++;
              dem_p++;
            /* get rid of args */
            /* get rid of args */
            dem_args = strchr (dem_p, '(');
            dem_args = strchr (dem_p, '(');
            if (dem_args == NULL)
            if (dem_args == NULL)
              dem_len = strlen (dem_p);
              dem_len = strlen (dem_p);
            else
            else
              dem_len = dem_args - dem_p;
              dem_len = dem_args - dem_p;
            main_fn_name =
            main_fn_name =
              obsavestring (dem_p, dem_len, &objfile->type_obstack);
              obsavestring (dem_p, dem_len, &objfile->type_obstack);
          }
          }
        else
        else
          {
          {
            main_fn_name =
            main_fn_name =
              obsavestring (fname, strlen (fname), &objfile->type_obstack);
              obsavestring (fname, strlen (fname), &objfile->type_obstack);
          }
          }
      }                         /* end of code for cfront work around */
      }                         /* end of code for cfront work around */
 
 
      new_fnlist->fn_fieldlist.name = main_fn_name;
      new_fnlist->fn_fieldlist.name = main_fn_name;
 
 
/*-------------------------------------------------*/
/*-------------------------------------------------*/
      /* Set up the sublists
      /* Set up the sublists
         Sublists are stuff like args, static, visibility, etc.
         Sublists are stuff like args, static, visibility, etc.
         so in ARM, we have to set that info some other way.
         so in ARM, we have to set that info some other way.
         Multiple sublists happen if overloading
         Multiple sublists happen if overloading
         eg: foo::26=##1;:;2A.;
         eg: foo::26=##1;:;2A.;
         In g++, we'd loop here thru all the sublists...  */
         In g++, we'd loop here thru all the sublists...  */
 
 
      new_sublist =
      new_sublist =
        (struct next_fnfield *) xmalloc (sizeof (struct next_fnfield));
        (struct next_fnfield *) xmalloc (sizeof (struct next_fnfield));
      make_cleanup (free, new_sublist);
      make_cleanup (free, new_sublist);
      memset (new_sublist, 0, sizeof (struct next_fnfield));
      memset (new_sublist, 0, sizeof (struct next_fnfield));
 
 
      /* eat 1; from :;2A.; */
      /* eat 1; from :;2A.; */
      new_sublist->fn_field.type = SYMBOL_TYPE (ref_func);      /* normally takes a read_type */
      new_sublist->fn_field.type = SYMBOL_TYPE (ref_func);      /* normally takes a read_type */
      /* Make this type look like a method stub for gdb */
      /* Make this type look like a method stub for gdb */
      TYPE_FLAGS (new_sublist->fn_field.type) |= TYPE_FLAG_STUB;
      TYPE_FLAGS (new_sublist->fn_field.type) |= TYPE_FLAG_STUB;
      TYPE_CODE (new_sublist->fn_field.type) = TYPE_CODE_METHOD;
      TYPE_CODE (new_sublist->fn_field.type) = TYPE_CODE_METHOD;
 
 
      /* If this is just a stub, then we don't have the real name here. */
      /* If this is just a stub, then we don't have the real name here. */
      if (TYPE_FLAGS (new_sublist->fn_field.type) & TYPE_FLAG_STUB)
      if (TYPE_FLAGS (new_sublist->fn_field.type) & TYPE_FLAG_STUB)
        {
        {
          if (!TYPE_DOMAIN_TYPE (new_sublist->fn_field.type))
          if (!TYPE_DOMAIN_TYPE (new_sublist->fn_field.type))
            TYPE_DOMAIN_TYPE (new_sublist->fn_field.type) = type;
            TYPE_DOMAIN_TYPE (new_sublist->fn_field.type) = type;
          new_sublist->fn_field.is_stub = 1;
          new_sublist->fn_field.is_stub = 1;
        }
        }
 
 
      /* physname used later in mangling; eg PFs_i,5 for foo__1aFPFs_i
      /* physname used later in mangling; eg PFs_i,5 for foo__1aFPFs_i
         physname gets strcat'd in order to recreate the onto mangled name */
         physname gets strcat'd in order to recreate the onto mangled name */
      pname = get_cfront_method_physname (fname);
      pname = get_cfront_method_physname (fname);
      new_sublist->fn_field.physname = savestring (pname, strlen (pname));
      new_sublist->fn_field.physname = savestring (pname, strlen (pname));
 
 
 
 
      /* Set this member function's visibility fields.
      /* Set this member function's visibility fields.
         Unable to distinguish access from stabs definition!
         Unable to distinguish access from stabs definition!
         Assuming public for now.  FIXME!
         Assuming public for now.  FIXME!
         (for private, set new_sublist->fn_field.is_private = 1,
         (for private, set new_sublist->fn_field.is_private = 1,
         for public, set new_sublist->fn_field.is_protected = 1) */
         for public, set new_sublist->fn_field.is_protected = 1) */
 
 
      /* Unable to distinguish const/volatile from stabs definition!
      /* Unable to distinguish const/volatile from stabs definition!
         Assuming normal for now.  FIXME! */
         Assuming normal for now.  FIXME! */
 
 
      new_sublist->fn_field.is_const = 0;
      new_sublist->fn_field.is_const = 0;
      new_sublist->fn_field.is_volatile = 0;     /* volatile not implemented in cfront */
      new_sublist->fn_field.is_volatile = 0;     /* volatile not implemented in cfront */
 
 
      /* Set virtual/static function info
      /* Set virtual/static function info
         How to get vtable offsets ?
         How to get vtable offsets ?
         Assuming normal for now FIXME!!
         Assuming normal for now FIXME!!
         For vtables, figure out from whence this virtual function came.
         For vtables, figure out from whence this virtual function came.
         It may belong to virtual function table of
         It may belong to virtual function table of
         one of its baseclasses.
         one of its baseclasses.
         set:
         set:
         new_sublist -> fn_field.voffset = vtable offset,
         new_sublist -> fn_field.voffset = vtable offset,
         new_sublist -> fn_field.fcontext = look_ahead_type;
         new_sublist -> fn_field.fcontext = look_ahead_type;
         where look_ahead_type is type of baseclass */
         where look_ahead_type is type of baseclass */
      if (is_static)
      if (is_static)
        new_sublist->fn_field.voffset = VOFFSET_STATIC;
        new_sublist->fn_field.voffset = VOFFSET_STATIC;
      else                      /* normal member function.  */
      else                      /* normal member function.  */
        new_sublist->fn_field.voffset = 0;
        new_sublist->fn_field.voffset = 0;
      new_sublist->fn_field.fcontext = 0;
      new_sublist->fn_field.fcontext = 0;
 
 
 
 
      /* Prepare new sublist */
      /* Prepare new sublist */
      new_sublist->next = sublist;
      new_sublist->next = sublist;
      sublist = new_sublist;
      sublist = new_sublist;
      length++;
      length++;
 
 
      /* In g++, we loop thu sublists - now we set from functions. */
      /* In g++, we loop thu sublists - now we set from functions. */
      new_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
      new_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
        obstack_alloc (&objfile->type_obstack,
        obstack_alloc (&objfile->type_obstack,
                       sizeof (struct fn_field) * length);
                       sizeof (struct fn_field) * length);
      memset (new_fnlist->fn_fieldlist.fn_fields, 0,
      memset (new_fnlist->fn_fieldlist.fn_fields, 0,
              sizeof (struct fn_field) * length);
              sizeof (struct fn_field) * length);
      for (i = length; (i--, sublist); sublist = sublist->next)
      for (i = length; (i--, sublist); sublist = sublist->next)
        {
        {
          new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
          new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
        }
        }
 
 
      new_fnlist->fn_fieldlist.length = length;
      new_fnlist->fn_fieldlist.length = length;
      new_fnlist->next = fip->fnlist;
      new_fnlist->next = fip->fnlist;
      fip->fnlist = new_fnlist;
      fip->fnlist = new_fnlist;
      nfn_fields++;
      nfn_fields++;
      total_length += length;
      total_length += length;
      STABS_CONTINUE (pp, objfile);     /* handle \\ */
      STABS_CONTINUE (pp, objfile);     /* handle \\ */
    }                           /* end of loop */
    }                           /* end of loop */
 
 
  if (nfn_fields)
  if (nfn_fields)
    {
    {
      /* type should already have space */
      /* type should already have space */
      TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
      TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
        TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
        TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
      memset (TYPE_FN_FIELDLISTS (type), 0,
      memset (TYPE_FN_FIELDLISTS (type), 0,
              sizeof (struct fn_fieldlist) * nfn_fields);
              sizeof (struct fn_fieldlist) * nfn_fields);
      TYPE_NFN_FIELDS (type) = nfn_fields;
      TYPE_NFN_FIELDS (type) = nfn_fields;
      TYPE_NFN_FIELDS_TOTAL (type) = total_length;
      TYPE_NFN_FIELDS_TOTAL (type) = total_length;
    }
    }
 
 
  /* end of scope for reading member func */
  /* end of scope for reading member func */
 
 
  /* eg: ";;" */
  /* eg: ";;" */
 
 
  /* Skip trailing ';' and bump count of number of fields seen */
  /* Skip trailing ';' and bump count of number of fields seen */
  if (**pp == ';')
  if (**pp == ';')
    (*pp)++;
    (*pp)++;
  else
  else
    return 0;
    return 0;
  return 1;
  return 1;
}
}
 
 
/* This routine fixes up partial cfront types that were created
/* This routine fixes up partial cfront types that were created
   while parsing the stabs.  The main need for this function is
   while parsing the stabs.  The main need for this function is
   to add information such as methods to classes.
   to add information such as methods to classes.
   Examples of "p": "sA;;__ct__1AFv foo__1AFv ;;;" */
   Examples of "p": "sA;;__ct__1AFv foo__1AFv ;;;" */
int
int
resolve_cfront_continuation (objfile, sym, p)
resolve_cfront_continuation (objfile, sym, p)
     struct objfile *objfile;
     struct objfile *objfile;
     struct symbol *sym;
     struct symbol *sym;
     char *p;
     char *p;
{
{
  struct symbol *ref_sym = 0;
  struct symbol *ref_sym = 0;
  char *sname;
  char *sname;
  /* snarfed from read_struct_type */
  /* snarfed from read_struct_type */
  struct field_info fi;
  struct field_info fi;
  struct type *type;
  struct type *type;
  struct cleanup *back_to;
  struct cleanup *back_to;
 
 
  /* Need to make sure that fi isn't gunna conflict with struct
  /* Need to make sure that fi isn't gunna conflict with struct
     in case struct already had some fnfs */
     in case struct already had some fnfs */
  fi.list = NULL;
  fi.list = NULL;
  fi.fnlist = NULL;
  fi.fnlist = NULL;
  back_to = make_cleanup (null_cleanup, 0);
  back_to = make_cleanup (null_cleanup, 0);
 
 
  /* We only accept structs, classes and unions at the moment.
  /* We only accept structs, classes and unions at the moment.
     Other continuation types include t (typedef), r (long dbl), ...
     Other continuation types include t (typedef), r (long dbl), ...
     We may want to add support for them as well;
     We may want to add support for them as well;
     right now they are handled by duplicating the symbol information
     right now they are handled by duplicating the symbol information
     into the type information (see define_symbol) */
     into the type information (see define_symbol) */
  if (*p != 's'                 /* structs */
  if (*p != 's'                 /* structs */
      && *p != 'c'              /* class */
      && *p != 'c'              /* class */
      && *p != 'u')             /* union */
      && *p != 'u')             /* union */
    return 0;                    /* only handle C++ types */
    return 0;                    /* only handle C++ types */
  p++;
  p++;
 
 
  /* Get symbol typs name and validate
  /* Get symbol typs name and validate
     eg: p = "A;;__ct__1AFv foo__1AFv ;;;" */
     eg: p = "A;;__ct__1AFv foo__1AFv ;;;" */
  sname = get_substring (&p, ';');
  sname = get_substring (&p, ';');
  if (!sname || strcmp (sname, SYMBOL_NAME (sym)))
  if (!sname || strcmp (sname, SYMBOL_NAME (sym)))
    error ("Internal error: base symbol type name does not match\n");
    error ("Internal error: base symbol type name does not match\n");
 
 
  /* Find symbol's internal gdb reference using demangled_name.
  /* Find symbol's internal gdb reference using demangled_name.
     This is the real sym that we want;
     This is the real sym that we want;
     sym was a temp hack to make debugger happy */
     sym was a temp hack to make debugger happy */
  ref_sym = lookup_symbol (SYMBOL_NAME (sym), 0, STRUCT_NAMESPACE, 0, 0);
  ref_sym = lookup_symbol (SYMBOL_NAME (sym), 0, STRUCT_NAMESPACE, 0, 0);
  type = SYMBOL_TYPE (ref_sym);
  type = SYMBOL_TYPE (ref_sym);
 
 
 
 
  /* Now read the baseclasses, if any, read the regular C struct or C++
  /* Now read the baseclasses, if any, read the regular C struct or C++
     class member fields, attach the fields to the type, read the C++
     class member fields, attach the fields to the type, read the C++
     member functions, attach them to the type, and then read any tilde
     member functions, attach them to the type, and then read any tilde
     field (baseclass specifier for the class holding the main vtable). */
     field (baseclass specifier for the class holding the main vtable). */
 
 
  if (!read_cfront_baseclasses (&fi, &p, type, objfile)
  if (!read_cfront_baseclasses (&fi, &p, type, objfile)
  /* g++ does this next, but cfront already did this:
  /* g++ does this next, but cfront already did this:
     || !read_struct_fields (&fi, &p, type, objfile) */
     || !read_struct_fields (&fi, &p, type, objfile) */
      || !copy_cfront_struct_fields (&fi, type, objfile)
      || !copy_cfront_struct_fields (&fi, type, objfile)
      || !read_cfront_member_functions (&fi, &p, type, objfile)
      || !read_cfront_member_functions (&fi, &p, type, objfile)
      || !read_cfront_static_fields (&fi, &p, type, objfile)
      || !read_cfront_static_fields (&fi, &p, type, objfile)
      || !attach_fields_to_type (&fi, type, objfile)
      || !attach_fields_to_type (&fi, type, objfile)
      || !attach_fn_fields_to_type (&fi, type)
      || !attach_fn_fields_to_type (&fi, type)
  /* g++ does this next, but cfront doesn't seem to have this:
  /* g++ does this next, but cfront doesn't seem to have this:
     || !read_tilde_fields (&fi, &p, type, objfile) */
     || !read_tilde_fields (&fi, &p, type, objfile) */
    )
    )
    {
    {
      type = error_type (&p, objfile);
      type = error_type (&p, objfile);
    }
    }
 
 
  do_cleanups (back_to);
  do_cleanups (back_to);
  return 0;
  return 0;
}
}
/* End of code added to support parsing of ARM/Cfront stabs strings */
/* End of code added to support parsing of ARM/Cfront stabs strings */
 
 
 
 
/* This routine fixes up symbol references/aliases to point to the original
/* This routine fixes up symbol references/aliases to point to the original
   symbol definition.  Returns 0 on failure, non-zero on success.  */
   symbol definition.  Returns 0 on failure, non-zero on success.  */
 
 
static int
static int
resolve_symbol_reference (objfile, sym, p)
resolve_symbol_reference (objfile, sym, p)
     struct objfile *objfile;
     struct objfile *objfile;
     struct symbol *sym;
     struct symbol *sym;
     char *p;
     char *p;
{
{
  int refnum;
  int refnum;
  struct symbol *ref_sym = 0;
  struct symbol *ref_sym = 0;
  struct alias_list *alias;
  struct alias_list *alias;
 
 
  /* If this is not a symbol reference return now.  */
  /* If this is not a symbol reference return now.  */
  if (*p != '#')
  if (*p != '#')
    return 0;
    return 0;
 
 
  /* Use "#<num>" as the name; we'll fix the name later.
  /* Use "#<num>" as the name; we'll fix the name later.
     We stored the original symbol name as "#<id>=<name>"
     We stored the original symbol name as "#<id>=<name>"
     so we can now search for "#<id>" to resolving the reference.
     so we can now search for "#<id>" to resolving the reference.
     We'll fix the names later by removing the "#<id>" or "#<id>=" */
     We'll fix the names later by removing the "#<id>" or "#<id>=" */
 
 
/*---------------------------------------------------------*/
/*---------------------------------------------------------*/
  /* Get the reference id number, and
  /* Get the reference id number, and
     advance p past the names so we can parse the rest.
     advance p past the names so we can parse the rest.
     eg: id=2 for p : "2=", "2=z:r(0,1)" "2:r(0,1);l(#5,#6),l(#7,#4)" */
     eg: id=2 for p : "2=", "2=z:r(0,1)" "2:r(0,1);l(#5,#6),l(#7,#4)" */
/*---------------------------------------------------------*/
/*---------------------------------------------------------*/
 
 
  /* This gets reference name from string.  sym may not have a name. */
  /* This gets reference name from string.  sym may not have a name. */
 
 
  /* Get the reference number associated with the reference id in the
  /* Get the reference number associated with the reference id in the
     gdb stab string.  From that reference number, get the main/primary
     gdb stab string.  From that reference number, get the main/primary
     symbol for this alias.  */
     symbol for this alias.  */
  refnum = process_reference (&p);
  refnum = process_reference (&p);
  ref_sym = ref_search (refnum);
  ref_sym = ref_search (refnum);
  if (!ref_sym)
  if (!ref_sym)
    {
    {
      complain (&lrs_general_complaint, "symbol for reference not found");
      complain (&lrs_general_complaint, "symbol for reference not found");
      return 0;
      return 0;
    }
    }
 
 
  /* Parse the stab of the referencing symbol
  /* Parse the stab of the referencing symbol
     now that we have the referenced symbol.
     now that we have the referenced symbol.
     Add it as a new symbol and a link back to the referenced symbol.
     Add it as a new symbol and a link back to the referenced symbol.
     eg: p : "=", "=z:r(0,1)" ":r(0,1);l(#5,#6),l(#7,#4)" */
     eg: p : "=", "=z:r(0,1)" ":r(0,1);l(#5,#6),l(#7,#4)" */
 
 
 
 
  /* If the stab symbol table and string contain:
  /* If the stab symbol table and string contain:
     RSYM   0      5      00000000 868    #15=z:r(0,1)
     RSYM   0      5      00000000 868    #15=z:r(0,1)
     LBRAC  0      0      00000000 899    #5=
     LBRAC  0      0      00000000 899    #5=
     SLINE  0      16     00000003 923    #6=
     SLINE  0      16     00000003 923    #6=
     Then the same symbols can be later referenced by:
     Then the same symbols can be later referenced by:
     RSYM   0      5      00000000 927    #15:r(0,1);l(#5,#6)
     RSYM   0      5      00000000 927    #15:r(0,1);l(#5,#6)
     This is used in live range splitting to:
     This is used in live range splitting to:
     1) specify that a symbol (#15) is actually just a new storage
     1) specify that a symbol (#15) is actually just a new storage
     class for a symbol (#15=z) which was previously defined.
     class for a symbol (#15=z) which was previously defined.
     2) specify that the beginning and ending ranges for a symbol
     2) specify that the beginning and ending ranges for a symbol
     (#15) are the values of the beginning (#5) and ending (#6)
     (#15) are the values of the beginning (#5) and ending (#6)
     symbols. */
     symbols. */
 
 
  /* Read number as reference id.
  /* Read number as reference id.
     eg: p : "=", "=z:r(0,1)" ":r(0,1);l(#5,#6),l(#7,#4)" */
     eg: p : "=", "=z:r(0,1)" ":r(0,1);l(#5,#6),l(#7,#4)" */
  /* FIXME! Might I want to use SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
  /* FIXME! Might I want to use SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
     in case of "l(0,0)"? */
     in case of "l(0,0)"? */
 
 
/*--------------------------------------------------*/
/*--------------------------------------------------*/
  /* Add this symbol to the reference list.           */
  /* Add this symbol to the reference list.           */
/*--------------------------------------------------*/
/*--------------------------------------------------*/
 
 
  alias = (struct alias_list *) obstack_alloc (&objfile->type_obstack,
  alias = (struct alias_list *) obstack_alloc (&objfile->type_obstack,
                                               sizeof (struct alias_list));
                                               sizeof (struct alias_list));
  if (!alias)
  if (!alias)
    {
    {
      complain (&lrs_general_complaint, "Unable to allocate alias list memory");
      complain (&lrs_general_complaint, "Unable to allocate alias list memory");
      return 0;
      return 0;
    }
    }
 
 
  alias->next = 0;
  alias->next = 0;
  alias->sym = sym;
  alias->sym = sym;
 
 
  if (!SYMBOL_ALIASES (ref_sym))
  if (!SYMBOL_ALIASES (ref_sym))
    {
    {
      SYMBOL_ALIASES (ref_sym) = alias;
      SYMBOL_ALIASES (ref_sym) = alias;
    }
    }
  else
  else
    {
    {
      struct alias_list *temp;
      struct alias_list *temp;
 
 
      /* Get to the end of the list.  */
      /* Get to the end of the list.  */
      for (temp = SYMBOL_ALIASES (ref_sym);
      for (temp = SYMBOL_ALIASES (ref_sym);
           temp->next;
           temp->next;
           temp = temp->next)
           temp = temp->next)
        ;
        ;
      temp->next = alias;
      temp->next = alias;
    }
    }
 
 
  /* Want to fix up name so that other functions (eg. valops)
  /* Want to fix up name so that other functions (eg. valops)
     will correctly print the name.
     will correctly print the name.
     Don't add_symbol_to_list so that lookup_symbol won't find it.
     Don't add_symbol_to_list so that lookup_symbol won't find it.
     nope... needed for fixups. */
     nope... needed for fixups. */
  SYMBOL_NAME (sym) = SYMBOL_NAME (ref_sym);
  SYMBOL_NAME (sym) = SYMBOL_NAME (ref_sym);
 
 
  /* Done!  */
  /* Done!  */
  return 1;
  return 1;
}
}
 
 
/* Structure for storing pointers to reference definitions for fast lookup
/* Structure for storing pointers to reference definitions for fast lookup
   during "process_later". */
   during "process_later". */
 
 
struct ref_map
struct ref_map
{
{
  char *stabs;
  char *stabs;
  CORE_ADDR value;
  CORE_ADDR value;
  struct symbol *sym;
  struct symbol *sym;
};
};
 
 
#define MAX_CHUNK_REFS 100
#define MAX_CHUNK_REFS 100
#define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
#define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
#define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
#define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
 
 
static struct ref_map *ref_map;
static struct ref_map *ref_map;
 
 
/* Ptr to free cell in chunk's linked list. */
/* Ptr to free cell in chunk's linked list. */
static int ref_count = 0;
static int ref_count = 0;
 
 
/* Number of chunks malloced. */
/* Number of chunks malloced. */
static int ref_chunk = 0;
static int ref_chunk = 0;
 
 
/* This file maintains a cache of stabs aliases found in the symbol
/* This file maintains a cache of stabs aliases found in the symbol
   table. If the symbol table changes, this cache must be cleared
   table. If the symbol table changes, this cache must be cleared
   or we are left holding onto data in invalid obstacks. */
   or we are left holding onto data in invalid obstacks. */
void
void
stabsread_clear_cache ()
stabsread_clear_cache ()
{
{
  ref_count = 0;
  ref_count = 0;
  ref_chunk = 0;
  ref_chunk = 0;
}
}
 
 
/* Create array of pointers mapping refids to symbols and stab strings.
/* Create array of pointers mapping refids to symbols and stab strings.
   Add pointers to reference definition symbols and/or their values as we
   Add pointers to reference definition symbols and/or their values as we
   find them, using their reference numbers as our index.
   find them, using their reference numbers as our index.
   These will be used later when we resolve references. */
   These will be used later when we resolve references. */
void
void
ref_add (refnum, sym, stabs, value)
ref_add (refnum, sym, stabs, value)
     int refnum;
     int refnum;
     struct symbol *sym;
     struct symbol *sym;
     char *stabs;
     char *stabs;
     CORE_ADDR value;
     CORE_ADDR value;
{
{
  if (ref_count == 0)
  if (ref_count == 0)
    ref_chunk = 0;
    ref_chunk = 0;
  if (refnum >= ref_count)
  if (refnum >= ref_count)
    ref_count = refnum + 1;
    ref_count = refnum + 1;
  if (ref_count > ref_chunk * MAX_CHUNK_REFS)
  if (ref_count > ref_chunk * MAX_CHUNK_REFS)
    {
    {
      int new_slots = ref_count - ref_chunk * MAX_CHUNK_REFS;
      int new_slots = ref_count - ref_chunk * MAX_CHUNK_REFS;
      int new_chunks = new_slots / MAX_CHUNK_REFS + 1;
      int new_chunks = new_slots / MAX_CHUNK_REFS + 1;
      ref_map = (struct ref_map *)
      ref_map = (struct ref_map *)
        xrealloc (ref_map, REF_MAP_SIZE (ref_chunk + new_chunks));
        xrealloc (ref_map, REF_MAP_SIZE (ref_chunk + new_chunks));
      memset (ref_map + ref_chunk * MAX_CHUNK_REFS, 0, new_chunks * REF_CHUNK_SIZE);
      memset (ref_map + ref_chunk * MAX_CHUNK_REFS, 0, new_chunks * REF_CHUNK_SIZE);
      ref_chunk += new_chunks;
      ref_chunk += new_chunks;
    }
    }
  ref_map[refnum].stabs = stabs;
  ref_map[refnum].stabs = stabs;
  ref_map[refnum].sym = sym;
  ref_map[refnum].sym = sym;
  ref_map[refnum].value = value;
  ref_map[refnum].value = value;
}
}
 
 
/* Return defined sym for the reference REFNUM.  */
/* Return defined sym for the reference REFNUM.  */
struct symbol *
struct symbol *
ref_search (refnum)
ref_search (refnum)
     int refnum;
     int refnum;
{
{
  if (refnum < 0 || refnum > ref_count)
  if (refnum < 0 || refnum > ref_count)
    return 0;
    return 0;
  return ref_map[refnum].sym;
  return ref_map[refnum].sym;
}
}
 
 
/* Return value for the reference REFNUM.  */
/* Return value for the reference REFNUM.  */
 
 
static CORE_ADDR
static CORE_ADDR
ref_search_value (refnum)
ref_search_value (refnum)
     int refnum;
     int refnum;
{
{
  if (refnum < 0 || refnum > ref_count)
  if (refnum < 0 || refnum > ref_count)
    return 0;
    return 0;
  return ref_map[refnum].value;
  return ref_map[refnum].value;
}
}
 
 
/* Parse a reference id in STRING and return the resulting
/* Parse a reference id in STRING and return the resulting
   reference number.  Move STRING beyond the reference id.  */
   reference number.  Move STRING beyond the reference id.  */
 
 
static int
static int
process_reference (string)
process_reference (string)
     char **string;
     char **string;
{
{
  char *p;
  char *p;
  int refnum = 0;
  int refnum = 0;
 
 
  if (**string != '#')
  if (**string != '#')
    return 0;
    return 0;
 
 
  /* Advance beyond the initial '#'.  */
  /* Advance beyond the initial '#'.  */
  p = *string + 1;
  p = *string + 1;
 
 
  /* Read number as reference id. */
  /* Read number as reference id. */
  while (*p && isdigit (*p))
  while (*p && isdigit (*p))
    {
    {
      refnum = refnum * 10 + *p - '0';
      refnum = refnum * 10 + *p - '0';
      p++;
      p++;
    }
    }
  *string = p;
  *string = p;
  return refnum;
  return refnum;
}
}
 
 
/* If STRING defines a reference, store away a pointer to the reference
/* If STRING defines a reference, store away a pointer to the reference
   definition for later use.  Return the reference number.  */
   definition for later use.  Return the reference number.  */
 
 
int
int
symbol_reference_defined (string)
symbol_reference_defined (string)
     char **string;
     char **string;
{
{
  char *p = *string;
  char *p = *string;
  int refnum = 0;
  int refnum = 0;
 
 
  refnum = process_reference (&p);
  refnum = process_reference (&p);
 
 
  /* Defining symbols end in '=' */
  /* Defining symbols end in '=' */
  if (*p == '=')
  if (*p == '=')
    {
    {
      /* Symbol is being defined here. */
      /* Symbol is being defined here. */
      *string = p + 1;
      *string = p + 1;
      return refnum;
      return refnum;
    }
    }
  else
  else
    {
    {
      /* Must be a reference.   Either the symbol has already been defined,
      /* Must be a reference.   Either the symbol has already been defined,
         or this is a forward reference to it.  */
         or this is a forward reference to it.  */
      *string = p;
      *string = p;
      return -1;
      return -1;
    }
    }
}
}
 
 
/* ARGSUSED */
/* ARGSUSED */
struct symbol *
struct symbol *
define_symbol (valu, string, desc, type, objfile)
define_symbol (valu, string, desc, type, objfile)
     CORE_ADDR valu;
     CORE_ADDR valu;
     char *string;
     char *string;
     int desc;
     int desc;
     int type;
     int type;
     struct objfile *objfile;
     struct objfile *objfile;
{
{
  register struct symbol *sym;
  register struct symbol *sym;
  char *p = (char *) strchr (string, ':');
  char *p = (char *) strchr (string, ':');
  int deftype;
  int deftype;
  int synonym = 0;
  int synonym = 0;
  register int i;
  register int i;
 
 
  /* We would like to eliminate nameless symbols, but keep their types.
  /* We would like to eliminate nameless symbols, but keep their types.
     E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
     E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
     to type 2, but, should not create a symbol to address that type. Since
     to type 2, but, should not create a symbol to address that type. Since
     the symbol will be nameless, there is no way any user can refer to it. */
     the symbol will be nameless, there is no way any user can refer to it. */
 
 
  int nameless;
  int nameless;
 
 
  /* Ignore syms with empty names.  */
  /* Ignore syms with empty names.  */
  if (string[0] == 0)
  if (string[0] == 0)
    return 0;
    return 0;
 
 
  /* Ignore old-style symbols from cc -go  */
  /* Ignore old-style symbols from cc -go  */
  if (p == 0)
  if (p == 0)
    return 0;
    return 0;
 
 
  while (p[1] == ':')
  while (p[1] == ':')
    {
    {
      p += 2;
      p += 2;
      p = strchr (p, ':');
      p = strchr (p, ':');
    }
    }
 
 
  /* If a nameless stab entry, all we need is the type, not the symbol.
  /* If a nameless stab entry, all we need is the type, not the symbol.
     e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
     e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
  nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
  nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
 
 
  current_symbol = sym = (struct symbol *)
  current_symbol = sym = (struct symbol *)
    obstack_alloc (&objfile->symbol_obstack, sizeof (struct symbol));
    obstack_alloc (&objfile->symbol_obstack, sizeof (struct symbol));
  memset (sym, 0, sizeof (struct symbol));
  memset (sym, 0, sizeof (struct symbol));
 
 
  switch (type & N_TYPE)
  switch (type & N_TYPE)
    {
    {
    case N_TEXT:
    case N_TEXT:
      SYMBOL_SECTION (sym) = SECT_OFF_TEXT;
      SYMBOL_SECTION (sym) = SECT_OFF_TEXT;
      break;
      break;
    case N_DATA:
    case N_DATA:
      SYMBOL_SECTION (sym) = SECT_OFF_DATA;
      SYMBOL_SECTION (sym) = SECT_OFF_DATA;
      break;
      break;
    case N_BSS:
    case N_BSS:
      SYMBOL_SECTION (sym) = SECT_OFF_BSS;
      SYMBOL_SECTION (sym) = SECT_OFF_BSS;
      break;
      break;
    }
    }
 
 
  if (processing_gcc_compilation)
  if (processing_gcc_compilation)
    {
    {
      /* GCC 2.x puts the line number in desc.  SunOS apparently puts in the
      /* GCC 2.x puts the line number in desc.  SunOS apparently puts in the
         number of bytes occupied by a type or object, which we ignore.  */
         number of bytes occupied by a type or object, which we ignore.  */
      SYMBOL_LINE (sym) = desc;
      SYMBOL_LINE (sym) = desc;
    }
    }
  else
  else
    {
    {
      SYMBOL_LINE (sym) = 0;     /* unknown */
      SYMBOL_LINE (sym) = 0;     /* unknown */
    }
    }
 
 
  if (is_cplus_marker (string[0]))
  if (is_cplus_marker (string[0]))
    {
    {
      /* Special GNU C++ names.  */
      /* Special GNU C++ names.  */
      switch (string[1])
      switch (string[1])
        {
        {
        case 't':
        case 't':
          SYMBOL_NAME (sym) = obsavestring ("this", strlen ("this"),
          SYMBOL_NAME (sym) = obsavestring ("this", strlen ("this"),
                                            &objfile->symbol_obstack);
                                            &objfile->symbol_obstack);
          break;
          break;
 
 
        case 'v':               /* $vtbl_ptr_type */
        case 'v':               /* $vtbl_ptr_type */
          /* Was: SYMBOL_NAME (sym) = "vptr"; */
          /* Was: SYMBOL_NAME (sym) = "vptr"; */
          goto normal;
          goto normal;
 
 
        case 'e':
        case 'e':
          SYMBOL_NAME (sym) = obsavestring ("eh_throw", strlen ("eh_throw"),
          SYMBOL_NAME (sym) = obsavestring ("eh_throw", strlen ("eh_throw"),
                                            &objfile->symbol_obstack);
                                            &objfile->symbol_obstack);
          break;
          break;
 
 
        case '_':
        case '_':
          /* This was an anonymous type that was never fixed up.  */
          /* This was an anonymous type that was never fixed up.  */
          goto normal;
          goto normal;
 
