OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [gdb-5.0/] [gdb/] [symm-nat.c] - Diff between revs 105 and 1765

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 105 Rev 1765
/* Sequent Symmetry host interface, for GDB when running under Unix.
/* Sequent Symmetry host interface, for GDB when running under Unix.
   Copyright 1986, 1987, 1989, 1991, 1992, 1994 Free Software Foundation, Inc.
   Copyright 1986, 1987, 1989, 1991, 1992, 1994 Free Software Foundation, Inc.
 
 
   This file is part of GDB.
   This file is part of GDB.
 
 
   This program is free software; you can redistribute it and/or modify
   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2 of the License, or
   the Free Software Foundation; either version 2 of the License, or
   (at your option) any later version.
   (at your option) any later version.
 
 
   This program is distributed in the hope that it will be useful,
   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.
   GNU General Public License for more details.
 
 
   You should have received a copy of the GNU General Public License
   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   along with this program; if not, write to the Free Software
   Foundation, Inc., 59 Temple Place - Suite 330,
   Foundation, Inc., 59 Temple Place - Suite 330,
   Boston, MA 02111-1307, USA.  */
   Boston, MA 02111-1307, USA.  */
 
 
/* FIXME, some 387-specific items of use taken from i387-tdep.c -- ought to be
/* FIXME, some 387-specific items of use taken from i387-tdep.c -- ought to be
   merged back in. */
   merged back in. */
 
 
#include "defs.h"
#include "defs.h"
#include "frame.h"
#include "frame.h"
#include "inferior.h"
#include "inferior.h"
#include "symtab.h"
#include "symtab.h"
#include "target.h"
#include "target.h"
 
 
/* FIXME: What is the _INKERNEL define for?  */
/* FIXME: What is the _INKERNEL define for?  */
#define _INKERNEL
#define _INKERNEL
#include <signal.h>
#include <signal.h>
#undef _INKERNEL
#undef _INKERNEL
#include <sys/wait.h>
#include <sys/wait.h>
#include <sys/param.h>
#include <sys/param.h>
#include <sys/user.h>
#include <sys/user.h>
#include <sys/proc.h>
#include <sys/proc.h>
#include <sys/dir.h>
#include <sys/dir.h>
#include <sys/ioctl.h>
#include <sys/ioctl.h>
#include "gdb_stat.h"
#include "gdb_stat.h"
#ifdef _SEQUENT_
#ifdef _SEQUENT_
#include <sys/ptrace.h>
#include <sys/ptrace.h>
#else
#else
/* Dynix has only machine/ptrace.h, which is already included by sys/user.h  */
/* Dynix has only machine/ptrace.h, which is already included by sys/user.h  */
/* Dynix has no mptrace call */
/* Dynix has no mptrace call */
#define mptrace ptrace
#define mptrace ptrace
#endif
#endif
#include "gdbcore.h"
#include "gdbcore.h"
#include <fcntl.h>
#include <fcntl.h>
#include <sgtty.h>
#include <sgtty.h>
#define TERMINAL struct sgttyb
#define TERMINAL struct sgttyb
 
 
#include "gdbcore.h"
#include "gdbcore.h"
 
 
void
void
store_inferior_registers (regno)
store_inferior_registers (regno)
     int regno;
     int regno;
{
{
  struct pt_regset regs;
  struct pt_regset regs;
  int i;
  int i;
 
 
  /* FIXME: Fetching the registers is a kludge to initialize all elements
  /* FIXME: Fetching the registers is a kludge to initialize all elements
     in the fpu and fpa status. This works for normal debugging, but
     in the fpu and fpa status. This works for normal debugging, but
     might cause problems when calling functions in the inferior.
     might cause problems when calling functions in the inferior.
     At least fpu_control and fpa_pcr (probably more) should be added
     At least fpu_control and fpa_pcr (probably more) should be added
     to the registers array to solve this properly.  */
     to the registers array to solve this properly.  */
  mptrace (XPT_RREGS, inferior_pid, (PTRACE_ARG3_TYPE) & regs, 0);
  mptrace (XPT_RREGS, inferior_pid, (PTRACE_ARG3_TYPE) & regs, 0);
 
 
  regs.pr_eax = *(int *) &registers[REGISTER_BYTE (0)];
  regs.pr_eax = *(int *) &registers[REGISTER_BYTE (0)];
  regs.pr_ebx = *(int *) &registers[REGISTER_BYTE (5)];
  regs.pr_ebx = *(int *) &registers[REGISTER_BYTE (5)];
  regs.pr_ecx = *(int *) &registers[REGISTER_BYTE (2)];
  regs.pr_ecx = *(int *) &registers[REGISTER_BYTE (2)];
  regs.pr_edx = *(int *) &registers[REGISTER_BYTE (1)];
  regs.pr_edx = *(int *) &registers[REGISTER_BYTE (1)];
  regs.pr_esi = *(int *) &registers[REGISTER_BYTE (6)];
  regs.pr_esi = *(int *) &registers[REGISTER_BYTE (6)];
  regs.pr_edi = *(int *) &registers[REGISTER_BYTE (7)];
  regs.pr_edi = *(int *) &registers[REGISTER_BYTE (7)];
  regs.pr_esp = *(int *) &registers[REGISTER_BYTE (14)];
  regs.pr_esp = *(int *) &registers[REGISTER_BYTE (14)];
  regs.pr_ebp = *(int *) &registers[REGISTER_BYTE (15)];
  regs.pr_ebp = *(int *) &registers[REGISTER_BYTE (15)];
  regs.pr_eip = *(int *) &registers[REGISTER_BYTE (16)];
  regs.pr_eip = *(int *) &registers[REGISTER_BYTE (16)];
  regs.pr_flags = *(int *) &registers[REGISTER_BYTE (17)];
  regs.pr_flags = *(int *) &registers[REGISTER_BYTE (17)];
  for (i = 0; i < 31; i++)
  for (i = 0; i < 31; i++)
    {
    {
      regs.pr_fpa.fpa_regs[i] =
      regs.pr_fpa.fpa_regs[i] =
        *(int *) &registers[REGISTER_BYTE (FP1_REGNUM + i)];
        *(int *) &registers[REGISTER_BYTE (FP1_REGNUM + i)];
    }
    }
  memcpy (regs.pr_fpu.fpu_stack[0], &registers[REGISTER_BYTE (ST0_REGNUM)], 10);
  memcpy (regs.pr_fpu.fpu_stack[0], &registers[REGISTER_BYTE (ST0_REGNUM)], 10);
  memcpy (regs.pr_fpu.fpu_stack[1], &registers[REGISTER_BYTE (ST1_REGNUM)], 10);
  memcpy (regs.pr_fpu.fpu_stack[1], &registers[REGISTER_BYTE (ST1_REGNUM)], 10);
  memcpy (regs.pr_fpu.fpu_stack[2], &registers[REGISTER_BYTE (ST2_REGNUM)], 10);
  memcpy (regs.pr_fpu.fpu_stack[2], &registers[REGISTER_BYTE (ST2_REGNUM)], 10);
  memcpy (regs.pr_fpu.fpu_stack[3], &registers[REGISTER_BYTE (ST3_REGNUM)], 10);
  memcpy (regs.pr_fpu.fpu_stack[3], &registers[REGISTER_BYTE (ST3_REGNUM)], 10);
  memcpy (regs.pr_fpu.fpu_stack[4], &registers[REGISTER_BYTE (ST4_REGNUM)], 10);
  memcpy (regs.pr_fpu.fpu_stack[4], &registers[REGISTER_BYTE (ST4_REGNUM)], 10);
  memcpy (regs.pr_fpu.fpu_stack[5], &registers[REGISTER_BYTE (ST5_REGNUM)], 10);
  memcpy (regs.pr_fpu.fpu_stack[5], &registers[REGISTER_BYTE (ST5_REGNUM)], 10);
  memcpy (regs.pr_fpu.fpu_stack[6], &registers[REGISTER_BYTE (ST6_REGNUM)], 10);
  memcpy (regs.pr_fpu.fpu_stack[6], &registers[REGISTER_BYTE (ST6_REGNUM)], 10);
  memcpy (regs.pr_fpu.fpu_stack[7], &registers[REGISTER_BYTE (ST7_REGNUM)], 10);
  memcpy (regs.pr_fpu.fpu_stack[7], &registers[REGISTER_BYTE (ST7_REGNUM)], 10);
  mptrace (XPT_WREGS, inferior_pid, (PTRACE_ARG3_TYPE) & regs, 0);
  mptrace (XPT_WREGS, inferior_pid, (PTRACE_ARG3_TYPE) & regs, 0);
}
}
 
