OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [gdb-5.0/] [gdb/] [target.c] - Diff between revs 105 and 1765

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 105 Rev 1765
/* Select target systems and architectures at runtime for GDB.
/* Select target systems and architectures at runtime for GDB.
   Copyright 1990, 1992-1995, 1998-2000 Free Software Foundation, Inc.
   Copyright 1990, 1992-1995, 1998-2000 Free Software Foundation, Inc.
   Contributed by Cygnus Support.
   Contributed by Cygnus Support.
 
 
   This file is part of GDB.
   This file is part of GDB.
 
 
   This program is free software; you can redistribute it and/or modify
   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2 of the License, or
   the Free Software Foundation; either version 2 of the License, or
   (at your option) any later version.
   (at your option) any later version.
 
 
   This program is distributed in the hope that it will be useful,
   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.
   GNU General Public License for more details.
 
 
   You should have received a copy of the GNU General Public License
   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   along with this program; if not, write to the Free Software
   Foundation, Inc., 59 Temple Place - Suite 330,
   Foundation, Inc., 59 Temple Place - Suite 330,
   Boston, MA 02111-1307, USA.  */
   Boston, MA 02111-1307, USA.  */
 
 
#include "defs.h"
#include "defs.h"
#include <errno.h>
#include <errno.h>
#include <ctype.h>
#include <ctype.h>
#include "gdb_string.h"
#include "gdb_string.h"
#include "target.h"
#include "target.h"
#include "gdbcmd.h"
#include "gdbcmd.h"
#include "symtab.h"
#include "symtab.h"
#include "inferior.h"
#include "inferior.h"
#include "bfd.h"
#include "bfd.h"
#include "symfile.h"
#include "symfile.h"
#include "objfiles.h"
#include "objfiles.h"
#include "gdb_wait.h"
#include "gdb_wait.h"
#include <signal.h>
#include <signal.h>
 
 
extern int errno;
extern int errno;
 
 
static void
static void
target_info PARAMS ((char *, int));
target_info PARAMS ((char *, int));
 
 
static void
static void
cleanup_target PARAMS ((struct target_ops *));
cleanup_target PARAMS ((struct target_ops *));
 
 
static void
static void
maybe_kill_then_create_inferior PARAMS ((char *, char *, char **));
maybe_kill_then_create_inferior PARAMS ((char *, char *, char **));
 
 
static void
static void
default_clone_and_follow_inferior PARAMS ((int, int *));
default_clone_and_follow_inferior PARAMS ((int, int *));
 
 
static void
static void
maybe_kill_then_attach PARAMS ((char *, int));
maybe_kill_then_attach PARAMS ((char *, int));
 
 
static void
static void
kill_or_be_killed PARAMS ((int));
kill_or_be_killed PARAMS ((int));
 
 
static void
static void
default_terminal_info PARAMS ((char *, int));
default_terminal_info PARAMS ((char *, int));
 
 
static int
static int
nosymbol PARAMS ((char *, CORE_ADDR *));
nosymbol PARAMS ((char *, CORE_ADDR *));
 
 
static void
static void
tcomplain PARAMS ((void));
tcomplain PARAMS ((void));
 
 
static int
static int
nomemory PARAMS ((CORE_ADDR, char *, int, int, struct target_ops *));
nomemory PARAMS ((CORE_ADDR, char *, int, int, struct target_ops *));
 
 
static int
static int
return_zero PARAMS ((void));
return_zero PARAMS ((void));
 
 
static int
static int
return_one PARAMS ((void));
return_one PARAMS ((void));
 
 
void
void
target_ignore PARAMS ((void));
target_ignore PARAMS ((void));
 
 
static void
static void
target_command PARAMS ((char *, int));
target_command PARAMS ((char *, int));
 
 
static struct target_ops *
static struct target_ops *
find_default_run_target PARAMS ((char *));
find_default_run_target PARAMS ((char *));
 
 
static void
static void
update_current_target PARAMS ((void));
update_current_target PARAMS ((void));
 
 
static void nosupport_runtime PARAMS ((void));
static void nosupport_runtime PARAMS ((void));
 
 
static void normal_target_post_startup_inferior PARAMS ((int pid));
static void normal_target_post_startup_inferior PARAMS ((int pid));
 
 
/* Transfer LEN bytes between target address MEMADDR and GDB address
/* Transfer LEN bytes between target address MEMADDR and GDB address
   MYADDR.  Returns 0 for success, errno code for failure (which
   MYADDR.  Returns 0 for success, errno code for failure (which
   includes partial transfers -- if you want a more useful response to
   includes partial transfers -- if you want a more useful response to
   partial transfers, try either target_read_memory_partial or
   partial transfers, try either target_read_memory_partial or
   target_write_memory_partial).  */
   target_write_memory_partial).  */
 
 
static int
static int
target_xfer_memory PARAMS ((CORE_ADDR memaddr, char *myaddr, int len,
target_xfer_memory PARAMS ((CORE_ADDR memaddr, char *myaddr, int len,
                            int write, asection * bfd_section));
                            int write, asection * bfd_section));
 
 
static void init_dummy_target PARAMS ((void));
static void init_dummy_target PARAMS ((void));
 
 
static void
static void
debug_to_open PARAMS ((char *, int));
debug_to_open PARAMS ((char *, int));
 
 
static void
static void
debug_to_close PARAMS ((int));
debug_to_close PARAMS ((int));
 
 
static void
static void
debug_to_attach PARAMS ((char *, int));
debug_to_attach PARAMS ((char *, int));
 
 
static void
static void
debug_to_detach PARAMS ((char *, int));
debug_to_detach PARAMS ((char *, int));
 
 
static void
static void
debug_to_resume PARAMS ((int, int, enum target_signal));
debug_to_resume PARAMS ((int, int, enum target_signal));
 
 
static int
static int
debug_to_wait PARAMS ((int, struct target_waitstatus *));
debug_to_wait PARAMS ((int, struct target_waitstatus *));
 
 
static void
static void
debug_to_fetch_registers PARAMS ((int));
debug_to_fetch_registers PARAMS ((int));
 
 
static void
static void
debug_to_store_registers PARAMS ((int));
debug_to_store_registers PARAMS ((int));
 
 
static void
static void
debug_to_prepare_to_store PARAMS ((void));
debug_to_prepare_to_store PARAMS ((void));
 
 
static int
static int
debug_to_xfer_memory PARAMS ((CORE_ADDR, char *, int, int, struct target_ops *));
debug_to_xfer_memory PARAMS ((CORE_ADDR, char *, int, int, struct target_ops *));
 
 
static void
static void
debug_to_files_info PARAMS ((struct target_ops *));
debug_to_files_info PARAMS ((struct target_ops *));
 