 
#ifdef STATIC_TRANSFORM_NAME
#ifdef STATIC_TRANSFORM_NAME
        case 'X':
        case 'X':
          /* SunPRO (3.0 at least) static variable encoding.  */
          /* SunPRO (3.0 at least) static variable encoding.  */
          goto normal;
          goto normal;
#endif
#endif
 
 
        default:
        default:
          complain (&unrecognized_cplus_name_complaint, string);
          complain (&unrecognized_cplus_name_complaint, string);
          goto normal;          /* Do *something* with it */
          goto normal;          /* Do *something* with it */
        }
        }
    }
    }
  else if (string[0] == '#')
  else if (string[0] == '#')
    {
    {
      /* Special GNU C extension for referencing symbols.  */
      /* Special GNU C extension for referencing symbols.  */
      char *s;
      char *s;
      int refnum, nlen;
      int refnum, nlen;
 
 
      /* If STRING defines a new reference id, then add it to the
      /* If STRING defines a new reference id, then add it to the
         reference map.  Else it must be referring to a previously
         reference map.  Else it must be referring to a previously
         defined symbol, so add it to the alias list of the previously
         defined symbol, so add it to the alias list of the previously
         defined symbol.  */
         defined symbol.  */
      s = string;
      s = string;
      refnum = symbol_reference_defined (&s);
      refnum = symbol_reference_defined (&s);
      if (refnum >= 0)
      if (refnum >= 0)
        ref_add (refnum, sym, string, SYMBOL_VALUE (sym));
        ref_add (refnum, sym, string, SYMBOL_VALUE (sym));
      else if (!resolve_symbol_reference (objfile, sym, string))
      else if (!resolve_symbol_reference (objfile, sym, string))
        return NULL;
        return NULL;
 
 
      /* S..P contains the name of the symbol.  We need to store
      /* S..P contains the name of the symbol.  We need to store
         the correct name into SYMBOL_NAME.  */
         the correct name into SYMBOL_NAME.  */
      nlen = p - s;
      nlen = p - s;
      if (refnum >= 0)
      if (refnum >= 0)
        {
        {
          if (nlen > 0)
          if (nlen > 0)
            {
            {
              SYMBOL_NAME (sym) = (char *)
              SYMBOL_NAME (sym) = (char *)
                obstack_alloc (&objfile->symbol_obstack, nlen);
                obstack_alloc (&objfile->symbol_obstack, nlen);
              strncpy (SYMBOL_NAME (sym), s, nlen);
              strncpy (SYMBOL_NAME (sym), s, nlen);
              SYMBOL_NAME (sym)[nlen] = '\0';
              SYMBOL_NAME (sym)[nlen] = '\0';
              SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile->symbol_obstack);
              SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile->symbol_obstack);
            }
            }
          else
          else
            /* FIXME! Want SYMBOL_NAME (sym) = 0;
            /* FIXME! Want SYMBOL_NAME (sym) = 0;
               Get error if leave name 0.  So give it something. */
               Get error if leave name 0.  So give it something. */
            {
            {
              nlen = p - string;
              nlen = p - string;
              SYMBOL_NAME (sym) = (char *)
              SYMBOL_NAME (sym) = (char *)
                obstack_alloc (&objfile->symbol_obstack, nlen);
                obstack_alloc (&objfile->symbol_obstack, nlen);
              strncpy (SYMBOL_NAME (sym), string, nlen);
              strncpy (SYMBOL_NAME (sym), string, nlen);
              SYMBOL_NAME (sym)[nlen] = '\0';
              SYMBOL_NAME (sym)[nlen] = '\0';
              SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile->symbol_obstack);
              SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile->symbol_obstack);
            }
            }
        }
        }
      /* Advance STRING beyond the reference id.  */
      /* Advance STRING beyond the reference id.  */
      string = s;
      string = s;
    }
    }
  else
  else
    {
    {
    normal:
    normal:
      SYMBOL_LANGUAGE (sym) = current_subfile->language;
      SYMBOL_LANGUAGE (sym) = current_subfile->language;
      SYMBOL_NAME (sym) = (char *)
      SYMBOL_NAME (sym) = (char *)
        obstack_alloc (&objfile->symbol_obstack, ((p - string) + 1));
        obstack_alloc (&objfile->symbol_obstack, ((p - string) + 1));
      /* Open-coded memcpy--saves function call time.  */
      /* Open-coded memcpy--saves function call time.  */
      /* FIXME:  Does it really?  Try replacing with simple strcpy and
      /* FIXME:  Does it really?  Try replacing with simple strcpy and
         try it on an executable with a large symbol table. */
         try it on an executable with a large symbol table. */
      /* FIXME: considering that gcc can open code memcpy anyway, I
      /* FIXME: considering that gcc can open code memcpy anyway, I
         doubt it.  xoxorich. */
         doubt it.  xoxorich. */
      {
      {
        register char *p1 = string;
        register char *p1 = string;
        register char *p2 = SYMBOL_NAME (sym);
        register char *p2 = SYMBOL_NAME (sym);
        while (p1 != p)
        while (p1 != p)
          {
          {
            *p2++ = *p1++;
            *p2++ = *p1++;
          }
          }
        *p2++ = '\0';
        *p2++ = '\0';
      }
      }
 
 
      /* If this symbol is from a C++ compilation, then attempt to cache the
      /* If this symbol is from a C++ compilation, then attempt to cache the
         demangled form for future reference.  This is a typical time versus
         demangled form for future reference.  This is a typical time versus
         space tradeoff, that was decided in favor of time because it sped up
         space tradeoff, that was decided in favor of time because it sped up
         C++ symbol lookups by a factor of about 20. */
         C++ symbol lookups by a factor of about 20. */
 
 
      SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile->symbol_obstack);
      SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile->symbol_obstack);
    }
    }
  p++;
  p++;
 
 
  /* Determine the type of name being defined.  */
  /* Determine the type of name being defined.  */
#if 0
#if 0
  /* Getting GDB to correctly skip the symbol on an undefined symbol
  /* Getting GDB to correctly skip the symbol on an undefined symbol
     descriptor and not ever dump core is a very dodgy proposition if
     descriptor and not ever dump core is a very dodgy proposition if
     we do things this way.  I say the acorn RISC machine can just
     we do things this way.  I say the acorn RISC machine can just
     fix their compiler.  */
     fix their compiler.  */
  /* The Acorn RISC machine's compiler can put out locals that don't
  /* The Acorn RISC machine's compiler can put out locals that don't
     start with "234=" or "(3,4)=", so assume anything other than the
     start with "234=" or "(3,4)=", so assume anything other than the
     deftypes we know how to handle is a local.  */
     deftypes we know how to handle is a local.  */
  if (!strchr ("cfFGpPrStTvVXCR", *p))
  if (!strchr ("cfFGpPrStTvVXCR", *p))
#else
#else
  if (isdigit (*p) || *p == '(' || *p == '-')
  if (isdigit (*p) || *p == '(' || *p == '-')
#endif
#endif
    deftype = 'l';
    deftype = 'l';
  else
  else
    deftype = *p++;
    deftype = *p++;
 
 
  switch (deftype)
  switch (deftype)
    {
    {
    case 'c':
    case 'c':
      /* c is a special case, not followed by a type-number.
      /* c is a special case, not followed by a type-number.
         SYMBOL:c=iVALUE for an integer constant symbol.
         SYMBOL:c=iVALUE for an integer constant symbol.
         SYMBOL:c=rVALUE for a floating constant symbol.
         SYMBOL:c=rVALUE for a floating constant symbol.
         SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
         SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
         e.g. "b:c=e6,0" for "const b = blob1"
         e.g. "b:c=e6,0" for "const b = blob1"
         (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;").  */
         (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;").  */
      if (*p != '=')
      if (*p != '=')
        {
        {
          SYMBOL_CLASS (sym) = LOC_CONST;
          SYMBOL_CLASS (sym) = LOC_CONST;
          SYMBOL_TYPE (sym) = error_type (&p, objfile);
          SYMBOL_TYPE (sym) = error_type (&p, objfile);
          SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
          SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
          add_symbol_to_list (sym, &file_symbols);
          add_symbol_to_list (sym, &file_symbols);
          return sym;
          return sym;
        }
        }
      ++p;
      ++p;
      switch (*p++)
      switch (*p++)
        {
        {
        case 'r':
        case 'r':
          {
          {
            double d = atof (p);
            double d = atof (p);
            char *dbl_valu;
            char *dbl_valu;
 
 
            /* FIXME-if-picky-about-floating-accuracy: Should be using
            /* FIXME-if-picky-about-floating-accuracy: Should be using
               target arithmetic to get the value.  real.c in GCC
               target arithmetic to get the value.  real.c in GCC
               probably has the necessary code.  */
               probably has the necessary code.  */
 
 
            /* FIXME: lookup_fundamental_type is a hack.  We should be
            /* FIXME: lookup_fundamental_type is a hack.  We should be
               creating a type especially for the type of float constants.
               creating a type especially for the type of float constants.
               Problem is, what type should it be?
               Problem is, what type should it be?
 
 
               Also, what should the name of this type be?  Should we
               Also, what should the name of this type be?  Should we
               be using 'S' constants (see stabs.texinfo) instead?  */
               be using 'S' constants (see stabs.texinfo) instead?  */
 
 
            SYMBOL_TYPE (sym) = lookup_fundamental_type (objfile,
            SYMBOL_TYPE (sym) = lookup_fundamental_type (objfile,
                                                         FT_DBL_PREC_FLOAT);
                                                         FT_DBL_PREC_FLOAT);
            dbl_valu = (char *)
            dbl_valu = (char *)
              obstack_alloc (&objfile->symbol_obstack,
              obstack_alloc (&objfile->symbol_obstack,
                             TYPE_LENGTH (SYMBOL_TYPE (sym)));
                             TYPE_LENGTH (SYMBOL_TYPE (sym)));
            store_floating (dbl_valu, TYPE_LENGTH (SYMBOL_TYPE (sym)), d);
            store_floating (dbl_valu, TYPE_LENGTH (SYMBOL_TYPE (sym)), d);
            SYMBOL_VALUE_BYTES (sym) = dbl_valu;
            SYMBOL_VALUE_BYTES (sym) = dbl_valu;
            SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
            SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
          }
          }
          break;
          break;
        case 'i':
        case 'i':
          {
          {
            /* Defining integer constants this way is kind of silly,
            /* Defining integer constants this way is kind of silly,
               since 'e' constants allows the compiler to give not
               since 'e' constants allows the compiler to give not
               only the value, but the type as well.  C has at least
               only the value, but the type as well.  C has at least
               int, long, unsigned int, and long long as constant
               int, long, unsigned int, and long long as constant
               types; other languages probably should have at least
               types; other languages probably should have at least
               unsigned as well as signed constants.  */
               unsigned as well as signed constants.  */
 
 
            /* We just need one int constant type for all objfiles.
            /* We just need one int constant type for all objfiles.
               It doesn't depend on languages or anything (arguably its
               It doesn't depend on languages or anything (arguably its
               name should be a language-specific name for a type of
               name should be a language-specific name for a type of
               that size, but I'm inclined to say that if the compiler
               that size, but I'm inclined to say that if the compiler
               wants a nice name for the type, it can use 'e').  */
               wants a nice name for the type, it can use 'e').  */
            static struct type *int_const_type;
            static struct type *int_const_type;
 
 
            /* Yes, this is as long as a *host* int.  That is because we
            /* Yes, this is as long as a *host* int.  That is because we
               use atoi.  */
               use atoi.  */
            if (int_const_type == NULL)
            if (int_const_type == NULL)
              int_const_type =
              int_const_type =
                init_type (TYPE_CODE_INT,
                init_type (TYPE_CODE_INT,
                           sizeof (int) * HOST_CHAR_BIT / TARGET_CHAR_BIT, 0,
                           sizeof (int) * HOST_CHAR_BIT / TARGET_CHAR_BIT, 0,
                           "integer constant",
                           "integer constant",
                             (struct objfile *) NULL);
                             (struct objfile *) NULL);
            SYMBOL_TYPE (sym) = int_const_type;
            SYMBOL_TYPE (sym) = int_const_type;
            SYMBOL_VALUE (sym) = atoi (p);
            SYMBOL_VALUE (sym) = atoi (p);
            SYMBOL_CLASS (sym) = LOC_CONST;
            SYMBOL_CLASS (sym) = LOC_CONST;
          }
          }
          break;
          break;
        case 'e':
        case 'e':
          /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
          /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
             can be represented as integral.
             can be represented as integral.
             e.g. "b:c=e6,0" for "const b = blob1"
             e.g. "b:c=e6,0" for "const b = blob1"
             (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;").  */
             (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;").  */
          {
          {
            SYMBOL_CLASS (sym) = LOC_CONST;
            SYMBOL_CLASS (sym) = LOC_CONST;
            SYMBOL_TYPE (sym) = read_type (&p, objfile);
            SYMBOL_TYPE (sym) = read_type (&p, objfile);
 
 
            if (*p != ',')
            if (*p != ',')
              {
              {
                SYMBOL_TYPE (sym) = error_type (&p, objfile);
                SYMBOL_TYPE (sym) = error_type (&p, objfile);
                break;
                break;
              }
              }
            ++p;
            ++p;
 
 
            /* If the value is too big to fit in an int (perhaps because
            /* If the value is too big to fit in an int (perhaps because
               it is unsigned), or something like that, we silently get
               it is unsigned), or something like that, we silently get
               a bogus value.  The type and everything else about it is
               a bogus value.  The type and everything else about it is
               correct.  Ideally, we should be using whatever we have
               correct.  Ideally, we should be using whatever we have
               available for parsing unsigned and long long values,
               available for parsing unsigned and long long values,
               however.  */
               however.  */
            SYMBOL_VALUE (sym) = atoi (p);
            SYMBOL_VALUE (sym) = atoi (p);
          }
          }
          break;
          break;
        default:
        default:
          {
          {
            SYMBOL_CLASS (sym) = LOC_CONST;
            SYMBOL_CLASS (sym) = LOC_CONST;
            SYMBOL_TYPE (sym) = error_type (&p, objfile);
            SYMBOL_TYPE (sym) = error_type (&p, objfile);
          }
          }
        }
        }
      SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
      SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
      add_symbol_to_list (sym, &file_symbols);
      add_symbol_to_list (sym, &file_symbols);
      return sym;
      return sym;
 
 
    case 'C':
    case 'C':
      /* The name of a caught exception.  */
      /* The name of a caught exception.  */
      SYMBOL_TYPE (sym) = read_type (&p, objfile);
      SYMBOL_TYPE (sym) = read_type (&p, objfile);
      SYMBOL_CLASS (sym) = LOC_LABEL;
      SYMBOL_CLASS (sym) = LOC_LABEL;
      SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
      SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
      SYMBOL_VALUE_ADDRESS (sym) = valu;
      SYMBOL_VALUE_ADDRESS (sym) = valu;
      add_symbol_to_list (sym, &local_symbols);
      add_symbol_to_list (sym, &local_symbols);
      break;
      break;
 
 
    case 'f':
    case 'f':
      /* A static function definition.  */
      /* A static function definition.  */
      SYMBOL_TYPE (sym) = read_type (&p, objfile);
      SYMBOL_TYPE (sym) = read_type (&p, objfile);
      SYMBOL_CLASS (sym) = LOC_BLOCK;
      SYMBOL_CLASS (sym) = LOC_BLOCK;
      SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
      SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
      add_symbol_to_list (sym, &file_symbols);
      add_symbol_to_list (sym, &file_symbols);
      /* fall into process_function_types.  */
      /* fall into process_function_types.  */
 
 
    process_function_types:
    process_function_types:
      /* Function result types are described as the result type in stabs.
      /* Function result types are described as the result type in stabs.
         We need to convert this to the function-returning-type-X type
         We need to convert this to the function-returning-type-X type
         in GDB.  E.g. "int" is converted to "function returning int".  */
         in GDB.  E.g. "int" is converted to "function returning int".  */
      if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
      if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
        SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
        SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
 
 
      /* All functions in C++ have prototypes.  */
      /* All functions in C++ have prototypes.  */
      if (SYMBOL_LANGUAGE (sym) == language_cplus)
      if (SYMBOL_LANGUAGE (sym) == language_cplus)
        TYPE_FLAGS (SYMBOL_TYPE (sym)) |= TYPE_FLAG_PROTOTYPED;
        TYPE_FLAGS (SYMBOL_TYPE (sym)) |= TYPE_FLAG_PROTOTYPED;
 
 
      /* fall into process_prototype_types */
      /* fall into process_prototype_types */
 
 
    process_prototype_types:
    process_prototype_types:
      /* Sun acc puts declared types of arguments here.  */
      /* Sun acc puts declared types of arguments here.  */
      if (*p == ';')
      if (*p == ';')
        {
        {
          struct type *ftype = SYMBOL_TYPE (sym);
          struct type *ftype = SYMBOL_TYPE (sym);
          int nsemi = 0;
          int nsemi = 0;
          int nparams = 0;
          int nparams = 0;
          char *p1 = p;
          char *p1 = p;
 
 
          /* Obtain a worst case guess for the number of arguments
          /* Obtain a worst case guess for the number of arguments
             by counting the semicolons.  */
             by counting the semicolons.  */
          while (*p1)
          while (*p1)
            {
            {
              if (*p1++ == ';')
              if (*p1++ == ';')
                nsemi++;
                nsemi++;
            }
            }
 
 
          /* Allocate parameter information fields and fill them in. */
          /* Allocate parameter information fields and fill them in. */
          TYPE_FIELDS (ftype) = (struct field *)
          TYPE_FIELDS (ftype) = (struct field *)
            TYPE_ALLOC (ftype, nsemi * sizeof (struct field));
            TYPE_ALLOC (ftype, nsemi * sizeof (struct field));
          while (*p++ == ';')
          while (*p++ == ';')
            {
            {
              struct type *ptype;
              struct type *ptype;
 
 
              /* A type number of zero indicates the start of varargs.
              /* A type number of zero indicates the start of varargs.
                 FIXME: GDB currently ignores vararg functions.  */
                 FIXME: GDB currently ignores vararg functions.  */
              if (p[0] == '0' && p[1] == '\0')
              if (p[0] == '0' && p[1] == '\0')
                break;
                break;
              ptype = read_type (&p, objfile);
              ptype = read_type (&p, objfile);
 
 
              /* The Sun compilers mark integer arguments, which should
              /* The Sun compilers mark integer arguments, which should
                 be promoted to the width of the calling conventions, with
                 be promoted to the width of the calling conventions, with
                 a type which references itself. This type is turned into
                 a type which references itself. This type is turned into
                 a TYPE_CODE_VOID type by read_type, and we have to turn
                 a TYPE_CODE_VOID type by read_type, and we have to turn
                 it back into builtin_type_int here.
                 it back into builtin_type_int here.
                 FIXME: Do we need a new builtin_type_promoted_int_arg ?  */
                 FIXME: Do we need a new builtin_type_promoted_int_arg ?  */
              if (TYPE_CODE (ptype) == TYPE_CODE_VOID)
              if (TYPE_CODE (ptype) == TYPE_CODE_VOID)
                ptype = builtin_type_int;
                ptype = builtin_type_int;
              TYPE_FIELD_TYPE (ftype, nparams++) = ptype;
              TYPE_FIELD_TYPE (ftype, nparams++) = ptype;
            }
            }
          TYPE_NFIELDS (ftype) = nparams;
          TYPE_NFIELDS (ftype) = nparams;
          TYPE_FLAGS (ftype) |= TYPE_FLAG_PROTOTYPED;
          TYPE_FLAGS (ftype) |= TYPE_FLAG_PROTOTYPED;
        }
        }
      break;
      break;
 
 
    case 'F':
    case 'F':
      /* A global function definition.  */
      /* A global function definition.  */
      SYMBOL_TYPE (sym) = read_type (&p, objfile);
      SYMBOL_TYPE (sym) = read_type (&p, objfile);
      SYMBOL_CLASS (sym) = LOC_BLOCK;
      SYMBOL_CLASS (sym) = LOC_BLOCK;
      SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
      SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
      add_symbol_to_list (sym, &global_symbols);
      add_symbol_to_list (sym, &global_symbols);
      goto process_function_types;
      goto process_function_types;
 
 
    case 'G':
    case 'G':
      /* For a class G (global) symbol, it appears that the
      /* For a class G (global) symbol, it appears that the
         value is not correct.  It is necessary to search for the
         value is not correct.  It is necessary to search for the
         corresponding linker definition to find the value.
         corresponding linker definition to find the value.
         These definitions appear at the end of the namelist.  */
         These definitions appear at the end of the namelist.  */
      SYMBOL_TYPE (sym) = read_type (&p, objfile);
      SYMBOL_TYPE (sym) = read_type (&p, objfile);
      SYMBOL_CLASS (sym) = LOC_STATIC;
      SYMBOL_CLASS (sym) = LOC_STATIC;
      SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
      SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
      /* Don't add symbol references to global_sym_chain.
      /* Don't add symbol references to global_sym_chain.
         Symbol references don't have valid names and wont't match up with
         Symbol references don't have valid names and wont't match up with
         minimal symbols when the global_sym_chain is relocated.
         minimal symbols when the global_sym_chain is relocated.
         We'll fixup symbol references when we fixup the defining symbol.  */
         We'll fixup symbol references when we fixup the defining symbol.  */
      if (SYMBOL_NAME (sym) && SYMBOL_NAME (sym)[0] != '#')
      if (SYMBOL_NAME (sym) && SYMBOL_NAME (sym)[0] != '#')
        {
        {
          i = hashname (SYMBOL_NAME (sym));
          i = hashname (SYMBOL_NAME (sym));
          SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
          SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
          global_sym_chain[i] = sym;
          global_sym_chain[i] = sym;
        }
        }
      add_symbol_to_list (sym, &global_symbols);
      add_symbol_to_list (sym, &global_symbols);
      break;
      break;
 
 
      /* This case is faked by a conditional above,
      /* This case is faked by a conditional above,
         when there is no code letter in the dbx data.
         when there is no code letter in the dbx data.
         Dbx data never actually contains 'l'.  */
         Dbx data never actually contains 'l'.  */
    case 's':
    case 's':
    case 'l':
    case 'l':
      SYMBOL_TYPE (sym) = read_type (&p, objfile);
      SYMBOL_TYPE (sym) = read_type (&p, objfile);
      SYMBOL_CLASS (sym) = LOC_LOCAL;
      SYMBOL_CLASS (sym) = LOC_LOCAL;
      SYMBOL_VALUE (sym) = valu;
      SYMBOL_VALUE (sym) = valu;
      SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
      SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
      add_symbol_to_list (sym, &local_symbols);
      add_symbol_to_list (sym, &local_symbols);
      break;
      break;
 
 
    case 'p':
    case 'p':
      if (*p == 'F')
      if (*p == 'F')
        /* pF is a two-letter code that means a function parameter in Fortran.
        /* pF is a two-letter code that means a function parameter in Fortran.
           The type-number specifies the type of the return value.
           The type-number specifies the type of the return value.
           Translate it into a pointer-to-function type.  */
           Translate it into a pointer-to-function type.  */
        {
        {
          p++;
          p++;
          SYMBOL_TYPE (sym)
          SYMBOL_TYPE (sym)
            = lookup_pointer_type
            = lookup_pointer_type
            (lookup_function_type (read_type (&p, objfile)));
            (lookup_function_type (read_type (&p, objfile)));
        }
        }
      else
      else
        SYMBOL_TYPE (sym) = read_type (&p, objfile);
        SYMBOL_TYPE (sym) = read_type (&p, objfile);
 
 
      /* Normally this is a parameter, a LOC_ARG.  On the i960, it
      /* Normally this is a parameter, a LOC_ARG.  On the i960, it
         can also be a LOC_LOCAL_ARG depending on symbol type.  */
         can also be a LOC_LOCAL_ARG depending on symbol type.  */
#ifndef DBX_PARM_SYMBOL_CLASS
#ifndef DBX_PARM_SYMBOL_CLASS
#define DBX_PARM_SYMBOL_CLASS(type)     LOC_ARG
#define DBX_PARM_SYMBOL_CLASS(type)     LOC_ARG
#endif
#endif
 
 
      SYMBOL_CLASS (sym) = DBX_PARM_SYMBOL_CLASS (type);
      SYMBOL_CLASS (sym) = DBX_PARM_SYMBOL_CLASS (type);
      SYMBOL_VALUE (sym) = valu;
      SYMBOL_VALUE (sym) = valu;
      SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
      SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
      add_symbol_to_list (sym, &local_symbols);
      add_symbol_to_list (sym, &local_symbols);
 
 
      if (TARGET_BYTE_ORDER != BIG_ENDIAN)
      if (TARGET_BYTE_ORDER != BIG_ENDIAN)
        {
        {
          /* On little-endian machines, this crud is never necessary,
          /* On little-endian machines, this crud is never necessary,
             and, if the extra bytes contain garbage, is harmful.  */
             and, if the extra bytes contain garbage, is harmful.  */
          break;
          break;
        }
        }
 
 
      /* If it's gcc-compiled, if it says `short', believe it.  */
      /* If it's gcc-compiled, if it says `short', believe it.  */
      if (processing_gcc_compilation || BELIEVE_PCC_PROMOTION)
      if (processing_gcc_compilation || BELIEVE_PCC_PROMOTION)
        break;
        break;
 
 
      if (!BELIEVE_PCC_PROMOTION)
      if (!BELIEVE_PCC_PROMOTION)
        {
        {
          /* This is the signed type which arguments get promoted to.  */
          /* This is the signed type which arguments get promoted to.  */
          static struct type *pcc_promotion_type;
          static struct type *pcc_promotion_type;
          /* This is the unsigned type which arguments get promoted to.  */
          /* This is the unsigned type which arguments get promoted to.  */
          static struct type *pcc_unsigned_promotion_type;
          static struct type *pcc_unsigned_promotion_type;
 
 
          /* Call it "int" because this is mainly C lossage.  */
          /* Call it "int" because this is mainly C lossage.  */
          if (pcc_promotion_type == NULL)
          if (pcc_promotion_type == NULL)
            pcc_promotion_type =
            pcc_promotion_type =
              init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
              init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
                         0, "int", NULL);
                         0, "int", NULL);
 
 
          if (pcc_unsigned_promotion_type == NULL)
          if (pcc_unsigned_promotion_type == NULL)
            pcc_unsigned_promotion_type =
            pcc_unsigned_promotion_type =
              init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
              init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
                         TYPE_FLAG_UNSIGNED, "unsigned int", NULL);
                         TYPE_FLAG_UNSIGNED, "unsigned int", NULL);
 
 
          if (BELIEVE_PCC_PROMOTION_TYPE)
          if (BELIEVE_PCC_PROMOTION_TYPE)
            {
            {
              /* This is defined on machines (e.g. sparc) where we
              /* This is defined on machines (e.g. sparc) where we
                 should believe the type of a PCC 'short' argument,
                 should believe the type of a PCC 'short' argument,
                 but shouldn't believe the address (the address is the
                 but shouldn't believe the address (the address is the
                 address of the corresponding int).
                 address of the corresponding int).
 
 
                 My guess is that this correction, as opposed to
                 My guess is that this correction, as opposed to
                 changing the parameter to an 'int' (as done below,
                 changing the parameter to an 'int' (as done below,
                 for PCC on most machines), is the right thing to do
                 for PCC on most machines), is the right thing to do
                 on all machines, but I don't want to risk breaking
                 on all machines, but I don't want to risk breaking
                 something that already works.  On most PCC machines,
                 something that already works.  On most PCC machines,
                 the sparc problem doesn't come up because the calling
                 the sparc problem doesn't come up because the calling
                 function has to zero the top bytes (not knowing
                 function has to zero the top bytes (not knowing
                 whether the called function wants an int or a short),
                 whether the called function wants an int or a short),
                 so there is little practical difference between an
                 so there is little practical difference between an
                 int and a short (except perhaps what happens when the
                 int and a short (except perhaps what happens when the
                 GDB user types "print short_arg = 0x10000;").
                 GDB user types "print short_arg = 0x10000;").
 
 
                 Hacked for SunOS 4.1 by gnu@cygnus.com.  In 4.1, the
                 Hacked for SunOS 4.1 by gnu@cygnus.com.  In 4.1, the
                 compiler actually produces the correct address (we
                 compiler actually produces the correct address (we
                 don't need to fix it up).  I made this code adapt so
                 don't need to fix it up).  I made this code adapt so
                 that it will offset the symbol if it was pointing at
                 that it will offset the symbol if it was pointing at
                 an int-aligned location and not otherwise.  This way
                 an int-aligned location and not otherwise.  This way
                 you can use the same gdb for 4.0.x and 4.1 systems.
                 you can use the same gdb for 4.0.x and 4.1 systems.
 
 
                 If the parameter is shorter than an int, and is
                 If the parameter is shorter than an int, and is
                 integral (e.g. char, short, or unsigned equivalent),
                 integral (e.g. char, short, or unsigned equivalent),
                 and is claimed to be passed on an integer boundary,
                 and is claimed to be passed on an integer boundary,
                 don't believe it!  Offset the parameter's address to
                 don't believe it!  Offset the parameter's address to
                 the tail-end of that integer.  */
                 the tail-end of that integer.  */
 
 
              if (TYPE_LENGTH (SYMBOL_TYPE (sym)) < TYPE_LENGTH (pcc_promotion_type)
              if (TYPE_LENGTH (SYMBOL_TYPE (sym)) < TYPE_LENGTH (pcc_promotion_type)
                  && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT
                  && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT
              && 0 == SYMBOL_VALUE (sym) % TYPE_LENGTH (pcc_promotion_type))
              && 0 == SYMBOL_VALUE (sym) % TYPE_LENGTH (pcc_promotion_type))
                {
                {
                  SYMBOL_VALUE (sym) += TYPE_LENGTH (pcc_promotion_type)
                  SYMBOL_VALUE (sym) += TYPE_LENGTH (pcc_promotion_type)
                    - TYPE_LENGTH (SYMBOL_TYPE (sym));
                    - TYPE_LENGTH (SYMBOL_TYPE (sym));
                }
                }
              break;
              break;
            }
            }
          else
          else
            {
            {
              /* If PCC says a parameter is a short or a char,
              /* If PCC says a parameter is a short or a char,
                 it is really an int.  */
                 it is really an int.  */
              if (TYPE_LENGTH (SYMBOL_TYPE (sym)) < TYPE_LENGTH (pcc_promotion_type)
              if (TYPE_LENGTH (SYMBOL_TYPE (sym)) < TYPE_LENGTH (pcc_promotion_type)
                  && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
                  && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
                {
                {
                  SYMBOL_TYPE (sym) =
                  SYMBOL_TYPE (sym) =
                    TYPE_UNSIGNED (SYMBOL_TYPE (sym))
                    TYPE_UNSIGNED (SYMBOL_TYPE (sym))
                    ? pcc_unsigned_promotion_type
                    ? pcc_unsigned_promotion_type
                    : pcc_promotion_type;
                    : pcc_promotion_type;
                }
                }
              break;
              break;
            }
            }
        }
        }
 
 
    case 'P':
    case 'P':
      /* acc seems to use P to declare the prototypes of functions that
      /* acc seems to use P to declare the prototypes of functions that
         are referenced by this file.  gdb is not prepared to deal
         are referenced by this file.  gdb is not prepared to deal
         with this extra information.  FIXME, it ought to.  */
         with this extra information.  FIXME, it ought to.  */
      if (type == N_FUN)
      if (type == N_FUN)
        {
        {
          SYMBOL_TYPE (sym) = read_type (&p, objfile);
          SYMBOL_TYPE (sym) = read_type (&p, objfile);
          goto process_prototype_types;
          goto process_prototype_types;
        }
        }
      /*FALLTHROUGH */
      /*FALLTHROUGH */
 
 
    case 'R':
    case 'R':
      /* Parameter which is in a register.  */
      /* Parameter which is in a register.  */
      SYMBOL_TYPE (sym) = read_type (&p, objfile);
      SYMBOL_TYPE (sym) = read_type (&p, objfile);
      SYMBOL_CLASS (sym) = LOC_REGPARM;
      SYMBOL_CLASS (sym) = LOC_REGPARM;
      SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
      SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
      if (SYMBOL_VALUE (sym) >= NUM_REGS)
      if (SYMBOL_VALUE (sym) >= NUM_REGS)
        {
        {
          complain (&reg_value_complaint, SYMBOL_VALUE (sym), NUM_REGS,
          complain (&reg_value_complaint, SYMBOL_VALUE (sym), NUM_REGS,
                    SYMBOL_SOURCE_NAME (sym));
                    SYMBOL_SOURCE_NAME (sym));
          SYMBOL_VALUE (sym) = SP_REGNUM;       /* Known safe, though useless */
          SYMBOL_VALUE (sym) = SP_REGNUM;       /* Known safe, though useless */
        }
        }
      SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
      SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
      add_symbol_to_list (sym, &local_symbols);
      add_symbol_to_list (sym, &local_symbols);
      break;
      break;
 
 
    case 'r':
    case 'r':
      /* Register variable (either global or local).  */
      /* Register variable (either global or local).  */
      SYMBOL_TYPE (sym) = read_type (&p, objfile);
      SYMBOL_TYPE (sym) = read_type (&p, objfile);
      SYMBOL_CLASS (sym) = LOC_REGISTER;
      SYMBOL_CLASS (sym) = LOC_REGISTER;
      SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
      SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
      if (SYMBOL_VALUE (sym) >= NUM_REGS)
      if (SYMBOL_VALUE (sym) >= NUM_REGS)
        {
        {
          complain (&reg_value_complaint, SYMBOL_VALUE (sym), NUM_REGS,
          complain (&reg_value_complaint, SYMBOL_VALUE (sym), NUM_REGS,
                    SYMBOL_SOURCE_NAME (sym));
                    SYMBOL_SOURCE_NAME (sym));
          SYMBOL_VALUE (sym) = SP_REGNUM;       /* Known safe, though useless */
          SYMBOL_VALUE (sym) = SP_REGNUM;       /* Known safe, though useless */
        }
        }
      SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
      SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
      if (within_function)
      if (within_function)
        {
        {
          /* Sun cc uses a pair of symbols, one 'p' and one 'r' with the same
          /* Sun cc uses a pair of symbols, one 'p' and one 'r' with the same
             name to represent an argument passed in a register.
             name to represent an argument passed in a register.
             GCC uses 'P' for the same case.  So if we find such a symbol pair
             GCC uses 'P' for the same case.  So if we find such a symbol pair
             we combine it into one 'P' symbol.  For Sun cc we need to do this
             we combine it into one 'P' symbol.  For Sun cc we need to do this
             regardless of REG_STRUCT_HAS_ADDR, because the compiler puts out
             regardless of REG_STRUCT_HAS_ADDR, because the compiler puts out
             the 'p' symbol even if it never saves the argument onto the stack.
             the 'p' symbol even if it never saves the argument onto the stack.
 