 
void
void
fetch_inferior_registers (regno)
fetch_inferior_registers (regno)
     int regno;
     int regno;
{
{
  int i;
  int i;
  struct pt_regset regs;
  struct pt_regset regs;
 
 
  registers_fetched ();
  registers_fetched ();
 
 
  mptrace (XPT_RREGS, inferior_pid, (PTRACE_ARG3_TYPE) & regs, 0);
  mptrace (XPT_RREGS, inferior_pid, (PTRACE_ARG3_TYPE) & regs, 0);
  *(int *) &registers[REGISTER_BYTE (EAX_REGNUM)] = regs.pr_eax;
  *(int *) &registers[REGISTER_BYTE (EAX_REGNUM)] = regs.pr_eax;
  *(int *) &registers[REGISTER_BYTE (EBX_REGNUM)] = regs.pr_ebx;
  *(int *) &registers[REGISTER_BYTE (EBX_REGNUM)] = regs.pr_ebx;
  *(int *) &registers[REGISTER_BYTE (ECX_REGNUM)] = regs.pr_ecx;
  *(int *) &registers[REGISTER_BYTE (ECX_REGNUM)] = regs.pr_ecx;
  *(int *) &registers[REGISTER_BYTE (EDX_REGNUM)] = regs.pr_edx;
  *(int *) &registers[REGISTER_BYTE (EDX_REGNUM)] = regs.pr_edx;
  *(int *) &registers[REGISTER_BYTE (ESI_REGNUM)] = regs.pr_esi;
  *(int *) &registers[REGISTER_BYTE (ESI_REGNUM)] = regs.pr_esi;
  *(int *) &registers[REGISTER_BYTE (EDI_REGNUM)] = regs.pr_edi;
  *(int *) &registers[REGISTER_BYTE (EDI_REGNUM)] = regs.pr_edi;
  *(int *) &registers[REGISTER_BYTE (EBP_REGNUM)] = regs.pr_ebp;
  *(int *) &registers[REGISTER_BYTE (EBP_REGNUM)] = regs.pr_ebp;
  *(int *) &registers[REGISTER_BYTE (ESP_REGNUM)] = regs.pr_esp;
  *(int *) &registers[REGISTER_BYTE (ESP_REGNUM)] = regs.pr_esp;
  *(int *) &registers[REGISTER_BYTE (EIP_REGNUM)] = regs.pr_eip;
  *(int *) &registers[REGISTER_BYTE (EIP_REGNUM)] = regs.pr_eip;
  *(int *) &registers[REGISTER_BYTE (EFLAGS_REGNUM)] = regs.pr_flags;
  *(int *) &registers[REGISTER_BYTE (EFLAGS_REGNUM)] = regs.pr_flags;
  for (i = 0; i < FPA_NREGS; i++)
  for (i = 0; i < FPA_NREGS; i++)
    {
    {
      *(int *) &registers[REGISTER_BYTE (FP1_REGNUM + i)] =
      *(int *) &registers[REGISTER_BYTE (FP1_REGNUM + i)] =
        regs.pr_fpa.fpa_regs[i];
        regs.pr_fpa.fpa_regs[i];
    }
    }
  memcpy (&registers[REGISTER_BYTE (ST0_REGNUM)], regs.pr_fpu.fpu_stack[0], 10);
  memcpy (&registers[REGISTER_BYTE (ST0_REGNUM)], regs.pr_fpu.fpu_stack[0], 10);
  memcpy (&registers[REGISTER_BYTE (ST1_REGNUM)], regs.pr_fpu.fpu_stack[1], 10);
  memcpy (&registers[REGISTER_BYTE (ST1_REGNUM)], regs.pr_fpu.fpu_stack[1], 10);
  memcpy (&registers[REGISTER_BYTE (ST2_REGNUM)], regs.pr_fpu.fpu_stack[2], 10);
  memcpy (&registers[REGISTER_BYTE (ST2_REGNUM)], regs.pr_fpu.fpu_stack[2], 10);
  memcpy (&registers[REGISTER_BYTE (ST3_REGNUM)], regs.pr_fpu.fpu_stack[3], 10);
  memcpy (&registers[REGISTER_BYTE (ST3_REGNUM)], regs.pr_fpu.fpu_stack[3], 10);
  memcpy (&registers[REGISTER_BYTE (ST4_REGNUM)], regs.pr_fpu.fpu_stack[4], 10);
  memcpy (&registers[REGISTER_BYTE (ST4_REGNUM)], regs.pr_fpu.fpu_stack[4], 10);
  memcpy (&registers[REGISTER_BYTE (ST5_REGNUM)], regs.pr_fpu.fpu_stack[5], 10);
  memcpy (&registers[REGISTER_BYTE (ST5_REGNUM)], regs.pr_fpu.fpu_stack[5], 10);
  memcpy (&registers[REGISTER_BYTE (ST6_REGNUM)], regs.pr_fpu.fpu_stack[6], 10);
  memcpy (&registers[REGISTER_BYTE (ST6_REGNUM)], regs.pr_fpu.fpu_stack[6], 10);
  memcpy (&registers[REGISTER_BYTE (ST7_REGNUM)], regs.pr_fpu.fpu_stack[7], 10);
  memcpy (&registers[REGISTER_BYTE (ST7_REGNUM)], regs.pr_fpu.fpu_stack[7], 10);
}
}


/* FIXME:  This should be merged with i387-tdep.c as well. */
/* FIXME:  This should be merged with i387-tdep.c as well. */
static
static
print_fpu_status (ep)
print_fpu_status (ep)
     struct pt_regset ep;
     struct pt_regset ep;
{
{
  int i;
  int i;
  int bothstatus;
  int bothstatus;
  int top;
  int top;
  int fpreg;
  int fpreg;
  unsigned char *p;
  unsigned char *p;
 
 
  printf_unfiltered ("80387:");
  printf_unfiltered ("80387:");
  if (ep.pr_fpu.fpu_ip == 0)
  if (ep.pr_fpu.fpu_ip == 0)
    {
    {
      printf_unfiltered (" not in use.\n");
      printf_unfiltered (" not in use.\n");
      return;
      return;
    }
    }
  else
  else
    {
    {
      printf_unfiltered ("\n");
      printf_unfiltered ("\n");
    }
    }
  if (ep.pr_fpu.fpu_status != 0)
  if (ep.pr_fpu.fpu_status != 0)
    {
    {
      print_387_status_word (ep.pr_fpu.fpu_status);
      print_387_status_word (ep.pr_fpu.fpu_status);
    }
    }
  print_387_control_word (ep.pr_fpu.fpu_control);
  print_387_control_word (ep.pr_fpu.fpu_control);
  printf_unfiltered ("last exception: ");
  printf_unfiltered ("last exception: ");
  printf_unfiltered ("opcode 0x%x; ", ep.pr_fpu.fpu_rsvd4);
  printf_unfiltered ("opcode 0x%x; ", ep.pr_fpu.fpu_rsvd4);
  printf_unfiltered ("pc 0x%x:0x%x; ", ep.pr_fpu.fpu_cs, ep.pr_fpu.fpu_ip);
  printf_unfiltered ("pc 0x%x:0x%x; ", ep.pr_fpu.fpu_cs, ep.pr_fpu.fpu_ip);
  printf_unfiltered ("operand 0x%x:0x%x\n", ep.pr_fpu.fpu_data_offset, ep.pr_fpu.fpu_op_sel);
  printf_unfiltered ("operand 0x%x:0x%x\n", ep.pr_fpu.fpu_data_offset, ep.pr_fpu.fpu_op_sel);
 