 
static int
static int
debug_to_insert_breakpoint PARAMS ((CORE_ADDR, char *));
debug_to_insert_breakpoint PARAMS ((CORE_ADDR, char *));
 
 
static int
static int
debug_to_remove_breakpoint PARAMS ((CORE_ADDR, char *));
debug_to_remove_breakpoint PARAMS ((CORE_ADDR, char *));
 
 
static void
static void
debug_to_terminal_init PARAMS ((void));
debug_to_terminal_init PARAMS ((void));
 
 
static void
static void
debug_to_terminal_inferior PARAMS ((void));
debug_to_terminal_inferior PARAMS ((void));
 
 
static void
static void
debug_to_terminal_ours_for_output PARAMS ((void));
debug_to_terminal_ours_for_output PARAMS ((void));
 
 
static void
static void
debug_to_terminal_ours PARAMS ((void));
debug_to_terminal_ours PARAMS ((void));
 
 
static void
static void
debug_to_terminal_info PARAMS ((char *, int));
debug_to_terminal_info PARAMS ((char *, int));
 
 
static void
static void
debug_to_kill PARAMS ((void));
debug_to_kill PARAMS ((void));
 
 
static void
static void
debug_to_load PARAMS ((char *, int));
debug_to_load PARAMS ((char *, int));
 
 
static int
static int
debug_to_lookup_symbol PARAMS ((char *, CORE_ADDR *));
debug_to_lookup_symbol PARAMS ((char *, CORE_ADDR *));
 
 
static void
static void
debug_to_create_inferior PARAMS ((char *, char *, char **));
debug_to_create_inferior PARAMS ((char *, char *, char **));
 
 
static void
static void
debug_to_mourn_inferior PARAMS ((void));
debug_to_mourn_inferior PARAMS ((void));
 
 
static int
static int
debug_to_can_run PARAMS ((void));
debug_to_can_run PARAMS ((void));
 
 
static void
static void
debug_to_notice_signals PARAMS ((int));
debug_to_notice_signals PARAMS ((int));
 
 
static int
static int
debug_to_thread_alive PARAMS ((int));
debug_to_thread_alive PARAMS ((int));
 
 
static void
static void
debug_to_stop PARAMS ((void));
debug_to_stop PARAMS ((void));
 
 
static int debug_to_query PARAMS ((int /*char */ , char *, char *, int *));
static int debug_to_query PARAMS ((int /*char */ , char *, char *, int *));
 
 
/* Pointer to array of target architecture structures; the size of the
/* Pointer to array of target architecture structures; the size of the
   array; the current index into the array; the allocated size of the
   array; the current index into the array; the allocated size of the
   array.  */
   array.  */
struct target_ops **target_structs;
struct target_ops **target_structs;
unsigned target_struct_size;
unsigned target_struct_size;
unsigned target_struct_index;
unsigned target_struct_index;
unsigned target_struct_allocsize;
unsigned target_struct_allocsize;
#define DEFAULT_ALLOCSIZE       10
#define DEFAULT_ALLOCSIZE       10
 
 
/* The initial current target, so that there is always a semi-valid
/* The initial current target, so that there is always a semi-valid
   current target.  */
   current target.  */
 
 
static struct target_ops dummy_target;
static struct target_ops dummy_target;
 
 
/* Top of target stack.  */
/* Top of target stack.  */
 
 
struct target_stack_item *target_stack;
struct target_stack_item *target_stack;
 
 
/* The target structure we are currently using to talk to a process
/* The target structure we are currently using to talk to a process
   or file or whatever "inferior" we have.  */
   or file or whatever "inferior" we have.  */
 
 
struct target_ops current_target;
struct target_ops current_target;
 
 
/* Command list for target.  */
/* Command list for target.  */
 
 
static struct cmd_list_element *targetlist = NULL;
static struct cmd_list_element *targetlist = NULL;
 
 
/* Nonzero if we are debugging an attached outside process
/* Nonzero if we are debugging an attached outside process
   rather than an inferior.  */
   rather than an inferior.  */
 
 
int attach_flag;
int attach_flag;
 
 
/* Non-zero if we want to see trace of target level stuff.  */
/* Non-zero if we want to see trace of target level stuff.  */
 
 
static int targetdebug = 0;
static int targetdebug = 0;
 
 
static void setup_target_debug PARAMS ((void));
static void setup_target_debug PARAMS ((void));
 
 
/* The user just typed 'target' without the name of a target.  */
/* The user just typed 'target' without the name of a target.  */
 
 
/* ARGSUSED */
/* ARGSUSED */
static void
static void
target_command (arg, from_tty)
target_command (arg, from_tty)
     char *arg;
     char *arg;
     int from_tty;
     int from_tty;
{
{
  fputs_filtered ("Argument required (target name).  Try `help target'\n",
  fputs_filtered ("Argument required (target name).  Try `help target'\n",
                  gdb_stdout);
                  gdb_stdout);
}
}
 
 
/* Add a possible target architecture to the list.  */
/* Add a possible target architecture to the list.  */
 
 
void
void
add_target (t)
add_target (t)
     struct target_ops *t;
     struct target_ops *t;
{
{
  if (!target_structs)
  if (!target_structs)
    {
    {
      target_struct_allocsize = DEFAULT_ALLOCSIZE;
      target_struct_allocsize = DEFAULT_ALLOCSIZE;
      target_structs = (struct target_ops **) xmalloc
      target_structs = (struct target_ops **) xmalloc
        (target_struct_allocsize * sizeof (*target_structs));
        (target_struct_allocsize * sizeof (*target_structs));
    }
    }
  if (target_struct_size >= target_struct_allocsize)
  if (target_struct_size >= target_struct_allocsize)
    {
    {
      target_struct_allocsize *= 2;
      target_struct_allocsize *= 2;
      target_structs = (struct target_ops **)
      target_structs = (struct target_ops **)
        xrealloc ((char *) target_structs,
        xrealloc ((char *) target_structs,
                  target_struct_allocsize * sizeof (*target_structs));
                  target_struct_allocsize * sizeof (*target_structs));
    }
    }
  target_structs[target_struct_size++] = t;
  target_structs[target_struct_size++] = t;
/*  cleanup_target (t); */
/*  cleanup_target (t); */
 
 
  if (targetlist == NULL)
  if (targetlist == NULL)
    add_prefix_cmd ("target", class_run, target_command,
    add_prefix_cmd ("target", class_run, target_command,
                    "Connect to a target machine or process.\n\
                    "Connect to a target machine or process.\n\
The first argument is the type or protocol of the target machine.\n\
The first argument is the type or protocol of the target machine.\n\
Remaining arguments are interpreted by the target protocol.  For more\n\
Remaining arguments are interpreted by the target protocol.  For more\n\
information on the arguments for a particular protocol, type\n\
information on the arguments for a particular protocol, type\n\
`help target ' followed by the protocol name.",
`help target ' followed by the protocol name.",
                    &targetlist, "target ", 0, &cmdlist);
                    &targetlist, "target ", 0, &cmdlist);
  add_cmd (t->to_shortname, no_class, t->to_open, t->to_doc, &targetlist);
  add_cmd (t->to_shortname, no_class, t->to_open, t->to_doc, &targetlist);
}
}
 