 
             On most machines, we want to preserve both symbols, so that
             On most machines, we want to preserve both symbols, so that
             we can still get information about what is going on with the
             we can still get information about what is going on with the
             stack (VAX for computing args_printed, using stack slots instead
             stack (VAX for computing args_printed, using stack slots instead
             of saved registers in backtraces, etc.).
             of saved registers in backtraces, etc.).
 
 
             Note that this code illegally combines
             Note that this code illegally combines
             main(argc) struct foo argc; { register struct foo argc; }
             main(argc) struct foo argc; { register struct foo argc; }
             but this case is considered pathological and causes a warning
             but this case is considered pathological and causes a warning
             from a decent compiler.  */
             from a decent compiler.  */
 
 
          if (local_symbols
          if (local_symbols
              && local_symbols->nsyms > 0
              && local_symbols->nsyms > 0
#ifndef USE_REGISTER_NOT_ARG
#ifndef USE_REGISTER_NOT_ARG
              && REG_STRUCT_HAS_ADDR (processing_gcc_compilation,
              && REG_STRUCT_HAS_ADDR (processing_gcc_compilation,
                                      SYMBOL_TYPE (sym))
                                      SYMBOL_TYPE (sym))
              && (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
              && (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
                  || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION
                  || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION
                  || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_SET
                  || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_SET
                  || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_BITSTRING)
                  || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_BITSTRING)
#endif
#endif
            )
            )
            {
            {
              struct symbol *prev_sym;
              struct symbol *prev_sym;
              prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
              prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
              if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
              if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
                   || SYMBOL_CLASS (prev_sym) == LOC_ARG)
                   || SYMBOL_CLASS (prev_sym) == LOC_ARG)
                  && STREQ (SYMBOL_NAME (prev_sym), SYMBOL_NAME (sym)))
                  && STREQ (SYMBOL_NAME (prev_sym), SYMBOL_NAME (sym)))
                {
                {
                  SYMBOL_CLASS (prev_sym) = LOC_REGPARM;
                  SYMBOL_CLASS (prev_sym) = LOC_REGPARM;
                  /* Use the type from the LOC_REGISTER; that is the type
                  /* Use the type from the LOC_REGISTER; that is the type
                     that is actually in that register.  */
                     that is actually in that register.  */
                  SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
                  SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
                  SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
                  SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
                  sym = prev_sym;
                  sym = prev_sym;
                  break;
                  break;
                }
                }
            }
            }
          add_symbol_to_list (sym, &local_symbols);
          add_symbol_to_list (sym, &local_symbols);
        }
        }
      else
      else
        add_symbol_to_list (sym, &file_symbols);
        add_symbol_to_list (sym, &file_symbols);
      break;
      break;
 
 
    case 'S':
    case 'S':
      /* Static symbol at top level of file */
      /* Static symbol at top level of file */
      SYMBOL_TYPE (sym) = read_type (&p, objfile);
      SYMBOL_TYPE (sym) = read_type (&p, objfile);
      SYMBOL_CLASS (sym) = LOC_STATIC;
      SYMBOL_CLASS (sym) = LOC_STATIC;
      SYMBOL_VALUE_ADDRESS (sym) = valu;
      SYMBOL_VALUE_ADDRESS (sym) = valu;
#ifdef STATIC_TRANSFORM_NAME
#ifdef STATIC_TRANSFORM_NAME
      if (IS_STATIC_TRANSFORM_NAME (SYMBOL_NAME (sym)))
      if (IS_STATIC_TRANSFORM_NAME (SYMBOL_NAME (sym)))
        {
        {
          struct minimal_symbol *msym;
          struct minimal_symbol *msym;
          msym = lookup_minimal_symbol (SYMBOL_NAME (sym), NULL, objfile);
          msym = lookup_minimal_symbol (SYMBOL_NAME (sym), NULL, objfile);
          if (msym != NULL)
          if (msym != NULL)
            {
            {
              SYMBOL_NAME (sym) = STATIC_TRANSFORM_NAME (SYMBOL_NAME (sym));
              SYMBOL_NAME (sym) = STATIC_TRANSFORM_NAME (SYMBOL_NAME (sym));
              SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
              SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
            }
            }
        }
        }
#endif
#endif
      SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
      SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
      add_symbol_to_list (sym, &file_symbols);
      add_symbol_to_list (sym, &file_symbols);
      break;
      break;
 
 
    case 't':
    case 't':
      SYMBOL_TYPE (sym) = read_type (&p, objfile);
      SYMBOL_TYPE (sym) = read_type (&p, objfile);
 
 
      /* For a nameless type, we don't want a create a symbol, thus we
      /* For a nameless type, we don't want a create a symbol, thus we
         did not use `sym'. Return without further processing. */
         did not use `sym'. Return without further processing. */
      if (nameless)
      if (nameless)
        return NULL;
        return NULL;
 
 
      SYMBOL_CLASS (sym) = LOC_TYPEDEF;
      SYMBOL_CLASS (sym) = LOC_TYPEDEF;
      SYMBOL_VALUE (sym) = valu;
      SYMBOL_VALUE (sym) = valu;
      SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
      SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
      /* C++ vagaries: we may have a type which is derived from
      /* C++ vagaries: we may have a type which is derived from
         a base type which did not have its name defined when the
         a base type which did not have its name defined when the
         derived class was output.  We fill in the derived class's
         derived class was output.  We fill in the derived class's
         base part member's name here in that case.  */
         base part member's name here in that case.  */
      if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
      if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
        if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
        if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
             || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
             || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
            && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
            && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
          {
          {
            int j;
            int j;
            for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
            for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
              if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
              if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
                TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
                TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
                  type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
                  type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
          }
          }
 
 
      if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
      if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
        {
        {
          /* gcc-2.6 or later (when using -fvtable-thunks)
          /* gcc-2.6 or later (when using -fvtable-thunks)
             emits a unique named type for a vtable entry.
             emits a unique named type for a vtable entry.
             Some gdb code depends on that specific name. */
             Some gdb code depends on that specific name. */
          extern const char vtbl_ptr_name[];
          extern const char vtbl_ptr_name[];
 
 
          if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
          if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
               && strcmp (SYMBOL_NAME (sym), vtbl_ptr_name))
               && strcmp (SYMBOL_NAME (sym), vtbl_ptr_name))
              || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
              || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
            {
            {
              /* If we are giving a name to a type such as "pointer to
              /* If we are giving a name to a type such as "pointer to
                 foo" or "function returning foo", we better not set
                 foo" or "function returning foo", we better not set
                 the TYPE_NAME.  If the program contains "typedef char
                 the TYPE_NAME.  If the program contains "typedef char
                 *caddr_t;", we don't want all variables of type char
                 *caddr_t;", we don't want all variables of type char
                 * to print as caddr_t.  This is not just a
                 * to print as caddr_t.  This is not just a
                 consequence of GDB's type management; PCC and GCC (at
                 consequence of GDB's type management; PCC and GCC (at
                 least through version 2.4) both output variables of
                 least through version 2.4) both output variables of
                 either type char * or caddr_t with the type number
                 either type char * or caddr_t with the type number
                 defined in the 't' symbol for caddr_t.  If a future
                 defined in the 't' symbol for caddr_t.  If a future
                 compiler cleans this up it GDB is not ready for it
                 compiler cleans this up it GDB is not ready for it
                 yet, but if it becomes ready we somehow need to
                 yet, but if it becomes ready we somehow need to
                 disable this check (without breaking the PCC/GCC2.4
                 disable this check (without breaking the PCC/GCC2.4
                 case).
                 case).
 
 
                 Sigh.
                 Sigh.
 
 
                 Fortunately, this check seems not to be necessary
                 Fortunately, this check seems not to be necessary
                 for anything except pointers or functions.  */
                 for anything except pointers or functions.  */
            }
            }
          else
          else
            TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_NAME (sym);
            TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_NAME (sym);
        }
        }
 
 
      add_symbol_to_list (sym, &file_symbols);
      add_symbol_to_list (sym, &file_symbols);
      break;
      break;
 
 
    case 'T':
    case 'T':
      /* Struct, union, or enum tag.  For GNU C++, this can be be followed
      /* Struct, union, or enum tag.  For GNU C++, this can be be followed
         by 't' which means we are typedef'ing it as well.  */
         by 't' which means we are typedef'ing it as well.  */
      synonym = *p == 't';
      synonym = *p == 't';
 
 
      if (synonym)
      if (synonym)
        p++;
        p++;
      /* The semantics of C++ state that "struct foo { ... }" also defines
      /* The semantics of C++ state that "struct foo { ... }" also defines
         a typedef for "foo".  Unfortunately, cfront never makes the typedef
         a typedef for "foo".  Unfortunately, cfront never makes the typedef
         when translating C++ into C.  We make the typedef here so that
         when translating C++ into C.  We make the typedef here so that
         "ptype foo" works as expected for cfront translated code.  */
         "ptype foo" works as expected for cfront translated code.  */
      else if (current_subfile->language == language_cplus)
      else if (current_subfile->language == language_cplus)
        synonym = 1;
        synonym = 1;
 
 
      SYMBOL_TYPE (sym) = read_type (&p, objfile);
      SYMBOL_TYPE (sym) = read_type (&p, objfile);
 
 
      /* For a nameless type, we don't want a create a symbol, thus we
      /* For a nameless type, we don't want a create a symbol, thus we
         did not use `sym'. Return without further processing. */
         did not use `sym'. Return without further processing. */
      if (nameless)
      if (nameless)
        return NULL;
        return NULL;
 
 
      SYMBOL_CLASS (sym) = LOC_TYPEDEF;
      SYMBOL_CLASS (sym) = LOC_TYPEDEF;
      SYMBOL_VALUE (sym) = valu;
      SYMBOL_VALUE (sym) = valu;
      SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE;
      SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE;
      if (TYPE_TAG_NAME (SYMBOL_TYPE (sym)) == 0)
      if (TYPE_TAG_NAME (SYMBOL_TYPE (sym)) == 0)
        TYPE_TAG_NAME (SYMBOL_TYPE (sym))
        TYPE_TAG_NAME (SYMBOL_TYPE (sym))
          = obconcat (&objfile->type_obstack, "", "", SYMBOL_NAME (sym));
          = obconcat (&objfile->type_obstack, "", "", SYMBOL_NAME (sym));
      add_symbol_to_list (sym, &file_symbols);
      add_symbol_to_list (sym, &file_symbols);
 
 
      if (synonym)
      if (synonym)
        {
        {
          /* Clone the sym and then modify it. */
          /* Clone the sym and then modify it. */
          register struct symbol *typedef_sym = (struct symbol *)
          register struct symbol *typedef_sym = (struct symbol *)
          obstack_alloc (&objfile->symbol_obstack, sizeof (struct symbol));
          obstack_alloc (&objfile->symbol_obstack, sizeof (struct symbol));
          *typedef_sym = *sym;
          *typedef_sym = *sym;
          SYMBOL_CLASS (typedef_sym) = LOC_TYPEDEF;
          SYMBOL_CLASS (typedef_sym) = LOC_TYPEDEF;
          SYMBOL_VALUE (typedef_sym) = valu;
          SYMBOL_VALUE (typedef_sym) = valu;
          SYMBOL_NAMESPACE (typedef_sym) = VAR_NAMESPACE;
          SYMBOL_NAMESPACE (typedef_sym) = VAR_NAMESPACE;
          if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
          if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
            TYPE_NAME (SYMBOL_TYPE (sym))
            TYPE_NAME (SYMBOL_TYPE (sym))
              = obconcat (&objfile->type_obstack, "", "", SYMBOL_NAME (sym));
              = obconcat (&objfile->type_obstack, "", "", SYMBOL_NAME (sym));
          add_symbol_to_list (typedef_sym, &file_symbols);
          add_symbol_to_list (typedef_sym, &file_symbols);
        }
        }
      break;
      break;
 
 
    case 'V':
    case 'V':
      /* Static symbol of local scope */
      /* Static symbol of local scope */
      SYMBOL_TYPE (sym) = read_type (&p, objfile);
      SYMBOL_TYPE (sym) = read_type (&p, objfile);
      SYMBOL_CLASS (sym) = LOC_STATIC;
      SYMBOL_CLASS (sym) = LOC_STATIC;
      SYMBOL_VALUE_ADDRESS (sym) = valu;
      SYMBOL_VALUE_ADDRESS (sym) = valu;
#ifdef STATIC_TRANSFORM_NAME
#ifdef STATIC_TRANSFORM_NAME
      if (IS_STATIC_TRANSFORM_NAME (SYMBOL_NAME (sym)))
      if (IS_STATIC_TRANSFORM_NAME (SYMBOL_NAME (sym)))
        {
        {
          struct minimal_symbol *msym;
          struct minimal_symbol *msym;
          msym = lookup_minimal_symbol (SYMBOL_NAME (sym), NULL, objfile);
          msym = lookup_minimal_symbol (SYMBOL_NAME (sym), NULL, objfile);
          if (msym != NULL)
          if (msym != NULL)
            {
            {
              SYMBOL_NAME (sym) = STATIC_TRANSFORM_NAME (SYMBOL_NAME (sym));
              SYMBOL_NAME (sym) = STATIC_TRANSFORM_NAME (SYMBOL_NAME (sym));
              SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
              SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
            }
            }
        }
        }
#endif
#endif
      SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
      SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
      if (os9k_stabs)
      if (os9k_stabs)
        add_symbol_to_list (sym, &global_symbols);
        add_symbol_to_list (sym, &global_symbols);
      else
      else
        add_symbol_to_list (sym, &local_symbols);
        add_symbol_to_list (sym, &local_symbols);
      break;
      break;
 
 
    case 'v':
    case 'v':
      /* Reference parameter */
      /* Reference parameter */
      SYMBOL_TYPE (sym) = read_type (&p, objfile);
      SYMBOL_TYPE (sym) = read_type (&p, objfile);
      SYMBOL_CLASS (sym) = LOC_REF_ARG;
      SYMBOL_CLASS (sym) = LOC_REF_ARG;
      SYMBOL_VALUE (sym) = valu;
      SYMBOL_VALUE (sym) = valu;
      SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
      SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
      add_symbol_to_list (sym, &local_symbols);
      add_symbol_to_list (sym, &local_symbols);
      break;
      break;
 
 
    case 'a':
    case 'a':
      /* Reference parameter which is in a register.  */
      /* Reference parameter which is in a register.  */
      SYMBOL_TYPE (sym) = read_type (&p, objfile);
      SYMBOL_TYPE (sym) = read_type (&p, objfile);
      SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
      SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
      SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
      SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
      if (SYMBOL_VALUE (sym) >= NUM_REGS)
      if (SYMBOL_VALUE (sym) >= NUM_REGS)
        {
        {
          complain (&reg_value_complaint, SYMBOL_VALUE (sym), NUM_REGS,
          complain (&reg_value_complaint, SYMBOL_VALUE (sym), NUM_REGS,
                    SYMBOL_SOURCE_NAME (sym));
                    SYMBOL_SOURCE_NAME (sym));
          SYMBOL_VALUE (sym) = SP_REGNUM;       /* Known safe, though useless */
          SYMBOL_VALUE (sym) = SP_REGNUM;       /* Known safe, though useless */
        }
        }
      SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
      SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
      add_symbol_to_list (sym, &local_symbols);
      add_symbol_to_list (sym, &local_symbols);
      break;
      break;
 
 
    case 'X':
    case 'X':
      /* This is used by Sun FORTRAN for "function result value".
      /* This is used by Sun FORTRAN for "function result value".
         Sun claims ("dbx and dbxtool interfaces", 2nd ed)
         Sun claims ("dbx and dbxtool interfaces", 2nd ed)
         that Pascal uses it too, but when I tried it Pascal used
         that Pascal uses it too, but when I tried it Pascal used
         "x:3" (local symbol) instead.  */
         "x:3" (local symbol) instead.  */
      SYMBOL_TYPE (sym) = read_type (&p, objfile);
      SYMBOL_TYPE (sym) = read_type (&p, objfile);
      SYMBOL_CLASS (sym) = LOC_LOCAL;
      SYMBOL_CLASS (sym) = LOC_LOCAL;
      SYMBOL_VALUE (sym) = valu;
      SYMBOL_VALUE (sym) = valu;
      SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
      SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
      add_symbol_to_list (sym, &local_symbols);
      add_symbol_to_list (sym, &local_symbols);
      break;
      break;
 
 
      /* New code added to support cfront stabs strings.
      /* New code added to support cfront stabs strings.
         Note: case 'P' already handled above */
         Note: case 'P' already handled above */
    case 'Z':
    case 'Z':
      /* Cfront type continuation coming up!
      /* Cfront type continuation coming up!
         Find the original definition and add to it.
         Find the original definition and add to it.
         We'll have to do this for the typedef too,
         We'll have to do this for the typedef too,
         since we cloned the symbol to define a type in read_type.
         since we cloned the symbol to define a type in read_type.
         Stabs info examples:
         Stabs info examples:
         __1C :Ztl
         __1C :Ztl
         foo__1CFv :ZtF (first def foo__1CFv:F(0,3);(0,24))
         foo__1CFv :ZtF (first def foo__1CFv:F(0,3);(0,24))
         C:ZsC;;__ct__1CFv func1__1CFv func2__1CFv ... ;;;
         C:ZsC;;__ct__1CFv func1__1CFv func2__1CFv ... ;;;
         where C is the name of the class.
         where C is the name of the class.
         Unfortunately, we can't lookup the original symbol yet 'cuz
         Unfortunately, we can't lookup the original symbol yet 'cuz
         we haven't finished reading all the symbols.
         we haven't finished reading all the symbols.
         Instead, we save it for processing later */
         Instead, we save it for processing later */
      process_later (sym, p, resolve_cfront_continuation);
      process_later (sym, p, resolve_cfront_continuation);
      SYMBOL_TYPE (sym) = error_type (&p, objfile);     /* FIXME! change later */
      SYMBOL_TYPE (sym) = error_type (&p, objfile);     /* FIXME! change later */
      SYMBOL_CLASS (sym) = LOC_CONST;
      SYMBOL_CLASS (sym) = LOC_CONST;
      SYMBOL_VALUE (sym) = 0;
      SYMBOL_VALUE (sym) = 0;
      SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
      SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
      /* Don't add to list - we'll delete it later when
      /* Don't add to list - we'll delete it later when
         we add the continuation to the real sym */
         we add the continuation to the real sym */
      return sym;
      return sym;
      /* End of new code added to support cfront stabs strings */
      /* End of new code added to support cfront stabs strings */
 
 
    default:
    default:
      SYMBOL_TYPE (sym) = error_type (&p, objfile);
      SYMBOL_TYPE (sym) = error_type (&p, objfile);
      SYMBOL_CLASS (sym) = LOC_CONST;
      SYMBOL_CLASS (sym) = LOC_CONST;
      SYMBOL_VALUE (sym) = 0;
      SYMBOL_VALUE (sym) = 0;
      SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
      SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
      add_symbol_to_list (sym, &file_symbols);
      add_symbol_to_list (sym, &file_symbols);
      break;
      break;
    }
    }
 
 
  /* When passing structures to a function, some systems sometimes pass
  /* When passing structures to a function, some systems sometimes pass
     the address in a register, not the structure itself. */
     the address in a register, not the structure itself. */
 
 
  if (REG_STRUCT_HAS_ADDR (processing_gcc_compilation, SYMBOL_TYPE (sym))
  if (REG_STRUCT_HAS_ADDR (processing_gcc_compilation, SYMBOL_TYPE (sym))
    && (SYMBOL_CLASS (sym) == LOC_REGPARM || SYMBOL_CLASS (sym) == LOC_ARG))
    && (SYMBOL_CLASS (sym) == LOC_REGPARM || SYMBOL_CLASS (sym) == LOC_ARG))
    {
    {
      struct type *symbol_type = check_typedef (SYMBOL_TYPE (sym));
      struct type *symbol_type = check_typedef (SYMBOL_TYPE (sym));
 
 
      if ((TYPE_CODE (symbol_type) == TYPE_CODE_STRUCT)
      if ((TYPE_CODE (symbol_type) == TYPE_CODE_STRUCT)
          || (TYPE_CODE (symbol_type) == TYPE_CODE_UNION)
          || (TYPE_CODE (symbol_type) == TYPE_CODE_UNION)
          || (TYPE_CODE (symbol_type) == TYPE_CODE_BITSTRING)
          || (TYPE_CODE (symbol_type) == TYPE_CODE_BITSTRING)
          || (TYPE_CODE (symbol_type) == TYPE_CODE_SET))
          || (TYPE_CODE (symbol_type) == TYPE_CODE_SET))
        {
        {
          /* If REG_STRUCT_HAS_ADDR yields non-zero we have to convert
          /* If REG_STRUCT_HAS_ADDR yields non-zero we have to convert
             LOC_REGPARM to LOC_REGPARM_ADDR for structures and unions. */
             LOC_REGPARM to LOC_REGPARM_ADDR for structures and unions. */
          if (SYMBOL_CLASS (sym) == LOC_REGPARM)
          if (SYMBOL_CLASS (sym) == LOC_REGPARM)
            SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
            SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
          /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
          /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
             and subsequent arguments on the sparc, for example).  */
             and subsequent arguments on the sparc, for example).  */
          else if (SYMBOL_CLASS (sym) == LOC_ARG)
          else if (SYMBOL_CLASS (sym) == LOC_ARG)
            SYMBOL_CLASS (sym) = LOC_REF_ARG;
            SYMBOL_CLASS (sym) = LOC_REF_ARG;
        }
        }
    }
    }
 
 
  /* Is there more to parse?  For example LRS/alias information?  */
  /* Is there more to parse?  For example LRS/alias information?  */
  while (*p && *p == ';')
  while (*p && *p == ';')
    {
    {
      p++;
      p++;
      if (*p && p[0] == 'l' && p[1] == '(')
      if (*p && p[0] == 'l' && p[1] == '(')
        {
        {
          /* GNU extensions for live range splitting may be appended to
          /* GNU extensions for live range splitting may be appended to
             the end of the stab string.  eg. "l(#1,#2);l(#3,#5)" */
             the end of the stab string.  eg. "l(#1,#2);l(#3,#5)" */
 
 
          /* Resolve the live range and add it to SYM's live range list.  */
          /* Resolve the live range and add it to SYM's live range list.  */
          if (!resolve_live_range (objfile, sym, p))
          if (!resolve_live_range (objfile, sym, p))
            return NULL;
            return NULL;
 
 
          /* Find end of live range info. */
          /* Find end of live range info. */
          p = strchr (p, ')');
          p = strchr (p, ')');
          if (!*p || *p != ')')
          if (!*p || *p != ')')
            {
            {
              complain (&lrs_general_complaint, "live range format not recognized");
              complain (&lrs_general_complaint, "live range format not recognized");
              return NULL;
              return NULL;
            }
            }
          p++;
          p++;
        }
        }
    }
    }
  return sym;
  return sym;
}
}
 
 
/* Add the live range found in P to the symbol SYM in objfile OBJFILE.  Returns
/* Add the live range found in P to the symbol SYM in objfile OBJFILE.  Returns
   non-zero on success, zero otherwise.  */
   non-zero on success, zero otherwise.  */
 
 
static int
static int
resolve_live_range (objfile, sym, p)
resolve_live_range (objfile, sym, p)
     struct objfile *objfile;
     struct objfile *objfile;
     struct symbol *sym;
     struct symbol *sym;
     char *p;
     char *p;
{
{
  int refnum;
  int refnum;
  CORE_ADDR start, end;
  CORE_ADDR start, end;
 
 
  /* Sanity check the beginning of the stabs string.  */
  /* Sanity check the beginning of the stabs string.  */
  if (!*p || *p != 'l')
  if (!*p || *p != 'l')
    {
    {
      complain (&lrs_general_complaint, "live range string 1");
      complain (&lrs_general_complaint, "live range string 1");
      return 0;
      return 0;
    }
    }
  p++;
  p++;
 
 
  if (!*p || *p != '(')
  if (!*p || *p != '(')
    {
    {
      complain (&lrs_general_complaint, "live range string 2");
      complain (&lrs_general_complaint, "live range string 2");
      return 0;
      return 0;
    }
    }
  p++;
  p++;
 
 
  /* Get starting value of range and advance P past the reference id.
  /* Get starting value of range and advance P past the reference id.
 
 
     ?!? In theory, the process_reference should never fail, but we should
     ?!? In theory, the process_reference should never fail, but we should
     catch that case just in case the compiler scrogged the stabs.  */
     catch that case just in case the compiler scrogged the stabs.  */
  refnum = process_reference (&p);
  refnum = process_reference (&p);
  start = ref_search_value (refnum);
  start = ref_search_value (refnum);
  if (!start)
  if (!start)
    {
    {
      complain (&lrs_general_complaint, "Live range symbol not found 1");
      complain (&lrs_general_complaint, "Live range symbol not found 1");
      return 0;
      return 0;
    }
    }
 
 
  if (!*p || *p != ',')
  if (!*p || *p != ',')
    {
    {
      complain (&lrs_general_complaint, "live range string 3");
      complain (&lrs_general_complaint, "live range string 3");
      return 0;
      return 0;
    }
    }
  p++;
  p++;
 
 
  /* Get ending value of range and advance P past the reference id.
  /* Get ending value of range and advance P past the reference id.
 
 
     ?!? In theory, the process_reference should never fail, but we should
     ?!? In theory, the process_reference should never fail, but we should
     catch that case just in case the compiler scrogged the stabs.  */
     catch that case just in case the compiler scrogged the stabs.  */
  refnum = process_reference (&p);
  refnum = process_reference (&p);
  end = ref_search_value (refnum);
  end = ref_search_value (refnum);
  if (!end)
  if (!end)
    {
    {
      complain (&lrs_general_complaint, "Live range symbol not found 2");
      complain (&lrs_general_complaint, "Live range symbol not found 2");
      return 0;
      return 0;
    }
    }
 
 
  if (!*p || *p != ')')
  if (!*p || *p != ')')
    {
    {
      complain (&lrs_general_complaint, "live range string 4");
      complain (&lrs_general_complaint, "live range string 4");
      return 0;
      return 0;
    }
    }
 
 
  /* Now that we know the bounds of the range, add it to the
  /* Now that we know the bounds of the range, add it to the
     symbol.  */
     symbol.  */
  add_live_range (objfile, sym, start, end);
  add_live_range (objfile, sym, start, end);
 
 
  return 1;
  return 1;
}
}
 
 
/* Add a new live range defined by START and END to the symbol SYM
/* Add a new live range defined by START and END to the symbol SYM
   in objfile OBJFILE.  */
   in objfile OBJFILE.  */
 
 
static void
static void
add_live_range (objfile, sym, start, end)
add_live_range (objfile, sym, start, end)
     struct objfile *objfile;
     struct objfile *objfile;
     struct symbol *sym;
     struct symbol *sym;
     CORE_ADDR start, end;
     CORE_ADDR start, end;
{
{
  struct range_list *r, *rs;
  struct range_list *r, *rs;
 
 
  if (start >= end)
  if (start >= end)
    {
    {
      complain (&lrs_general_complaint, "end of live range follows start");
      complain (&lrs_general_complaint, "end of live range follows start");
      return;
      return;
    }
    }
 
 
  /* Alloc new live range structure. */
  /* Alloc new live range structure. */
  r = (struct range_list *)
  r = (struct range_list *)
    obstack_alloc (&objfile->type_obstack,
    obstack_alloc (&objfile->type_obstack,
                   sizeof (struct range_list));
                   sizeof (struct range_list));
  r->start = start;
  r->start = start;
  r->end = end;
  r->end = end;
  r->next = 0;
  r->next = 0;
 
 
  /* Append this range to the symbol's range list. */
  /* Append this range to the symbol's range list. */
  if (!SYMBOL_RANGES (sym))
  if (!SYMBOL_RANGES (sym))
    SYMBOL_RANGES (sym) = r;
    SYMBOL_RANGES (sym) = r;
  else
  else
    {
    {
      /* Get the last range for the symbol. */
      /* Get the last range for the symbol. */
      for (rs = SYMBOL_RANGES (sym); rs->next; rs = rs->next)
      for (rs = SYMBOL_RANGES (sym); rs->next; rs = rs->next)
        ;
        ;
      rs->next = r;
      rs->next = r;
    }
    }
}
}


 
 
/* Skip rest of this symbol and return an error type.
/* Skip rest of this symbol and return an error type.
 