 
  top = (ep.pr_fpu.fpu_status >> 11) & 7;
  top = (ep.pr_fpu.fpu_status >> 11) & 7;
 
 
  printf_unfiltered ("regno  tag  msb              lsb  value\n");
  printf_unfiltered ("regno  tag  msb              lsb  value\n");
  for (fpreg = 7; fpreg >= 0; fpreg--)
  for (fpreg = 7; fpreg >= 0; fpreg--)
    {
    {
      double val;
      double val;
 
 
      printf_unfiltered ("%s %d: ", fpreg == top ? "=>" : "  ", fpreg);
      printf_unfiltered ("%s %d: ", fpreg == top ? "=>" : "  ", fpreg);
 
 
      switch ((ep.pr_fpu.fpu_tag >> (fpreg * 2)) & 3)
      switch ((ep.pr_fpu.fpu_tag >> (fpreg * 2)) & 3)
        {
        {
        case 0:
        case 0:
          printf_unfiltered ("valid ");
          printf_unfiltered ("valid ");
          break;
          break;
        case 1:
        case 1:
          printf_unfiltered ("zero  ");
          printf_unfiltered ("zero  ");
          break;
          break;
        case 2:
        case 2:
          printf_unfiltered ("trap  ");
          printf_unfiltered ("trap  ");
          break;
          break;
        case 3:
        case 3:
          printf_unfiltered ("empty ");
          printf_unfiltered ("empty ");
          break;
          break;
        }
        }
      for (i = 9; i >= 0; i--)
      for (i = 9; i >= 0; i--)
        printf_unfiltered ("%02x", ep.pr_fpu.fpu_stack[fpreg][i]);
        printf_unfiltered ("%02x", ep.pr_fpu.fpu_stack[fpreg][i]);
 
 
      i387_to_double ((char *) ep.pr_fpu.fpu_stack[fpreg], (char *) &val);
      i387_to_double ((char *) ep.pr_fpu.fpu_stack[fpreg], (char *) &val);
      printf_unfiltered ("  %g\n", val);
      printf_unfiltered ("  %g\n", val);
    }
    }
  if (ep.pr_fpu.fpu_rsvd1)
  if (ep.pr_fpu.fpu_rsvd1)
    warning ("rsvd1 is 0x%x\n", ep.pr_fpu.fpu_rsvd1);
    warning ("rsvd1 is 0x%x\n", ep.pr_fpu.fpu_rsvd1);
  if (ep.pr_fpu.fpu_rsvd2)
  if (ep.pr_fpu.fpu_rsvd2)
    warning ("rsvd2 is 0x%x\n", ep.pr_fpu.fpu_rsvd2);
    warning ("rsvd2 is 0x%x\n", ep.pr_fpu.fpu_rsvd2);
  if (ep.pr_fpu.fpu_rsvd3)
  if (ep.pr_fpu.fpu_rsvd3)
    warning ("rsvd3 is 0x%x\n", ep.pr_fpu.fpu_rsvd3);
    warning ("rsvd3 is 0x%x\n", ep.pr_fpu.fpu_rsvd3);
  if (ep.pr_fpu.fpu_rsvd5)
  if (ep.pr_fpu.fpu_rsvd5)
    warning ("rsvd5 is 0x%x\n", ep.pr_fpu.fpu_rsvd5);
    warning ("rsvd5 is 0x%x\n", ep.pr_fpu.fpu_rsvd5);
}
}
 
 
 
 
print_1167_control_word (pcr)
print_1167_control_word (pcr)
     unsigned int pcr;
     unsigned int pcr;
 
 
{
{
  int pcr_tmp;
  int pcr_tmp;
 
 
  pcr_tmp = pcr & FPA_PCR_MODE;
  pcr_tmp = pcr & FPA_PCR_MODE;
  printf_unfiltered ("\tMODE= %#x; RND= %#x ", pcr_tmp, pcr_tmp & 12);
  printf_unfiltered ("\tMODE= %#x; RND= %#x ", pcr_tmp, pcr_tmp & 12);
  switch (pcr_tmp & 12)
  switch (pcr_tmp & 12)
    {
    {
    case 0:
    case 0:
      printf_unfiltered ("RN (Nearest Value)");
      printf_unfiltered ("RN (Nearest Value)");
      break;
      break;
    case 1:
    case 1:
      printf_unfiltered ("RZ (Zero)");
      printf_unfiltered ("RZ (Zero)");
      break;
      break;
    case 2:
    case 2:
      printf_unfiltered ("RP (Positive Infinity)");
      printf_unfiltered ("RP (Positive Infinity)");
      break;
      break;
    case 3:
    case 3:
      printf_unfiltered ("RM (Negative Infinity)");
      printf_unfiltered ("RM (Negative Infinity)");
      break;
      break;
    }
    }
  printf_unfiltered ("; IRND= %d ", pcr_tmp & 2);
  printf_unfiltered ("; IRND= %d ", pcr_tmp & 2);
  if (0 == pcr_tmp & 2)
  if (0 == pcr_tmp & 2)
    {
    {
      printf_unfiltered ("(same as RND)\n");
      printf_unfiltered ("(same as RND)\n");
    }
    }
  else
  else
    {
    {
      printf_unfiltered ("(toward zero)\n");
      printf_unfiltered ("(toward zero)\n");
    }
    }
  pcr_tmp = pcr & FPA_PCR_EM;
  pcr_tmp = pcr & FPA_PCR_EM;
  printf_unfiltered ("\tEM= %#x", pcr_tmp);
  printf_unfiltered ("\tEM= %#x", pcr_tmp);
  if (pcr_tmp & FPA_PCR_EM_DM)
  if (pcr_tmp & FPA_PCR_EM_DM)
    printf_unfiltered (" DM");
    printf_unfiltered (" DM");
  if (pcr_tmp & FPA_PCR_EM_UOM)
  if (pcr_tmp & FPA_PCR_EM_UOM)
    printf_unfiltered (" UOM");
    printf_unfiltered (" UOM");
  if (pcr_tmp & FPA_PCR_EM_PM)
  if (pcr_tmp & FPA_PCR_EM_PM)
    printf_unfiltered (" PM");
    printf_unfiltered (" PM");
  if (pcr_tmp & FPA_PCR_EM_UM)
  if (pcr_tmp & FPA_PCR_EM_UM)
    printf_unfiltered (" UM");
    printf_unfiltered (" UM");
  if (pcr_tmp & FPA_PCR_EM_OM)
  if (pcr_tmp & FPA_PCR_EM_OM)
    printf_unfiltered (" OM");
    printf_unfiltered (" OM");
  if (pcr_tmp & FPA_PCR_EM_ZM)
  if (pcr_tmp & FPA_PCR_EM_ZM)
    printf_unfiltered (" ZM");
    printf_unfiltered (" ZM");
  if (pcr_tmp & FPA_PCR_EM_IM)
  if (pcr_tmp & FPA_PCR_EM_IM)
    printf_unfiltered (" IM");
    printf_unfiltered (" IM");
  printf_unfiltered ("\n");
  printf_unfiltered ("\n");
  pcr_tmp = FPA_PCR_CC;
  pcr_tmp = FPA_PCR_CC;
  printf_unfiltered ("\tCC= %#x", pcr_tmp);
  printf_unfiltered ("\tCC= %#x", pcr_tmp);
  if (pcr_tmp & FPA_PCR_20MHZ)
  if (pcr_tmp & FPA_PCR_20MHZ)
    printf_unfiltered (" 20MHZ");
    printf_unfiltered (" 20MHZ");
  if (pcr_tmp & FPA_PCR_CC_Z)
  if (pcr_tmp & FPA_PCR_CC_Z)
    printf_unfiltered (" Z");
    printf_unfiltered (" Z");
  if (pcr_tmp & FPA_PCR_CC_C2)
  if (pcr_tmp & FPA_PCR_CC_C2)
    printf_unfiltered (" C2");
    printf_unfiltered (" C2");
 