 
/* Stub functions */
/* Stub functions */
 
 
void
void
target_ignore ()
target_ignore ()
{
{
}
}
 
 
void
void
target_load (char *arg, int from_tty)
target_load (char *arg, int from_tty)
{
{
  (*current_target.to_load) (arg, from_tty);
  (*current_target.to_load) (arg, from_tty);
}
}
 
 
/* ARGSUSED */
/* ARGSUSED */
static int
static int
nomemory (memaddr, myaddr, len, write, t)
nomemory (memaddr, myaddr, len, write, t)
     CORE_ADDR memaddr;
     CORE_ADDR memaddr;
     char *myaddr;
     char *myaddr;
     int len;
     int len;
     int write;
     int write;
     struct target_ops *t;
     struct target_ops *t;
{
{
  errno = EIO;                  /* Can't read/write this location */
  errno = EIO;                  /* Can't read/write this location */
  return 0;                      /* No bytes handled */
  return 0;                      /* No bytes handled */
}
}
 
 
static void
static void
tcomplain ()
tcomplain ()
{
{
  error ("You can't do that when your target is `%s'",
  error ("You can't do that when your target is `%s'",
         current_target.to_shortname);
         current_target.to_shortname);
}
}
 
 
void
void
noprocess ()
noprocess ()
{
{
  error ("You can't do that without a process to debug.");
  error ("You can't do that without a process to debug.");
}
}
 
 
/* ARGSUSED */
/* ARGSUSED */
static int
static int
nosymbol (name, addrp)
nosymbol (name, addrp)
     char *name;
     char *name;
     CORE_ADDR *addrp;
     CORE_ADDR *addrp;
{
{
  return 1;                     /* Symbol does not exist in target env */
  return 1;                     /* Symbol does not exist in target env */
}
}
 
 
/* ARGSUSED */
/* ARGSUSED */
static void
static void
nosupport_runtime ()
nosupport_runtime ()
{
{
  if (!inferior_pid)
  if (!inferior_pid)
    noprocess ();
    noprocess ();
  else
  else
    error ("No run-time support for this");
    error ("No run-time support for this");
}
}
 
 
 
 
/* ARGSUSED */
/* ARGSUSED */
static void
static void
default_terminal_info (args, from_tty)
default_terminal_info (args, from_tty)
     char *args;
     char *args;
     int from_tty;
     int from_tty;
{
{
  printf_unfiltered ("No saved terminal information.\n");
  printf_unfiltered ("No saved terminal information.\n");
}
}
 
 
/* This is the default target_create_inferior and target_attach function.
/* This is the default target_create_inferior and target_attach function.
   If the current target is executing, it asks whether to kill it off.
   If the current target is executing, it asks whether to kill it off.
   If this function returns without calling error(), it has killed off
   If this function returns without calling error(), it has killed off
   the target, and the operation should be attempted.  */
   the target, and the operation should be attempted.  */
 
 
static void
static void
kill_or_be_killed (from_tty)
kill_or_be_killed (from_tty)
     int from_tty;
     int from_tty;
{
{
  if (target_has_execution)
  if (target_has_execution)
    {
    {
      printf_unfiltered ("You are already running a program:\n");
      printf_unfiltered ("You are already running a program:\n");
      target_files_info ();
      target_files_info ();
      if (query ("Kill it? "))
      if (query ("Kill it? "))
        {
        {
          target_kill ();
          target_kill ();
          if (target_has_execution)
          if (target_has_execution)
            error ("Killing the program did not help.");
            error ("Killing the program did not help.");
          return;
          return;
        }
        }
      else
      else
        {
        {
          error ("Program not killed.");
          error ("Program not killed.");
        }
        }
    }
    }
  tcomplain ();
  tcomplain ();
}
}
 
 
static void
static void
maybe_kill_then_attach (args, from_tty)
maybe_kill_then_attach (args, from_tty)
     char *args;
     char *args;
     int from_tty;
     int from_tty;
{
{
  kill_or_be_killed (from_tty);
  kill_or_be_killed (from_tty);
  target_attach (args, from_tty);
  target_attach (args, from_tty);
}
}
 
 
static void
static void
maybe_kill_then_create_inferior (exec, args, env)
maybe_kill_then_create_inferior (exec, args, env)
     char *exec;
     char *exec;
     char *args;
     char *args;
     char **env;
     char **env;
{
{
  kill_or_be_killed (0);
  kill_or_be_killed (0);
  target_create_inferior (exec, args, env);
  target_create_inferior (exec, args, env);
}
}
 
 
static void
static void
default_clone_and_follow_inferior (child_pid, followed_child)
default_clone_and_follow_inferior (child_pid, followed_child)
     int child_pid;
     int child_pid;
     int *followed_child;
     int *followed_child;
{
{
  target_clone_and_follow_inferior (child_pid, followed_child);
  target_clone_and_follow_inferior (child_pid, followed_child);
}
}
 
 
/* Clean up a target struct so it no longer has any zero pointers in it.
/* Clean up a target struct so it no longer has any zero pointers in it.
   We default entries, at least to stubs that print error messages.  */
   We default entries, at least to stubs that print error messages.  */
 
 
static void
static void
cleanup_target (t)
cleanup_target (t)
     struct target_ops *t;
     struct target_ops *t;
{
{
 