 
   General notes on error recovery:  error_type always skips to the
   General notes on error recovery:  error_type always skips to the
   end of the symbol (modulo cretinous dbx symbol name continuation).
   end of the symbol (modulo cretinous dbx symbol name continuation).
   Thus code like this:
   Thus code like this:
 
 
   if (*(*pp)++ != ';')
   if (*(*pp)++ != ';')
   return error_type (pp, objfile);
   return error_type (pp, objfile);
 
 
   is wrong because if *pp starts out pointing at '\0' (typically as the
   is wrong because if *pp starts out pointing at '\0' (typically as the
   result of an earlier error), it will be incremented to point to the
   result of an earlier error), it will be incremented to point to the
   start of the next symbol, which might produce strange results, at least
   start of the next symbol, which might produce strange results, at least
   if you run off the end of the string table.  Instead use
   if you run off the end of the string table.  Instead use
 
 
   if (**pp != ';')
   if (**pp != ';')
   return error_type (pp, objfile);
   return error_type (pp, objfile);
   ++*pp;
   ++*pp;
 
 
   or
   or
 
 
   if (**pp != ';')
   if (**pp != ';')
   foo = error_type (pp, objfile);
   foo = error_type (pp, objfile);
   else
   else
   ++*pp;
   ++*pp;
 
 
   And in case it isn't obvious, the point of all this hair is so the compiler
   And in case it isn't obvious, the point of all this hair is so the compiler
   can define new types and new syntaxes, and old versions of the
   can define new types and new syntaxes, and old versions of the
   debugger will be able to read the new symbol tables.  */
   debugger will be able to read the new symbol tables.  */
 
 
static struct type *
static struct type *
error_type (pp, objfile)
error_type (pp, objfile)
     char **pp;
     char **pp;
     struct objfile *objfile;
     struct objfile *objfile;
{
{
  complain (&error_type_complaint);
  complain (&error_type_complaint);
  while (1)
  while (1)
    {
    {
      /* Skip to end of symbol.  */
      /* Skip to end of symbol.  */
      while (**pp != '\0')
      while (**pp != '\0')
        {
        {
          (*pp)++;
          (*pp)++;
        }
        }
 
 
      /* Check for and handle cretinous dbx symbol name continuation!  */
      /* Check for and handle cretinous dbx symbol name continuation!  */
      if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
      if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
        {
        {
          *pp = next_symbol_text (objfile);
          *pp = next_symbol_text (objfile);
        }
        }
      else
      else
        {
        {
          break;
          break;
        }
        }
    }
    }
  return (builtin_type_error);
  return (builtin_type_error);
}
}


 
 
/* Read type information or a type definition; return the type.  Even
/* Read type information or a type definition; return the type.  Even
   though this routine accepts either type information or a type
   though this routine accepts either type information or a type
   definition, the distinction is relevant--some parts of stabsread.c
   definition, the distinction is relevant--some parts of stabsread.c
   assume that type information starts with a digit, '-', or '(' in
   assume that type information starts with a digit, '-', or '(' in
   deciding whether to call read_type.  */
   deciding whether to call read_type.  */
 
 
struct type *
struct type *
read_type (pp, objfile)
read_type (pp, objfile)
     register char **pp;
     register char **pp;
     struct objfile *objfile;
     struct objfile *objfile;
{
{
  register struct type *type = 0;
  register struct type *type = 0;
  struct type *type1;
  struct type *type1;
  int typenums[2];
  int typenums[2];
  char type_descriptor;
  char type_descriptor;
 
 
  /* Size in bits of type if specified by a type attribute, or -1 if
  /* Size in bits of type if specified by a type attribute, or -1 if
     there is no size attribute.  */
     there is no size attribute.  */
  int type_size = -1;
  int type_size = -1;
 
 
  /* Used to distinguish string and bitstring from char-array and set. */
  /* Used to distinguish string and bitstring from char-array and set. */
  int is_string = 0;
  int is_string = 0;
 
 
  /* Read type number if present.  The type number may be omitted.
  /* Read type number if present.  The type number may be omitted.
     for instance in a two-dimensional array declared with type
     for instance in a two-dimensional array declared with type
     "ar1;1;10;ar1;1;10;4".  */
     "ar1;1;10;ar1;1;10;4".  */
  if ((**pp >= '0' && **pp <= '9')
  if ((**pp >= '0' && **pp <= '9')
      || **pp == '('
      || **pp == '('
      || **pp == '-')
      || **pp == '-')
    {
    {
      if (read_type_number (pp, typenums) != 0)
      if (read_type_number (pp, typenums) != 0)
        return error_type (pp, objfile);
        return error_type (pp, objfile);
 
 
      /* Type is not being defined here.  Either it already exists,
      /* Type is not being defined here.  Either it already exists,
         or this is a forward reference to it.  dbx_alloc_type handles
         or this is a forward reference to it.  dbx_alloc_type handles
         both cases.  */
         both cases.  */
      if (**pp != '=')
      if (**pp != '=')
        return dbx_alloc_type (typenums, objfile);
        return dbx_alloc_type (typenums, objfile);
 
 
      /* Type is being defined here.  */
      /* Type is being defined here.  */
      /* Skip the '='.
      /* Skip the '='.
         Also skip the type descriptor - we get it below with (*pp)[-1].  */
         Also skip the type descriptor - we get it below with (*pp)[-1].  */
      (*pp) += 2;
      (*pp) += 2;
    }
    }
  else
  else
    {
    {
      /* 'typenums=' not present, type is anonymous.  Read and return
      /* 'typenums=' not present, type is anonymous.  Read and return
         the definition, but don't put it in the type vector.  */
         the definition, but don't put it in the type vector.  */
      typenums[0] = typenums[1] = -1;
      typenums[0] = typenums[1] = -1;
      (*pp)++;
      (*pp)++;
    }
    }
 
 
again:
again:
  type_descriptor = (*pp)[-1];
  type_descriptor = (*pp)[-1];
  switch (type_descriptor)
  switch (type_descriptor)
    {
    {
    case 'x':
    case 'x':
      {
      {
        enum type_code code;
        enum type_code code;
 
 
        /* Used to index through file_symbols.  */
        /* Used to index through file_symbols.  */
        struct pending *ppt;
        struct pending *ppt;
        int i;
        int i;
 
 
        /* Name including "struct", etc.  */
        /* Name including "struct", etc.  */
        char *type_name;
        char *type_name;
 
 
        {
        {
          char *from, *to, *p, *q1, *q2;
          char *from, *to, *p, *q1, *q2;
 
 
          /* Set the type code according to the following letter.  */
          /* Set the type code according to the following letter.  */
          switch ((*pp)[0])
          switch ((*pp)[0])
            {
            {
            case 's':
            case 's':
              code = TYPE_CODE_STRUCT;
              code = TYPE_CODE_STRUCT;
              break;
              break;
            case 'u':
            case 'u':
              code = TYPE_CODE_UNION;
              code = TYPE_CODE_UNION;
              break;
              break;
            case 'e':
            case 'e':
              code = TYPE_CODE_ENUM;
              code = TYPE_CODE_ENUM;
              break;
              break;
            default:
            default:
              {
              {
                /* Complain and keep going, so compilers can invent new
                /* Complain and keep going, so compilers can invent new
                   cross-reference types.  */
                   cross-reference types.  */
                static struct complaint msg =
                static struct complaint msg =
                {"Unrecognized cross-reference type `%c'", 0, 0};
                {"Unrecognized cross-reference type `%c'", 0, 0};
                complain (&msg, (*pp)[0]);
                complain (&msg, (*pp)[0]);
                code = TYPE_CODE_STRUCT;
                code = TYPE_CODE_STRUCT;
                break;
                break;
              }
              }
            }
            }
 
 
          q1 = strchr (*pp, '<');
          q1 = strchr (*pp, '<');
          p = strchr (*pp, ':');
          p = strchr (*pp, ':');
          if (p == NULL)
          if (p == NULL)
            return error_type (pp, objfile);
            return error_type (pp, objfile);
          if (q1 && p > q1 && p[1] == ':')
          if (q1 && p > q1 && p[1] == ':')
            {
            {
              int nesting_level = 0;
              int nesting_level = 0;
              for (q2 = q1; *q2; q2++)
              for (q2 = q1; *q2; q2++)
                {
                {
                  if (*q2 == '<')
                  if (*q2 == '<')
                    nesting_level++;
                    nesting_level++;
                  else if (*q2 == '>')
                  else if (*q2 == '>')
                    nesting_level--;
                    nesting_level--;
                  else if (*q2 == ':' && nesting_level == 0)
                  else if (*q2 == ':' && nesting_level == 0)
                    break;
                    break;
                }
                }
              p = q2;
              p = q2;
              if (*p != ':')
              if (*p != ':')
                return error_type (pp, objfile);
                return error_type (pp, objfile);
            }
            }
          to = type_name =
          to = type_name =
            (char *) obstack_alloc (&objfile->type_obstack, p - *pp + 1);
            (char *) obstack_alloc (&objfile->type_obstack, p - *pp + 1);
 
 
          /* Copy the name.  */
          /* Copy the name.  */
          from = *pp + 1;
          from = *pp + 1;
          while (from < p)
          while (from < p)
            *to++ = *from++;
            *to++ = *from++;
          *to = '\0';
          *to = '\0';
 
 
          /* Set the pointer ahead of the name which we just read, and
          /* Set the pointer ahead of the name which we just read, and
             the colon.  */
             the colon.  */
          *pp = from + 1;
          *pp = from + 1;
        }
        }
 
 
        /* Now check to see whether the type has already been
        /* Now check to see whether the type has already been
           declared.  This was written for arrays of cross-referenced
           declared.  This was written for arrays of cross-referenced
           types before we had TYPE_CODE_TARGET_STUBBED, so I'm pretty
           types before we had TYPE_CODE_TARGET_STUBBED, so I'm pretty
           sure it is not necessary anymore.  But it might be a good
           sure it is not necessary anymore.  But it might be a good
           idea, to save a little memory.  */
           idea, to save a little memory.  */
 
 
        for (ppt = file_symbols; ppt; ppt = ppt->next)
        for (ppt = file_symbols; ppt; ppt = ppt->next)
          for (i = 0; i < ppt->nsyms; i++)
          for (i = 0; i < ppt->nsyms; i++)
            {
            {
              struct symbol *sym = ppt->symbol[i];
              struct symbol *sym = ppt->symbol[i];
 
 
              if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
              if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
                  && SYMBOL_NAMESPACE (sym) == STRUCT_NAMESPACE
                  && SYMBOL_NAMESPACE (sym) == STRUCT_NAMESPACE
                  && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
                  && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
                  && STREQ (SYMBOL_NAME (sym), type_name))
                  && STREQ (SYMBOL_NAME (sym), type_name))
                {
                {
                  obstack_free (&objfile->type_obstack, type_name);
                  obstack_free (&objfile->type_obstack, type_name);
                  type = SYMBOL_TYPE (sym);
                  type = SYMBOL_TYPE (sym);
                  return type;
                  return type;
                }
                }
            }
            }
 
 
        /* Didn't find the type to which this refers, so we must
        /* Didn't find the type to which this refers, so we must
           be dealing with a forward reference.  Allocate a type
           be dealing with a forward reference.  Allocate a type
           structure for it, and keep track of it so we can
           structure for it, and keep track of it so we can
           fill in the rest of the fields when we get the full
           fill in the rest of the fields when we get the full
           type.  */
           type.  */
        type = dbx_alloc_type (typenums, objfile);
        type = dbx_alloc_type (typenums, objfile);
        TYPE_CODE (type) = code;
        TYPE_CODE (type) = code;
        TYPE_TAG_NAME (type) = type_name;
        TYPE_TAG_NAME (type) = type_name;
        INIT_CPLUS_SPECIFIC (type);
        INIT_CPLUS_SPECIFIC (type);
        TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
        TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
 
 
        add_undefined_type (type);
        add_undefined_type (type);
        return type;
        return type;
      }
      }
 
 
    case '-':                   /* RS/6000 built-in type */
    case '-':                   /* RS/6000 built-in type */
    case '0':
    case '0':
    case '1':
    case '1':
    case '2':
    case '2':
    case '3':
    case '3':
    case '4':
    case '4':
    case '5':
    case '5':
    case '6':
    case '6':
    case '7':
    case '7':
    case '8':
    case '8':
    case '9':
    case '9':
    case '(':
    case '(':
      (*pp)--;
      (*pp)--;
 
 
      /* We deal with something like t(1,2)=(3,4)=... which
      /* We deal with something like t(1,2)=(3,4)=... which
         the Lucid compiler and recent gcc versions (post 2.7.3) use. */
         the Lucid compiler and recent gcc versions (post 2.7.3) use. */
 
 
      /* Allocate and enter the typedef type first.
      /* Allocate and enter the typedef type first.
         This handles recursive types. */
         This handles recursive types. */
      type = dbx_alloc_type (typenums, objfile);
      type = dbx_alloc_type (typenums, objfile);
      TYPE_CODE (type) = TYPE_CODE_TYPEDEF;
      TYPE_CODE (type) = TYPE_CODE_TYPEDEF;
      {
      {
        struct type *xtype = read_type (pp, objfile);
        struct type *xtype = read_type (pp, objfile);
        if (type == xtype)
        if (type == xtype)
          {
          {
            /* It's being defined as itself.  That means it is "void".  */
            /* It's being defined as itself.  That means it is "void".  */
            TYPE_CODE (type) = TYPE_CODE_VOID;
            TYPE_CODE (type) = TYPE_CODE_VOID;
            TYPE_LENGTH (type) = 1;
            TYPE_LENGTH (type) = 1;
          }
          }
        else if (type_size >= 0 || is_string)
        else if (type_size >= 0 || is_string)
          {
          {
            *type = *xtype;
            *type = *xtype;
            TYPE_NAME (type) = NULL;
            TYPE_NAME (type) = NULL;
            TYPE_TAG_NAME (type) = NULL;
            TYPE_TAG_NAME (type) = NULL;
          }
          }
        else
        else
          {
          {
            TYPE_FLAGS (type) |= TYPE_FLAG_TARGET_STUB;
            TYPE_FLAGS (type) |= TYPE_FLAG_TARGET_STUB;
            TYPE_TARGET_TYPE (type) = xtype;
            TYPE_TARGET_TYPE (type) = xtype;
          }
          }
      }
      }
      break;
      break;
 
 
      /* In the following types, we must be sure to overwrite any existing
      /* In the following types, we must be sure to overwrite any existing
         type that the typenums refer to, rather than allocating a new one
         type that the typenums refer to, rather than allocating a new one
         and making the typenums point to the new one.  This is because there
         and making the typenums point to the new one.  This is because there
         may already be pointers to the existing type (if it had been
         may already be pointers to the existing type (if it had been
         forward-referenced), and we must change it to a pointer, function,
         forward-referenced), and we must change it to a pointer, function,
         reference, or whatever, *in-place*.  */
         reference, or whatever, *in-place*.  */
 
 
    case '*':
    case '*':
      type1 = read_type (pp, objfile);
      type1 = read_type (pp, objfile);
      type = make_pointer_type (type1, dbx_lookup_type (typenums));
      type = make_pointer_type (type1, dbx_lookup_type (typenums));
      break;
      break;
 
 
    case '&':                   /* Reference to another type */
    case '&':                   /* Reference to another type */
      type1 = read_type (pp, objfile);
      type1 = read_type (pp, objfile);
      type = make_reference_type (type1, dbx_lookup_type (typenums));
      type = make_reference_type (type1, dbx_lookup_type (typenums));
      break;
      break;
 
 
    case 'f':                   /* Function returning another type */
    case 'f':                   /* Function returning another type */
      if (os9k_stabs && **pp == '(')
      if (os9k_stabs && **pp == '(')
        {
        {
          /* Function prototype; parse it.
          /* Function prototype; parse it.
             We must conditionalize this on os9k_stabs because otherwise
             We must conditionalize this on os9k_stabs because otherwise
             it could be confused with a Sun-style (1,3) typenumber
             it could be confused with a Sun-style (1,3) typenumber
             (I think).  */
             (I think).  */
          struct type *t;
          struct type *t;
          ++*pp;
          ++*pp;
          while (**pp != ')')
          while (**pp != ')')
            {
            {
              t = read_type (pp, objfile);
              t = read_type (pp, objfile);
              if (**pp == ',')
              if (**pp == ',')
                ++ * pp;
                ++ * pp;
            }
            }
        }
        }
      type1 = read_type (pp, objfile);
      type1 = read_type (pp, objfile);
      type = make_function_type (type1, dbx_lookup_type (typenums));
      type = make_function_type (type1, dbx_lookup_type (typenums));
      break;
      break;
 
 
    case 'k':                   /* Const qualifier on some type (Sun) */
    case 'k':                   /* Const qualifier on some type (Sun) */
    case 'c':                   /* Const qualifier on some type (OS9000) */
    case 'c':                   /* Const qualifier on some type (OS9000) */
      /* Because 'c' means other things to AIX and 'k' is perfectly good,
      /* Because 'c' means other things to AIX and 'k' is perfectly good,
         only accept 'c' in the os9k_stabs case.  */
         only accept 'c' in the os9k_stabs case.  */
      if (type_descriptor == 'c' && !os9k_stabs)
      if (type_descriptor == 'c' && !os9k_stabs)
        return error_type (pp, objfile);
        return error_type (pp, objfile);
      type = read_type (pp, objfile);
      type = read_type (pp, objfile);
      /* FIXME! For now, we ignore const and volatile qualifiers.  */
      /* FIXME! For now, we ignore const and volatile qualifiers.  */
      break;
      break;
 
 
    case 'B':                   /* Volatile qual on some type (Sun) */
    case 'B':                   /* Volatile qual on some type (Sun) */
    case 'i':                   /* Volatile qual on some type (OS9000) */
    case 'i':                   /* Volatile qual on some type (OS9000) */
      /* Because 'i' means other things to AIX and 'B' is perfectly good,
      /* Because 'i' means other things to AIX and 'B' is perfectly good,
         only accept 'i' in the os9k_stabs case.  */
         only accept 'i' in the os9k_stabs case.  */
      if (type_descriptor == 'i' && !os9k_stabs)
      if (type_descriptor == 'i' && !os9k_stabs)
        return error_type (pp, objfile);
        return error_type (pp, objfile);
      type = read_type (pp, objfile);
      type = read_type (pp, objfile);
      /* FIXME! For now, we ignore const and volatile qualifiers.  */
      /* FIXME! For now, we ignore const and volatile qualifiers.  */
      break;
      break;
 
 
    case '@':
    case '@':
      if (isdigit (**pp) || **pp == '(' || **pp == '-')
      if (isdigit (**pp) || **pp == '(' || **pp == '-')
        {                       /* Member (class & variable) type */
        {                       /* Member (class & variable) type */
          /* FIXME -- we should be doing smash_to_XXX types here.  */
          /* FIXME -- we should be doing smash_to_XXX types here.  */
 
 
          struct type *domain = read_type (pp, objfile);
          struct type *domain = read_type (pp, objfile);
          struct type *memtype;
          struct type *memtype;
 
 
          if (**pp != ',')
          if (**pp != ',')
            /* Invalid member type data format.  */
            /* Invalid member type data format.  */
            return error_type (pp, objfile);
            return error_type (pp, objfile);
          ++*pp;
          ++*pp;
 
 
          memtype = read_type (pp, objfile);
          memtype = read_type (pp, objfile);
          type = dbx_alloc_type (typenums, objfile);
          type = dbx_alloc_type (typenums, objfile);
          smash_to_member_type (type, domain, memtype);
          smash_to_member_type (type, domain, memtype);
        }
        }
      else
      else
        /* type attribute */
        /* type attribute */
        {
        {
          char *attr = *pp;
          char *attr = *pp;
          /* Skip to the semicolon.  */
          /* Skip to the semicolon.  */
          while (**pp != ';' && **pp != '\0')
          while (**pp != ';' && **pp != '\0')
            ++(*pp);
            ++(*pp);
          if (**pp == '\0')
          if (**pp == '\0')
            return error_type (pp, objfile);
            return error_type (pp, objfile);
          else
          else
            ++ * pp;            /* Skip the semicolon.  */
            ++ * pp;            /* Skip the semicolon.  */
 
 
          switch (*attr)
          switch (*attr)
            {
            {
            case 's':
            case 's':
              type_size = atoi (attr + 1);
              type_size = atoi (attr + 1);
              if (type_size <= 0)
              if (type_size <= 0)
                type_size = -1;
                type_size = -1;
              break;
              break;
 
 
            case 'S':
            case 'S':
              is_string = 1;
              is_string = 1;
              break;
              break;
 
 
            default:
            default:
              /* Ignore unrecognized type attributes, so future compilers
              /* Ignore unrecognized type attributes, so future compilers
                 can invent new ones.  */
                 can invent new ones.  */
              break;
              break;
            }
            }
          ++*pp;
          ++*pp;
          goto again;
          goto again;
        }
        }
      break;
      break;
 
 
    case '#':                   /* Method (class & fn) type */
    case '#':                   /* Method (class & fn) type */
      if ((*pp)[0] == '#')
      if ((*pp)[0] == '#')
        {
        {
          /* We'll get the parameter types from the name.  */
          /* We'll get the parameter types from the name.  */
          struct type *return_type;
          struct type *return_type;
 
 
          (*pp)++;
          (*pp)++;
          return_type = read_type (pp, objfile);
          return_type = read_type (pp, objfile);
          if (*(*pp)++ != ';')
          if (*(*pp)++ != ';')
            complain (&invalid_member_complaint, symnum);
            complain (&invalid_member_complaint, symnum);
          type = allocate_stub_method (return_type);
          type = allocate_stub_method (return_type);
          if (typenums[0] != -1)
          if (typenums[0] != -1)
            *dbx_lookup_type (typenums) = type;
            *dbx_lookup_type (typenums) = type;
        }
        }
      else
      else
        {
        {
          struct type *domain = read_type (pp, objfile);
          struct type *domain = read_type (pp, objfile);
          struct type *return_type;
          struct type *return_type;
          struct type **args;
          struct type **args;
 
 
          if (**pp != ',')
          if (**pp != ',')
            /* Invalid member type data format.  */
            /* Invalid member type data format.  */
            return error_type (pp, objfile);
            return error_type (pp, objfile);
          else
          else
            ++(*pp);
            ++(*pp);
 
 
          return_type = read_type (pp, objfile);
          return_type = read_type (pp, objfile);
          args = read_args (pp, ';', objfile);
          args = read_args (pp, ';', objfile);
          type = dbx_alloc_type (typenums, objfile);
          type = dbx_alloc_type (typenums, objfile);
          smash_to_method_type (type, domain, return_type, args);
          smash_to_method_type (type, domain, return_type, args);
        }
        }
      break;
      break;
 
 
    case 'r':                   /* Range type */
    case 'r':                   /* Range type */
      type = read_range_type (pp, typenums, objfile);
      type = read_range_type (pp, typenums, objfile);
      if (typenums[0] != -1)
      if (typenums[0] != -1)
        *dbx_lookup_type (typenums) = type;
        *dbx_lookup_type (typenums) = type;
      break;
      break;
 
 
    case 'b':
    case 'b':
      if (os9k_stabs)
      if (os9k_stabs)
        /* Const and volatile qualified type.  */
        /* Const and volatile qualified type.  */
        type = read_type (pp, objfile);
        type = read_type (pp, objfile);
      else
      else
        {
        {
          /* Sun ACC builtin int type */
          /* Sun ACC builtin int type */
          type = read_sun_builtin_type (pp, typenums, objfile);
          type = read_sun_builtin_type (pp, typenums, objfile);
          if (typenums[0] != -1)
          if (typenums[0] != -1)
            *dbx_lookup_type (typenums) = type;
            *dbx_lookup_type (typenums) = type;
        }
        }
      break;
      break;
 
 
    case 'R':                   /* Sun ACC builtin float type */
    case 'R':                   /* Sun ACC builtin float type */
      type = read_sun_floating_type (pp, typenums, objfile);
      type = read_sun_floating_type (pp, typenums, objfile);
      if (typenums[0] != -1)
      if (typenums[0] != -1)
        *dbx_lookup_type (typenums) = type;
        *dbx_lookup_type (typenums) = type;
      break;
      break;
 
 
    case 'e':                   /* Enumeration type */
    case 'e':                   /* Enumeration type */
      type = dbx_alloc_type (typenums, objfile);
      type = dbx_alloc_type (typenums, objfile);
      type = read_enum_type (pp, type, objfile);
      type = read_enum_type (pp, type, objfile);
      if (typenums[0] != -1)
      if (typenums[0] != -1)
        *dbx_lookup_type (typenums) = type;
        *dbx_lookup_type (typenums) = type;
      break;
      break;
 
 
    case 's':                   /* Struct type */
    case 's':                   /* Struct type */
    case 'u':                   /* Union type */
    case 'u':                   /* Union type */
      type = dbx_alloc_type (typenums, objfile);
      type = dbx_alloc_type (typenums, objfile);
      switch (type_descriptor)
      switch (type_descriptor)
        {
        {
        case 's':
        case 's':
          TYPE_CODE (type) = TYPE_CODE_STRUCT;
          TYPE_CODE (type) = TYPE_CODE_STRUCT;
          break;
          break;
        case 'u':
        case 'u':
          TYPE_CODE (type) = TYPE_CODE_UNION;
          TYPE_CODE (type) = TYPE_CODE_UNION;
          break;
          break;
        }
        }
      type = read_struct_type (pp, type, objfile);
      type = read_struct_type (pp, type, objfile);
      break;
      break;
 
 
    case 'a':                   /* Array type */
    case 'a':                   /* Array type */
      if (**pp != 'r')
      if (**pp != 'r')
        return error_type (pp, objfile);
        return error_type (pp, objfile);
      ++*pp;
      ++*pp;
 
 
      type = dbx_alloc_type (typenums, objfile);
      type = dbx_alloc_type (typenums, objfile);
      type = read_array_type (pp, type, objfile);
      type = read_array_type (pp, type, objfile);
      if (is_string)
      if (is_string)
        TYPE_CODE (type) = TYPE_CODE_STRING;
        TYPE_CODE (type) = TYPE_CODE_STRING;
      break;
      break;
 
 
    case 'S':
    case 'S':
      type1 = read_type (pp, objfile);
      type1 = read_type (pp, objfile);
      type = create_set_type ((struct type *) NULL, type1);
      type = create_set_type ((struct type *) NULL, type1);
      if (is_string)
      if (is_string)
        TYPE_CODE (type) = TYPE_CODE_BITSTRING;
        TYPE_CODE (type) = TYPE_CODE_BITSTRING;
      if (typenums[0] != -1)
      if (typenums[0] != -1)
        *dbx_lookup_type (typenums) = type;
        *dbx_lookup_type (typenums) = type;
      break;
      break;
 
 
    default:
    default:
      --*pp;                    /* Go back to the symbol in error */
      --*pp;                    /* Go back to the symbol in error */
      /* Particularly important if it was \0! */
      /* Particularly important if it was \0! */
      return error_type (pp, objfile);
      return error_type (pp, objfile);
    }
    }
 
 
  if (type == 0)
  if (type == 0)
    {
    {
      warning ("GDB internal error, type is NULL in stabsread.c\n");
      warning ("GDB internal error, type is NULL in stabsread.c\n");
      return error_type (pp, objfile);
      return error_type (pp, objfile);
    }
    }
 
 
  /* Size specified in a type attribute overrides any other size.  */
  /* Size specified in a type attribute overrides any other size.  */
  if (type_size != -1)
  if (type_size != -1)
    TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
    TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
 
 
  return type;
  return type;
}
}


/* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
/* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
   Return the proper type node for a given builtin type number. */
   Return the proper type node for a given builtin type number. */
 
 
static struct type *
static struct type *
rs6000_builtin_type (typenum)
rs6000_builtin_type (typenum)
     int typenum;
     int typenum;
{
{
  /* We recognize types numbered from -NUMBER_RECOGNIZED to -1.  */
  /* We recognize types numbered from -NUMBER_RECOGNIZED to -1.  */
#define NUMBER_RECOGNIZED 34
#define NUMBER_RECOGNIZED 34
  /* This includes an empty slot for type number -0.  */
  /* This includes an empty slot for type number -0.  */
  static struct type *negative_types[NUMBER_RECOGNIZED + 1];
  static struct type *negative_types[NUMBER_RECOGNIZED + 1];
  struct type *rettype = NULL;
  struct type *rettype = NULL;
 
 
  if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
  if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
    {
    {
      complain (&rs6000_builtin_complaint, typenum);
      complain (&rs6000_builtin_complaint, typenum);
      return builtin_type_error;
      return builtin_type_error;
    }
    }
  if (negative_types[-typenum] != NULL)
  if (negative_types[-typenum] != NULL)
    return negative_types[-typenum];
    return negative_types[-typenum];
 
 
#if TARGET_CHAR_BIT != 8
#if TARGET_CHAR_BIT != 8
#error This code wrong for TARGET_CHAR_BIT not 8
#error This code wrong for TARGET_CHAR_BIT not 8
  /* These definitions all assume that TARGET_CHAR_BIT is 8.  I think
  /* These definitions all assume that TARGET_CHAR_BIT is 8.  I think
     that if that ever becomes not true, the correct fix will be to
     that if that ever becomes not true, the correct fix will be to
     make the size in the struct type to be in bits, not in units of
     make the size in the struct type to be in bits, not in units of
     TARGET_CHAR_BIT.  */
     TARGET_CHAR_BIT.  */
#endif
#endif
 
 
  switch (-typenum)
  switch (-typenum)
    {
    {
    case 1:
    case 1:
      /* The size of this and all the other types are fixed, defined
      /* The size of this and all the other types are fixed, defined
         by the debugging format.  If there is a type called "int" which
         by the debugging format.  If there is a type called "int" which
         is other than 32 bits, then it should use a new negative type
         is other than 32 bits, then it should use a new negative type
         number (or avoid negative type numbers for that case).
         number (or avoid negative type numbers for that case).
         See stabs.texinfo.  */
         See stabs.texinfo.  */
      rettype = init_type (TYPE_CODE_INT, 4, 0, "int", NULL);
      rettype = init_type (TYPE_CODE_INT, 4, 0, "int", NULL);
      break;
      break;
    case 2:
    case 2:
      rettype = init_type (TYPE_CODE_INT, 1, 0, "char", NULL);
      rettype = init_type (TYPE_CODE_INT, 1, 0, "char", NULL);
      break;
      break;
    case 3:
    case 3:
      rettype = init_type (TYPE_CODE_INT, 2, 0, "short", NULL);
      rettype = init_type (TYPE_CODE_INT, 2, 0, "short", NULL);
      break;
      break;
    case 4:
    case 4:
      rettype = init_type (TYPE_CODE_INT, 4, 0, "long", NULL);
      rettype = init_type (TYPE_CODE_INT, 4, 0, "long", NULL);
      break;
      break;
    case 5:
    case 5:
      rettype = init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED,
      rettype = init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED,
                           "unsigned char", NULL);
                           "unsigned char", NULL);
      break;
      break;
    case 6:
    case 6:
      rettype = init_type (TYPE_CODE_INT, 1, 0, "signed char", NULL);
      rettype = init_type (TYPE_CODE_INT, 1, 0, "signed char", NULL);
      break;
      break;
    case 7:
    case 7:
      rettype = init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED,
      rettype = init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED,
                           "unsigned short", NULL);
                           "unsigned short", NULL);
      break;
      break;
    case 8:
    case 8:
      rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
      rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
                           "unsigned int", NULL);
                           "unsigned int", NULL);
      break;
      break;
    case 9:
    case 9:
      rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
      rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
                           "unsigned", NULL);
                           "unsigned", NULL);
    case 10:
    case 10:
      rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
      rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
                           "unsigned long", NULL);
                           "unsigned long", NULL);
      break;
      break;
    case 11:
    case 11:
      rettype = init_type (TYPE_CODE_VOID, 1, 0, "void", NULL);
      rettype = init_type (TYPE_CODE_VOID, 1, 0, "void", NULL);
      break;
      break;
    case 12:
    case 12:
      /* IEEE single precision (32 bit).  */
      /* IEEE single precision (32 bit).  */
      rettype = init_type (TYPE_CODE_FLT, 4, 0, "float", NULL);
      rettype = init_type (TYPE_CODE_FLT, 4, 0, "float", NULL);
      break;
      break;
    case 13:
    case 13:
      /* IEEE double precision (64 bit).  */
      /* IEEE double precision (64 bit).  */
      rettype = init_type (TYPE_CODE_FLT, 8, 0, "double", NULL);
      rettype = init_type (TYPE_CODE_FLT, 8, 0, "double", NULL);
      break;
      break;
    case 14:
    case 14:
      /* This is an IEEE double on the RS/6000, and different machines with
      /* This is an IEEE double on the RS/6000, and different machines with
         different sizes for "long double" should use different negative
         different sizes for "long double" should use different negative
         type numbers.  See stabs.texinfo.  */
         type numbers.  See stabs.texinfo.  */
      rettype = init_type (TYPE_CODE_FLT, 8, 0, "long double", NULL);
      rettype = init_type (TYPE_CODE_FLT, 8, 0, "long double", NULL);
      break;
      break;
    case 15:
    case 15:
      rettype = init_type (TYPE_CODE_INT, 4, 0, "integer", NULL);
      rettype = init_type (TYPE_CODE_INT, 4, 0, "integer", NULL);
      break;
      break;
    case 16:
    case 16:
      rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
      rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
                           "boolean", NULL);
                           "boolean", NULL);
      break;
      break;
    case 17:
    case 17:
      rettype = init_type (TYPE_CODE_FLT, 4, 0, "short real", NULL);
      rettype = init_type (TYPE_CODE_FLT, 4, 0, "short real", NULL);
      break;
      break;
    case 18:
    case 18:
      rettype = init_type (TYPE_CODE_FLT, 8, 0, "real", NULL);
      rettype = init_type (TYPE_CODE_FLT, 8, 0, "real", NULL);
      break;
      break;
    case 19:
    case 19:
      rettype = init_type (TYPE_CODE_ERROR, 0, 0, "stringptr", NULL);
      rettype = init_type (TYPE_CODE_ERROR, 0, 0, "stringptr", NULL);
      break;
      break;
    case 20:
    case 20:
      rettype = init_type (TYPE_CODE_CHAR, 1, TYPE_FLAG_UNSIGNED,
      rettype = init_type (TYPE_CODE_CHAR, 1, TYPE_FLAG_UNSIGNED,
                           "character", NULL);
                           "character", NULL);
      break;
      break;
    case 21:
    case 21:
      rettype = init_type (TYPE_CODE_BOOL, 1, TYPE_FLAG_UNSIGNED,
      rettype = init_type (TYPE_CODE_BOOL, 1, TYPE_FLAG_UNSIGNED,
                           "logical*1", NULL);
                           "logical*1", NULL);
      break;
      break;
    case 22:
    case 22:
      rettype = init_type (TYPE_CODE_BOOL, 2, TYPE_FLAG_UNSIGNED,
      rettype = init_type (TYPE_CODE_BOOL, 2, TYPE_FLAG_UNSIGNED,
                           "logical*2", NULL);
                           "logical*2", NULL);
      break;
      break;
    case 23:
    case 23:
      rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
      rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
                           "logical*4", NULL);
                           "logical*4", NULL);
      break;
      break;
    case 24:
    case 24:
      rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
      rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
                           "logical", NULL);
                           "logical", NULL);
      break;
      break;
    case 25:
    case 25:
      /* Complex type consisting of two IEEE single precision values.  */
      /* Complex type consisting of two IEEE single precision values.  */
      rettype = init_type (TYPE_CODE_COMPLEX, 8, 0, "complex", NULL);
      rettype = init_type (TYPE_CODE_COMPLEX, 8, 0, "complex", NULL);
      break;
      break;
    case 26:
    case 26:
      /* Complex type consisting of two IEEE double precision values.  */
      /* Complex type consisting of two IEEE double precision values.  */
      rettype = init_type (TYPE_CODE_COMPLEX, 16, 0, "double complex", NULL);
      rettype = init_type (TYPE_CODE_COMPLEX, 16, 0, "double complex", NULL);
      break;
      break;
    case 27:
    case 27:
      rettype = init_type (TYPE_CODE_INT, 1, 0, "integer*1", NULL);
      rettype = init_type (TYPE_CODE_INT, 1, 0, "integer*1", NULL);
      break;
      break;
    case 28:
    case 28:
      rettype = init_type (TYPE_CODE_INT, 2, 0, "integer*2", NULL);
      rettype = init_type (TYPE_CODE_INT, 2, 0, "integer*2", NULL);
      break;
      break;
    case 29:
    case 29:
      rettype = init_type (TYPE_CODE_INT, 4, 0, "integer*4", NULL);
      rettype = init_type (TYPE_CODE_INT, 4, 0, "integer*4", NULL);
      break;
      break;
    case 30:
    case 30:
      rettype = init_type (TYPE_CODE_CHAR, 2, 0, "wchar", NULL);
      rettype = init_type (TYPE_CODE_CHAR, 2, 0, "wchar", NULL);
      break;
      break;
    case 31:
    case 31:
      rettype = init_type (TYPE_CODE_INT, 8, 0, "long long", NULL);
      rettype = init_type (TYPE_CODE_INT, 8, 0, "long long", NULL);
      break;
      break;
    case 32:
    case 32:
      rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
      rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
                           "unsigned long long", NULL);
                           "unsigned long long", NULL);
      break;
      break;
    case 33:
    case 33:
      rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
      rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
                           "logical*8", NULL);
                           "logical*8", NULL);
      break;
      break;
    case 34:
    case 34:
      rettype = init_type (TYPE_CODE_INT, 8, 0, "integer*8", NULL);
      rettype = init_type (TYPE_CODE_INT, 8, 0, "integer*8", NULL);
      break;
      break;
    }
    }
  negative_types[-typenum] = rettype;
  negative_types[-typenum] = rettype;
  return rettype;
  return rettype;
}
}


/* This page contains subroutines of read_type.  */
/* This page contains subroutines of read_type.  */
 
 
/* Read member function stabs info for C++ classes.  The form of each member
/* Read member function stabs info for C++ classes.  The form of each member
   function data is:
   function data is:
 
 
   NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
   NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
 
 
   An example with two member functions is:
   An example with two member functions is:
 
 
   afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
   afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
 
 
   For the case of overloaded operators, the format is op$::*.funcs, where
   For the case of overloaded operators, the format is op$::*.funcs, where
   $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
   $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
   name (such as `+=') and `.' marks the end of the operator name.
   name (such as `+=') and `.' marks the end of the operator name.
 