 
  /* Dynix defines FPA_PCR_CC_C0 to 0x100 and ptx defines
  /* Dynix defines FPA_PCR_CC_C0 to 0x100 and ptx defines
     FPA_PCR_CC_C1 to 0x100.  Use whichever is defined and assume
     FPA_PCR_CC_C1 to 0x100.  Use whichever is defined and assume
     the OS knows what it is doing.  */
     the OS knows what it is doing.  */
#ifdef FPA_PCR_CC_C1
#ifdef FPA_PCR_CC_C1
  if (pcr_tmp & FPA_PCR_CC_C1)
  if (pcr_tmp & FPA_PCR_CC_C1)
    printf_unfiltered (" C1");
    printf_unfiltered (" C1");
#else
#else
  if (pcr_tmp & FPA_PCR_CC_C0)
  if (pcr_tmp & FPA_PCR_CC_C0)
    printf_unfiltered (" C0");
    printf_unfiltered (" C0");
#endif
#endif
 
 
  switch (pcr_tmp)
  switch (pcr_tmp)
    {
    {
    case FPA_PCR_CC_Z:
    case FPA_PCR_CC_Z:
      printf_unfiltered (" (Equal)");
      printf_unfiltered (" (Equal)");
      break;
      break;
#ifdef FPA_PCR_CC_C1
#ifdef FPA_PCR_CC_C1
    case FPA_PCR_CC_C1:
    case FPA_PCR_CC_C1:
#else
#else
    case FPA_PCR_CC_C0:
    case FPA_PCR_CC_C0:
#endif
#endif
      printf_unfiltered (" (Less than)");
      printf_unfiltered (" (Less than)");
      break;
      break;
    case 0:
    case 0:
      printf_unfiltered (" (Greater than)");
      printf_unfiltered (" (Greater than)");
      break;
      break;
      case FPA_PCR_CC_Z |
      case FPA_PCR_CC_Z |
#ifdef FPA_PCR_CC_C1
#ifdef FPA_PCR_CC_C1
        FPA_PCR_CC_C1
        FPA_PCR_CC_C1
#else
#else
        FPA_PCR_CC_C0
        FPA_PCR_CC_C0
#endif
#endif
    | FPA_PCR_CC_C2:
    | FPA_PCR_CC_C2:
      printf_unfiltered (" (Unordered)");
      printf_unfiltered (" (Unordered)");
      break;
      break;
    default:
    default:
      printf_unfiltered (" (Undefined)");
      printf_unfiltered (" (Undefined)");
      break;
      break;
    }
    }
  printf_unfiltered ("\n");
  printf_unfiltered ("\n");
  pcr_tmp = pcr & FPA_PCR_AE;
  pcr_tmp = pcr & FPA_PCR_AE;
  printf_unfiltered ("\tAE= %#x", pcr_tmp);
  printf_unfiltered ("\tAE= %#x", pcr_tmp);
  if (pcr_tmp & FPA_PCR_AE_DE)
  if (pcr_tmp & FPA_PCR_AE_DE)
    printf_unfiltered (" DE");
    printf_unfiltered (" DE");
  if (pcr_tmp & FPA_PCR_AE_UOE)
  if (pcr_tmp & FPA_PCR_AE_UOE)
    printf_unfiltered (" UOE");
    printf_unfiltered (" UOE");
  if (pcr_tmp & FPA_PCR_AE_PE)
  if (pcr_tmp & FPA_PCR_AE_PE)
    printf_unfiltered (" PE");
    printf_unfiltered (" PE");
  if (pcr_tmp & FPA_PCR_AE_UE)
  if (pcr_tmp & FPA_PCR_AE_UE)
    printf_unfiltered (" UE");
    printf_unfiltered (" UE");
  if (pcr_tmp & FPA_PCR_AE_OE)
  if (pcr_tmp & FPA_PCR_AE_OE)
    printf_unfiltered (" OE");
    printf_unfiltered (" OE");
  if (pcr_tmp & FPA_PCR_AE_ZE)
  if (pcr_tmp & FPA_PCR_AE_ZE)
    printf_unfiltered (" ZE");
    printf_unfiltered (" ZE");
  if (pcr_tmp & FPA_PCR_AE_EE)
  if (pcr_tmp & FPA_PCR_AE_EE)
    printf_unfiltered (" EE");
    printf_unfiltered (" EE");
  if (pcr_tmp & FPA_PCR_AE_IE)
  if (pcr_tmp & FPA_PCR_AE_IE)
    printf_unfiltered (" IE");
    printf_unfiltered (" IE");
  printf_unfiltered ("\n");
  printf_unfiltered ("\n");
}
}
 
 
print_1167_regs (regs)
print_1167_regs (regs)
     long regs[FPA_NREGS];
     long regs[FPA_NREGS];
 
 
{
{
  int i;
  int i;
 
 
  union
  union
    {
    {
      double d;
      double d;
      long l[2];
      long l[2];
    }
    }
  xd;
  xd;
  union
  union
    {
    {
      float f;
      float f;
      long l;
      long l;
    }
    }
  xf;
  xf;
 
 
 
 
  for (i = 0; i < FPA_NREGS; i++)
  for (i = 0; i < FPA_NREGS; i++)
    {
    {
      xf.l = regs[i];
      xf.l = regs[i];
      printf_unfiltered ("%%fp%d: raw= %#x, single= %f", i + 1, regs[i], xf.f);
      printf_unfiltered ("%%fp%d: raw= %#x, single= %f", i + 1, regs[i], xf.f);
      if (!(i & 1))
      if (!(i & 1))
        {
        {
          printf_unfiltered ("\n");
          printf_unfiltered ("\n");
        }
        }
      else
      else
        {
        {
          xd.l[1] = regs[i];
          xd.l[1] = regs[i];
          xd.l[0] = regs[i + 1];
          xd.l[0] = regs[i + 1];
          printf_unfiltered (", double= %f\n", xd.d);
          printf_unfiltered (", double= %f\n", xd.d);
        }
        }
    }
    }
}
}
 
 
print_fpa_status (ep)
print_fpa_status (ep)
     struct pt_regset ep;
     struct pt_regset ep;
 
 
{
{
 
 
  printf_unfiltered ("WTL 1167:");
  printf_unfiltered ("WTL 1167:");
  if (ep.pr_fpa.fpa_pcr != 0)
  if (ep.pr_fpa.fpa_pcr != 0)
    {
    {
      printf_unfiltered ("\n");
      printf_unfiltered ("\n");
      print_1167_control_word (ep.pr_fpa.fpa_pcr);
      print_1167_control_word (ep.pr_fpa.fpa_pcr);
      print_1167_regs (ep.pr_fpa.fpa_regs);
      print_1167_regs (ep.pr_fpa.fpa_regs);
    }
    }
  else
  else
    {
    {
      printf_unfiltered (" not in use.\n");
      printf_unfiltered (" not in use.\n");
    }
    }
}
}
 
 
#if 0                           /* disabled because it doesn't go through the target vector.  */
#if 0                           /* disabled because it doesn't go through the target vector.  */
i386_float_info ()
i386_float_info ()
{
{
  char ubuf[UPAGES * NBPG];
  char ubuf[UPAGES * NBPG];
  struct pt_regset regset;
  struct pt_regset regset;
 
 
  if (have_inferior_p ())
  if (have_inferior_p ())
    {
    {
      PTRACE_READ_REGS (inferior_pid, (PTRACE_ARG3_TYPE) & regset);
      PTRACE_READ_REGS (inferior_pid, (PTRACE_ARG3_TYPE) & regset);
    }
    }
  else
  else
    {
    {
      int corechan = bfd_cache_lookup (core_bfd);
      int corechan = bfd_cache_lookup (core_bfd);
      if (lseek (corechan, 0, 0) < 0)
      if (lseek (corechan, 0, 0) < 0)
        {
        {
          perror ("seek on core file");
          perror ("seek on core file");
        }
        }
      if (myread (corechan, ubuf, UPAGES * NBPG) < 0)
      if (myread (corechan, ubuf, UPAGES * NBPG) < 0)
        {
        {
          perror ("read on core file");
          perror ("read on core file");
        }
        }
      /* only interested in the floating point registers */
      /* only interested in the floating point registers */
      regset.pr_fpu = ((struct user *) ubuf)->u_fpusave;
      regset.pr_fpu = ((struct user *) ubuf)->u_fpusave;
      regset.pr_fpa = ((struct user *) ubuf)->u_fpasave;
      regset.pr_fpa = ((struct user *) ubuf)->u_fpasave;
    }
    }
  print_fpu_status (regset);
  print_fpu_status (regset);
  print_fpa_status (regset);
  print_fpa_status (regset);
}
}
#endif
#endif
 
 
static volatile int got_sigchld;
static volatile int got_sigchld;
 