 
#define de_fault(field, value) \
#define de_fault(field, value) \
  if (!t->field)               \
  if (!t->field)               \
    t->field = value
    t->field = value
 
 
  de_fault (to_open,
  de_fault (to_open,
            (void (*) (char *, int))
            (void (*) (char *, int))
            tcomplain);
            tcomplain);
  de_fault (to_close,
  de_fault (to_close,
            (void (*) (int))
            (void (*) (int))
            target_ignore);
            target_ignore);
  de_fault (to_attach,
  de_fault (to_attach,
            maybe_kill_then_attach);
            maybe_kill_then_attach);
  de_fault (to_post_attach,
  de_fault (to_post_attach,
            (void (*) (int))
            (void (*) (int))
            target_ignore);
            target_ignore);
  de_fault (to_require_attach,
  de_fault (to_require_attach,
            maybe_kill_then_attach);
            maybe_kill_then_attach);
  de_fault (to_detach,
  de_fault (to_detach,
            (void (*) (char *, int))
            (void (*) (char *, int))
            target_ignore);
            target_ignore);
  de_fault (to_require_detach,
  de_fault (to_require_detach,
            (void (*) (int, char *, int))
            (void (*) (int, char *, int))
            target_ignore);
            target_ignore);
  de_fault (to_resume,
  de_fault (to_resume,
            (void (*) (int, int, enum target_signal))
            (void (*) (int, int, enum target_signal))
            noprocess);
            noprocess);
  de_fault (to_wait,
  de_fault (to_wait,
            (int (*) (int, struct target_waitstatus *))
            (int (*) (int, struct target_waitstatus *))
            noprocess);
            noprocess);
  de_fault (to_post_wait,
  de_fault (to_post_wait,
            (void (*) (int, int))
            (void (*) (int, int))
            target_ignore);
            target_ignore);
  de_fault (to_fetch_registers,
  de_fault (to_fetch_registers,
            (void (*) (int))
            (void (*) (int))
            target_ignore);
            target_ignore);
  de_fault (to_store_registers,
  de_fault (to_store_registers,
            (void (*) (int))
            (void (*) (int))
            noprocess);
            noprocess);
  de_fault (to_prepare_to_store,
  de_fault (to_prepare_to_store,
            (void (*) (void))
            (void (*) (void))
            noprocess);
            noprocess);
  de_fault (to_xfer_memory,
  de_fault (to_xfer_memory,
            (int (*) (CORE_ADDR, char *, int, int, struct target_ops *))
            (int (*) (CORE_ADDR, char *, int, int, struct target_ops *))
            nomemory);
            nomemory);
  de_fault (to_files_info,
  de_fault (to_files_info,
            (void (*) (struct target_ops *))
            (void (*) (struct target_ops *))
            target_ignore);
            target_ignore);
  de_fault (to_insert_breakpoint,
  de_fault (to_insert_breakpoint,
            memory_insert_breakpoint);
            memory_insert_breakpoint);
  de_fault (to_remove_breakpoint,
  de_fault (to_remove_breakpoint,
            memory_remove_breakpoint);
            memory_remove_breakpoint);
  de_fault (to_terminal_init,
  de_fault (to_terminal_init,
            (void (*) (void))
            (void (*) (void))
            target_ignore);
            target_ignore);
  de_fault (to_terminal_inferior,
  de_fault (to_terminal_inferior,
            (void (*) (void))
            (void (*) (void))
            target_ignore);
            target_ignore);
  de_fault (to_terminal_ours_for_output,
  de_fault (to_terminal_ours_for_output,
            (void (*) (void))
            (void (*) (void))
            target_ignore);
            target_ignore);
  de_fault (to_terminal_ours,
  de_fault (to_terminal_ours,
            (void (*) (void))
            (void (*) (void))
            target_ignore);
            target_ignore);
  de_fault (to_terminal_info,
  de_fault (to_terminal_info,
            default_terminal_info);
            default_terminal_info);
  de_fault (to_kill,
  de_fault (to_kill,
            (void (*) (void))
            (void (*) (void))
            noprocess);
            noprocess);
  de_fault (to_load,
  de_fault (to_load,
            (void (*) (char *, int))
            (void (*) (char *, int))
            tcomplain);
            tcomplain);
  de_fault (to_lookup_symbol,
  de_fault (to_lookup_symbol,
            (int (*) (char *, CORE_ADDR *))
            (int (*) (char *, CORE_ADDR *))
            nosymbol);
            nosymbol);
  de_fault (to_create_inferior,
  de_fault (to_create_inferior,
            maybe_kill_then_create_inferior);
            maybe_kill_then_create_inferior);
  de_fault (to_post_startup_inferior,
  de_fault (to_post_startup_inferior,
            (void (*) (int))
            (void (*) (int))
            target_ignore);
            target_ignore);
  de_fault (to_acknowledge_created_inferior,
  de_fault (to_acknowledge_created_inferior,
            (void (*) (int))
            (void (*) (int))
            target_ignore);
            target_ignore);
  de_fault (to_clone_and_follow_inferior,
  de_fault (to_clone_and_follow_inferior,
            default_clone_and_follow_inferior);
            default_clone_and_follow_inferior);
  de_fault (to_post_follow_inferior_by_clone,
  de_fault (to_post_follow_inferior_by_clone,
            (void (*) (void))
            (void (*) (void))
            target_ignore);
            target_ignore);
  de_fault (to_insert_fork_catchpoint,
  de_fault (to_insert_fork_catchpoint,
            (int (*) (int))
            (int (*) (int))
            tcomplain);