 
   Returns 1 for success, 0 for failure.  */
   Returns 1 for success, 0 for failure.  */
 
 
static int
static int
read_member_functions (fip, pp, type, objfile)
read_member_functions (fip, pp, type, objfile)
     struct field_info *fip;
     struct field_info *fip;
     char **pp;
     char **pp;
     struct type *type;
     struct type *type;
     struct objfile *objfile;
     struct objfile *objfile;
{
{
  int nfn_fields = 0;
  int nfn_fields = 0;
  int length = 0;
  int length = 0;
  /* Total number of member functions defined in this class.  If the class
  /* Total number of member functions defined in this class.  If the class
     defines two `f' functions, and one `g' function, then this will have
     defines two `f' functions, and one `g' function, then this will have
     the value 3.  */
     the value 3.  */
  int total_length = 0;
  int total_length = 0;
  int i;
  int i;
  struct next_fnfield
  struct next_fnfield
    {
    {
      struct next_fnfield *next;
      struct next_fnfield *next;
      struct fn_field fn_field;
      struct fn_field fn_field;
    }
    }
   *sublist;
   *sublist;
  struct type *look_ahead_type;
  struct type *look_ahead_type;
  struct next_fnfieldlist *new_fnlist;
  struct next_fnfieldlist *new_fnlist;
  struct next_fnfield *new_sublist;
  struct next_fnfield *new_sublist;
  char *main_fn_name;
  char *main_fn_name;
  register char *p;
  register char *p;
 
 
  /* Process each list until we find something that is not a member function
  /* Process each list until we find something that is not a member function
     or find the end of the functions. */
     or find the end of the functions. */
 
 
  while (**pp != ';')
  while (**pp != ';')
    {
    {
      /* We should be positioned at the start of the function name.
      /* We should be positioned at the start of the function name.
         Scan forward to find the first ':' and if it is not the
         Scan forward to find the first ':' and if it is not the
         first of a "::" delimiter, then this is not a member function. */
         first of a "::" delimiter, then this is not a member function. */
      p = *pp;
      p = *pp;
      while (*p != ':')
      while (*p != ':')
        {
        {
          p++;
          p++;
        }
        }
      if (p[1] != ':')
      if (p[1] != ':')
        {
        {
          break;
          break;
        }
        }
 
 
      sublist = NULL;
      sublist = NULL;
      look_ahead_type = NULL;
      look_ahead_type = NULL;
      length = 0;
      length = 0;
 
 
      new_fnlist = (struct next_fnfieldlist *)
      new_fnlist = (struct next_fnfieldlist *)
        xmalloc (sizeof (struct next_fnfieldlist));
        xmalloc (sizeof (struct next_fnfieldlist));
      make_cleanup (free, new_fnlist);
      make_cleanup (free, new_fnlist);
      memset (new_fnlist, 0, sizeof (struct next_fnfieldlist));
      memset (new_fnlist, 0, sizeof (struct next_fnfieldlist));
 
 
      if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && is_cplus_marker ((*pp)[2]))
      if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && is_cplus_marker ((*pp)[2]))
        {
        {
          /* This is a completely wierd case.  In order to stuff in the
          /* This is a completely wierd case.  In order to stuff in the
             names that might contain colons (the usual name delimiter),
             names that might contain colons (the usual name delimiter),
             Mike Tiemann defined a different name format which is
             Mike Tiemann defined a different name format which is
             signalled if the identifier is "op$".  In that case, the
             signalled if the identifier is "op$".  In that case, the
             format is "op$::XXXX." where XXXX is the name.  This is
             format is "op$::XXXX." where XXXX is the name.  This is
             used for names like "+" or "=".  YUUUUUUUK!  FIXME!  */
             used for names like "+" or "=".  YUUUUUUUK!  FIXME!  */
          /* This lets the user type "break operator+".
          /* This lets the user type "break operator+".
             We could just put in "+" as the name, but that wouldn't
             We could just put in "+" as the name, but that wouldn't
             work for "*".  */
             work for "*".  */
          static char opname[32] =
          static char opname[32] =
          {'o', 'p', CPLUS_MARKER};
          {'o', 'p', CPLUS_MARKER};
          char *o = opname + 3;
          char *o = opname + 3;
 
 
          /* Skip past '::'.  */
          /* Skip past '::'.  */
          *pp = p + 2;
          *pp = p + 2;
 
 
          STABS_CONTINUE (pp, objfile);
          STABS_CONTINUE (pp, objfile);
          p = *pp;
          p = *pp;
          while (*p != '.')
          while (*p != '.')
            {
            {
              *o++ = *p++;
              *o++ = *p++;
            }
            }
          main_fn_name = savestring (opname, o - opname);
          main_fn_name = savestring (opname, o - opname);
          /* Skip past '.'  */
          /* Skip past '.'  */
          *pp = p + 1;
          *pp = p + 1;
        }
        }
      else
      else
        {
        {
          main_fn_name = savestring (*pp, p - *pp);
          main_fn_name = savestring (*pp, p - *pp);
          /* Skip past '::'.  */
          /* Skip past '::'.  */
          *pp = p + 2;
          *pp = p + 2;
        }
        }
      new_fnlist->fn_fieldlist.name = main_fn_name;
      new_fnlist->fn_fieldlist.name = main_fn_name;
 
 
      do
      do
        {
        {
          new_sublist =
          new_sublist =
            (struct next_fnfield *) xmalloc (sizeof (struct next_fnfield));
            (struct next_fnfield *) xmalloc (sizeof (struct next_fnfield));
          make_cleanup (free, new_sublist);
          make_cleanup (free, new_sublist);
          memset (new_sublist, 0, sizeof (struct next_fnfield));
          memset (new_sublist, 0, sizeof (struct next_fnfield));
 
 
          /* Check for and handle cretinous dbx symbol name continuation!  */
          /* Check for and handle cretinous dbx symbol name continuation!  */
          if (look_ahead_type == NULL)
          if (look_ahead_type == NULL)
            {
            {
              /* Normal case. */
              /* Normal case. */
              STABS_CONTINUE (pp, objfile);
              STABS_CONTINUE (pp, objfile);
 
 
              new_sublist->fn_field.type = read_type (pp, objfile);
              new_sublist->fn_field.type = read_type (pp, objfile);
              if (**pp != ':')
              if (**pp != ':')
                {
                {
                  /* Invalid symtab info for member function.  */
                  /* Invalid symtab info for member function.  */
                  return 0;
                  return 0;
                }
                }
            }
            }
          else
          else
            {
            {
              /* g++ version 1 kludge */
              /* g++ version 1 kludge */
              new_sublist->fn_field.type = look_ahead_type;
              new_sublist->fn_field.type = look_ahead_type;
              look_ahead_type = NULL;
              look_ahead_type = NULL;
            }
            }
 
 
          (*pp)++;
          (*pp)++;
          p = *pp;
          p = *pp;
          while (*p != ';')
          while (*p != ';')
            {
            {
              p++;
              p++;
            }
            }
 
 
          /* If this is just a stub, then we don't have the real name here. */
          /* If this is just a stub, then we don't have the real name here. */
 
 
          if (TYPE_FLAGS (new_sublist->fn_field.type) & TYPE_FLAG_STUB)
          if (TYPE_FLAGS (new_sublist->fn_field.type) & TYPE_FLAG_STUB)
            {
            {
              if (!TYPE_DOMAIN_TYPE (new_sublist->fn_field.type))
              if (!TYPE_DOMAIN_TYPE (new_sublist->fn_field.type))
                TYPE_DOMAIN_TYPE (new_sublist->fn_field.type) = type;
                TYPE_DOMAIN_TYPE (new_sublist->fn_field.type) = type;
              new_sublist->fn_field.is_stub = 1;
              new_sublist->fn_field.is_stub = 1;
            }
            }
          new_sublist->fn_field.physname = savestring (*pp, p - *pp);
          new_sublist->fn_field.physname = savestring (*pp, p - *pp);
          *pp = p + 1;
          *pp = p + 1;
 
 
          /* Set this member function's visibility fields.  */
          /* Set this member function's visibility fields.  */
          switch (*(*pp)++)
          switch (*(*pp)++)
            {
            {
            case VISIBILITY_PRIVATE:
            case VISIBILITY_PRIVATE:
              new_sublist->fn_field.is_private = 1;
              new_sublist->fn_field.is_private = 1;
              break;
              break;
            case VISIBILITY_PROTECTED:
            case VISIBILITY_PROTECTED:
              new_sublist->fn_field.is_protected = 1;
              new_sublist->fn_field.is_protected = 1;
              break;
              break;
            }
            }
 
 
          STABS_CONTINUE (pp, objfile);
          STABS_CONTINUE (pp, objfile);
          switch (**pp)
          switch (**pp)
            {
            {
            case 'A':           /* Normal functions. */
            case 'A':           /* Normal functions. */
              new_sublist->fn_field.is_const = 0;
              new_sublist->fn_field.is_const = 0;
              new_sublist->fn_field.is_volatile = 0;
              new_sublist->fn_field.is_volatile = 0;
              (*pp)++;
              (*pp)++;
              break;
              break;
            case 'B':           /* `const' member functions. */
            case 'B':           /* `const' member functions. */
              new_sublist->fn_field.is_const = 1;
              new_sublist->fn_field.is_const = 1;
              new_sublist->fn_field.is_volatile = 0;
              new_sublist->fn_field.is_volatile = 0;
              (*pp)++;
              (*pp)++;
              break;
              break;
            case 'C':           /* `volatile' member function. */
            case 'C':           /* `volatile' member function. */
              new_sublist->fn_field.is_const = 0;
              new_sublist->fn_field.is_const = 0;
              new_sublist->fn_field.is_volatile = 1;
              new_sublist->fn_field.is_volatile = 1;
              (*pp)++;
              (*pp)++;
              break;
              break;
            case 'D':           /* `const volatile' member function. */
            case 'D':           /* `const volatile' member function. */
              new_sublist->fn_field.is_const = 1;
              new_sublist->fn_field.is_const = 1;
              new_sublist->fn_field.is_volatile = 1;
              new_sublist->fn_field.is_volatile = 1;
              (*pp)++;
              (*pp)++;
              break;
              break;
            case '*':           /* File compiled with g++ version 1 -- no info */
            case '*':           /* File compiled with g++ version 1 -- no info */
            case '?':
            case '?':
            case '.':
            case '.':
              break;
              break;
            default:
            default:
              complain (&const_vol_complaint, **pp);
              complain (&const_vol_complaint, **pp);
              break;
              break;
            }
            }
 
 
          switch (*(*pp)++)
          switch (*(*pp)++)
            {
            {
            case '*':
            case '*':
              {
              {
                int nbits;
                int nbits;
                /* virtual member function, followed by index.
                /* virtual member function, followed by index.
                   The sign bit is set to distinguish pointers-to-methods
                   The sign bit is set to distinguish pointers-to-methods
                   from virtual function indicies.  Since the array is
                   from virtual function indicies.  Since the array is
                   in words, the quantity must be shifted left by 1
                   in words, the quantity must be shifted left by 1
                   on 16 bit machine, and by 2 on 32 bit machine, forcing
                   on 16 bit machine, and by 2 on 32 bit machine, forcing
                   the sign bit out, and usable as a valid index into
                   the sign bit out, and usable as a valid index into
                   the array.  Remove the sign bit here.  */
                   the array.  Remove the sign bit here.  */
                new_sublist->fn_field.voffset =
                new_sublist->fn_field.voffset =
                  (0x7fffffff & read_huge_number (pp, ';', &nbits)) + 2;
                  (0x7fffffff & read_huge_number (pp, ';', &nbits)) + 2;
                if (nbits != 0)
                if (nbits != 0)
                  return 0;
                  return 0;
 
 
                STABS_CONTINUE (pp, objfile);
                STABS_CONTINUE (pp, objfile);
                if (**pp == ';' || **pp == '\0')
                if (**pp == ';' || **pp == '\0')
                  {
                  {
                    /* Must be g++ version 1.  */
                    /* Must be g++ version 1.  */
                    new_sublist->fn_field.fcontext = 0;
                    new_sublist->fn_field.fcontext = 0;
                  }
                  }
                else
                else
                  {
                  {
                    /* Figure out from whence this virtual function came.
                    /* Figure out from whence this virtual function came.
                       It may belong to virtual function table of
                       It may belong to virtual function table of
                       one of its baseclasses.  */
                       one of its baseclasses.  */
                    look_ahead_type = read_type (pp, objfile);
                    look_ahead_type = read_type (pp, objfile);
                    if (**pp == ':')
                    if (**pp == ':')
                      {
                      {
                        /* g++ version 1 overloaded methods. */
                        /* g++ version 1 overloaded methods. */
                      }
                      }
                    else
                    else
                      {
                      {
                        new_sublist->fn_field.fcontext = look_ahead_type;
                        new_sublist->fn_field.fcontext = look_ahead_type;
                        if (**pp != ';')
                        if (**pp != ';')
                          {
                          {
                            return 0;
                            return 0;
                          }
                          }
                        else
                        else
                          {
                          {
                            ++*pp;
                            ++*pp;
                          }
                          }
                        look_ahead_type = NULL;
                        look_ahead_type = NULL;
                      }
                      }
                  }
                  }
                break;
                break;
              }
              }
            case '?':
            case '?':
              /* static member function.  */
              /* static member function.  */
              new_sublist->fn_field.voffset = VOFFSET_STATIC;
              new_sublist->fn_field.voffset = VOFFSET_STATIC;
              if (strncmp (new_sublist->fn_field.physname,
              if (strncmp (new_sublist->fn_field.physname,
                           main_fn_name, strlen (main_fn_name)))
                           main_fn_name, strlen (main_fn_name)))
                {
                {
                  new_sublist->fn_field.is_stub = 1;
                  new_sublist->fn_field.is_stub = 1;
                }
                }
              break;
              break;
 
 
            default:
            default:
              /* error */
              /* error */
              complain (&member_fn_complaint, (*pp)[-1]);
              complain (&member_fn_complaint, (*pp)[-1]);
              /* Fall through into normal member function.  */
              /* Fall through into normal member function.  */
 
 
            case '.':
            case '.':
              /* normal member function.  */
              /* normal member function.  */
              new_sublist->fn_field.voffset = 0;
              new_sublist->fn_field.voffset = 0;
              new_sublist->fn_field.fcontext = 0;
              new_sublist->fn_field.fcontext = 0;
              break;
              break;
            }
            }
 
 
          new_sublist->next = sublist;
          new_sublist->next = sublist;
          sublist = new_sublist;
          sublist = new_sublist;
          length++;
          length++;
          STABS_CONTINUE (pp, objfile);
          STABS_CONTINUE (pp, objfile);
        }
        }
      while (**pp != ';' && **pp != '\0');
      while (**pp != ';' && **pp != '\0');
 
 
      (*pp)++;
      (*pp)++;
 
 
      new_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
      new_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
        obstack_alloc (&objfile->type_obstack,
        obstack_alloc (&objfile->type_obstack,
                       sizeof (struct fn_field) * length);
                       sizeof (struct fn_field) * length);
      memset (new_fnlist->fn_fieldlist.fn_fields, 0,
      memset (new_fnlist->fn_fieldlist.fn_fields, 0,
              sizeof (struct fn_field) * length);
              sizeof (struct fn_field) * length);
      for (i = length; (i--, sublist); sublist = sublist->next)
      for (i = length; (i--, sublist); sublist = sublist->next)
        {
        {
          new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
          new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
        }
        }
 
 
      new_fnlist->fn_fieldlist.length = length;
      new_fnlist->fn_fieldlist.length = length;
      new_fnlist->next = fip->fnlist;
      new_fnlist->next = fip->fnlist;
      fip->fnlist = new_fnlist;
      fip->fnlist = new_fnlist;
      nfn_fields++;
      nfn_fields++;
      total_length += length;
      total_length += length;
      STABS_CONTINUE (pp, objfile);
      STABS_CONTINUE (pp, objfile);
    }
    }
 
 
  if (nfn_fields)
  if (nfn_fields)
    {
    {
      ALLOCATE_CPLUS_STRUCT_TYPE (type);
      ALLOCATE_CPLUS_STRUCT_TYPE (type);
      TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
      TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
        TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
        TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
      memset (TYPE_FN_FIELDLISTS (type), 0,
      memset (TYPE_FN_FIELDLISTS (type), 0,
              sizeof (struct fn_fieldlist) * nfn_fields);
              sizeof (struct fn_fieldlist) * nfn_fields);
      TYPE_NFN_FIELDS (type) = nfn_fields;
      TYPE_NFN_FIELDS (type) = nfn_fields;
      TYPE_NFN_FIELDS_TOTAL (type) = total_length;
      TYPE_NFN_FIELDS_TOTAL (type) = total_length;
    }
    }
 
 
  return 1;
  return 1;
}
}
 
 
/* Special GNU C++ name.
/* Special GNU C++ name.
 
 
   Returns 1 for success, 0 for failure.  "failure" means that we can't
   Returns 1 for success, 0 for failure.  "failure" means that we can't
   keep parsing and it's time for error_type().  */
   keep parsing and it's time for error_type().  */
 
 
static int
static int
read_cpp_abbrev (fip, pp, type, objfile)
read_cpp_abbrev (fip, pp, type, objfile)
     struct field_info *fip;
     struct field_info *fip;
     char **pp;
     char **pp;
     struct type *type;
     struct type *type;
     struct objfile *objfile;
     struct objfile *objfile;
{
{
  register char *p;
  register char *p;
  char *name;
  char *name;
  char cpp_abbrev;
  char cpp_abbrev;
  struct type *context;
  struct type *context;
 
 
  p = *pp;
  p = *pp;
  if (*++p == 'v')
  if (*++p == 'v')
    {
    {
      name = NULL;
      name = NULL;
      cpp_abbrev = *++p;
      cpp_abbrev = *++p;
 
 
      *pp = p + 1;
      *pp = p + 1;
 
 
      /* At this point, *pp points to something like "22:23=*22...",
      /* At this point, *pp points to something like "22:23=*22...",
         where the type number before the ':' is the "context" and
         where the type number before the ':' is the "context" and
         everything after is a regular type definition.  Lookup the
         everything after is a regular type definition.  Lookup the
         type, find it's name, and construct the field name. */
         type, find it's name, and construct the field name. */
 
 
      context = read_type (pp, objfile);
      context = read_type (pp, objfile);
 
 
      switch (cpp_abbrev)
      switch (cpp_abbrev)
        {
        {
        case 'f':               /* $vf -- a virtual function table pointer */
        case 'f':               /* $vf -- a virtual function table pointer */
          fip->list->field.name =
          fip->list->field.name =
            obconcat (&objfile->type_obstack, vptr_name, "", "");
            obconcat (&objfile->type_obstack, vptr_name, "", "");
          break;
          break;
 
 
        case 'b':               /* $vb -- a virtual bsomethingorother */
        case 'b':               /* $vb -- a virtual bsomethingorother */
          name = type_name_no_tag (context);
          name = type_name_no_tag (context);
          if (name == NULL)
          if (name == NULL)
            {
            {
              complain (&invalid_cpp_type_complaint, symnum);
              complain (&invalid_cpp_type_complaint, symnum);
              name = "FOO";
              name = "FOO";
            }
            }
          fip->list->field.name =
          fip->list->field.name =
            obconcat (&objfile->type_obstack, vb_name, name, "");
            obconcat (&objfile->type_obstack, vb_name, name, "");
          break;
          break;
 
 
        default:
        default:
          complain (&invalid_cpp_abbrev_complaint, *pp);
          complain (&invalid_cpp_abbrev_complaint, *pp);
          fip->list->field.name =
          fip->list->field.name =
            obconcat (&objfile->type_obstack,
            obconcat (&objfile->type_obstack,
                      "INVALID_CPLUSPLUS_ABBREV", "", "");
                      "INVALID_CPLUSPLUS_ABBREV", "", "");
          break;
          break;
        }
        }
 
 
      /* At this point, *pp points to the ':'.  Skip it and read the
      /* At this point, *pp points to the ':'.  Skip it and read the
         field type. */
         field type. */
 
 
      p = ++(*pp);
      p = ++(*pp);
      if (p[-1] != ':')
      if (p[-1] != ':')
        {
        {
          complain (&invalid_cpp_abbrev_complaint, *pp);
          complain (&invalid_cpp_abbrev_complaint, *pp);
          return 0;
          return 0;
        }
        }
      fip->list->field.type = read_type (pp, objfile);
      fip->list->field.type = read_type (pp, objfile);
      if (**pp == ',')
      if (**pp == ',')
        (*pp)++;                /* Skip the comma.  */
        (*pp)++;                /* Skip the comma.  */
      else
      else
        return 0;
        return 0;
 
 
      {
      {
        int nbits;
        int nbits;
        FIELD_BITPOS (fip->list->field) = read_huge_number (pp, ';', &nbits);
        FIELD_BITPOS (fip->list->field) = read_huge_number (pp, ';', &nbits);
        if (nbits != 0)
        if (nbits != 0)
          return 0;
          return 0;
      }
      }
      /* This field is unpacked.  */
      /* This field is unpacked.  */
      FIELD_BITSIZE (fip->list->field) = 0;
      FIELD_BITSIZE (fip->list->field) = 0;
      fip->list->visibility = VISIBILITY_PRIVATE;
      fip->list->visibility = VISIBILITY_PRIVATE;
    }
    }
  else
  else
    {
    {
      complain (&invalid_cpp_abbrev_complaint, *pp);
      complain (&invalid_cpp_abbrev_complaint, *pp);
      /* We have no idea what syntax an unrecognized abbrev would have, so
      /* We have no idea what syntax an unrecognized abbrev would have, so
         better return 0.  If we returned 1, we would need to at least advance
         better return 0.  If we returned 1, we would need to at least advance
         *pp to avoid an infinite loop.  */
         *pp to avoid an infinite loop.  */
      return 0;
      return 0;
    }
    }
  return 1;
  return 1;
}
}
 
 
static void
static void
read_one_struct_field (fip, pp, p, type, objfile)
read_one_struct_field (fip, pp, p, type, objfile)
     struct field_info *fip;
     struct field_info *fip;
     char **pp;
     char **pp;
     char *p;
     char *p;
     struct type *type;
     struct type *type;
     struct objfile *objfile;
     struct objfile *objfile;
{
{
  /* The following is code to work around cfront generated stabs.
  /* The following is code to work around cfront generated stabs.
     The stabs contains full mangled name for each field.
     The stabs contains full mangled name for each field.
     We try to demangle the name and extract the field name out of it.
     We try to demangle the name and extract the field name out of it.
   */
   */
  if (ARM_DEMANGLING && current_subfile->language == language_cplus)
  if (ARM_DEMANGLING && current_subfile->language == language_cplus)
    {
    {
      char save_p;
      char save_p;
      char *dem, *dem_p;
      char *dem, *dem_p;
      save_p = *p;
      save_p = *p;
      *p = '\0';
      *p = '\0';
      dem = cplus_demangle (*pp, DMGL_ANSI | DMGL_PARAMS);
      dem = cplus_demangle (*pp, DMGL_ANSI | DMGL_PARAMS);
      if (dem != NULL)
      if (dem != NULL)
        {
        {
          dem_p = strrchr (dem, ':');
          dem_p = strrchr (dem, ':');
          if (dem_p != 0 && *(dem_p - 1) == ':')
          if (dem_p != 0 && *(dem_p - 1) == ':')
            dem_p++;
            dem_p++;
          FIELD_NAME (fip->list->field) =
          FIELD_NAME (fip->list->field) =
            obsavestring (dem_p, strlen (dem_p), &objfile->type_obstack);
            obsavestring (dem_p, strlen (dem_p), &objfile->type_obstack);
        }
        }
      else
      else
        {
        {
          FIELD_NAME (fip->list->field) =
          FIELD_NAME (fip->list->field) =
            obsavestring (*pp, p - *pp, &objfile->type_obstack);
            obsavestring (*pp, p - *pp, &objfile->type_obstack);
        }
        }
      *p = save_p;
      *p = save_p;
    }
    }
  /* end of code for cfront work around */
  /* end of code for cfront work around */
 
 
  else
  else
    fip->list->field.name =
    fip->list->field.name =
      obsavestring (*pp, p - *pp, &objfile->type_obstack);
      obsavestring (*pp, p - *pp, &objfile->type_obstack);
  *pp = p + 1;
  *pp = p + 1;
 
 
  /* This means we have a visibility for a field coming. */
  /* This means we have a visibility for a field coming. */
  if (**pp == '/')
  if (**pp == '/')
    {
    {
      (*pp)++;
      (*pp)++;
      fip->list->visibility = *(*pp)++;
      fip->list->visibility = *(*pp)++;
    }
    }
  else
  else
    {
    {
      /* normal dbx-style format, no explicit visibility */
      /* normal dbx-style format, no explicit visibility */
      fip->list->visibility = VISIBILITY_PUBLIC;
      fip->list->visibility = VISIBILITY_PUBLIC;
    }
    }
 
 
  fip->list->field.type = read_type (pp, objfile);
  fip->list->field.type = read_type (pp, objfile);
  if (**pp == ':')
  if (**pp == ':')
    {
    {
      p = ++(*pp);
      p = ++(*pp);
#if 0
#if 0
      /* Possible future hook for nested types. */
      /* Possible future hook for nested types. */
      if (**pp == '!')
      if (**pp == '!')
        {
        {
          fip->list->field.bitpos = (long) -2;  /* nested type */
          fip->list->field.bitpos = (long) -2;  /* nested type */
          p = ++(*pp);
          p = ++(*pp);
        }
        }
      else
      else
        ...;
        ...;
#endif
#endif
      while (*p != ';')
      while (*p != ';')
        {
        {
          p++;
          p++;
        }
        }
      /* Static class member.  */
      /* Static class member.  */
      SET_FIELD_PHYSNAME (fip->list->field, savestring (*pp, p - *pp));
      SET_FIELD_PHYSNAME (fip->list->field, savestring (*pp, p - *pp));
      *pp = p + 1;
      *pp = p + 1;
      return;
      return;
    }
    }
  else if (**pp != ',')
  else if (**pp != ',')
    {
    {
      /* Bad structure-type format.  */
      /* Bad structure-type format.  */
      complain (&stabs_general_complaint, "bad structure-type format");
      complain (&stabs_general_complaint, "bad structure-type format");
      return;
      return;
    }
    }
 
 
  (*pp)++;                      /* Skip the comma.  */
  (*pp)++;                      /* Skip the comma.  */
 
 
  {
  {
    int nbits;
    int nbits;
    FIELD_BITPOS (fip->list->field) = read_huge_number (pp, ',', &nbits);
    FIELD_BITPOS (fip->list->field) = read_huge_number (pp, ',', &nbits);
    if (nbits != 0)
    if (nbits != 0)
      {
      {
        complain (&stabs_general_complaint, "bad structure-type format");
        complain (&stabs_general_complaint, "bad structure-type format");
        return;
        return;
      }
      }
    FIELD_BITSIZE (fip->list->field) = read_huge_number (pp, ';', &nbits);
    FIELD_BITSIZE (fip->list->field) = read_huge_number (pp, ';', &nbits);
    if (nbits != 0)
    if (nbits != 0)
      {
      {
        complain (&stabs_general_complaint, "bad structure-type format");
        complain (&stabs_general_complaint, "bad structure-type format");
        return;
        return;
      }
      }
  }
  }
 
 
  if (FIELD_BITPOS (fip->list->field) == 0
  if (FIELD_BITPOS (fip->list->field) == 0
      && FIELD_BITSIZE (fip->list->field) == 0)
      && FIELD_BITSIZE (fip->list->field) == 0)
    {
    {
      /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
      /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
         it is a field which has been optimized out.  The correct stab for
         it is a field which has been optimized out.  The correct stab for
         this case is to use VISIBILITY_IGNORE, but that is a recent
         this case is to use VISIBILITY_IGNORE, but that is a recent
         invention.  (2) It is a 0-size array.  For example
         invention.  (2) It is a 0-size array.  For example
         union { int num; char str[0]; } foo.  Printing "<no value>" for
         union { int num; char str[0]; } foo.  Printing "<no value>" for
         str in "p foo" is OK, since foo.str (and thus foo.str[3])
         str in "p foo" is OK, since foo.str (and thus foo.str[3])
         will continue to work, and a 0-size array as a whole doesn't
         will continue to work, and a 0-size array as a whole doesn't
         have any contents to print.
         have any contents to print.
 
 
         I suspect this probably could also happen with gcc -gstabs (not
         I suspect this probably could also happen with gcc -gstabs (not
         -gstabs+) for static fields, and perhaps other C++ extensions.
         -gstabs+) for static fields, and perhaps other C++ extensions.
         Hopefully few people use -gstabs with gdb, since it is intended
         Hopefully few people use -gstabs with gdb, since it is intended
         for dbx compatibility.  */
         for dbx compatibility.  */
 
 
      /* Ignore this field.  */
      /* Ignore this field.  */
      fip->list->visibility = VISIBILITY_IGNORE;
      fip->list->visibility = VISIBILITY_IGNORE;
    }
    }
  else
  else
    {
    {
      /* Detect an unpacked field and mark it as such.
      /* Detect an unpacked field and mark it as such.
         dbx gives a bit size for all fields.
         dbx gives a bit size for all fields.
         Note that forward refs cannot be packed,
         Note that forward refs cannot be packed,
         and treat enums as if they had the width of ints.  */
         and treat enums as if they had the width of ints.  */
 
 
      struct type *field_type = check_typedef (FIELD_TYPE (fip->list->field));
      struct type *field_type = check_typedef (FIELD_TYPE (fip->list->field));
 
 
      if (TYPE_CODE (field_type) != TYPE_CODE_INT
      if (TYPE_CODE (field_type) != TYPE_CODE_INT
          && TYPE_CODE (field_type) != TYPE_CODE_RANGE
          && TYPE_CODE (field_type) != TYPE_CODE_RANGE
          && TYPE_CODE (field_type) != TYPE_CODE_BOOL
          && TYPE_CODE (field_type) != TYPE_CODE_BOOL
          && TYPE_CODE (field_type) != TYPE_CODE_ENUM)
          && TYPE_CODE (field_type) != TYPE_CODE_ENUM)
        {
        {
          FIELD_BITSIZE (fip->list->field) = 0;
          FIELD_BITSIZE (fip->list->field) = 0;
        }
        }
      if ((FIELD_BITSIZE (fip->list->field)
      if ((FIELD_BITSIZE (fip->list->field)
           == TARGET_CHAR_BIT * TYPE_LENGTH (field_type)
           == TARGET_CHAR_BIT * TYPE_LENGTH (field_type)
           || (TYPE_CODE (field_type) == TYPE_CODE_ENUM
           || (TYPE_CODE (field_type) == TYPE_CODE_ENUM
               && FIELD_BITSIZE (fip->list->field) == TARGET_INT_BIT)
               && FIELD_BITSIZE (fip->list->field) == TARGET_INT_BIT)
          )
          )
          &&
          &&
          FIELD_BITPOS (fip->list->field) % 8 == 0)
          FIELD_BITPOS (fip->list->field) % 8 == 0)
        {
        {
          FIELD_BITSIZE (fip->list->field) = 0;
          FIELD_BITSIZE (fip->list->field) = 0;
        }
        }
    }
    }
}
}
 
 
 
 
/* Read struct or class data fields.  They have the form:
/* Read struct or class data fields.  They have the form:
 
 
   NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
   NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
 
 
   At the end, we see a semicolon instead of a field.
   At the end, we see a semicolon instead of a field.
 