 
/*ARGSUSED */
/*ARGSUSED */
/* This will eventually be more interesting. */
/* This will eventually be more interesting. */
void
void
sigchld_handler (signo)
sigchld_handler (signo)
     int signo;
     int signo;
{
{
  got_sigchld++;
  got_sigchld++;
}
}
 
 
/*
/*
 * Signals for which the default action does not cause the process
 * Signals for which the default action does not cause the process
 * to die.  See <sys/signal.h> for where this came from (alas, we
 * to die.  See <sys/signal.h> for where this came from (alas, we
 * can't use those macros directly)
 * can't use those macros directly)
 */
 */
#ifndef sigmask
#ifndef sigmask
#define sigmask(s) (1 << ((s) - 1))
#define sigmask(s) (1 << ((s) - 1))
#endif
#endif
#define SIGNALS_DFL_SAFE sigmask(SIGSTOP) | sigmask(SIGTSTP) | \
#define SIGNALS_DFL_SAFE sigmask(SIGSTOP) | sigmask(SIGTSTP) | \
        sigmask(SIGTTIN) | sigmask(SIGTTOU) | sigmask(SIGCHLD) | \
        sigmask(SIGTTIN) | sigmask(SIGTTOU) | sigmask(SIGCHLD) | \
        sigmask(SIGCONT) | sigmask(SIGWINCH) | sigmask(SIGPWR) | \
        sigmask(SIGCONT) | sigmask(SIGWINCH) | sigmask(SIGPWR) | \
        sigmask(SIGURG) | sigmask(SIGPOLL)
        sigmask(SIGURG) | sigmask(SIGPOLL)
 
 
#ifdef ATTACH_DETACH
#ifdef ATTACH_DETACH
/*
/*
 * Thanks to XPT_MPDEBUGGER, we have to mange child_wait().
 * Thanks to XPT_MPDEBUGGER, we have to mange child_wait().
 */
 */
int
int
child_wait (pid, status)
child_wait (pid, status)
     int pid;
     int pid;
     struct target_waitstatus *status;
     struct target_waitstatus *status;
{
{
  int save_errno, rv, xvaloff, saoff, sa_hand;
  int save_errno, rv, xvaloff, saoff, sa_hand;
  struct pt_stop pt;
  struct pt_stop pt;
  struct user u;
  struct user u;
  sigset_t set;
  sigset_t set;
  /* Host signal number for a signal which the inferior terminates with, or
  /* Host signal number for a signal which the inferior terminates with, or
     0 if it hasn't terminated due to a signal.  */
     0 if it hasn't terminated due to a signal.  */
  static int death_by_signal = 0;
  static int death_by_signal = 0;
#ifdef SVR4_SHARED_LIBS         /* use this to distinguish ptx 2 vs ptx 4 */
#ifdef SVR4_SHARED_LIBS         /* use this to distinguish ptx 2 vs ptx 4 */
  prstatus_t pstatus;
  prstatus_t pstatus;
#endif
#endif
 
 
  do
  do
    {
    {
      set_sigint_trap ();       /* Causes SIGINT to be passed on to the
      set_sigint_trap ();       /* Causes SIGINT to be passed on to the
                                   attached process. */
                                   attached process. */
      save_errno = errno;
      save_errno = errno;
 
 
      got_sigchld = 0;
      got_sigchld = 0;
 
 
      sigemptyset (&set);
      sigemptyset (&set);
 
 
      while (got_sigchld == 0)
      while (got_sigchld == 0)
        {
        {
          sigsuspend (&set);
          sigsuspend (&set);
        }
        }
 
 
      clear_sigint_trap ();
      clear_sigint_trap ();
 
 
      rv = mptrace (XPT_STOPSTAT, 0, (char *) &pt, 0);
      rv = mptrace (XPT_STOPSTAT, 0, (char *) &pt, 0);
      if (-1 == rv)
      if (-1 == rv)
        {
        {
          printf ("XPT_STOPSTAT: errno %d\n", errno);   /* DEBUG */
          printf ("XPT_STOPSTAT: errno %d\n", errno);   /* DEBUG */
          continue;
          continue;
        }
        }
 
 
      pid = pt.ps_pid;
      pid = pt.ps_pid;
 
 
      if (pid != inferior_pid)
      if (pid != inferior_pid)
        {
        {
          /* NOTE: the mystery fork in csh/tcsh needs to be ignored.
          /* NOTE: the mystery fork in csh/tcsh needs to be ignored.
           * We should not return new children for the initial run
           * We should not return new children for the initial run
           * of a process until it has done the exec.
           * of a process until it has done the exec.
           */
           */
          /* inferior probably forked; send it on its way */
          /* inferior probably forked; send it on its way */
          rv = mptrace (XPT_UNDEBUG, pid, 0, 0);
          rv = mptrace (XPT_UNDEBUG, pid, 0, 0);
          if (-1 == rv)
          if (-1 == rv)
            {
            {
              printf ("child_wait: XPT_UNDEBUG: pid %d: %s\n", pid,
              printf ("child_wait: XPT_UNDEBUG: pid %d: %s\n", pid,
                      safe_strerror (errno));
                      safe_strerror (errno));
            }
            }
          continue;
          continue;
        }
        }
      /* FIXME: Do we deal with fork notification correctly?  */
      /* FIXME: Do we deal with fork notification correctly?  */
      switch (pt.ps_reason)
      switch (pt.ps_reason)
        {
        {
        case PTS_FORK:
        case PTS_FORK:
          /* multi proc: treat like PTS_EXEC */
          /* multi proc: treat like PTS_EXEC */
          /*
          /*
           * Pretend this didn't happen, since gdb isn't set up
           * Pretend this didn't happen, since gdb isn't set up
           * to deal with stops on fork.
           * to deal with stops on fork.
           */
           */
          rv = ptrace (PT_CONTSIG, pid, 1, 0);
          rv = ptrace (PT_CONTSIG, pid, 1, 0);
          if (-1 == rv)
          if (-1 == rv)
            {
            {
              printf ("PTS_FORK: PT_CONTSIG: error %d\n", errno);
              printf ("PTS_FORK: PT_CONTSIG: error %d\n", errno);
            }
            }
          continue;
          continue;
        case PTS_EXEC:
        case PTS_EXEC:
          /*
          /*
           * Pretend this is a SIGTRAP.
           * Pretend this is a SIGTRAP.
           */
           */
          status->kind = TARGET_WAITKIND_STOPPED;
          status->kind = TARGET_WAITKIND_STOPPED;
          status->value.sig = TARGET_SIGNAL_TRAP;
          status->value.sig = TARGET_SIGNAL_TRAP;
          break;
          break;
        case PTS_EXIT:
        case PTS_EXIT:
          /*
          /*
           * Note: we stop before the exit actually occurs.  Extract
           * Note: we stop before the exit actually occurs.  Extract
           * the exit code from the uarea.  If we're stopped in the
           * the exit code from the uarea.  If we're stopped in the
           * exit() system call, the exit code will be in
           * exit() system call, the exit code will be in
           * u.u_ap[0].  An exit due to an uncaught signal will have
           * u.u_ap[0].  An exit due to an uncaught signal will have
           * something else in here, see the comment in the default:
           * something else in here, see the comment in the default:
           * case, below.  Finally,let the process exit.
           * case, below.  Finally,let the process exit.
           */
           */
          if (death_by_signal)
          if (death_by_signal)
            {
            {
              status->kind = TARGET_WAITKIND_SIGNALED;
              status->kind = TARGET_WAITKIND_SIGNALED;
              status->value.sig = target_signal_from_host (death_by_signal);
              status->value.sig = target_signal_from_host (death_by_signal);
              death_by_signal = 0;
              death_by_signal = 0;
              break;
              break;
            }
            }
          xvaloff = (unsigned long) &u.u_ap[0] - (unsigned long) &u;
          xvaloff = (unsigned long) &u.u_ap[0] - (unsigned long) &u;
          errno = 0;
          errno = 0;
          rv = ptrace (PT_RUSER, pid, (char *) xvaloff, 0);
          rv = ptrace (PT_RUSER, pid, (char *) xvaloff, 0);
          status->kind = TARGET_WAITKIND_EXITED;
          status->kind = TARGET_WAITKIND_EXITED;
          status->value.integer = rv;
          status->value.integer = rv;
          /*
          /*
           * addr & data to mptrace() don't matter here, since
           * addr & data to mptrace() don't matter here, since
           * the process is already dead.
           * the process is already dead.
           */
           */
          rv = mptrace (XPT_UNDEBUG, pid, 0, 0);
          rv = mptrace (XPT_UNDEBUG, pid, 0, 0);
          if (-1 == rv)
          if (-1 == rv)
            {
            {
              printf ("child_wait: PTS_EXIT: XPT_UNDEBUG: pid %d error %d\n", pid,
              printf ("child_wait: PTS_EXIT: XPT_UNDEBUG: pid %d error %d\n", pid,
                      errno);
                      errno);
            }
            }
          break;
          break;
        case PTS_WATCHPT_HIT:
        case PTS_WATCHPT_HIT:
          internal_error ("PTS_WATCHPT_HIT\n");
          internal_error ("PTS_WATCHPT_HIT\n");
          break;
          break;
        default:
        default:
          /* stopped by signal */
          /* stopped by signal */
          status->kind = TARGET_WAITKIND_STOPPED;
          status->kind = TARGET_WAITKIND_STOPPED;
          status->value.sig = target_signal_from_host (pt.ps_reason);
          status->value.sig = target_signal_from_host (pt.ps_reason);
          death_by_signal = 0;
          death_by_signal = 0;
 