            tcomplain);
  de_fault (to_remove_fork_catchpoint,
  de_fault (to_remove_fork_catchpoint,
            (int (*) (int))
            (int (*) (int))
            tcomplain);
            tcomplain);
  de_fault (to_insert_vfork_catchpoint,
  de_fault (to_insert_vfork_catchpoint,
            (int (*) (int))
            (int (*) (int))
            tcomplain);
            tcomplain);
  de_fault (to_remove_vfork_catchpoint,
  de_fault (to_remove_vfork_catchpoint,
            (int (*) (int))
            (int (*) (int))
            tcomplain);
            tcomplain);
  de_fault (to_has_forked,
  de_fault (to_has_forked,
            (int (*) (int, int *))
            (int (*) (int, int *))
            return_zero);
            return_zero);
  de_fault (to_has_vforked,
  de_fault (to_has_vforked,
            (int (*) (int, int *))
            (int (*) (int, int *))
            return_zero);
            return_zero);
  de_fault (to_can_follow_vfork_prior_to_exec,
  de_fault (to_can_follow_vfork_prior_to_exec,
            (int (*) (void))
            (int (*) (void))
            return_zero);
            return_zero);
  de_fault (to_post_follow_vfork,
  de_fault (to_post_follow_vfork,
            (void (*) (int, int, int, int))
            (void (*) (int, int, int, int))
            target_ignore);
            target_ignore);
  de_fault (to_insert_exec_catchpoint,
  de_fault (to_insert_exec_catchpoint,
            (int (*) (int))
            (int (*) (int))
            tcomplain);
            tcomplain);
  de_fault (to_remove_exec_catchpoint,
  de_fault (to_remove_exec_catchpoint,
            (int (*) (int))
            (int (*) (int))
            tcomplain);
            tcomplain);
  de_fault (to_has_execd,
  de_fault (to_has_execd,
            (int (*) (int, char **))
            (int (*) (int, char **))
            return_zero);
            return_zero);
  de_fault (to_reported_exec_events_per_exec_call,
  de_fault (to_reported_exec_events_per_exec_call,
            (int (*) (void))
            (int (*) (void))
            return_one);
            return_one);
  de_fault (to_has_syscall_event,
  de_fault (to_has_syscall_event,
            (int (*) (int, enum target_waitkind *, int *))
            (int (*) (int, enum target_waitkind *, int *))
            return_zero);
            return_zero);
  de_fault (to_has_exited,
  de_fault (to_has_exited,
            (int (*) (int, int, int *))
            (int (*) (int, int, int *))
            return_zero);
            return_zero);
  de_fault (to_mourn_inferior,
  de_fault (to_mourn_inferior,
            (void (*) (void))
            (void (*) (void))
            noprocess);
            noprocess);
  de_fault (to_can_run,
  de_fault (to_can_run,
            return_zero);
            return_zero);
  de_fault (to_notice_signals,
  de_fault (to_notice_signals,
            (void (*) (int))
            (void (*) (int))
            target_ignore);
            target_ignore);
  de_fault (to_thread_alive,
  de_fault (to_thread_alive,
            (int (*) (int))
            (int (*) (int))
            return_zero);
            return_zero);
  de_fault (to_find_new_threads,
  de_fault (to_find_new_threads,
            (void (*) (void))
            (void (*) (void))
            target_ignore);
            target_ignore);
  de_fault (to_extra_thread_info,
  de_fault (to_extra_thread_info,
            (char *(*) (struct thread_info *))
            (char *(*) (struct thread_info *))
            return_zero);
            return_zero);
  de_fault (to_stop,
  de_fault (to_stop,
            (void (*) (void))
            (void (*) (void))
            target_ignore);
            target_ignore);
  de_fault (to_query,
  de_fault (to_query,
            (int (*) (int, char *, char *, int *))
            (int (*) (int, char *, char *, int *))
            return_zero);
            return_zero);
  de_fault (to_rcmd,
  de_fault (to_rcmd,
            (void (*) (char *, struct ui_file *))
            (void (*) (char *, struct ui_file *))
            tcomplain);
            tcomplain);
  de_fault (to_enable_exception_callback,
  de_fault (to_enable_exception_callback,
            (struct symtab_and_line * (*) (enum exception_event_kind, int))
            (struct symtab_and_line * (*) (enum exception_event_kind, int))
            nosupport_runtime);
            nosupport_runtime);
  de_fault (to_get_current_exception_event,
  de_fault (to_get_current_exception_event,
            (struct exception_event_record * (*) (void))
            (struct exception_event_record * (*) (void))
            nosupport_runtime);
            nosupport_runtime);
  de_fault (to_pid_to_exec_file,
  de_fault (to_pid_to_exec_file,
            (char *(*) (int))
            (char *(*) (int))
            return_zero);
            return_zero);
  de_fault (to_core_file_to_sym_file,
  de_fault (to_core_file_to_sym_file,
            (char *(*) (char *))
            (char *(*) (char *))
            return_zero);
            return_zero);
  de_fault (to_can_async_p,
  de_fault (to_can_async_p,
            (int (*) (void))
            (int (*) (void))
            return_zero);
            return_zero);
  de_fault (to_is_async_p,
  de_fault (to_is_async_p,
            (int (*) (void))
            (int (*) (void))
            return_zero);
            return_zero);
  de_fault (to_async,
  de_fault (to_async,
            (void (*) (void (*) (enum inferior_event_type, void*), void*))
            (void (*) (void (*) (enum inferior_event_type, void*), void*))
            tcomplain);
            tcomplain);
#undef de_fault
#undef de_fault
}
}
 