 
   In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
   In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
   a static field.
   a static field.
 
 
   The optional VISIBILITY is one of:
   The optional VISIBILITY is one of:
 
 
   '/0' (VISIBILITY_PRIVATE)
   '/0' (VISIBILITY_PRIVATE)
   '/1' (VISIBILITY_PROTECTED)
   '/1' (VISIBILITY_PROTECTED)
   '/2' (VISIBILITY_PUBLIC)
   '/2' (VISIBILITY_PUBLIC)
   '/9' (VISIBILITY_IGNORE)
   '/9' (VISIBILITY_IGNORE)
 
 
   or nothing, for C style fields with public visibility.
   or nothing, for C style fields with public visibility.
 
 
   Returns 1 for success, 0 for failure.  */
   Returns 1 for success, 0 for failure.  */
 
 
static int
static int
read_struct_fields (fip, pp, type, objfile)
read_struct_fields (fip, pp, type, objfile)
     struct field_info *fip;
     struct field_info *fip;
     char **pp;
     char **pp;
     struct type *type;
     struct type *type;
     struct objfile *objfile;
     struct objfile *objfile;
{
{
  register char *p;
  register char *p;
  struct nextfield *new;
  struct nextfield *new;
 
 
  /* We better set p right now, in case there are no fields at all...    */
  /* We better set p right now, in case there are no fields at all...    */
 
 
  p = *pp;
  p = *pp;
 
 
  /* Read each data member type until we find the terminating ';' at the end of
  /* Read each data member type until we find the terminating ';' at the end of
     the data member list, or break for some other reason such as finding the
     the data member list, or break for some other reason such as finding the
     start of the member function list. */
     start of the member function list. */
 
 
  while (**pp != ';')
  while (**pp != ';')
    {
    {
      if (os9k_stabs && **pp == ',')
      if (os9k_stabs && **pp == ',')
        break;
        break;
      STABS_CONTINUE (pp, objfile);
      STABS_CONTINUE (pp, objfile);
      /* Get space to record the next field's data.  */
      /* Get space to record the next field's data.  */
      new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
      new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
      make_cleanup (free, new);
      make_cleanup (free, new);
      memset (new, 0, sizeof (struct nextfield));
      memset (new, 0, sizeof (struct nextfield));
      new->next = fip->list;
      new->next = fip->list;
      fip->list = new;
      fip->list = new;
 
 
      /* Get the field name.  */
      /* Get the field name.  */
      p = *pp;
      p = *pp;
 
 
      /* If is starts with CPLUS_MARKER it is a special abbreviation,
      /* If is starts with CPLUS_MARKER it is a special abbreviation,
         unless the CPLUS_MARKER is followed by an underscore, in
         unless the CPLUS_MARKER is followed by an underscore, in
         which case it is just the name of an anonymous type, which we
         which case it is just the name of an anonymous type, which we
         should handle like any other type name.  */
         should handle like any other type name.  */
 
 
      if (is_cplus_marker (p[0]) && p[1] != '_')
      if (is_cplus_marker (p[0]) && p[1] != '_')
        {
        {
          if (!read_cpp_abbrev (fip, pp, type, objfile))
          if (!read_cpp_abbrev (fip, pp, type, objfile))
            return 0;
            return 0;
          continue;
          continue;
        }
        }
 
 
      /* Look for the ':' that separates the field name from the field
      /* Look for the ':' that separates the field name from the field
         values.  Data members are delimited by a single ':', while member
         values.  Data members are delimited by a single ':', while member
         functions are delimited by a pair of ':'s.  When we hit the member
         functions are delimited by a pair of ':'s.  When we hit the member
         functions (if any), terminate scan loop and return. */
         functions (if any), terminate scan loop and return. */
 
 
      while (*p != ':' && *p != '\0')
      while (*p != ':' && *p != '\0')
        {
        {
          p++;
          p++;
        }
        }
      if (*p == '\0')
      if (*p == '\0')
        return 0;
        return 0;
 
 
      /* Check to see if we have hit the member functions yet.  */
      /* Check to see if we have hit the member functions yet.  */
      if (p[1] == ':')
      if (p[1] == ':')
        {
        {
          break;
          break;
        }
        }
      read_one_struct_field (fip, pp, p, type, objfile);
      read_one_struct_field (fip, pp, p, type, objfile);
    }
    }
  if (p[0] == ':' && p[1] == ':')
  if (p[0] == ':' && p[1] == ':')
    {
    {
      /* chill the list of fields: the last entry (at the head) is a
      /* chill the list of fields: the last entry (at the head) is a
         partially constructed entry which we now scrub. */
         partially constructed entry which we now scrub. */
      fip->list = fip->list->next;
      fip->list = fip->list->next;
    }
    }
  return 1;
  return 1;
}
}
/* *INDENT-OFF* */
/* *INDENT-OFF* */
/* The stabs for C++ derived classes contain baseclass information which
/* The stabs for C++ derived classes contain baseclass information which
   is marked by a '!' character after the total size.  This function is
   is marked by a '!' character after the total size.  This function is
   called when we encounter the baseclass marker, and slurps up all the
   called when we encounter the baseclass marker, and slurps up all the
   baseclass information.
   baseclass information.
 
 
   Immediately following the '!' marker is the number of base classes that
   Immediately following the '!' marker is the number of base classes that
   the class is derived from, followed by information for each base class.
   the class is derived from, followed by information for each base class.
   For each base class, there are two visibility specifiers, a bit offset
   For each base class, there are two visibility specifiers, a bit offset
   to the base class information within the derived class, a reference to
   to the base class information within the derived class, a reference to
   the type for the base class, and a terminating semicolon.
   the type for the base class, and a terminating semicolon.
 
 
   A typical example, with two base classes, would be "!2,020,19;0264,21;".
   A typical example, with two base classes, would be "!2,020,19;0264,21;".
                                                       ^^ ^ ^ ^  ^ ^  ^
                                                       ^^ ^ ^ ^  ^ ^  ^
        Baseclass information marker __________________|| | | |  | |  |
        Baseclass information marker __________________|| | | |  | |  |
        Number of baseclasses __________________________| | | |  | |  |
        Number of baseclasses __________________________| | | |  | |  |
        Visibility specifiers (2) ________________________| | |  | |  |
        Visibility specifiers (2) ________________________| | |  | |  |
        Offset in bits from start of class _________________| |  | |  |
        Offset in bits from start of class _________________| |  | |  |
        Type number for base class ___________________________|  | |  |
        Type number for base class ___________________________|  | |  |
        Visibility specifiers (2) _______________________________| |  |
        Visibility specifiers (2) _______________________________| |  |
        Offset in bits from start of class ________________________|  |
        Offset in bits from start of class ________________________|  |
        Type number of base class ____________________________________|
        Type number of base class ____________________________________|
 
 
  Return 1 for success, 0 for (error-type-inducing) failure.  */
  Return 1 for success, 0 for (error-type-inducing) failure.  */
/* *INDENT-ON* */
/* *INDENT-ON* */
 
 
 
 
 
 
static int
static int
read_baseclasses (fip, pp, type, objfile)
read_baseclasses (fip, pp, type, objfile)
     struct field_info *fip;
     struct field_info *fip;
     char **pp;
     char **pp;
     struct type *type;
     struct type *type;
     struct objfile *objfile;
     struct objfile *objfile;
{
{
  int i;
  int i;
  struct nextfield *new;
  struct nextfield *new;
 
 
  if (**pp != '!')
  if (**pp != '!')
    {
    {
      return 1;
      return 1;
    }
    }
  else
  else
    {
    {
      /* Skip the '!' baseclass information marker. */
      /* Skip the '!' baseclass information marker. */
      (*pp)++;
      (*pp)++;
    }
    }
 
 
  ALLOCATE_CPLUS_STRUCT_TYPE (type);
  ALLOCATE_CPLUS_STRUCT_TYPE (type);
  {
  {
    int nbits;
    int nbits;
    TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits);
    TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits);
    if (nbits != 0)
    if (nbits != 0)
      return 0;
      return 0;
  }
  }
 
 
#if 0
#if 0
  /* Some stupid compilers have trouble with the following, so break
  /* Some stupid compilers have trouble with the following, so break
     it up into simpler expressions.  */
     it up into simpler expressions.  */
  TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
  TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
    TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
    TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
#else
#else
  {
  {
    int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
    int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
    char *pointer;
    char *pointer;
 
 
    pointer = (char *) TYPE_ALLOC (type, num_bytes);
    pointer = (char *) TYPE_ALLOC (type, num_bytes);
    TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
    TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
  }
  }
#endif /* 0 */
#endif /* 0 */
 
 
  B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
  B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
 
 
  for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
  for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
    {
    {
      new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
      new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
      make_cleanup (free, new);
      make_cleanup (free, new);
      memset (new, 0, sizeof (struct nextfield));
      memset (new, 0, sizeof (struct nextfield));
      new->next = fip->list;
      new->next = fip->list;
      fip->list = new;
      fip->list = new;
      FIELD_BITSIZE (new->field) = 0;    /* this should be an unpacked field! */
      FIELD_BITSIZE (new->field) = 0;    /* this should be an unpacked field! */
 
 
      STABS_CONTINUE (pp, objfile);
      STABS_CONTINUE (pp, objfile);
      switch (**pp)
      switch (**pp)
        {
        {
        case '0':
        case '0':
          /* Nothing to do. */
          /* Nothing to do. */
          break;
          break;
        case '1':
        case '1':
          SET_TYPE_FIELD_VIRTUAL (type, i);
          SET_TYPE_FIELD_VIRTUAL (type, i);
          break;
          break;
        default:
        default:
          /* Unknown character.  Complain and treat it as non-virtual.  */
          /* Unknown character.  Complain and treat it as non-virtual.  */
          {
          {
            static struct complaint msg =
            static struct complaint msg =
            {
            {
              "Unknown virtual character `%c' for baseclass", 0, 0};
              "Unknown virtual character `%c' for baseclass", 0, 0};
            complain (&msg, **pp);
            complain (&msg, **pp);
          }
          }
        }
        }
      ++(*pp);
      ++(*pp);
 
 
      new->visibility = *(*pp)++;
      new->visibility = *(*pp)++;
      switch (new->visibility)
      switch (new->visibility)
        {
        {
        case VISIBILITY_PRIVATE:
        case VISIBILITY_PRIVATE:
        case VISIBILITY_PROTECTED:
        case VISIBILITY_PROTECTED:
        case VISIBILITY_PUBLIC:
        case VISIBILITY_PUBLIC:
          break;
          break;
        default:
        default:
          /* Bad visibility format.  Complain and treat it as
          /* Bad visibility format.  Complain and treat it as
             public.  */
             public.  */
          {
          {
            static struct complaint msg =
            static struct complaint msg =
            {
            {
              "Unknown visibility `%c' for baseclass", 0, 0
              "Unknown visibility `%c' for baseclass", 0, 0
            };
            };
            complain (&msg, new->visibility);
            complain (&msg, new->visibility);
            new->visibility = VISIBILITY_PUBLIC;
            new->visibility = VISIBILITY_PUBLIC;
          }
          }
        }
        }
 
 
      {
      {
        int nbits;
        int nbits;
 
 
        /* The remaining value is the bit offset of the portion of the object
        /* The remaining value is the bit offset of the portion of the object
           corresponding to this baseclass.  Always zero in the absence of
           corresponding to this baseclass.  Always zero in the absence of
           multiple inheritance.  */
           multiple inheritance.  */
 
 
        FIELD_BITPOS (new->field) = read_huge_number (pp, ',', &nbits);
        FIELD_BITPOS (new->field) = read_huge_number (pp, ',', &nbits);
        if (nbits != 0)
        if (nbits != 0)
          return 0;
          return 0;
      }
      }
 
 
      /* The last piece of baseclass information is the type of the
      /* The last piece of baseclass information is the type of the
         base class.  Read it, and remember it's type name as this
         base class.  Read it, and remember it's type name as this
         field's name. */
         field's name. */
 
 
      new->field.type = read_type (pp, objfile);
      new->field.type = read_type (pp, objfile);
      new->field.name = type_name_no_tag (new->field.type);
      new->field.name = type_name_no_tag (new->field.type);
 
 
      /* skip trailing ';' and bump count of number of fields seen */
      /* skip trailing ';' and bump count of number of fields seen */
      if (**pp == ';')
      if (**pp == ';')
        (*pp)++;
        (*pp)++;
      else
      else
        return 0;
        return 0;
    }
    }
  return 1;
  return 1;
}
}
 
 
/* The tail end of stabs for C++ classes that contain a virtual function
/* The tail end of stabs for C++ classes that contain a virtual function
   pointer contains a tilde, a %, and a type number.
   pointer contains a tilde, a %, and a type number.
   The type number refers to the base class (possibly this class itself) which
   The type number refers to the base class (possibly this class itself) which
   contains the vtable pointer for the current class.
   contains the vtable pointer for the current class.
 
 
   This function is called when we have parsed all the method declarations,
   This function is called when we have parsed all the method declarations,
   so we can look for the vptr base class info.  */
   so we can look for the vptr base class info.  */
 
 
static int
static int
read_tilde_fields (fip, pp, type, objfile)
read_tilde_fields (fip, pp, type, objfile)
     struct field_info *fip;
     struct field_info *fip;
     char **pp;
     char **pp;
     struct type *type;
     struct type *type;
     struct objfile *objfile;
     struct objfile *objfile;
{
{
  register char *p;
  register char *p;
 
 
  STABS_CONTINUE (pp, objfile);
  STABS_CONTINUE (pp, objfile);
 
 
  /* If we are positioned at a ';', then skip it. */
  /* If we are positioned at a ';', then skip it. */
  if (**pp == ';')
  if (**pp == ';')
    {
    {
      (*pp)++;
      (*pp)++;
    }
    }
 
 
  if (**pp == '~')
  if (**pp == '~')
    {
    {
      (*pp)++;
      (*pp)++;
 
 
      if (**pp == '=' || **pp == '+' || **pp == '-')
      if (**pp == '=' || **pp == '+' || **pp == '-')
        {
        {
          /* Obsolete flags that used to indicate the presence
          /* Obsolete flags that used to indicate the presence
             of constructors and/or destructors. */
             of constructors and/or destructors. */
          (*pp)++;
          (*pp)++;
        }
        }
 
 
      /* Read either a '%' or the final ';'.  */
      /* Read either a '%' or the final ';'.  */
      if (*(*pp)++ == '%')
      if (*(*pp)++ == '%')
        {
        {
          /* The next number is the type number of the base class
          /* The next number is the type number of the base class
             (possibly our own class) which supplies the vtable for
             (possibly our own class) which supplies the vtable for
             this class.  Parse it out, and search that class to find
             this class.  Parse it out, and search that class to find
             its vtable pointer, and install those into TYPE_VPTR_BASETYPE
             its vtable pointer, and install those into TYPE_VPTR_BASETYPE
             and TYPE_VPTR_FIELDNO.  */
             and TYPE_VPTR_FIELDNO.  */
 
 
          struct type *t;
          struct type *t;
          int i;
          int i;
 
 
          t = read_type (pp, objfile);
          t = read_type (pp, objfile);
          p = (*pp)++;
          p = (*pp)++;
          while (*p != '\0' && *p != ';')
          while (*p != '\0' && *p != ';')
            {
            {
              p++;
              p++;
            }
            }
          if (*p == '\0')
          if (*p == '\0')
            {
            {
              /* Premature end of symbol.  */
              /* Premature end of symbol.  */
              return 0;
              return 0;
            }
            }
 
 
          TYPE_VPTR_BASETYPE (type) = t;
          TYPE_VPTR_BASETYPE (type) = t;
          if (type == t)        /* Our own class provides vtbl ptr */
          if (type == t)        /* Our own class provides vtbl ptr */
            {
            {
              for (i = TYPE_NFIELDS (t) - 1;
              for (i = TYPE_NFIELDS (t) - 1;
                   i >= TYPE_N_BASECLASSES (t);
                   i >= TYPE_N_BASECLASSES (t);
                   --i)
                   --i)
                {
                {
                  if (!strncmp (TYPE_FIELD_NAME (t, i), vptr_name,
                  if (!strncmp (TYPE_FIELD_NAME (t, i), vptr_name,
                                sizeof (vptr_name) - 1))
                                sizeof (vptr_name) - 1))
                    {
                    {
                      TYPE_VPTR_FIELDNO (type) = i;
                      TYPE_VPTR_FIELDNO (type) = i;
                      goto gotit;
                      goto gotit;
                    }
                    }
                }
                }
              /* Virtual function table field not found.  */
              /* Virtual function table field not found.  */
              complain (&vtbl_notfound_complaint, TYPE_NAME (type));
              complain (&vtbl_notfound_complaint, TYPE_NAME (type));
              return 0;
              return 0;
            }
            }
          else
          else
            {
            {
              TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
              TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
            }
            }
 
 
        gotit:
        gotit:
          *pp = p + 1;
          *pp = p + 1;
        }
        }
    }
    }
  return 1;
  return 1;
}
}
 
 
static int
static int
attach_fn_fields_to_type (fip, type)
attach_fn_fields_to_type (fip, type)
     struct field_info *fip;
     struct field_info *fip;
     register struct type *type;
     register struct type *type;
{
{
  register int n;
  register int n;
 
 
  for (n = TYPE_NFN_FIELDS (type);
  for (n = TYPE_NFN_FIELDS (type);
       fip->fnlist != NULL;
       fip->fnlist != NULL;
       fip->fnlist = fip->fnlist->next)
       fip->fnlist = fip->fnlist->next)
    {
    {
      --n;                      /* Circumvent Sun3 compiler bug */
      --n;                      /* Circumvent Sun3 compiler bug */
      TYPE_FN_FIELDLISTS (type)[n] = fip->fnlist->fn_fieldlist;
      TYPE_FN_FIELDLISTS (type)[n] = fip->fnlist->fn_fieldlist;
    }
    }
  return 1;
  return 1;
}
}
 
 
/* read cfront class static data.
/* read cfront class static data.
   pp points to string starting with the list of static data
   pp points to string starting with the list of static data
   eg: A:ZcA;1@Bpub v2@Bvirpri;__ct__1AFv func__1AFv *sfunc__1AFv ;as__1A ;;
   eg: A:ZcA;1@Bpub v2@Bvirpri;__ct__1AFv func__1AFv *sfunc__1AFv ;as__1A ;;
   ^^^^^^^^
   ^^^^^^^^
 
 
   A:ZcA;;foopri__1AFv foopro__1AFv __ct__1AFv __ct__1AFRC1A foopub__1AFv ;;;
   A:ZcA;;foopri__1AFv foopro__1AFv __ct__1AFv __ct__1AFRC1A foopub__1AFv ;;;
   ^
   ^
 */
 */
 
 
static int
static int
read_cfront_static_fields (fip, pp, type, objfile)
read_cfront_static_fields (fip, pp, type, objfile)
     struct field_info *fip;
     struct field_info *fip;
     char **pp;
     char **pp;
     struct type *type;
     struct type *type;
     struct objfile *objfile;
     struct objfile *objfile;
{
{
  struct nextfield *new;
  struct nextfield *new;
  struct type *stype;
  struct type *stype;
  char *sname;
  char *sname;
  struct symbol *ref_static = 0;
  struct symbol *ref_static = 0;
 
 
  if (**pp == ';')              /* no static data; return */
  if (**pp == ';')              /* no static data; return */
    {
    {
      ++(*pp);
      ++(*pp);
      return 1;
      return 1;
    }
    }
 
 
  /* Process each field in the list until we find the terminating ";" */
  /* Process each field in the list until we find the terminating ";" */
 
 
  /* eg: p = "as__1A ;;;" */
  /* eg: p = "as__1A ;;;" */
  STABS_CONTINUE (pp, objfile); /* handle \\ */
  STABS_CONTINUE (pp, objfile); /* handle \\ */
  while (**pp != ';' && (sname = get_substring (pp, ' '), sname))
  while (**pp != ';' && (sname = get_substring (pp, ' '), sname))
    {
    {
      ref_static = lookup_symbol (sname, 0, VAR_NAMESPACE, 0, 0);  /*demangled_name */
      ref_static = lookup_symbol (sname, 0, VAR_NAMESPACE, 0, 0);  /*demangled_name */
      if (!ref_static)
      if (!ref_static)
        {
        {
          static struct complaint msg =
          static struct complaint msg =
          {"\
          {"\
                Unable to find symbol for static data field %s\n",
                Unable to find symbol for static data field %s\n",
           0, 0};
           0, 0};
          complain (&msg, sname);
          complain (&msg, sname);
          continue;
          continue;
        }
        }
      stype = SYMBOL_TYPE (ref_static);
      stype = SYMBOL_TYPE (ref_static);
 
 
      /* allocate a new fip */
      /* allocate a new fip */
      new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
      new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
      make_cleanup (free, new);
      make_cleanup (free, new);
      memset (new, 0, sizeof (struct nextfield));
      memset (new, 0, sizeof (struct nextfield));
      new->next = fip->list;
      new->next = fip->list;
      fip->list = new;
      fip->list = new;
 
 
      /* set visibility */
      /* set visibility */
      /* FIXME! no way to tell visibility from stabs??? */
      /* FIXME! no way to tell visibility from stabs??? */
      new->visibility = VISIBILITY_PUBLIC;
      new->visibility = VISIBILITY_PUBLIC;
 
 
      /* set field info into fip */
      /* set field info into fip */
      fip->list->field.type = stype;
      fip->list->field.type = stype;
 
 
      /* set bitpos & bitsize */
      /* set bitpos & bitsize */
      SET_FIELD_PHYSNAME (fip->list->field, savestring (sname, strlen (sname)));
      SET_FIELD_PHYSNAME (fip->list->field, savestring (sname, strlen (sname)));
 
 
      /* set name field */
      /* set name field */
      /* The following is code to work around cfront generated stabs.
      /* The following is code to work around cfront generated stabs.
         The stabs contains full mangled name for each field.
         The stabs contains full mangled name for each field.
         We try to demangle the name and extract the field name out of it.
         We try to demangle the name and extract the field name out of it.
       */
       */
      if (ARM_DEMANGLING)
      if (ARM_DEMANGLING)
        {
        {
          char *dem, *dem_p;
          char *dem, *dem_p;
          dem = cplus_demangle (sname, DMGL_ANSI | DMGL_PARAMS);
          dem = cplus_demangle (sname, DMGL_ANSI | DMGL_PARAMS);
          if (dem != NULL)
          if (dem != NULL)
            {
            {
              dem_p = strrchr (dem, ':');
              dem_p = strrchr (dem, ':');
              if (dem_p != 0 && *(dem_p - 1) == ':')
              if (dem_p != 0 && *(dem_p - 1) == ':')
                dem_p++;
                dem_p++;
              fip->list->field.name =
              fip->list->field.name =
                obsavestring (dem_p, strlen (dem_p), &objfile->type_obstack);
                obsavestring (dem_p, strlen (dem_p), &objfile->type_obstack);
            }
            }
          else
          else
            {
            {
              fip->list->field.name =
              fip->list->field.name =
                obsavestring (sname, strlen (sname), &objfile->type_obstack);
                obsavestring (sname, strlen (sname), &objfile->type_obstack);
            }
            }
        }                       /* end of code for cfront work around */
        }                       /* end of code for cfront work around */
    }                           /* loop again for next static field */
    }                           /* loop again for next static field */
  return 1;
  return 1;
}
}
 
 
/* Copy structure fields to fip so attach_fields_to_type will work.
/* Copy structure fields to fip so attach_fields_to_type will work.
   type has already been created with the initial instance data fields.
   type has already been created with the initial instance data fields.
   Now we want to be able to add the other members to the class,
   Now we want to be able to add the other members to the class,
   so we want to add them back to the fip and reattach them again
   so we want to add them back to the fip and reattach them again
   once we have collected all the class members. */
   once we have collected all the class members. */
 
 
static int
static int
copy_cfront_struct_fields (fip, type, objfile)
copy_cfront_struct_fields (fip, type, objfile)
     struct field_info *fip;
     struct field_info *fip;
     struct type *type;
     struct type *type;
     struct objfile *objfile;
     struct objfile *objfile;
{
{
  int nfields = TYPE_NFIELDS (type);
  int nfields = TYPE_NFIELDS (type);
  int i;
  int i;
  struct nextfield *new;
  struct nextfield *new;
 
 
  /* Copy the fields into the list of fips and reset the types
  /* Copy the fields into the list of fips and reset the types
     to remove the old fields */
     to remove the old fields */
 
 
  for (i = 0; i < nfields; i++)
  for (i = 0; i < nfields; i++)
    {
    {
      /* allocate a new fip */
      /* allocate a new fip */
      new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
      new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
      make_cleanup (free, new);
      make_cleanup (free, new);
      memset (new, 0, sizeof (struct nextfield));
      memset (new, 0, sizeof (struct nextfield));
      new->next = fip->list;
      new->next = fip->list;
      fip->list = new;
      fip->list = new;
 
 
      /* copy field info into fip */
      /* copy field info into fip */
      new->field = TYPE_FIELD (type, i);
      new->field = TYPE_FIELD (type, i);
      /* set visibility */
      /* set visibility */
      if (TYPE_FIELD_PROTECTED (type, i))
      if (TYPE_FIELD_PROTECTED (type, i))
        new->visibility = VISIBILITY_PROTECTED;
        new->visibility = VISIBILITY_PROTECTED;
      else if (TYPE_FIELD_PRIVATE (type, i))
      else if (TYPE_FIELD_PRIVATE (type, i))
        new->visibility = VISIBILITY_PRIVATE;
        new->visibility = VISIBILITY_PRIVATE;
      else
      else
        new->visibility = VISIBILITY_PUBLIC;
        new->visibility = VISIBILITY_PUBLIC;
    }
    }
  /* Now delete the fields from the type since we will be
  /* Now delete the fields from the type since we will be
     allocing new space once we get the rest of the fields
     allocing new space once we get the rest of the fields
     in attach_fields_to_type.
     in attach_fields_to_type.
     The pointer TYPE_FIELDS(type) is left dangling but should
     The pointer TYPE_FIELDS(type) is left dangling but should
     be freed later by objstack_free */
     be freed later by objstack_free */
  TYPE_FIELDS (type) = 0;
  TYPE_FIELDS (type) = 0;
  TYPE_NFIELDS (type) = 0;
  TYPE_NFIELDS (type) = 0;
 
 
  return 1;
  return 1;
}
}
 
 
/* Create the vector of fields, and record how big it is.
/* Create the vector of fields, and record how big it is.
   We need this info to record proper virtual function table information
   We need this info to record proper virtual function table information
   for this class's virtual functions.  */
   for this class's virtual functions.  */
 
 
static int
static int
attach_fields_to_type (fip, type, objfile)
attach_fields_to_type (fip, type, objfile)
     struct field_info *fip;
     struct field_info *fip;
     register struct type *type;
     register struct type *type;
     struct objfile *objfile;
     struct objfile *objfile;
{
{
  register int nfields = 0;
  register int nfields = 0;
  register int non_public_fields = 0;
  register int non_public_fields = 0;
  register struct nextfield *scan;
  register struct nextfield *scan;
 
 
  /* Count up the number of fields that we have, as well as taking note of
  /* Count up the number of fields that we have, as well as taking note of
     whether or not there are any non-public fields, which requires us to
     whether or not there are any non-public fields, which requires us to
     allocate and build the private_field_bits and protected_field_bits
     allocate and build the private_field_bits and protected_field_bits
     bitfields. */
     bitfields. */
 
 
  for (scan = fip->list; scan != NULL; scan = scan->next)
  for (scan = fip->list; scan != NULL; scan = scan->next)
    {
    {
      nfields++;
      nfields++;
      if (scan->visibility != VISIBILITY_PUBLIC)
      if (scan->visibility != VISIBILITY_PUBLIC)
        {
        {
          non_public_fields++;
          non_public_fields++;
        }
        }
    }
    }
 
 
  /* Now we know how many fields there are, and whether or not there are any
  /* Now we know how many fields there are, and whether or not there are any
     non-public fields.  Record the field count, allocate space for the
     non-public fields.  Record the field count, allocate space for the
     array of fields, and create blank visibility bitfields if necessary. */
     array of fields, and create blank visibility bitfields if necessary. */
 
 
  TYPE_NFIELDS (type) = nfields;
  TYPE_NFIELDS (type) = nfields;
  TYPE_FIELDS (type) = (struct field *)
  TYPE_FIELDS (type) = (struct field *)
    TYPE_ALLOC (type, sizeof (struct field) * nfields);
    TYPE_ALLOC (type, sizeof (struct field) * nfields);
  memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
  memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
 
 
  if (non_public_fields)
  if (non_public_fields)
    {
    {
      ALLOCATE_CPLUS_STRUCT_TYPE (type);
      ALLOCATE_CPLUS_STRUCT_TYPE (type);
 
 
      TYPE_FIELD_PRIVATE_BITS (type) =
      TYPE_FIELD_PRIVATE_BITS (type) =
        (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
        (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
      B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
      B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
 
 
      TYPE_FIELD_PROTECTED_BITS (type) =
      TYPE_FIELD_PROTECTED_BITS (type) =
        (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
        (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
      B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
      B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
 
 
      TYPE_FIELD_IGNORE_BITS (type) =
      TYPE_FIELD_IGNORE_BITS (type) =
        (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
        (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
      B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
      B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
    }
    }
 
 
  /* Copy the saved-up fields into the field vector.  Start from the head
  /* Copy the saved-up fields into the field vector.  Start from the head
     of the list, adding to the tail of the field array, so that they end
     of the list, adding to the tail of the field array, so that they end
     up in the same order in the array in which they were added to the list. */
     up in the same order in the array in which they were added to the list. */
 
 
  while (nfields-- > 0)
  while (nfields-- > 0)
    {
    {
      TYPE_FIELD (type, nfields) = fip->list->field;
      TYPE_FIELD (type, nfields) = fip->list->field;
      switch (fip->list->visibility)
      switch (fip->list->visibility)
        {
        {
        case VISIBILITY_PRIVATE:
        case VISIBILITY_PRIVATE:
          SET_TYPE_FIELD_PRIVATE (type, nfields);
          SET_TYPE_FIELD_PRIVATE (type, nfields);
          break;
          break;
 
 
        case VISIBILITY_PROTECTED:
        case VISIBILITY_PROTECTED:
          SET_TYPE_FIELD_PROTECTED (type, nfields);
          SET_TYPE_FIELD_PROTECTED (type, nfields);
          break;
          break;
 
 
        case VISIBILITY_IGNORE:
        case VISIBILITY_IGNORE:
          SET_TYPE_FIELD_IGNORE (type, nfields);
          SET_TYPE_FIELD_IGNORE (type, nfields);
          break;
          break;
 
 
        case VISIBILITY_PUBLIC:
        case VISIBILITY_PUBLIC:
          break;
          break;
 
 
        default:
        default:
          /* Unknown visibility.  Complain and treat it as public.  */
          /* Unknown visibility.  Complain and treat it as public.  */
          {
          {
            static struct complaint msg =
            static struct complaint msg =
            {
            {
              "Unknown visibility `%c' for field", 0, 0};
              "Unknown visibility `%c' for field", 0, 0};
            complain (&msg, fip->list->visibility);
            complain (&msg, fip->list->visibility);
          }
          }
          break;
          break;
        }
        }
      fip->list = fip->list->next;
      fip->list = fip->list->next;
    }
    }
  return 1;
  return 1;
}
}
 
 
/* Read the description of a structure (or union type) and return an object
/* Read the description of a structure (or union type) and return an object
   describing the type.
   describing the type.
 
 
   PP points to a character pointer that points to the next unconsumed token
   PP points to a character pointer that points to the next unconsumed token
   in the the stabs string.  For example, given stabs "A:T4=s4a:1,0,32;;",
   in the the stabs string.  For example, given stabs "A:T4=s4a:1,0,32;;",
   *PP will point to "4a:1,0,32;;".
   *PP will point to "4a:1,0,32;;".
 
 
   TYPE points to an incomplete type that needs to be filled in.
   TYPE points to an incomplete type that needs to be filled in.
 