 
          if (0 == (SIGNALS_DFL_SAFE & sigmask (pt.ps_reason)))
          if (0 == (SIGNALS_DFL_SAFE & sigmask (pt.ps_reason)))
            {
            {
              break;
              break;
            }
            }
          /* else default action of signal is to die */
          /* else default action of signal is to die */
#ifdef SVR4_SHARED_LIBS
#ifdef SVR4_SHARED_LIBS
          rv = ptrace (PT_GET_PRSTATUS, pid, (char *) &pstatus, 0);
          rv = ptrace (PT_GET_PRSTATUS, pid, (char *) &pstatus, 0);
          if (-1 == rv)
          if (-1 == rv)
            error ("child_wait: signal %d PT_GET_PRSTATUS: %s\n",
            error ("child_wait: signal %d PT_GET_PRSTATUS: %s\n",
                   pt.ps_reason, safe_strerror (errno));
                   pt.ps_reason, safe_strerror (errno));
          if (pstatus.pr_cursig != pt.ps_reason)
          if (pstatus.pr_cursig != pt.ps_reason)
            {
            {
              printf ("pstatus signal %d, pt signal %d\n",
              printf ("pstatus signal %d, pt signal %d\n",
                      pstatus.pr_cursig, pt.ps_reason);
                      pstatus.pr_cursig, pt.ps_reason);
            }
            }
          sa_hand = (int) pstatus.pr_action.sa_handler;
          sa_hand = (int) pstatus.pr_action.sa_handler;
#else
#else
          saoff = (unsigned long) &u.u_sa[0] - (unsigned long) &u;
          saoff = (unsigned long) &u.u_sa[0] - (unsigned long) &u;
          saoff += sizeof (struct sigaction) * (pt.ps_reason - 1);
          saoff += sizeof (struct sigaction) * (pt.ps_reason - 1);
          errno = 0;
          errno = 0;
          sa_hand = ptrace (PT_RUSER, pid, (char *) saoff, 0);
          sa_hand = ptrace (PT_RUSER, pid, (char *) saoff, 0);
          if (errno)
          if (errno)
            error ("child_wait: signal %d: RUSER: %s\n",
            error ("child_wait: signal %d: RUSER: %s\n",
                   pt.ps_reason, safe_strerror (errno));
                   pt.ps_reason, safe_strerror (errno));
#endif
#endif
          if ((int) SIG_DFL == sa_hand)
          if ((int) SIG_DFL == sa_hand)
            {
            {
              /* we will be dying */
              /* we will be dying */
              death_by_signal = pt.ps_reason;
              death_by_signal = pt.ps_reason;
            }
            }
          break;
          break;
        }
        }
 
 
    }
    }
  while (pid != inferior_pid);  /* Some other child died or stopped */
  while (pid != inferior_pid);  /* Some other child died or stopped */
 
 
  return pid;
  return pid;
}
}
#else /* !ATTACH_DETACH */
#else /* !ATTACH_DETACH */
/*
/*
 * Simple child_wait() based on inftarg.c child_wait() for use until
 * Simple child_wait() based on inftarg.c child_wait() for use until
 * the MPDEBUGGER child_wait() works properly.  This will go away when
 * the MPDEBUGGER child_wait() works properly.  This will go away when
 * that is fixed.
 * that is fixed.
 */
 */
child_wait (pid, ourstatus)
child_wait (pid, ourstatus)
     int pid;
     int pid;
     struct target_waitstatus *ourstatus;
     struct target_waitstatus *ourstatus;
{
{
  int save_errno;
  int save_errno;
  int status;
  int status;
 
 
  do
  do
    {
    {
      pid = wait (&status);
      pid = wait (&status);
      save_errno = errno;
      save_errno = errno;
 
 
      if (pid == -1)
      if (pid == -1)
        {
        {
          if (save_errno == EINTR)
          if (save_errno == EINTR)
            continue;
            continue;
          fprintf (stderr, "Child process unexpectedly missing: %s.\n",
          fprintf (stderr, "Child process unexpectedly missing: %s.\n",
                   safe_strerror (save_errno));
                   safe_strerror (save_errno));
          ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
          ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
          ourstatus->value.sig = TARGET_SIGNAL_UNKNOWN;
          ourstatus->value.sig = TARGET_SIGNAL_UNKNOWN;
          return -1;
          return -1;
        }
        }
    }
    }
  while (pid != inferior_pid);  /* Some other child died or stopped */
  while (pid != inferior_pid);  /* Some other child died or stopped */
  store_waitstatus (ourstatus, status);
  store_waitstatus (ourstatus, status);
  return pid;
  return pid;
}
}
#endif /* ATTACH_DETACH */
#endif /* ATTACH_DETACH */


 
 
 
 
/* This function simply calls ptrace with the given arguments.
/* This function simply calls ptrace with the given arguments.
   It exists so that all calls to ptrace are isolated in this
   It exists so that all calls to ptrace are isolated in this
   machine-dependent file. */
   machine-dependent file. */
int
int
call_ptrace (request, pid, addr, data)
call_ptrace (request, pid, addr, data)
     int request, pid;
     int request, pid;
     PTRACE_ARG3_TYPE addr;
     PTRACE_ARG3_TYPE addr;
     int data;
     int data;
{
{
  return ptrace (request, pid, addr, data);
  return ptrace (request, pid, addr, data);
}
}
 
 
int
int
call_mptrace (request, pid, addr, data)
call_mptrace (request, pid, addr, data)
     int request, pid;
     int request, pid;
     PTRACE_ARG3_TYPE addr;
     PTRACE_ARG3_TYPE addr;
     int data;
     int data;
{
{
  return mptrace (request, pid, addr, data);
  return mptrace (request, pid, addr, data);
}
}
 