 
/* Go through the target stack from top to bottom, copying over zero entries in
/* Go through the target stack from top to bottom, copying over zero entries in
   current_target.  In effect, we are doing class inheritance through the
   current_target.  In effect, we are doing class inheritance through the
   pushed target vectors.  */
   pushed target vectors.  */
 
 
static void
static void
update_current_target ()
update_current_target ()
{
{
  struct target_stack_item *item;
  struct target_stack_item *item;
  struct target_ops *t;
  struct target_ops *t;
 
 
  /* First, reset current_target */
  /* First, reset current_target */
  memset (&current_target, 0, sizeof current_target);
  memset (&current_target, 0, sizeof current_target);
 
 
  for (item = target_stack; item; item = item->next)
  for (item = target_stack; item; item = item->next)
    {
    {
      t = item->target_ops;
      t = item->target_ops;
 
 
#define INHERIT(FIELD, TARGET) \
#define INHERIT(FIELD, TARGET) \
      if (!current_target.FIELD) \
      if (!current_target.FIELD) \
        current_target.FIELD = TARGET->FIELD
        current_target.FIELD = TARGET->FIELD
 
 
      INHERIT (to_shortname, t);
      INHERIT (to_shortname, t);
      INHERIT (to_longname, t);
      INHERIT (to_longname, t);
      INHERIT (to_doc, t);
      INHERIT (to_doc, t);
      INHERIT (to_open, t);
      INHERIT (to_open, t);
      INHERIT (to_close, t);
      INHERIT (to_close, t);
      INHERIT (to_attach, t);
      INHERIT (to_attach, t);
      INHERIT (to_post_attach, t);
      INHERIT (to_post_attach, t);
      INHERIT (to_require_attach, t);
      INHERIT (to_require_attach, t);
      INHERIT (to_detach, t);
      INHERIT (to_detach, t);
      INHERIT (to_require_detach, t);
      INHERIT (to_require_detach, t);
      INHERIT (to_resume, t);
      INHERIT (to_resume, t);
      INHERIT (to_wait, t);
      INHERIT (to_wait, t);
      INHERIT (to_post_wait, t);
      INHERIT (to_post_wait, t);
      INHERIT (to_fetch_registers, t);
      INHERIT (to_fetch_registers, t);
      INHERIT (to_store_registers, t);
      INHERIT (to_store_registers, t);
      INHERIT (to_prepare_to_store, t);
      INHERIT (to_prepare_to_store, t);
      INHERIT (to_xfer_memory, t);
      INHERIT (to_xfer_memory, t);
      INHERIT (to_files_info, t);
      INHERIT (to_files_info, t);
      INHERIT (to_insert_breakpoint, t);
      INHERIT (to_insert_breakpoint, t);
      INHERIT (to_remove_breakpoint, t);
      INHERIT (to_remove_breakpoint, t);
      INHERIT (to_terminal_init, t);
      INHERIT (to_terminal_init, t);
      INHERIT (to_terminal_inferior, t);
      INHERIT (to_terminal_inferior, t);
      INHERIT (to_terminal_ours_for_output, t);
      INHERIT (to_terminal_ours_for_output, t);
      INHERIT (to_terminal_ours, t);
      INHERIT (to_terminal_ours, t);
      INHERIT (to_terminal_info, t);
      INHERIT (to_terminal_info, t);
      INHERIT (to_kill, t);
      INHERIT (to_kill, t);
      INHERIT (to_load, t);
      INHERIT (to_load, t);
      INHERIT (to_lookup_symbol, t);
      INHERIT (to_lookup_symbol, t);
      INHERIT (to_create_inferior, t);
      INHERIT (to_create_inferior, t);
      INHERIT (to_post_startup_inferior, t);
      INHERIT (to_post_startup_inferior, t);
      INHERIT (to_acknowledge_created_inferior, t);
      INHERIT (to_acknowledge_created_inferior, t);
      INHERIT (to_clone_and_follow_inferior, t);
      INHERIT (to_clone_and_follow_inferior, t);
      INHERIT (to_post_follow_inferior_by_clone, t);
      INHERIT (to_post_follow_inferior_by_clone, t);
      INHERIT (to_insert_fork_catchpoint, t);
      INHERIT (to_insert_fork_catchpoint, t);
      INHERIT (to_remove_fork_catchpoint, t);
      INHERIT (to_remove_fork_catchpoint, t);
      INHERIT (to_insert_vfork_catchpoint, t);
      INHERIT (to_insert_vfork_catchpoint, t);
      INHERIT (to_remove_vfork_catchpoint, t);
      INHERIT (to_remove_vfork_catchpoint, t);
      INHERIT (to_has_forked, t);
      INHERIT (to_has_forked, t);
      INHERIT (to_has_vforked, t);
      INHERIT (to_has_vforked, t);
      INHERIT (to_can_follow_vfork_prior_to_exec, t);
      INHERIT (to_can_follow_vfork_prior_to_exec, t);
      INHERIT (to_post_follow_vfork, t);
      INHERIT (to_post_follow_vfork, t);
      INHERIT (to_insert_exec_catchpoint, t);
      INHERIT (to_insert_exec_catchpoint, t);
      INHERIT (to_remove_exec_catchpoint, t);
      INHERIT (to_remove_exec_catchpoint, t);
      INHERIT (to_has_execd, t);
      INHERIT (to_has_execd, t);
      INHERIT (to_reported_exec_events_per_exec_call, t);
      INHERIT (to_reported_exec_events_per_exec_call, t);
      INHERIT (to_has_syscall_event, t);
      INHERIT (to_has_syscall_event, t);
      INHERIT (to_has_exited, t);
      INHERIT (to_has_exited, t);
      INHERIT (to_mourn_inferior, t);
      INHERIT (to_mourn_inferior, t);
      INHERIT (to_can_run, t);
      INHERIT (to_can_run, t);
      INHERIT (to_notice_signals, t);
      INHERIT (to_notice_signals, t);
      INHERIT (to_thread_alive, t);
      INHERIT (to_thread_alive, t);
      INHERIT (to_find_new_threads, t);
      INHERIT (to_find_new_threads, t);
      INHERIT (to_pid_to_str, t);
      INHERIT (to_pid_to_str, t);
      INHERIT (to_extra_thread_info, t);
      INHERIT (to_extra_thread_info, t);
      INHERIT (to_stop, t);
      INHERIT (to_stop, t);
      INHERIT (to_query, t);
      INHERIT (to_query, t);
      INHERIT (to_rcmd, t);
      INHERIT (to_rcmd, t);
      INHERIT (to_enable_exception_callback, t);
      INHERIT (to_enable_exception_callback, t);
      INHERIT (to_get_current_exception_event, t);
      INHERIT (to_get_current_exception_event, t);
      INHERIT (to_pid_to_exec_file, t);
      INHERIT (to_pid_to_exec_file, t);
      INHERIT (to_core_file_to_sym_file, t);
      INHERIT (to_core_file_to_sym_file, t);
      INHERIT (to_stratum, t);
      INHERIT (to_stratum, t);
      INHERIT (DONT_USE, t);
      INHERIT (DONT_USE, t);
      INHERIT (to_has_all_memory, t);
      INHERIT (to_has_all_memory, t);
      INHERIT (to_has_memory, t);
      INHERIT (to_has_memory, t);
      INHERIT (to_has_stack, t);
      INHERIT (to_has_stack, t);
      INHERIT (to_has_registers, t);
      INHERIT (to_has_registers, t);
      INHERIT (to_has_execution, t);
      INHERIT (to_has_execution, t);
      INHERIT (to_has_thread_control, t);
      INHERIT (to_has_thread_control, t);
      INHERIT (to_sections, t);
      INHERIT (to_sections, t);
      INHERIT (to_sections_end, t);
      INHERIT (to_sections_end, t);
      INHERIT (to_can_async_p, t);
      INHERIT (to_can_async_p, t);
      INHERIT (to_is_async_p, t);
      INHERIT (to_is_async_p, t);
      INHERIT (to_async, t);
      INHERIT (to_async, t);
      INHERIT (to_async_mask_value, t);
      INHERIT (to_async_mask_value, t);
      INHERIT (to_magic, t);
      INHERIT (to_magic, t);
 
 
#undef INHERIT
#undef INHERIT
    }
    }
}
}
 
 
/* Push a new target type into the stack of the existing target accessors,
/* Push a new target type into the stack of the existing target accessors,
   possibly superseding some of the existing accessors.
   possibly superseding some of the existing accessors.
 
 
   Result is zero if the pushed target ended up on top of the stack,
   Result is zero if the pushed target ended up on top of the stack,
   nonzero if at least one target is on top of it.
   nonzero if at least one target is on top of it.
 