 
   OBJFILE points to the current objfile from which the stabs information is
   OBJFILE points to the current objfile from which the stabs information is
   being read.  (Note that it is redundant in that TYPE also contains a pointer
   being read.  (Note that it is redundant in that TYPE also contains a pointer
   to this same objfile, so it might be a good idea to eliminate it.  FIXME).
   to this same objfile, so it might be a good idea to eliminate it.  FIXME).
 */
 */
 
 
static struct type *
static struct type *
read_struct_type (pp, type, objfile)
read_struct_type (pp, type, objfile)
     char **pp;
     char **pp;
     struct type *type;
     struct type *type;
     struct objfile *objfile;
     struct objfile *objfile;
{
{
  struct cleanup *back_to;
  struct cleanup *back_to;
  struct field_info fi;
  struct field_info fi;
 
 
  fi.list = NULL;
  fi.list = NULL;
  fi.fnlist = NULL;
  fi.fnlist = NULL;
 
 
  back_to = make_cleanup (null_cleanup, 0);
  back_to = make_cleanup (null_cleanup, 0);
 
 
  INIT_CPLUS_SPECIFIC (type);
  INIT_CPLUS_SPECIFIC (type);
  TYPE_FLAGS (type) &= ~TYPE_FLAG_STUB;
  TYPE_FLAGS (type) &= ~TYPE_FLAG_STUB;
 
 
  /* First comes the total size in bytes.  */
  /* First comes the total size in bytes.  */
 
 
  {
  {
    int nbits;
    int nbits;
    TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits);
    TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits);
    if (nbits != 0)
    if (nbits != 0)
      return error_type (pp, objfile);
      return error_type (pp, objfile);
  }
  }
 
 
  /* Now read the baseclasses, if any, read the regular C struct or C++
  /* Now read the baseclasses, if any, read the regular C struct or C++
     class member fields, attach the fields to the type, read the C++
     class member fields, attach the fields to the type, read the C++
     member functions, attach them to the type, and then read any tilde
     member functions, attach them to the type, and then read any tilde
     field (baseclass specifier for the class holding the main vtable). */
     field (baseclass specifier for the class holding the main vtable). */
 
 
  if (!read_baseclasses (&fi, pp, type, objfile)
  if (!read_baseclasses (&fi, pp, type, objfile)
      || !read_struct_fields (&fi, pp, type, objfile)
      || !read_struct_fields (&fi, pp, type, objfile)
      || !attach_fields_to_type (&fi, type, objfile)
      || !attach_fields_to_type (&fi, type, objfile)
      || !read_member_functions (&fi, pp, type, objfile)
      || !read_member_functions (&fi, pp, type, objfile)
      || !attach_fn_fields_to_type (&fi, type)
      || !attach_fn_fields_to_type (&fi, type)
      || !read_tilde_fields (&fi, pp, type, objfile))
      || !read_tilde_fields (&fi, pp, type, objfile))
    {
    {
      type = error_type (pp, objfile);
      type = error_type (pp, objfile);
    }
    }
 
 
  do_cleanups (back_to);
  do_cleanups (back_to);
  return (type);
  return (type);
}
}
 
 
/* Read a definition of an array type,
/* Read a definition of an array type,
   and create and return a suitable type object.
   and create and return a suitable type object.
   Also creates a range type which represents the bounds of that
   Also creates a range type which represents the bounds of that
   array.  */
   array.  */
 
 
static struct type *
static struct type *
read_array_type (pp, type, objfile)
read_array_type (pp, type, objfile)
     register char **pp;
     register char **pp;
     register struct type *type;
     register struct type *type;
     struct objfile *objfile;
     struct objfile *objfile;
{
{
  struct type *index_type, *element_type, *range_type;
  struct type *index_type, *element_type, *range_type;
  int lower, upper;
  int lower, upper;
  int adjustable = 0;
  int adjustable = 0;
  int nbits;
  int nbits;
 
 
  /* Format of an array type:
  /* Format of an array type:
     "ar<index type>;lower;upper;<array_contents_type>".
     "ar<index type>;lower;upper;<array_contents_type>".
     OS9000: "arlower,upper;<array_contents_type>".
     OS9000: "arlower,upper;<array_contents_type>".
 
 
     Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
     Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
     for these, produce a type like float[][].  */
     for these, produce a type like float[][].  */
 
 
  if (os9k_stabs)
  if (os9k_stabs)
    index_type = builtin_type_int;
    index_type = builtin_type_int;
  else
  else
    {
    {
      index_type = read_type (pp, objfile);
      index_type = read_type (pp, objfile);
      if (**pp != ';')
      if (**pp != ';')
        /* Improper format of array type decl.  */
        /* Improper format of array type decl.  */
        return error_type (pp, objfile);
        return error_type (pp, objfile);
      ++*pp;
      ++*pp;
    }
    }
 
 
  if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
  if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
    {
    {
      (*pp)++;
      (*pp)++;
      adjustable = 1;
      adjustable = 1;
    }
    }
  lower = read_huge_number (pp, os9k_stabs ? ',' : ';', &nbits);
  lower = read_huge_number (pp, os9k_stabs ? ',' : ';', &nbits);
  if (nbits != 0)
  if (nbits != 0)
    return error_type (pp, objfile);
    return error_type (pp, objfile);
 
 
  if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
  if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
    {
    {
      (*pp)++;
      (*pp)++;
      adjustable = 1;
      adjustable = 1;
    }
    }
  upper = read_huge_number (pp, ';', &nbits);
  upper = read_huge_number (pp, ';', &nbits);
  if (nbits != 0)
  if (nbits != 0)
    return error_type (pp, objfile);
    return error_type (pp, objfile);
 
 
  element_type = read_type (pp, objfile);
  element_type = read_type (pp, objfile);
 
 
  if (adjustable)
  if (adjustable)
    {
    {
      lower = 0;
      lower = 0;
      upper = -1;
      upper = -1;
    }
    }
 
 
  range_type =
  range_type =
    create_range_type ((struct type *) NULL, index_type, lower, upper);
    create_range_type ((struct type *) NULL, index_type, lower, upper);
  type = create_array_type (type, element_type, range_type);
  type = create_array_type (type, element_type, range_type);
 
 
  return type;
  return type;
}
}
 
 
 
 
/* Read a definition of an enumeration type,
/* Read a definition of an enumeration type,
   and create and return a suitable type object.
   and create and return a suitable type object.
   Also defines the symbols that represent the values of the type.  */
   Also defines the symbols that represent the values of the type.  */
 
 
static struct type *
static struct type *
read_enum_type (pp, type, objfile)
read_enum_type (pp, type, objfile)
     register char **pp;
     register char **pp;
     register struct type *type;
     register struct type *type;
     struct objfile *objfile;
     struct objfile *objfile;
{
{
  register char *p;
  register char *p;
  char *name;
  char *name;
  register long n;
  register long n;
  register struct symbol *sym;
  register struct symbol *sym;
  int nsyms = 0;
  int nsyms = 0;
  struct pending **symlist;
  struct pending **symlist;
  struct pending *osyms, *syms;
  struct pending *osyms, *syms;
  int o_nsyms;
  int o_nsyms;
  int nbits;
  int nbits;
  int unsigned_enum = 1;
  int unsigned_enum = 1;
 
 
#if 0
#if 0
  /* FIXME!  The stabs produced by Sun CC merrily define things that ought
  /* FIXME!  The stabs produced by Sun CC merrily define things that ought
     to be file-scope, between N_FN entries, using N_LSYM.  What's a mother
     to be file-scope, between N_FN entries, using N_LSYM.  What's a mother
     to do?  For now, force all enum values to file scope.  */
     to do?  For now, force all enum values to file scope.  */
  if (within_function)
  if (within_function)
    symlist = &local_symbols;
    symlist = &local_symbols;
  else
  else
#endif
#endif
    symlist = &file_symbols;
    symlist = &file_symbols;
  osyms = *symlist;
  osyms = *symlist;
  o_nsyms = osyms ? osyms->nsyms : 0;
  o_nsyms = osyms ? osyms->nsyms : 0;
 
 
  if (os9k_stabs)
  if (os9k_stabs)
    {
    {
      /* Size.  Perhaps this does not have to be conditionalized on
      /* Size.  Perhaps this does not have to be conditionalized on
         os9k_stabs (assuming the name of an enum constant can't start
         os9k_stabs (assuming the name of an enum constant can't start
         with a digit).  */
         with a digit).  */
      read_huge_number (pp, 0, &nbits);
      read_huge_number (pp, 0, &nbits);
      if (nbits != 0)
      if (nbits != 0)
        return error_type (pp, objfile);
        return error_type (pp, objfile);
    }
    }
 
 
  /* The aix4 compiler emits an extra field before the enum members;
  /* The aix4 compiler emits an extra field before the enum members;
     my guess is it's a type of some sort.  Just ignore it.  */
     my guess is it's a type of some sort.  Just ignore it.  */
  if (**pp == '-')
  if (**pp == '-')
    {
    {
      /* Skip over the type.  */
      /* Skip over the type.  */
      while (**pp != ':')
      while (**pp != ':')
        (*pp)++;
        (*pp)++;
 
 
      /* Skip over the colon.  */
      /* Skip over the colon.  */
      (*pp)++;
      (*pp)++;
    }
    }
 
 
  /* Read the value-names and their values.
  /* Read the value-names and their values.
     The input syntax is NAME:VALUE,NAME:VALUE, and so on.
     The input syntax is NAME:VALUE,NAME:VALUE, and so on.
     A semicolon or comma instead of a NAME means the end.  */
     A semicolon or comma instead of a NAME means the end.  */
  while (**pp && **pp != ';' && **pp != ',')
  while (**pp && **pp != ';' && **pp != ',')
    {
    {
      STABS_CONTINUE (pp, objfile);
      STABS_CONTINUE (pp, objfile);
      p = *pp;
      p = *pp;
      while (*p != ':')
      while (*p != ':')
        p++;
        p++;
      name = obsavestring (*pp, p - *pp, &objfile->symbol_obstack);
      name = obsavestring (*pp, p - *pp, &objfile->symbol_obstack);
      *pp = p + 1;
      *pp = p + 1;
      n = read_huge_number (pp, ',', &nbits);
      n = read_huge_number (pp, ',', &nbits);
      if (nbits != 0)
      if (nbits != 0)
        return error_type (pp, objfile);
        return error_type (pp, objfile);
 
 
      sym = (struct symbol *)
      sym = (struct symbol *)
        obstack_alloc (&objfile->symbol_obstack, sizeof (struct symbol));
        obstack_alloc (&objfile->symbol_obstack, sizeof (struct symbol));
      memset (sym, 0, sizeof (struct symbol));
      memset (sym, 0, sizeof (struct symbol));
      SYMBOL_NAME (sym) = name;
      SYMBOL_NAME (sym) = name;
      SYMBOL_LANGUAGE (sym) = current_subfile->language;
      SYMBOL_LANGUAGE (sym) = current_subfile->language;
      SYMBOL_CLASS (sym) = LOC_CONST;
      SYMBOL_CLASS (sym) = LOC_CONST;
      SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
      SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
      SYMBOL_VALUE (sym) = n;
      SYMBOL_VALUE (sym) = n;
      if (n < 0)
      if (n < 0)
        unsigned_enum = 0;
        unsigned_enum = 0;
      add_symbol_to_list (sym, symlist);
      add_symbol_to_list (sym, symlist);
      nsyms++;
      nsyms++;
    }
    }
 
 
  if (**pp == ';')
  if (**pp == ';')
    (*pp)++;                    /* Skip the semicolon.  */
    (*pp)++;                    /* Skip the semicolon.  */
 
 
  /* Now fill in the fields of the type-structure.  */
  /* Now fill in the fields of the type-structure.  */
 
 
  TYPE_LENGTH (type) = TARGET_INT_BIT / HOST_CHAR_BIT;
  TYPE_LENGTH (type) = TARGET_INT_BIT / HOST_CHAR_BIT;
  TYPE_CODE (type) = TYPE_CODE_ENUM;
  TYPE_CODE (type) = TYPE_CODE_ENUM;
  TYPE_FLAGS (type) &= ~TYPE_FLAG_STUB;
  TYPE_FLAGS (type) &= ~TYPE_FLAG_STUB;
  if (unsigned_enum)
  if (unsigned_enum)
    TYPE_FLAGS (type) |= TYPE_FLAG_UNSIGNED;
    TYPE_FLAGS (type) |= TYPE_FLAG_UNSIGNED;
  TYPE_NFIELDS (type) = nsyms;
  TYPE_NFIELDS (type) = nsyms;
  TYPE_FIELDS (type) = (struct field *)
  TYPE_FIELDS (type) = (struct field *)
    TYPE_ALLOC (type, sizeof (struct field) * nsyms);
    TYPE_ALLOC (type, sizeof (struct field) * nsyms);
  memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
  memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
 
 
  /* Find the symbols for the values and put them into the type.
  /* Find the symbols for the values and put them into the type.
     The symbols can be found in the symlist that we put them on
     The symbols can be found in the symlist that we put them on
     to cause them to be defined.  osyms contains the old value
     to cause them to be defined.  osyms contains the old value
     of that symlist; everything up to there was defined by us.  */
     of that symlist; everything up to there was defined by us.  */
  /* Note that we preserve the order of the enum constants, so
  /* Note that we preserve the order of the enum constants, so
     that in something like "enum {FOO, LAST_THING=FOO}" we print
     that in something like "enum {FOO, LAST_THING=FOO}" we print
     FOO, not LAST_THING.  */
     FOO, not LAST_THING.  */
 
 
  for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
  for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
    {
    {
      int last = syms == osyms ? o_nsyms : 0;
      int last = syms == osyms ? o_nsyms : 0;
      int j = syms->nsyms;
      int j = syms->nsyms;
      for (; --j >= last; --n)
      for (; --j >= last; --n)
        {
        {
          struct symbol *xsym = syms->symbol[j];
          struct symbol *xsym = syms->symbol[j];
          SYMBOL_TYPE (xsym) = type;
          SYMBOL_TYPE (xsym) = type;
          TYPE_FIELD_NAME (type, n) = SYMBOL_NAME (xsym);
          TYPE_FIELD_NAME (type, n) = SYMBOL_NAME (xsym);
          TYPE_FIELD_BITPOS (type, n) = SYMBOL_VALUE (xsym);
          TYPE_FIELD_BITPOS (type, n) = SYMBOL_VALUE (xsym);
          TYPE_FIELD_BITSIZE (type, n) = 0;
          TYPE_FIELD_BITSIZE (type, n) = 0;
        }
        }
      if (syms == osyms)
      if (syms == osyms)
        break;
        break;
    }
    }
 
 
  return type;
  return type;
}
}
 
 
/* Sun's ACC uses a somewhat saner method for specifying the builtin
/* Sun's ACC uses a somewhat saner method for specifying the builtin
   typedefs in every file (for int, long, etc):
   typedefs in every file (for int, long, etc):
 
 
   type = b <signed> <width> <format type>; <offset>; <nbits>
   type = b <signed> <width> <format type>; <offset>; <nbits>
   signed = u or s.
   signed = u or s.
   optional format type = c or b for char or boolean.
   optional format type = c or b for char or boolean.
   offset = offset from high order bit to start bit of type.
   offset = offset from high order bit to start bit of type.
   width is # bytes in object of this type, nbits is # bits in type.
   width is # bytes in object of this type, nbits is # bits in type.
 
 
   The width/offset stuff appears to be for small objects stored in
   The width/offset stuff appears to be for small objects stored in
   larger ones (e.g. `shorts' in `int' registers).  We ignore it for now,
   larger ones (e.g. `shorts' in `int' registers).  We ignore it for now,
   FIXME.  */
   FIXME.  */
 
 
static struct type *
static struct type *
read_sun_builtin_type (pp, typenums, objfile)
read_sun_builtin_type (pp, typenums, objfile)
     char **pp;
     char **pp;
     int typenums[2];
     int typenums[2];
     struct objfile *objfile;
     struct objfile *objfile;
{
{
  int type_bits;
  int type_bits;
  int nbits;
  int nbits;
  int signed_type;
  int signed_type;
  enum type_code code = TYPE_CODE_INT;
  enum type_code code = TYPE_CODE_INT;
 
 
  switch (**pp)
  switch (**pp)
    {
    {
    case 's':
    case 's':
      signed_type = 1;
      signed_type = 1;
      break;
      break;
    case 'u':
    case 'u':
      signed_type = 0;
      signed_type = 0;
      break;
      break;
    default:
    default:
      return error_type (pp, objfile);
      return error_type (pp, objfile);
    }
    }
  (*pp)++;
  (*pp)++;
 
 
  /* For some odd reason, all forms of char put a c here.  This is strange
  /* For some odd reason, all forms of char put a c here.  This is strange
     because no other type has this honor.  We can safely ignore this because
     because no other type has this honor.  We can safely ignore this because
     we actually determine 'char'acterness by the number of bits specified in
     we actually determine 'char'acterness by the number of bits specified in
     the descriptor.
     the descriptor.
     Boolean forms, e.g Fortran logical*X, put a b here.  */
     Boolean forms, e.g Fortran logical*X, put a b here.  */
 
 
  if (**pp == 'c')
  if (**pp == 'c')
    (*pp)++;
    (*pp)++;
  else if (**pp == 'b')
  else if (**pp == 'b')
    {
    {
      code = TYPE_CODE_BOOL;
      code = TYPE_CODE_BOOL;
      (*pp)++;
      (*pp)++;
    }
    }
 
 
  /* The first number appears to be the number of bytes occupied
  /* The first number appears to be the number of bytes occupied
     by this type, except that unsigned short is 4 instead of 2.
     by this type, except that unsigned short is 4 instead of 2.
     Since this information is redundant with the third number,
     Since this information is redundant with the third number,
     we will ignore it.  */
     we will ignore it.  */
  read_huge_number (pp, ';', &nbits);
  read_huge_number (pp, ';', &nbits);
  if (nbits != 0)
  if (nbits != 0)
    return error_type (pp, objfile);
    return error_type (pp, objfile);
 
 
  /* The second number is always 0, so ignore it too. */
  /* The second number is always 0, so ignore it too. */
  read_huge_number (pp, ';', &nbits);
  read_huge_number (pp, ';', &nbits);
  if (nbits != 0)
  if (nbits != 0)
    return error_type (pp, objfile);
    return error_type (pp, objfile);
 
 
  /* The third number is the number of bits for this type. */
  /* The third number is the number of bits for this type. */
  type_bits = read_huge_number (pp, 0, &nbits);
  type_bits = read_huge_number (pp, 0, &nbits);
  if (nbits != 0)
  if (nbits != 0)
    return error_type (pp, objfile);
    return error_type (pp, objfile);
  /* The type *should* end with a semicolon.  If it are embedded
  /* The type *should* end with a semicolon.  If it are embedded
     in a larger type the semicolon may be the only way to know where
     in a larger type the semicolon may be the only way to know where
     the type ends.  If this type is at the end of the stabstring we
     the type ends.  If this type is at the end of the stabstring we
     can deal with the omitted semicolon (but we don't have to like
     can deal with the omitted semicolon (but we don't have to like
     it).  Don't bother to complain(), Sun's compiler omits the semicolon
     it).  Don't bother to complain(), Sun's compiler omits the semicolon
     for "void".  */
     for "void".  */
  if (**pp == ';')
  if (**pp == ';')
    ++(*pp);
    ++(*pp);
 
 
  if (type_bits == 0)
  if (type_bits == 0)
    return init_type (TYPE_CODE_VOID, 1,
    return init_type (TYPE_CODE_VOID, 1,
                      signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
                      signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
                      objfile);
                      objfile);
  else
  else
    return init_type (code,
    return init_type (code,
                      type_bits / TARGET_CHAR_BIT,
                      type_bits / TARGET_CHAR_BIT,
                      signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
                      signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
                      objfile);
                      objfile);
}
}
 
 
static struct type *
static struct type *
read_sun_floating_type (pp, typenums, objfile)
read_sun_floating_type (pp, typenums, objfile)
     char **pp;
     char **pp;
     int typenums[2];
     int typenums[2];
     struct objfile *objfile;
     struct objfile *objfile;
{
{
  int nbits;
  int nbits;
  int details;
  int details;
  int nbytes;
  int nbytes;
 
 
  /* The first number has more details about the type, for example
  /* The first number has more details about the type, for example
     FN_COMPLEX.  */
     FN_COMPLEX.  */
  details = read_huge_number (pp, ';', &nbits);
  details = read_huge_number (pp, ';', &nbits);
  if (nbits != 0)
  if (nbits != 0)
    return error_type (pp, objfile);
    return error_type (pp, objfile);
 
 
  /* The second number is the number of bytes occupied by this type */
  /* The second number is the number of bytes occupied by this type */
  nbytes = read_huge_number (pp, ';', &nbits);
  nbytes = read_huge_number (pp, ';', &nbits);
  if (nbits != 0)
  if (nbits != 0)
    return error_type (pp, objfile);
    return error_type (pp, objfile);
 
 
  if (details == NF_COMPLEX || details == NF_COMPLEX16
  if (details == NF_COMPLEX || details == NF_COMPLEX16
      || details == NF_COMPLEX32)
      || details == NF_COMPLEX32)
    /* This is a type we can't handle, but we do know the size.
    /* This is a type we can't handle, but we do know the size.
       We also will be able to give it a name.  */
       We also will be able to give it a name.  */
    return init_type (TYPE_CODE_COMPLEX, nbytes, 0, NULL, objfile);
    return init_type (TYPE_CODE_COMPLEX, nbytes, 0, NULL, objfile);
 
 
  return init_type (TYPE_CODE_FLT, nbytes, 0, NULL, objfile);
  return init_type (TYPE_CODE_FLT, nbytes, 0, NULL, objfile);
}
}
 
 
/* Read a number from the string pointed to by *PP.
/* Read a number from the string pointed to by *PP.
   The value of *PP is advanced over the number.
   The value of *PP is advanced over the number.
   If END is nonzero, the character that ends the
   If END is nonzero, the character that ends the
   number must match END, or an error happens;
   number must match END, or an error happens;
   and that character is skipped if it does match.
   and that character is skipped if it does match.
   If END is zero, *PP is left pointing to that character.
   If END is zero, *PP is left pointing to that character.
 
 
   If the number fits in a long, set *BITS to 0 and return the value.
   If the number fits in a long, set *BITS to 0 and return the value.
   If not, set *BITS to be the number of bits in the number and return 0.
   If not, set *BITS to be the number of bits in the number and return 0.
 
 
   If encounter garbage, set *BITS to -1 and return 0.  */
   If encounter garbage, set *BITS to -1 and return 0.  */
 
 
static long
static long
read_huge_number (pp, end, bits)
read_huge_number (pp, end, bits)
     char **pp;
     char **pp;
     int end;
     int end;
     int *bits;
     int *bits;
{
{
  char *p = *pp;
  char *p = *pp;
  int sign = 1;
  int sign = 1;
  long n = 0;
  long n = 0;
  int radix = 10;
  int radix = 10;
  char overflow = 0;
  char overflow = 0;
  int nbits = 0;
  int nbits = 0;
  int c;
  int c;
  long upper_limit;
  long upper_limit;
 
 
  if (*p == '-')
  if (*p == '-')
    {
    {
      sign = -1;
      sign = -1;
      p++;
      p++;
    }
    }
 
 
  /* Leading zero means octal.  GCC uses this to output values larger
  /* Leading zero means octal.  GCC uses this to output values larger
     than an int (because that would be hard in decimal).  */
     than an int (because that would be hard in decimal).  */
  if (*p == '0')
  if (*p == '0')
    {
    {
      radix = 8;
      radix = 8;
      p++;
      p++;
    }
    }
 
 
  if (os9k_stabs)
  if (os9k_stabs)
    upper_limit = ULONG_MAX / radix;
    upper_limit = ULONG_MAX / radix;
  else
  else
    upper_limit = LONG_MAX / radix;
    upper_limit = LONG_MAX / radix;
 
 
  while ((c = *p++) >= '0' && c < ('0' + radix))
  while ((c = *p++) >= '0' && c < ('0' + radix))
    {
    {
      if (n <= upper_limit)
      if (n <= upper_limit)
        {
        {
          n *= radix;
          n *= radix;
          n += c - '0';         /* FIXME this overflows anyway */
          n += c - '0';         /* FIXME this overflows anyway */
        }
        }
      else
      else
        overflow = 1;
        overflow = 1;
 
 
      /* This depends on large values being output in octal, which is
      /* This depends on large values being output in octal, which is
         what GCC does. */
         what GCC does. */
      if (radix == 8)
      if (radix == 8)
        {
        {
          if (nbits == 0)
          if (nbits == 0)
            {
            {
              if (c == '0')
              if (c == '0')
                /* Ignore leading zeroes.  */
                /* Ignore leading zeroes.  */
                ;
                ;
              else if (c == '1')
              else if (c == '1')
                nbits = 1;
                nbits = 1;
              else if (c == '2' || c == '3')
              else if (c == '2' || c == '3')
                nbits = 2;
                nbits = 2;
              else
              else
                nbits = 3;
                nbits = 3;
            }
            }
          else
          else
            nbits += 3;
            nbits += 3;
        }
        }
    }
    }
  if (end)
  if (end)
    {
    {
      if (c && c != end)
      if (c && c != end)
        {
        {
          if (bits != NULL)
          if (bits != NULL)
            *bits = -1;
            *bits = -1;
          return 0;
          return 0;
        }
        }
    }
    }
  else
  else
    --p;
    --p;
 
 
  *pp = p;
  *pp = p;
  if (overflow)
  if (overflow)
    {
    {
      if (nbits == 0)
      if (nbits == 0)
        {
        {
          /* Large decimal constants are an error (because it is hard to
          /* Large decimal constants are an error (because it is hard to
             count how many bits are in them).  */
             count how many bits are in them).  */
          if (bits != NULL)
          if (bits != NULL)
            *bits = -1;
            *bits = -1;
          return 0;
          return 0;
        }
        }
 
 
      /* -0x7f is the same as 0x80.  So deal with it by adding one to
      /* -0x7f is the same as 0x80.  So deal with it by adding one to
         the number of bits.  */
         the number of bits.  */
      if (sign == -1)
      if (sign == -1)
        ++nbits;
        ++nbits;
      if (bits)
      if (bits)
        *bits = nbits;
        *bits = nbits;
    }
    }
  else
  else
    {
    {
      if (bits)
      if (bits)
        *bits = 0;
        *bits = 0;
      return n * sign;
      return n * sign;
    }
    }
  /* It's *BITS which has the interesting information.  */
  /* It's *BITS which has the interesting information.  */
  return 0;
  return 0;
}
}
 
 
static struct type *
static struct type *
read_range_type (pp, typenums, objfile)
read_range_type (pp, typenums, objfile)
     char **pp;
     char **pp;
     int typenums[2];
     int typenums[2];
     struct objfile *objfile;
     struct objfile *objfile;
{
{
  char *orig_pp = *pp;
  char *orig_pp = *pp;
  int rangenums[2];
  int rangenums[2];
  long n2, n3;
  long n2, n3;
  int n2bits, n3bits;
  int n2bits, n3bits;
  int self_subrange;
  int self_subrange;
  struct type *result_type;
  struct type *result_type;
  struct type *index_type = NULL;
  struct type *index_type = NULL;
 
 
  /* First comes a type we are a subrange of.
  /* First comes a type we are a subrange of.
     In C it is usually 0, 1 or the type being defined.  */
     In C it is usually 0, 1 or the type being defined.  */
  if (read_type_number (pp, rangenums) != 0)
  if (read_type_number (pp, rangenums) != 0)
    return error_type (pp, objfile);
    return error_type (pp, objfile);
  self_subrange = (rangenums[0] == typenums[0] &&
  self_subrange = (rangenums[0] == typenums[0] &&
                   rangenums[1] == typenums[1]);
                   rangenums[1] == typenums[1]);
 
 
  if (**pp == '=')
  if (**pp == '=')
    {
    {
      *pp = orig_pp;
      *pp = orig_pp;
      index_type = read_type (pp, objfile);
      index_type = read_type (pp, objfile);
    }
    }
 
 
  /* A semicolon should now follow; skip it.  */
  /* A semicolon should now follow; skip it.  */
  if (**pp == ';')
  if (**pp == ';')
    (*pp)++;
    (*pp)++;
 
 
  /* The remaining two operands are usually lower and upper bounds
  /* The remaining two operands are usually lower and upper bounds
     of the range.  But in some special cases they mean something else.  */
     of the range.  But in some special cases they mean something else.  */
  n2 = read_huge_number (pp, ';', &n2bits);
  n2 = read_huge_number (pp, ';', &n2bits);
  n3 = read_huge_number (pp, ';', &n3bits);
  n3 = read_huge_number (pp, ';', &n3bits);
 
 
  if (n2bits == -1 || n3bits == -1)
  if (n2bits == -1 || n3bits == -1)
    return error_type (pp, objfile);
    return error_type (pp, objfile);
 
 
  if (index_type)
  if (index_type)
    goto handle_true_range;
    goto handle_true_range;
 
 
  /* If limits are huge, must be large integral type.  */
  /* If limits are huge, must be large integral type.  */
  if (n2bits != 0 || n3bits != 0)
  if (n2bits != 0 || n3bits != 0)
    {
    {
      char got_signed = 0;
      char got_signed = 0;
      char got_unsigned = 0;
      char got_unsigned = 0;
      /* Number of bits in the type.  */
      /* Number of bits in the type.  */
      int nbits = 0;
      int nbits = 0;
 
 
      /* Range from 0 to <large number> is an unsigned large integral type.  */
      /* Range from 0 to <large number> is an unsigned large integral type.  */
      if ((n2bits == 0 && n2 == 0) && n3bits != 0)
      if ((n2bits == 0 && n2 == 0) && n3bits != 0)
        {
        {
          got_unsigned = 1;
          got_unsigned = 1;
          nbits = n3bits;
          nbits = n3bits;
        }
        }
      /* Range from <large number> to <large number>-1 is a large signed
      /* Range from <large number> to <large number>-1 is a large signed
         integral type.  Take care of the case where <large number> doesn't
         integral type.  Take care of the case where <large number> doesn't
         fit in a long but <large number>-1 does.  */
         fit in a long but <large number>-1 does.  */
      else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
      else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
               || (n2bits != 0 && n3bits == 0
               || (n2bits != 0 && n3bits == 0
                   && (n2bits == sizeof (long) * HOST_CHAR_BIT)
                   && (n2bits == sizeof (long) * HOST_CHAR_BIT)
                   && n3 == LONG_MAX))
                   && n3 == LONG_MAX))
        {
        {
          got_signed = 1;
          got_signed = 1;
          nbits = n2bits;
          nbits = n2bits;
        }
        }
 
 
      if (got_signed || got_unsigned)
      if (got_signed || got_unsigned)
        {
        {
          return init_type (TYPE_CODE_INT, nbits / TARGET_CHAR_BIT,
          return init_type (TYPE_CODE_INT, nbits / TARGET_CHAR_BIT,
                            got_unsigned ? TYPE_FLAG_UNSIGNED : 0, NULL,
                            got_unsigned ? TYPE_FLAG_UNSIGNED : 0, NULL,
                            objfile);
                            objfile);
        }
        }
      else
      else
        return error_type (pp, objfile);
        return error_type (pp, objfile);
    }
    }
 
 
  /* A type defined as a subrange of itself, with bounds both 0, is void.  */
  /* A type defined as a subrange of itself, with bounds both 0, is void.  */
  if (self_subrange && n2 == 0 && n3 == 0)
  if (self_subrange && n2 == 0 && n3 == 0)
    return init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
    return init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
 
 
  /* If n3 is zero and n2 is positive, we want a floating type, and n2
  /* If n3 is zero and n2 is positive, we want a floating type, and n2
     is the width in bytes.
     is the width in bytes.
 
 
     Fortran programs appear to use this for complex types also.  To
     Fortran programs appear to use this for complex types also.  To
     distinguish between floats and complex, g77 (and others?)  seem
     distinguish between floats and complex, g77 (and others?)  seem
     to use self-subranges for the complexes, and subranges of int for
     to use self-subranges for the complexes, and subranges of int for
     the floats.
     the floats.
 