 
#if defined (DEBUG_PTRACE)
#if defined (DEBUG_PTRACE)
/* For the rest of the file, use an extra level of indirection */
/* For the rest of the file, use an extra level of indirection */
/* This lets us breakpoint usefully on call_ptrace. */
/* This lets us breakpoint usefully on call_ptrace. */
#define ptrace call_ptrace
#define ptrace call_ptrace
#define mptrace call_mptrace
#define mptrace call_mptrace
#endif
#endif
 
 
void
void
kill_inferior ()
kill_inferior ()
{
{
  if (inferior_pid == 0)
  if (inferior_pid == 0)
    return;
    return;
 
 
  /* For MPDEBUGGER, don't use PT_KILL, since the child will stop
  /* For MPDEBUGGER, don't use PT_KILL, since the child will stop
     again with a PTS_EXIT.  Just hit him with SIGKILL (so he stops)
     again with a PTS_EXIT.  Just hit him with SIGKILL (so he stops)
     and detach. */
     and detach. */
 
 
  kill (inferior_pid, SIGKILL);
  kill (inferior_pid, SIGKILL);
#ifdef ATTACH_DETACH
#ifdef ATTACH_DETACH
  detach (SIGKILL);
  detach (SIGKILL);
#else /* ATTACH_DETACH */
#else /* ATTACH_DETACH */
  ptrace (PT_KILL, inferior_pid, 0, 0);
  ptrace (PT_KILL, inferior_pid, 0, 0);
  wait ((int *) NULL);
  wait ((int *) NULL);
#endif /* ATTACH_DETACH */
#endif /* ATTACH_DETACH */
  target_mourn_inferior ();
  target_mourn_inferior ();
}
}
 
 
/* Resume execution of the inferior process.
/* Resume execution of the inferior process.
   If STEP is nonzero, single-step it.
   If STEP is nonzero, single-step it.
   If SIGNAL is nonzero, give it that signal.  */
   If SIGNAL is nonzero, give it that signal.  */
 
 
void
void
child_resume (pid, step, signal)
child_resume (pid, step, signal)
     int pid;
     int pid;
     int step;
     int step;
     enum target_signal signal;
     enum target_signal signal;
{
{
  errno = 0;
  errno = 0;
 
 
  if (pid == -1)
  if (pid == -1)
    pid = inferior_pid;
    pid = inferior_pid;
 
 
  /* An address of (PTRACE_ARG3_TYPE)1 tells ptrace to continue from where
  /* An address of (PTRACE_ARG3_TYPE)1 tells ptrace to continue from where
     it was.  (If GDB wanted it to start some other way, we have already
     it was.  (If GDB wanted it to start some other way, we have already
     written a new PC value to the child.)
     written a new PC value to the child.)
 
 
     If this system does not support PT_SSTEP, a higher level function will
     If this system does not support PT_SSTEP, a higher level function will
     have called single_step() to transmute the step request into a
     have called single_step() to transmute the step request into a
     continue request (by setting breakpoints on all possible successor
     continue request (by setting breakpoints on all possible successor
     instructions), so we don't have to worry about that here.  */
     instructions), so we don't have to worry about that here.  */
 
 
  if (step)
  if (step)
    ptrace (PT_SSTEP, pid, (PTRACE_ARG3_TYPE) 1, signal);
    ptrace (PT_SSTEP, pid, (PTRACE_ARG3_TYPE) 1, signal);
  else
  else
    ptrace (PT_CONTSIG, pid, (PTRACE_ARG3_TYPE) 1, signal);
    ptrace (PT_CONTSIG, pid, (PTRACE_ARG3_TYPE) 1, signal);
 
 
  if (errno)
  if (errno)
    perror_with_name ("ptrace");
    perror_with_name ("ptrace");
}
}


#ifdef ATTACH_DETACH
#ifdef ATTACH_DETACH
/* Start debugging the process whose number is PID.  */
/* Start debugging the process whose number is PID.  */
int
int
attach (pid)
attach (pid)
     int pid;
     int pid;
{
{
  sigset_t set;
  sigset_t set;
  int rv;
  int rv;
 
 
  rv = mptrace (XPT_DEBUG, pid, 0, 0);
  rv = mptrace (XPT_DEBUG, pid, 0, 0);
  if (-1 == rv)
  if (-1 == rv)
    {
    {
      error ("mptrace(XPT_DEBUG): %s", safe_strerror (errno));
      error ("mptrace(XPT_DEBUG): %s", safe_strerror (errno));
    }
    }
  rv = mptrace (XPT_SIGNAL, pid, 0, SIGSTOP);
  rv = mptrace (XPT_SIGNAL, pid, 0, SIGSTOP);
  if (-1 == rv)
  if (-1 == rv)
    {
    {
      error ("mptrace(XPT_SIGNAL): %s", safe_strerror (errno));
      error ("mptrace(XPT_SIGNAL): %s", safe_strerror (errno));
    }
    }
  attach_flag = 1;
  attach_flag = 1;
  return pid;
  return pid;
}
}
 
 
void
void
detach (signo)
detach (signo)
     int signo;
     int signo;
{
{
  int rv;
  int rv;
 
 
  rv = mptrace (XPT_UNDEBUG, inferior_pid, 1, signo);
  rv = mptrace (XPT_UNDEBUG, inferior_pid, 1, signo);
  if (-1 == rv)
  if (-1 == rv)
    {
    {
      error ("mptrace(XPT_UNDEBUG): %s", safe_strerror (errno));
      error ("mptrace(XPT_UNDEBUG): %s", safe_strerror (errno));
    }
    }
  attach_flag = 0;
  attach_flag = 0;
}
}
 
 
#endif /* ATTACH_DETACH */
#endif /* ATTACH_DETACH */


/* Default the type of the ptrace transfer to int.  */
/* Default the type of the ptrace transfer to int.  */
#ifndef PTRACE_XFER_TYPE
#ifndef PTRACE_XFER_TYPE
#define PTRACE_XFER_TYPE int
#define PTRACE_XFER_TYPE int
#endif
#endif


 
 
/* NOTE! I tried using PTRACE_READDATA, etc., to read and write memory
/* NOTE! I tried using PTRACE_READDATA, etc., to read and write memory
   in the NEW_SUN_PTRACE case.
   in the NEW_SUN_PTRACE case.
   It ought to be straightforward.  But it appears that writing did
   It ought to be straightforward.  But it appears that writing did
   not write the data that I specified.  I cannot understand where
   not write the data that I specified.  I cannot understand where
   it got the data that it actually did write.  */
   it got the data that it actually did write.  */
 
 
/* Copy LEN bytes to or from inferior's memory starting at MEMADDR
/* Copy LEN bytes to or from inferior's memory starting at MEMADDR
   to debugger memory starting at MYADDR.   Copy to inferior if
   to debugger memory starting at MYADDR.   Copy to inferior if
   WRITE is nonzero.
   WRITE is nonzero.
 
 
   Returns the length copied, which is either the LEN argument or zero.
   Returns the length copied, which is either the LEN argument or zero.
   This xfer function does not do partial moves, since child_ops
   This xfer function does not do partial moves, since child_ops
   doesn't allow memory operations to cross below us in the target stack
   doesn't allow memory operations to cross below us in the target stack
   anyway.  */
   anyway.  */
 
 
int
int
child_xfer_memory (memaddr, myaddr, len, write, target)
child_xfer_memory (memaddr, myaddr, len, write, target)
     CORE_ADDR memaddr;
     CORE_ADDR memaddr;
     char *myaddr;
     char *myaddr;
     int len;
     int len;
     int write;
     int write;
     struct target_ops *target; /* ignored */
     struct target_ops *target; /* ignored */
{
{
  register int i;
  register int i;
  /* Round starting address down to longword boundary.  */
  /* Round starting address down to longword boundary.  */
  register CORE_ADDR addr = memaddr & -sizeof (PTRACE_XFER_TYPE);
  register CORE_ADDR addr = memaddr & -sizeof (PTRACE_XFER_TYPE);
  /* Round ending address up; get number of longwords that makes.  */
  /* Round ending address up; get number of longwords that makes.  */
  register int count
  register int count
  = (((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
  = (((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
  / sizeof (PTRACE_XFER_TYPE);
  / sizeof (PTRACE_XFER_TYPE);
  /* Allocate buffer of that many longwords.  */
  /* Allocate buffer of that many longwords.  */
  register PTRACE_XFER_TYPE *buffer
  register PTRACE_XFER_TYPE *buffer
  = (PTRACE_XFER_TYPE *) alloca (count * sizeof (PTRACE_XFER_TYPE));
  = (PTRACE_XFER_TYPE *) alloca (count * sizeof (PTRACE_XFER_TYPE));
 