 
   Rather than allow an empty stack, we always have the dummy target at
   Rather than allow an empty stack, we always have the dummy target at
   the bottom stratum, so we can call the function vectors without
   the bottom stratum, so we can call the function vectors without
   checking them.  */
   checking them.  */
 
 
int
int
push_target (t)
push_target (t)
     struct target_ops *t;
     struct target_ops *t;
{
{
  struct target_stack_item *cur, *prev, *tmp;
  struct target_stack_item *cur, *prev, *tmp;
 
 
  /* Check magic number.  If wrong, it probably means someone changed
  /* Check magic number.  If wrong, it probably means someone changed
     the struct definition, but not all the places that initialize one.  */
     the struct definition, but not all the places that initialize one.  */
  if (t->to_magic != OPS_MAGIC)
  if (t->to_magic != OPS_MAGIC)
    {
    {
      fprintf_unfiltered (gdb_stderr,
      fprintf_unfiltered (gdb_stderr,
                          "Magic number of %s target struct wrong\n",
                          "Magic number of %s target struct wrong\n",
                          t->to_shortname);
                          t->to_shortname);
      abort ();
      abort ();
    }
    }
 
 
  /* Find the proper stratum to install this target in. */
  /* Find the proper stratum to install this target in. */
 
 
  for (prev = NULL, cur = target_stack; cur; prev = cur, cur = cur->next)
  for (prev = NULL, cur = target_stack; cur; prev = cur, cur = cur->next)
    {
    {
      if ((int) (t->to_stratum) >= (int) (cur->target_ops->to_stratum))
      if ((int) (t->to_stratum) >= (int) (cur->target_ops->to_stratum))
        break;
        break;
    }
    }
 
 
  /* If there's already targets at this stratum, remove them. */
  /* If there's already targets at this stratum, remove them. */
 
 
  if (cur)
  if (cur)
    while (t->to_stratum == cur->target_ops->to_stratum)
    while (t->to_stratum == cur->target_ops->to_stratum)
      {
      {
        /* There's already something on this stratum.  Close it off.  */
        /* There's already something on this stratum.  Close it off.  */
        if (cur->target_ops->to_close)
        if (cur->target_ops->to_close)
          (cur->target_ops->to_close) (0);
          (cur->target_ops->to_close) (0);
        if (prev)
        if (prev)
          prev->next = cur->next;       /* Unchain old target_ops */
          prev->next = cur->next;       /* Unchain old target_ops */
        else
        else
          target_stack = cur->next;     /* Unchain first on list */
          target_stack = cur->next;     /* Unchain first on list */
        tmp = cur->next;
        tmp = cur->next;
        free (cur);
        free (cur);
        cur = tmp;
        cur = tmp;
      }
      }
 
 
  /* We have removed all targets in our stratum, now add the new one.  */
  /* We have removed all targets in our stratum, now add the new one.  */
 
 
  tmp = (struct target_stack_item *)
  tmp = (struct target_stack_item *)
    xmalloc (sizeof (struct target_stack_item));
    xmalloc (sizeof (struct target_stack_item));
  tmp->next = cur;
  tmp->next = cur;
  tmp->target_ops = t;
  tmp->target_ops = t;
 
 
  if (prev)
  if (prev)
    prev->next = tmp;
    prev->next = tmp;
  else
  else
    target_stack = tmp;
    target_stack = tmp;
 
 
  update_current_target ();
  update_current_target ();
 
 
  cleanup_target (&current_target);     /* Fill in the gaps */
  cleanup_target (&current_target);     /* Fill in the gaps */
 
 
  if (targetdebug)
  if (targetdebug)
    setup_target_debug ();
    setup_target_debug ();
 
 
  return prev != 0;
  return prev != 0;
}
}
 
 
/* Remove a target_ops vector from the stack, wherever it may be.
/* Remove a target_ops vector from the stack, wherever it may be.
   Return how many times it was removed (0 or 1).  */
   Return how many times it was removed (0 or 1).  */
 
 
int
int
unpush_target (t)
unpush_target (t)
     struct target_ops *t;
     struct target_ops *t;
{
{
  struct target_stack_item *cur, *prev;
  struct target_stack_item *cur, *prev;
 
 
  if (t->to_close)
  if (t->to_close)
    t->to_close (0);             /* Let it clean up */
    t->to_close (0);             /* Let it clean up */
 
 
  /* Look for the specified target.  Note that we assume that a target
  /* Look for the specified target.  Note that we assume that a target
     can only occur once in the target stack. */
     can only occur once in the target stack. */
 
 
  for (cur = target_stack, prev = NULL; cur; prev = cur, cur = cur->next)
  for (cur = target_stack, prev = NULL; cur; prev = cur, cur = cur->next)
    if (cur->target_ops == t)
    if (cur->target_ops == t)
      break;
      break;
 
 
  if (!cur)
  if (!cur)
    return 0;                    /* Didn't find target_ops, quit now */
    return 0;                    /* Didn't find target_ops, quit now */
 
 
  /* Unchain the target */
  /* Unchain the target */
 
 
  if (!prev)
  if (!prev)
    target_stack = cur->next;
    target_stack = cur->next;
  else
  else
    prev->next = cur->next;
    prev->next = cur->next;
 
 
  free (cur);                   /* Release the target_stack_item */
  free (cur);                   /* Release the target_stack_item */
 
 
  update_current_target ();
  update_current_target ();
  cleanup_target (&current_target);
  cleanup_target (&current_target);
 
 
  return 1;
  return 1;
}
}
 
 
void
void
pop_target ()
pop_target ()
{
{
  (current_target.to_close) (0); /* Let it clean up */
  (current_target.to_close) (0); /* Let it clean up */
  if (unpush_target (target_stack->target_ops) == 1)
  if (unpush_target (target_stack->target_ops) == 1)
    return;
    return;
 
 
  fprintf_unfiltered (gdb_stderr,
  fprintf_unfiltered (gdb_stderr,
                      "pop_target couldn't find target %s\n",
                      "pop_target couldn't find target %s\n",
                      current_target.to_shortname);
                      current_target.to_shortname);
  abort ();
  abort ();
}
}
 
 
#undef  MIN
#undef  MIN
#define MIN(A, B) (((A) <= (B)) ? (A) : (B))
#define MIN(A, B) (((A) <= (B)) ? (A) : (B))
 
 
/* target_read_string -- read a null terminated string, up to LEN bytes,
/* target_read_string -- read a null terminated string, up to LEN bytes,
   from MEMADDR in target.  Set *ERRNOP to the errno code, or 0 if successful.
   from MEMADDR in target.  Set *ERRNOP to the errno code, or 0 if successful.
   Set *STRING to a pointer to malloc'd memory containing the data; the caller
   Set *STRING to a pointer to malloc'd memory containing the data; the caller
   is responsible for freeing it.  Return the number of bytes successfully
   is responsible for freeing it.  Return the number of bytes successfully
   read.  */
   read.  */
 
 
int
int
target_read_string (memaddr, string, len, errnop)
target_read_string (memaddr, string, len, errnop)
     CORE_ADDR memaddr;
     CORE_ADDR memaddr;
     char **string;
     char **string;
     int len;
     int len;
     int *errnop;
     int *errnop;
{
{
  int tlen, origlen, offset, i;
  int tlen, origlen, offset, i;
  char buf[4];
  char buf[4];
  int errcode = 0;
  int errcode = 0;
  char *buffer;
  char *buffer;
  int buffer_allocated;
  int buffer_allocated;
  char *bufptr;
  char *bufptr;
  unsigned int nbytes_read = 0;
  unsigned int nbytes_read = 0;
 