 
     Also note that for complexes, g77 sets n2 to the size of one of
     Also note that for complexes, g77 sets n2 to the size of one of
     the member floats, not the whole complex beast.  My guess is that
     the member floats, not the whole complex beast.  My guess is that
     this was to work well with pre-COMPLEX versions of gdb. */
     this was to work well with pre-COMPLEX versions of gdb. */
 
 
  if (n3 == 0 && n2 > 0)
  if (n3 == 0 && n2 > 0)
    {
    {
      if (self_subrange)
      if (self_subrange)
        {
        {
          return init_type (TYPE_CODE_COMPLEX, 2 * n2, 0, NULL, objfile);
          return init_type (TYPE_CODE_COMPLEX, 2 * n2, 0, NULL, objfile);
        }
        }
      else
      else
        {
        {
          return init_type (TYPE_CODE_FLT, n2, 0, NULL, objfile);
          return init_type (TYPE_CODE_FLT, n2, 0, NULL, objfile);
        }
        }
    }
    }
 
 
  /* If the upper bound is -1, it must really be an unsigned int.  */
  /* If the upper bound is -1, it must really be an unsigned int.  */
 
 
  else if (n2 == 0 && n3 == -1)
  else if (n2 == 0 && n3 == -1)
    {
    {
      /* It is unsigned int or unsigned long.  */
      /* It is unsigned int or unsigned long.  */
      /* GCC 2.3.3 uses this for long long too, but that is just a GDB 3.5
      /* GCC 2.3.3 uses this for long long too, but that is just a GDB 3.5
         compatibility hack.  */
         compatibility hack.  */
      return init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
      return init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
                        TYPE_FLAG_UNSIGNED, NULL, objfile);
                        TYPE_FLAG_UNSIGNED, NULL, objfile);
    }
    }
 
 
  /* Special case: char is defined (Who knows why) as a subrange of
  /* Special case: char is defined (Who knows why) as a subrange of
     itself with range 0-127.  */
     itself with range 0-127.  */
  else if (self_subrange && n2 == 0 && n3 == 127)
  else if (self_subrange && n2 == 0 && n3 == 127)
    return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
    return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
 
 
  else if (current_symbol && SYMBOL_LANGUAGE (current_symbol) == language_chill
  else if (current_symbol && SYMBOL_LANGUAGE (current_symbol) == language_chill
           && !self_subrange)
           && !self_subrange)
    goto handle_true_range;
    goto handle_true_range;
 
 
  /* We used to do this only for subrange of self or subrange of int.  */
  /* We used to do this only for subrange of self or subrange of int.  */
  else if (n2 == 0)
  else if (n2 == 0)
    {
    {
      /* -1 is used for the upper bound of (4 byte) "unsigned int" and
      /* -1 is used for the upper bound of (4 byte) "unsigned int" and
         "unsigned long", and we already checked for that,
         "unsigned long", and we already checked for that,
         so don't need to test for it here.  */
         so don't need to test for it here.  */
 
 
      if (n3 < 0)
      if (n3 < 0)
        /* n3 actually gives the size.  */
        /* n3 actually gives the size.  */
        return init_type (TYPE_CODE_INT, -n3, TYPE_FLAG_UNSIGNED,
        return init_type (TYPE_CODE_INT, -n3, TYPE_FLAG_UNSIGNED,
                          NULL, objfile);
                          NULL, objfile);
 
 
      /* Is n3 == 2**(8n)-1 for some integer n?  Then it's an
      /* Is n3 == 2**(8n)-1 for some integer n?  Then it's an
         unsigned n-byte integer.  But do require n to be a power of
         unsigned n-byte integer.  But do require n to be a power of
         two; we don't want 3- and 5-byte integers flying around.  */
         two; we don't want 3- and 5-byte integers flying around.  */
      {
      {
        int bytes;
        int bytes;
        unsigned long bits;
        unsigned long bits;
 
 
        bits = n3;
        bits = n3;
        for (bytes = 0; (bits & 0xff) == 0xff; bytes++)
        for (bytes = 0; (bits & 0xff) == 0xff; bytes++)
          bits >>= 8;
          bits >>= 8;
        if (bits == 0
        if (bits == 0
            && ((bytes - 1) & bytes) == 0) /* "bytes is a power of two" */
            && ((bytes - 1) & bytes) == 0) /* "bytes is a power of two" */
          return init_type (TYPE_CODE_INT, bytes, TYPE_FLAG_UNSIGNED, NULL,
          return init_type (TYPE_CODE_INT, bytes, TYPE_FLAG_UNSIGNED, NULL,
                            objfile);
                            objfile);
      }
      }
    }
    }
  /* I think this is for Convex "long long".  Since I don't know whether
  /* I think this is for Convex "long long".  Since I don't know whether
     Convex sets self_subrange, I also accept that particular size regardless
     Convex sets self_subrange, I also accept that particular size regardless
     of self_subrange.  */
     of self_subrange.  */
  else if (n3 == 0 && n2 < 0
  else if (n3 == 0 && n2 < 0
           && (self_subrange
           && (self_subrange
               || n2 == -TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT))
               || n2 == -TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT))
    return init_type (TYPE_CODE_INT, -n2, 0, NULL, objfile);
    return init_type (TYPE_CODE_INT, -n2, 0, NULL, objfile);
  else if (n2 == -n3 - 1)
  else if (n2 == -n3 - 1)
    {
    {
      if (n3 == 0x7f)
      if (n3 == 0x7f)
        return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
        return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
      if (n3 == 0x7fff)
      if (n3 == 0x7fff)
        return init_type (TYPE_CODE_INT, 2, 0, NULL, objfile);
        return init_type (TYPE_CODE_INT, 2, 0, NULL, objfile);
      if (n3 == 0x7fffffff)
      if (n3 == 0x7fffffff)
        return init_type (TYPE_CODE_INT, 4, 0, NULL, objfile);
        return init_type (TYPE_CODE_INT, 4, 0, NULL, objfile);
    }
    }
 
 
  /* We have a real range type on our hands.  Allocate space and
  /* We have a real range type on our hands.  Allocate space and
     return a real pointer.  */
     return a real pointer.  */
handle_true_range:
handle_true_range:
 
 
  if (self_subrange)
  if (self_subrange)
    index_type = builtin_type_int;
    index_type = builtin_type_int;
  else
  else
    index_type = *dbx_lookup_type (rangenums);
    index_type = *dbx_lookup_type (rangenums);
  if (index_type == NULL)
  if (index_type == NULL)
    {
    {
      /* Does this actually ever happen?  Is that why we are worrying
      /* Does this actually ever happen?  Is that why we are worrying
         about dealing with it rather than just calling error_type?  */
         about dealing with it rather than just calling error_type?  */
 
 
      static struct type *range_type_index;
      static struct type *range_type_index;
 
 
      complain (&range_type_base_complaint, rangenums[1]);
      complain (&range_type_base_complaint, rangenums[1]);
      if (range_type_index == NULL)
      if (range_type_index == NULL)
        range_type_index =
        range_type_index =
          init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
          init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
                     0, "range type index type", NULL);
                     0, "range type index type", NULL);
      index_type = range_type_index;
      index_type = range_type_index;
    }
    }
 
 
  result_type = create_range_type ((struct type *) NULL, index_type, n2, n3);
  result_type = create_range_type ((struct type *) NULL, index_type, n2, n3);
  return (result_type);
  return (result_type);
}
}
 
 
/* Read in an argument list.  This is a list of types, separated by commas
/* Read in an argument list.  This is a list of types, separated by commas
   and terminated with END.  Return the list of types read in, or (struct type
   and terminated with END.  Return the list of types read in, or (struct type
   **)-1 if there is an error.  */
   **)-1 if there is an error.  */
 
 
static struct type **
static struct type **
read_args (pp, end, objfile)
read_args (pp, end, objfile)
     char **pp;
     char **pp;
     int end;
     int end;
     struct objfile *objfile;
     struct objfile *objfile;
{
{
  /* FIXME!  Remove this arbitrary limit!  */
  /* FIXME!  Remove this arbitrary limit!  */
  struct type *types[1024], **rval;     /* allow for fns of 1023 parameters */
  struct type *types[1024], **rval;     /* allow for fns of 1023 parameters */
  int n = 0;
  int n = 0;
 
 
  while (**pp != end)
  while (**pp != end)
    {
    {
      if (**pp != ',')
      if (**pp != ',')
        /* Invalid argument list: no ','.  */
        /* Invalid argument list: no ','.  */
        return (struct type **) -1;
        return (struct type **) -1;
      (*pp)++;
      (*pp)++;
      STABS_CONTINUE (pp, objfile);
      STABS_CONTINUE (pp, objfile);
      types[n++] = read_type (pp, objfile);
      types[n++] = read_type (pp, objfile);
    }
    }
  (*pp)++;                      /* get past `end' (the ':' character) */
  (*pp)++;                      /* get past `end' (the ':' character) */
 
 
  if (n == 1)
  if (n == 1)
    {
    {
      rval = (struct type **) xmalloc (2 * sizeof (struct type *));
      rval = (struct type **) xmalloc (2 * sizeof (struct type *));
    }
    }
  else if (TYPE_CODE (types[n - 1]) != TYPE_CODE_VOID)
  else if (TYPE_CODE (types[n - 1]) != TYPE_CODE_VOID)
    {
    {
      rval = (struct type **) xmalloc ((n + 1) * sizeof (struct type *));
      rval = (struct type **) xmalloc ((n + 1) * sizeof (struct type *));
      memset (rval + n, 0, sizeof (struct type *));
      memset (rval + n, 0, sizeof (struct type *));
    }
    }
  else
  else
    {
    {
      rval = (struct type **) xmalloc (n * sizeof (struct type *));
      rval = (struct type **) xmalloc (n * sizeof (struct type *));
    }
    }
  memcpy (rval, types, n * sizeof (struct type *));
  memcpy (rval, types, n * sizeof (struct type *));
  return rval;
  return rval;
}
}


/* Common block handling.  */
/* Common block handling.  */
 
 
/* List of symbols declared since the last BCOMM.  This list is a tail
/* List of symbols declared since the last BCOMM.  This list is a tail
   of local_symbols.  When ECOMM is seen, the symbols on the list
   of local_symbols.  When ECOMM is seen, the symbols on the list
   are noted so their proper addresses can be filled in later,
   are noted so their proper addresses can be filled in later,
   using the common block base address gotten from the assembler
   using the common block base address gotten from the assembler
   stabs.  */
   stabs.  */
 
 
static struct pending *common_block;
static struct pending *common_block;
static int common_block_i;
static int common_block_i;
 
 
/* Name of the current common block.  We get it from the BCOMM instead of the
/* Name of the current common block.  We get it from the BCOMM instead of the
   ECOMM to match IBM documentation (even though IBM puts the name both places
   ECOMM to match IBM documentation (even though IBM puts the name both places
   like everyone else).  */
   like everyone else).  */
static char *common_block_name;
static char *common_block_name;
 
 
/* Process a N_BCOMM symbol.  The storage for NAME is not guaranteed
/* Process a N_BCOMM symbol.  The storage for NAME is not guaranteed
   to remain after this function returns.  */
   to remain after this function returns.  */
 
 
void
void
common_block_start (name, objfile)
common_block_start (name, objfile)
     char *name;
     char *name;
     struct objfile *objfile;
     struct objfile *objfile;
{
{
  if (common_block_name != NULL)
  if (common_block_name != NULL)
    {
    {
      static struct complaint msg =
      static struct complaint msg =
      {
      {
        "Invalid symbol data: common block within common block",
        "Invalid symbol data: common block within common block",
        0, 0};
        0, 0};
      complain (&msg);
      complain (&msg);
    }
    }
  common_block = local_symbols;
  common_block = local_symbols;
  common_block_i = local_symbols ? local_symbols->nsyms : 0;
  common_block_i = local_symbols ? local_symbols->nsyms : 0;
  common_block_name = obsavestring (name, strlen (name),
  common_block_name = obsavestring (name, strlen (name),
                                    &objfile->symbol_obstack);
                                    &objfile->symbol_obstack);
}
}
 
 
/* Process a N_ECOMM symbol.  */
/* Process a N_ECOMM symbol.  */
 
 
void
void
common_block_end (objfile)
common_block_end (objfile)
     struct objfile *objfile;
     struct objfile *objfile;
{
{
  /* Symbols declared since the BCOMM are to have the common block
  /* Symbols declared since the BCOMM are to have the common block
     start address added in when we know it.  common_block and
     start address added in when we know it.  common_block and
     common_block_i point to the first symbol after the BCOMM in
     common_block_i point to the first symbol after the BCOMM in
     the local_symbols list; copy the list and hang it off the
     the local_symbols list; copy the list and hang it off the
     symbol for the common block name for later fixup.  */
     symbol for the common block name for later fixup.  */
  int i;
  int i;
  struct symbol *sym;
  struct symbol *sym;
  struct pending *new = 0;
  struct pending *new = 0;
  struct pending *next;
  struct pending *next;
  int j;
  int j;
 
 
  if (common_block_name == NULL)
  if (common_block_name == NULL)
    {
    {
      static struct complaint msg =
      static struct complaint msg =
      {"ECOMM symbol unmatched by BCOMM", 0, 0};
      {"ECOMM symbol unmatched by BCOMM", 0, 0};
      complain (&msg);
      complain (&msg);
      return;
      return;
    }
    }
 
 
  sym = (struct symbol *)
  sym = (struct symbol *)
    obstack_alloc (&objfile->symbol_obstack, sizeof (struct symbol));
    obstack_alloc (&objfile->symbol_obstack, sizeof (struct symbol));
  memset (sym, 0, sizeof (struct symbol));
  memset (sym, 0, sizeof (struct symbol));
  /* Note: common_block_name already saved on symbol_obstack */
  /* Note: common_block_name already saved on symbol_obstack */
  SYMBOL_NAME (sym) = common_block_name;
  SYMBOL_NAME (sym) = common_block_name;
  SYMBOL_CLASS (sym) = LOC_BLOCK;
  SYMBOL_CLASS (sym) = LOC_BLOCK;
 
 
  /* Now we copy all the symbols which have been defined since the BCOMM.  */
  /* Now we copy all the symbols which have been defined since the BCOMM.  */
 
 
  /* Copy all the struct pendings before common_block.  */
  /* Copy all the struct pendings before common_block.  */
  for (next = local_symbols;
  for (next = local_symbols;
       next != NULL && next != common_block;
       next != NULL && next != common_block;
       next = next->next)
       next = next->next)
    {
    {
      for (j = 0; j < next->nsyms; j++)
      for (j = 0; j < next->nsyms; j++)
        add_symbol_to_list (next->symbol[j], &new);
        add_symbol_to_list (next->symbol[j], &new);
    }
    }
 
 
  /* Copy however much of COMMON_BLOCK we need.  If COMMON_BLOCK is
  /* Copy however much of COMMON_BLOCK we need.  If COMMON_BLOCK is
     NULL, it means copy all the local symbols (which we already did
     NULL, it means copy all the local symbols (which we already did
     above).  */
     above).  */
 
 
  if (common_block != NULL)
  if (common_block != NULL)
    for (j = common_block_i; j < common_block->nsyms; j++)
    for (j = common_block_i; j < common_block->nsyms; j++)
      add_symbol_to_list (common_block->symbol[j], &new);
      add_symbol_to_list (common_block->symbol[j], &new);
 
 
  SYMBOL_TYPE (sym) = (struct type *) new;
  SYMBOL_TYPE (sym) = (struct type *) new;
 
 
  /* Should we be putting local_symbols back to what it was?
  /* Should we be putting local_symbols back to what it was?
     Does it matter?  */
     Does it matter?  */
 
 
  i = hashname (SYMBOL_NAME (sym));
  i = hashname (SYMBOL_NAME (sym));
  SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
  SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
  global_sym_chain[i] = sym;
  global_sym_chain[i] = sym;
  common_block_name = NULL;
  common_block_name = NULL;
}
}
 
 
/* Add a common block's start address to the offset of each symbol
/* Add a common block's start address to the offset of each symbol
   declared to be in it (by being between a BCOMM/ECOMM pair that uses
   declared to be in it (by being between a BCOMM/ECOMM pair that uses
   the common block name).  */
   the common block name).  */
 
 
static void
static void
fix_common_block (sym, valu)
fix_common_block (sym, valu)
     struct symbol *sym;
     struct symbol *sym;
     int valu;
     int valu;
{
{
  struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
  struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
  for (; next; next = next->next)
  for (; next; next = next->next)
    {
    {
      register int j;
      register int j;
      for (j = next->nsyms - 1; j >= 0; j--)
      for (j = next->nsyms - 1; j >= 0; j--)
        SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
        SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
    }
    }
}
}


 
 
 
 
/* What about types defined as forward references inside of a small lexical
/* What about types defined as forward references inside of a small lexical
   scope?  */
   scope?  */
/* Add a type to the list of undefined types to be checked through
/* Add a type to the list of undefined types to be checked through
   once this file has been read in.  */
   once this file has been read in.  */
 
 
void
void
add_undefined_type (type)
add_undefined_type (type)
     struct type *type;
     struct type *type;
{
{
  if (undef_types_length == undef_types_allocated)
  if (undef_types_length == undef_types_allocated)
    {
    {
      undef_types_allocated *= 2;
      undef_types_allocated *= 2;
      undef_types = (struct type **)
      undef_types = (struct type **)
        xrealloc ((char *) undef_types,
        xrealloc ((char *) undef_types,
                  undef_types_allocated * sizeof (struct type *));
                  undef_types_allocated * sizeof (struct type *));
    }
    }
  undef_types[undef_types_length++] = type;
  undef_types[undef_types_length++] = type;
}
}
 
 
/* Go through each undefined type, see if it's still undefined, and fix it
/* Go through each undefined type, see if it's still undefined, and fix it
   up if possible.  We have two kinds of undefined types:
   up if possible.  We have two kinds of undefined types:
 
 
   TYPE_CODE_ARRAY:  Array whose target type wasn't defined yet.
   TYPE_CODE_ARRAY:  Array whose target type wasn't defined yet.
   Fix:  update array length using the element bounds
   Fix:  update array length using the element bounds
   and the target type's length.
   and the target type's length.
   TYPE_CODE_STRUCT, TYPE_CODE_UNION:  Structure whose fields were not
   TYPE_CODE_STRUCT, TYPE_CODE_UNION:  Structure whose fields were not
   yet defined at the time a pointer to it was made.
   yet defined at the time a pointer to it was made.
   Fix:  Do a full lookup on the struct/union tag.  */
   Fix:  Do a full lookup on the struct/union tag.  */
void
void
cleanup_undefined_types ()
cleanup_undefined_types ()
{
{
  struct type **type;
  struct type **type;
 
 
  for (type = undef_types; type < undef_types + undef_types_length; type++)
  for (type = undef_types; type < undef_types + undef_types_length; type++)
    {
    {
      switch (TYPE_CODE (*type))
      switch (TYPE_CODE (*type))
        {
        {
 
 
        case TYPE_CODE_STRUCT:
        case TYPE_CODE_STRUCT:
        case TYPE_CODE_UNION:
        case TYPE_CODE_UNION:
        case TYPE_CODE_ENUM:
        case TYPE_CODE_ENUM:
          {
          {
            /* Check if it has been defined since.  Need to do this here
            /* Check if it has been defined since.  Need to do this here
               as well as in check_typedef to deal with the (legitimate in
               as well as in check_typedef to deal with the (legitimate in
               C though not C++) case of several types with the same name
               C though not C++) case of several types with the same name
               in different source files.  */
               in different source files.  */
            if (TYPE_FLAGS (*type) & TYPE_FLAG_STUB)
            if (TYPE_FLAGS (*type) & TYPE_FLAG_STUB)
              {
              {
                struct pending *ppt;
                struct pending *ppt;
                int i;
                int i;
                /* Name of the type, without "struct" or "union" */
                /* Name of the type, without "struct" or "union" */
                char *typename = TYPE_TAG_NAME (*type);
                char *typename = TYPE_TAG_NAME (*type);
 
 
                if (typename == NULL)
                if (typename == NULL)
                  {
                  {
                    static struct complaint msg =
                    static struct complaint msg =
                    {"need a type name", 0, 0};
                    {"need a type name", 0, 0};
                    complain (&msg);
                    complain (&msg);
                    break;
                    break;
                  }
                  }
                for (ppt = file_symbols; ppt; ppt = ppt->next)
                for (ppt = file_symbols; ppt; ppt = ppt->next)
                  {
                  {
                    for (i = 0; i < ppt->nsyms; i++)
                    for (i = 0; i < ppt->nsyms; i++)
                      {
                      {
                        struct symbol *sym = ppt->symbol[i];
                        struct symbol *sym = ppt->symbol[i];
 
 
                        if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
                        if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
                            && SYMBOL_NAMESPACE (sym) == STRUCT_NAMESPACE
                            && SYMBOL_NAMESPACE (sym) == STRUCT_NAMESPACE
                            && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
                            && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
                                TYPE_CODE (*type))
                                TYPE_CODE (*type))
                            && STREQ (SYMBOL_NAME (sym), typename))
                            && STREQ (SYMBOL_NAME (sym), typename))
                          {
                          {
                            memcpy (*type, SYMBOL_TYPE (sym),
                            memcpy (*type, SYMBOL_TYPE (sym),
                                    sizeof (struct type));
                                    sizeof (struct type));
                          }
                          }
                      }
                      }
                  }
                  }
              }
              }
          }
          }
          break;
          break;
 
 
        default:
        default:
          {
          {
            static struct complaint msg =
            static struct complaint msg =
            {"\
            {"\
GDB internal error.  cleanup_undefined_types with bad type %d.", 0, 0};
GDB internal error.  cleanup_undefined_types with bad type %d.", 0, 0};
            complain (&msg, TYPE_CODE (*type));
            complain (&msg, TYPE_CODE (*type));
          }
          }
          break;
          break;
        }
        }
    }
    }
 
 
  undef_types_length = 0;
  undef_types_length = 0;
}
}
 
 
/* Scan through all of the global symbols defined in the object file,
/* Scan through all of the global symbols defined in the object file,
   assigning values to the debugging symbols that need to be assigned
   assigning values to the debugging symbols that need to be assigned
   to.  Get these symbols from the minimal symbol table.  */
   to.  Get these symbols from the minimal symbol table.  */
 
 
void
void
scan_file_globals (objfile)
scan_file_globals (objfile)
     struct objfile *objfile;
     struct objfile *objfile;
{
{
  int hash;
  int hash;
  struct minimal_symbol *msymbol;
  struct minimal_symbol *msymbol;
  struct symbol *sym, *prev, *rsym;
  struct symbol *sym, *prev, *rsym;
  struct objfile *resolve_objfile;
  struct objfile *resolve_objfile;
 
 
  /* SVR4 based linkers copy referenced global symbols from shared
  /* SVR4 based linkers copy referenced global symbols from shared
     libraries to the main executable.
     libraries to the main executable.
     If we are scanning the symbols for a shared library, try to resolve
     If we are scanning the symbols for a shared library, try to resolve
     them from the minimal symbols of the main executable first.  */
     them from the minimal symbols of the main executable first.  */
 
 
  if (symfile_objfile && objfile != symfile_objfile)
  if (symfile_objfile && objfile != symfile_objfile)
    resolve_objfile = symfile_objfile;
    resolve_objfile = symfile_objfile;
  else
  else
    resolve_objfile = objfile;
    resolve_objfile = objfile;
 
 
  while (1)
  while (1)
    {
    {
      /* Avoid expensive loop through all minimal symbols if there are
      /* Avoid expensive loop through all minimal symbols if there are
         no unresolved symbols.  */
         no unresolved symbols.  */
      for (hash = 0; hash < HASHSIZE; hash++)
      for (hash = 0; hash < HASHSIZE; hash++)
        {
        {
          if (global_sym_chain[hash])
          if (global_sym_chain[hash])
            break;
            break;
        }
        }
      if (hash >= HASHSIZE)
      if (hash >= HASHSIZE)
        return;
        return;
 
 
      for (msymbol = resolve_objfile->msymbols;
      for (msymbol = resolve_objfile->msymbols;
           msymbol && SYMBOL_NAME (msymbol) != NULL;
           msymbol && SYMBOL_NAME (msymbol) != NULL;
           msymbol++)
           msymbol++)
        {
        {
          QUIT;
          QUIT;
 
 
          /* Skip static symbols.  */
          /* Skip static symbols.  */
          switch (MSYMBOL_TYPE (msymbol))
          switch (MSYMBOL_TYPE (msymbol))
            {
            {
            case mst_file_text:
            case mst_file_text:
            case mst_file_data:
            case mst_file_data:
            case mst_file_bss:
            case mst_file_bss:
              continue;
              continue;
            default:
            default:
              break;
              break;
            }
            }
 
 
          prev = NULL;
          prev = NULL;
 
 
          /* Get the hash index and check all the symbols
          /* Get the hash index and check all the symbols
             under that hash index. */
             under that hash index. */
 
 
          hash = hashname (SYMBOL_NAME (msymbol));
          hash = hashname (SYMBOL_NAME (msymbol));
 
 
          for (sym = global_sym_chain[hash]; sym;)
          for (sym = global_sym_chain[hash]; sym;)
            {
            {
              if (SYMBOL_NAME (msymbol)[0] == SYMBOL_NAME (sym)[0] &&
              if (SYMBOL_NAME (msymbol)[0] == SYMBOL_NAME (sym)[0] &&
                  STREQ (SYMBOL_NAME (msymbol) + 1, SYMBOL_NAME (sym) + 1))
                  STREQ (SYMBOL_NAME (msymbol) + 1, SYMBOL_NAME (sym) + 1))
                {
                {
 
 
                  struct alias_list *aliases;
                  struct alias_list *aliases;
 
 
                  /* Splice this symbol out of the hash chain and
                  /* Splice this symbol out of the hash chain and
                     assign the value we have to it. */
                     assign the value we have to it. */
                  if (prev)
                  if (prev)
                    {
                    {
                      SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
                      SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
                    }
                    }
                  else
                  else
                    {
                    {
                      global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
                      global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
                    }
                    }
 
 
                  /* Check to see whether we need to fix up a common block.  */
                  /* Check to see whether we need to fix up a common block.  */
                  /* Note: this code might be executed several times for
                  /* Note: this code might be executed several times for
                     the same symbol if there are multiple references.  */
                     the same symbol if there are multiple references.  */
 
 
                  /* If symbol has aliases, do minimal symbol fixups for each.
                  /* If symbol has aliases, do minimal symbol fixups for each.
                     These live aliases/references weren't added to
                     These live aliases/references weren't added to
                     global_sym_chain hash but may also need to be fixed up. */
                     global_sym_chain hash but may also need to be fixed up. */
                  /* FIXME: Maybe should have added aliases to the global chain,                     resolved symbol name, then treated aliases as normal
                  /* FIXME: Maybe should have added aliases to the global chain,                     resolved symbol name, then treated aliases as normal
                     symbols?  Still, we wouldn't want to add_to_list. */
                     symbols?  Still, we wouldn't want to add_to_list. */
                  /* Now do the same for each alias of this symbol */
                  /* Now do the same for each alias of this symbol */
                  rsym = sym;
                  rsym = sym;
                  aliases = SYMBOL_ALIASES (sym);
                  aliases = SYMBOL_ALIASES (sym);
                  while (rsym)
                  while (rsym)
                    {
                    {
                      if (SYMBOL_CLASS (rsym) == LOC_BLOCK)
                      if (SYMBOL_CLASS (rsym) == LOC_BLOCK)
                        {
                        {
                          fix_common_block (rsym,
                          fix_common_block (rsym,
                                            SYMBOL_VALUE_ADDRESS (msymbol));
                                            SYMBOL_VALUE_ADDRESS (msymbol));
                        }
                        }
                      else
                      else
                        {
                        {
                          SYMBOL_VALUE_ADDRESS (rsym)
                          SYMBOL_VALUE_ADDRESS (rsym)
                            = SYMBOL_VALUE_ADDRESS (msymbol);
                            = SYMBOL_VALUE_ADDRESS (msymbol);
                        }
                        }
                      SYMBOL_SECTION (rsym) = SYMBOL_SECTION (msymbol);
                      SYMBOL_SECTION (rsym) = SYMBOL_SECTION (msymbol);
                      if (aliases)
                      if (aliases)
                        {
                        {
                          rsym = aliases->sym;
                          rsym = aliases->sym;
                          aliases = aliases->next;
                          aliases = aliases->next;
                        }
                        }
                      else
                      else
                        rsym = NULL;
                        rsym = NULL;
                    }
                    }
 
 
 
 
                  if (prev)
                  if (prev)
                    {
                    {
                      sym = SYMBOL_VALUE_CHAIN (prev);
                      sym = SYMBOL_VALUE_CHAIN (prev);
                    }
                    }
                  else
                  else
                    {
                    {
                      sym = global_sym_chain[hash];
                      sym = global_sym_chain[hash];
                    }
                    }
                }
                }
              else
              else
                {
                {
                  prev = sym;
                  prev = sym;
                  sym = SYMBOL_VALUE_CHAIN (sym);
                  sym = SYMBOL_VALUE_CHAIN (sym);
                }
                }
            }
            }
        }
        }
      if (resolve_objfile == objfile)
      if (resolve_objfile == objfile)
        break;
        break;
      resolve_objfile = objfile;
      resolve_objfile = objfile;
    }
    }
 
 
  /* Change the storage class of any remaining unresolved globals to
  /* Change the storage class of any remaining unresolved globals to
     LOC_UNRESOLVED and remove them from the chain.  */
     LOC_UNRESOLVED and remove them from the chain.  */
  for (hash = 0; hash < HASHSIZE; hash++)
  for (hash = 0; hash < HASHSIZE; hash++)
    {
    {
      sym = global_sym_chain[hash];
      sym = global_sym_chain[hash];
      while (sym)
      while (sym)
        {
        {
          prev = sym;
          prev = sym;
          sym = SYMBOL_VALUE_CHAIN (sym);
          sym = SYMBOL_VALUE_CHAIN (sym);
 
 
          /* Change the symbol address from the misleading chain value
          /* Change the symbol address from the misleading chain value
             to address zero.  */
             to address zero.  */
          SYMBOL_VALUE_ADDRESS (prev) = 0;
          SYMBOL_VALUE_ADDRESS (prev) = 0;
 
 
          /* Complain about unresolved common block symbols.  */
          /* Complain about unresolved common block symbols.  */
          if (SYMBOL_CLASS (prev) == LOC_STATIC)
          if (SYMBOL_CLASS (prev) == LOC_STATIC)
            SYMBOL_CLASS (prev) = LOC_UNRESOLVED;
            SYMBOL_CLASS (prev) = LOC_UNRESOLVED;
          else
          else
            complain (&unresolved_sym_chain_complaint,
            complain (&unresolved_sym_chain_complaint,
                      objfile->name, SYMBOL_NAME (prev));
                      objfile->name, SYMBOL_NAME (prev));
        }
        }
    }
    }
  memset (global_sym_chain, 0, sizeof (global_sym_chain));
  memset (global_sym_chain, 0, sizeof (global_sym_chain));
}
}
 
 
/* Initialize anything that needs initializing when starting to read
/* Initialize anything that needs initializing when starting to read
   a fresh piece of a symbol file, e.g. reading in the stuff corresponding
   a fresh piece of a symbol file, e.g. reading in the stuff corresponding
   to a psymtab.  */
   to a psymtab.  */
 
 
void
void
stabsread_init ()
stabsread_init ()
{
{
}
}
 
 
/* Initialize anything that needs initializing when a completely new
/* Initialize anything that needs initializing when a completely new
   symbol file is specified (not just adding some symbols from another
   symbol file is specified (not just adding some symbols from another
   file, e.g. a shared library).  */
   file, e.g. a shared library).  */
 
 
void
void
stabsread_new_init ()
stabsread_new_init ()
{
{
  /* Empty the hash table of global syms looking for values.  */
  /* Empty the hash table of global syms looking for values.  */
  memset (global_sym_chain, 0, sizeof (global_sym_chain));
  memset (global_sym_chain, 0, sizeof (global_sym_chain));
}
}
 
 
/* Initialize anything that needs initializing at the same time as
/* Initialize anything that needs initializing at the same time as
   start_symtab() is called. */
   start_symtab() is called. */
 
 
void
void
start_stabs ()
start_stabs ()
{
{
  global_stabs = NULL;          /* AIX COFF */
  global_stabs = NULL;          /* AIX COFF */
  /* Leave FILENUM of 0 free for builtin types and this file's types.  */
  /* Leave FILENUM of 0 free for builtin types and this file's types.  */
  n_this_object_header_files = 1;
  n_this_object_header_files = 1;
  type_vector_length = 0;
  type_vector_length = 0;
  type_vector = (struct type **) 0;
  type_vector = (struct type **) 0;
 
 
  /* FIXME: If common_block_name is not already NULL, we should complain().  */
  /* FIXME: If common_block_name is not already NULL, we should complain().  */
  common_block_name = NULL;
  common_block_name = NULL;
 
 
  os9k_stabs = 0;
  os9k_stabs = 0;
}
}
 
 
/* Call after end_symtab() */
/* Call after end_symtab() */
 
 
void
void
end_stabs ()
end_stabs ()
{
{
  if (type_vector)
  if (type_vector)
    {
    {
      free ((char *) type_vector);
      free ((char *) type_vector);
    }
    }
  type_vector = 0;
  type_vector = 0;
  type_vector_length = 0;
  type_vector_length = 0;
  previous_stab_code = 0;
  previous_stab_code = 0;
}
}
 
 
void
void
finish_global_stabs (objfile)
finish_global_stabs (objfile)
     struct objfile *objfile;
     struct objfile *objfile;
{
{
  if (global_stabs)
  if (global_stabs)
    {
    {
      patch_block_stabs (global_symbols, global_stabs, objfile);
      patch_block_stabs (global_symbols, global_stabs, objfile);
      free ((PTR) global_stabs);
      free ((PTR) global_stabs);
      global_stabs = NULL;
      global_stabs = NULL;
    }
    }
}
}
 
 
/* Initializer for this module */
/* Initializer for this module */
 
 
void
void
_initialize_stabsread ()
_initialize_stabsread ()
{
{
  undef_types_allocated = 20;
  undef_types_allocated = 20;
  undef_types_length = 0;
  undef_types_length = 0;
  undef_types = (struct type **)
  undef_types = (struct type **)
    xmalloc (undef_types_allocated * sizeof (struct type *));
    xmalloc (undef_types_allocated * sizeof (struct type *));
}
}
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.