 
  if (write)
  if (write)
    {
    {
      /* Fill start and end extra bytes of buffer with existing memory data.  */
      /* Fill start and end extra bytes of buffer with existing memory data.  */
 
 
      if (addr != memaddr || len < (int) sizeof (PTRACE_XFER_TYPE))
      if (addr != memaddr || len < (int) sizeof (PTRACE_XFER_TYPE))
        {
        {
          /* Need part of initial word -- fetch it.  */
          /* Need part of initial word -- fetch it.  */
          buffer[0] = ptrace (PT_RTEXT, inferior_pid, (PTRACE_ARG3_TYPE) addr,
          buffer[0] = ptrace (PT_RTEXT, inferior_pid, (PTRACE_ARG3_TYPE) addr,
                              0);
                              0);
        }
        }
 
 
      if (count > 1)            /* FIXME, avoid if even boundary */
      if (count > 1)            /* FIXME, avoid if even boundary */
        {
        {
          buffer[count - 1]
          buffer[count - 1]
            = ptrace (PT_RTEXT, inferior_pid,
            = ptrace (PT_RTEXT, inferior_pid,
                      ((PTRACE_ARG3_TYPE)
                      ((PTRACE_ARG3_TYPE)
                       (addr + (count - 1) * sizeof (PTRACE_XFER_TYPE))),
                       (addr + (count - 1) * sizeof (PTRACE_XFER_TYPE))),
                      0);
                      0);
        }
        }
 
 
      /* Copy data to be written over corresponding part of buffer */
      /* Copy data to be written over corresponding part of buffer */
 
 
      memcpy ((char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
      memcpy ((char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
              myaddr,
              myaddr,
              len);
              len);
 
 
      /* Write the entire buffer.  */
      /* Write the entire buffer.  */
 
 
      for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
      for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
        {
        {
          errno = 0;
          errno = 0;
          ptrace (PT_WDATA, inferior_pid, (PTRACE_ARG3_TYPE) addr,
          ptrace (PT_WDATA, inferior_pid, (PTRACE_ARG3_TYPE) addr,
                  buffer[i]);
                  buffer[i]);
          if (errno)
          if (errno)
            {
            {
              /* Using the appropriate one (I or D) is necessary for
              /* Using the appropriate one (I or D) is necessary for
                 Gould NP1, at least.  */
                 Gould NP1, at least.  */
              errno = 0;
              errno = 0;
              ptrace (PT_WTEXT, inferior_pid, (PTRACE_ARG3_TYPE) addr,
              ptrace (PT_WTEXT, inferior_pid, (PTRACE_ARG3_TYPE) addr,
                      buffer[i]);
                      buffer[i]);
            }
            }
          if (errno)
          if (errno)
            return 0;
            return 0;
        }
        }
    }
    }
  else
  else
    {
    {
      /* Read all the longwords */
      /* Read all the longwords */
      for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
      for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
        {
        {
          errno = 0;
          errno = 0;
          buffer[i] = ptrace (PT_RTEXT, inferior_pid,
          buffer[i] = ptrace (PT_RTEXT, inferior_pid,
                              (PTRACE_ARG3_TYPE) addr, 0);
                              (PTRACE_ARG3_TYPE) addr, 0);
          if (errno)
          if (errno)
            return 0;
            return 0;
          QUIT;
          QUIT;
        }
        }
 
 
      /* Copy appropriate bytes out of the buffer.  */
      /* Copy appropriate bytes out of the buffer.  */
      memcpy (myaddr,
      memcpy (myaddr,
              (char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
              (char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
              len);
              len);
    }
    }
  return len;
  return len;
}
}
 
 
 
 
void
void
_initialize_symm_nat ()
_initialize_symm_nat ()
{
{
#ifdef ATTACH_DETACH
#ifdef ATTACH_DETACH
/*
/*
 * the MPDEBUGGER is necessary for process tree debugging and attach
 * the MPDEBUGGER is necessary for process tree debugging and attach
 * to work, but it alters the behavior of debugged processes, so other
 * to work, but it alters the behavior of debugged processes, so other
 * things (at least child_wait()) will have to change to accomodate
 * things (at least child_wait()) will have to change to accomodate
 * that.
 * that.
 *
 *
 * Note that attach is not implemented in dynix 3, and not in ptx
 * Note that attach is not implemented in dynix 3, and not in ptx
 * until version 2.1 of the OS.
 * until version 2.1 of the OS.
 */
 */
  int rv;
  int rv;
  sigset_t set;
  sigset_t set;
  struct sigaction sact;
  struct sigaction sact;
 
 
  rv = mptrace (XPT_MPDEBUGGER, 0, 0, 0);
  rv = mptrace (XPT_MPDEBUGGER, 0, 0, 0);
  if (-1 == rv)
  if (-1 == rv)
    {
    {
      internal_error ("_initialize_symm_nat(): mptrace(XPT_MPDEBUGGER): %s",
      internal_error ("_initialize_symm_nat(): mptrace(XPT_MPDEBUGGER): %s",
                      safe_strerror (errno));
                      safe_strerror (errno));
    }
    }
 
 
  /*
  /*
   * Under MPDEBUGGER, we get SIGCLHD when a traced process does
   * Under MPDEBUGGER, we get SIGCLHD when a traced process does
   * anything of interest.
   * anything of interest.
   */
   */
 
 
  /*
  /*
   * Block SIGCHLD.  We leave it blocked all the time, and then
   * Block SIGCHLD.  We leave it blocked all the time, and then
   * call sigsuspend() in child_wait() to wait for the child
   * call sigsuspend() in child_wait() to wait for the child
   * to do something.  None of these ought to fail, but check anyway.
   * to do something.  None of these ought to fail, but check anyway.
   */
   */
  sigemptyset (&set);
  sigemptyset (&set);
  rv = sigaddset (&set, SIGCHLD);
  rv = sigaddset (&set, SIGCHLD);
  if (-1 == rv)
  if (-1 == rv)
    {
    {
      internal_error ("_initialize_symm_nat(): sigaddset(SIGCHLD): %s",
      internal_error ("_initialize_symm_nat(): sigaddset(SIGCHLD): %s",
                      safe_strerror (errno));
                      safe_strerror (errno));
    }
    }
  rv = sigprocmask (SIG_BLOCK, &set, (sigset_t *) NULL);
  rv = sigprocmask (SIG_BLOCK, &set, (sigset_t *) NULL);
  if (-1 == rv)
  if (-1 == rv)
    {
    {
      internal_error ("_initialize_symm_nat(): sigprocmask(SIG_BLOCK): %s",
      internal_error ("_initialize_symm_nat(): sigprocmask(SIG_BLOCK): %s",
                      safe_strerror (errno));
                      safe_strerror (errno));
    }
    }
 
 
  sact.sa_handler = sigchld_handler;
  sact.sa_handler = sigchld_handler;
  sigemptyset (&sact.sa_mask);
  sigemptyset (&sact.sa_mask);
  sact.sa_flags = SA_NOCLDWAIT; /* keep the zombies away */
  sact.sa_flags = SA_NOCLDWAIT; /* keep the zombies away */
  rv = sigaction (SIGCHLD, &sact, (struct sigaction *) NULL);
  rv = sigaction (SIGCHLD, &sact, (struct sigaction *) NULL);
  if (-1 == rv)
  if (-1 == rv)
    {
    {
      internal_error ("_initialize_symm_nat(): sigaction(SIGCHLD): %s",
      internal_error ("_initialize_symm_nat(): sigaction(SIGCHLD): %s",
                      safe_strerror (errno));
                      safe_strerror (errno));
    }
    }
#endif
#endif
}
}
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.