 
  /* Small for testing.  */
  /* Small for testing.  */
  buffer_allocated = 4;
  buffer_allocated = 4;
  buffer = xmalloc (buffer_allocated);
  buffer = xmalloc (buffer_allocated);
  bufptr = buffer;
  bufptr = buffer;
 
 
  origlen = len;
  origlen = len;
 
 
  while (len > 0)
  while (len > 0)
    {
    {
      tlen = MIN (len, 4 - (memaddr & 3));
      tlen = MIN (len, 4 - (memaddr & 3));
      offset = memaddr & 3;
      offset = memaddr & 3;
 
 
      errcode = target_xfer_memory (memaddr & ~3, buf, 4, 0, NULL);
      errcode = target_xfer_memory (memaddr & ~3, buf, 4, 0, NULL);
      if (errcode != 0)
      if (errcode != 0)
        {
        {
          /* The transfer request might have crossed the boundary to an
          /* The transfer request might have crossed the boundary to an
             unallocated region of memory. Retry the transfer, requesting
             unallocated region of memory. Retry the transfer, requesting
             a single byte.  */
             a single byte.  */
          tlen = 1;
          tlen = 1;
          offset = 0;
          offset = 0;
          errcode = target_xfer_memory (memaddr, buf, 1, 0, NULL);
          errcode = target_xfer_memory (memaddr, buf, 1, 0, NULL);
          if (errcode != 0)
          if (errcode != 0)
            goto done;
            goto done;
        }
        }
 
 
      if (bufptr - buffer + tlen > buffer_allocated)
      if (bufptr - buffer + tlen > buffer_allocated)
        {
        {
          unsigned int bytes;
          unsigned int bytes;
          bytes = bufptr - buffer;
          bytes = bufptr - buffer;
          buffer_allocated *= 2;
          buffer_allocated *= 2;
          buffer = xrealloc (buffer, buffer_allocated);
          buffer = xrealloc (buffer, buffer_allocated);
          bufptr = buffer + bytes;
          bufptr = buffer + bytes;
        }
        }
 
 
      for (i = 0; i < tlen; i++)
      for (i = 0; i < tlen; i++)
        {
        {
          *bufptr++ = buf[i + offset];
          *bufptr++ = buf[i + offset];
          if (buf[i + offset] == '\000')
          if (buf[i + offset] == '\000')
            {
            {
              nbytes_read += i + 1;
              nbytes_read += i + 1;
              goto done;
              goto done;
            }
            }
        }
        }
 
 
      memaddr += tlen;
      memaddr += tlen;
      len -= tlen;
      len -= tlen;
      nbytes_read += tlen;
      nbytes_read += tlen;
    }
    }
done:
done:
  if (errnop != NULL)
  if (errnop != NULL)
    *errnop = errcode;
    *errnop = errcode;
  if (string != NULL)
  if (string != NULL)
    *string = buffer;
    *string = buffer;
  return nbytes_read;
  return nbytes_read;
}
}
 
 
/* Read LEN bytes of target memory at address MEMADDR, placing the results in
/* Read LEN bytes of target memory at address MEMADDR, placing the results in
   GDB's memory at MYADDR.  Returns either 0 for success or an errno value
   GDB's memory at MYADDR.  Returns either 0 for success or an errno value
   if any error occurs.
   if any error occurs.
 
 
   If an error occurs, no guarantee is made about the contents of the data at
   If an error occurs, no guarantee is made about the contents of the data at
   MYADDR.  In particular, the caller should not depend upon partial reads
   MYADDR.  In particular, the caller should not depend upon partial reads
   filling the buffer with good data.  There is no way for the caller to know
   filling the buffer with good data.  There is no way for the caller to know
   how much good data might have been transfered anyway.  Callers that can
   how much good data might have been transfered anyway.  Callers that can
   deal with partial reads should call target_read_memory_partial. */
   deal with partial reads should call target_read_memory_partial. */
 
 
int
int
target_read_memory (memaddr, myaddr, len)
target_read_memory (memaddr, myaddr, len)
     CORE_ADDR memaddr;
     CORE_ADDR memaddr;
     char *myaddr;
     char *myaddr;
     int len;
     int len;
{
{
  return target_xfer_memory (memaddr, myaddr, len, 0, NULL);
  return target_xfer_memory (memaddr, myaddr, len, 0, NULL);
}
}
 
 
int
int
target_read_memory_section (memaddr, myaddr, len, bfd_section)
target_read_memory_section (memaddr, myaddr, len, bfd_section)
     CORE_ADDR memaddr;
     CORE_ADDR memaddr;
     char *myaddr;
     char *myaddr;
     int len;
     int len;
     asection *bfd_section;
     asection *bfd_section;
{
{
  return target_xfer_memory (memaddr, myaddr, len, 0, bfd_section);
  return target_xfer_memory (memaddr, myaddr, len, 0, bfd_section);
}
}
 
 
int
int
target_write_memory (memaddr, myaddr, len)
target_write_memory (memaddr, myaddr, len)
     CORE_ADDR memaddr;
     CORE_ADDR memaddr;
     char *myaddr;
     char *myaddr;
     int len;
     int len;
{
{
  return target_xfer_memory (memaddr, myaddr, len, 1, NULL);
  return target_xfer_memory (memaddr, myaddr, len, 1, NULL);
}
}
 
 
/* This variable is used to pass section information down to targets.  This
/* This variable is used to pass section information down to targets.  This
   *should* be done by adding an argument to the target_xfer_memory function
   *should* be done by adding an argument to the target_xfer_memory function
   of all the targets, but I didn't feel like changing 50+ files.  */
   of all the targets, but I didn't feel like changing 50+ files.  */
 
 
asection *target_memory_bfd_section = NULL;
asection *target_memory_bfd_section = NULL;
 
 
/* Move memory to or from the targets.  Iterate until all of it has
/* Move memory to or from the targets.  Iterate until all of it has
   been moved, if necessary.  The top target gets priority; anything
   been moved, if necessary.  The top target gets priority; anything
   it doesn't want, is offered to the next one down, etc.  Note the
   it doesn't want, is offered to the next one down, etc.  Note the
   business with curlen:  if an early target says "no, but I have a
   business with curlen:  if an early target says "no, but I have a
   boundary overlapping this xfer" then we shorten what we offer to
   boundary overlapping this xfer" then we shorten what we offer to
   the subsequent targets so the early guy will get a chance at the
   the subsequent targets so the early guy will get a chance at the
   tail before the subsequent ones do.
   tail before the subsequent ones do.
 
 
   Result is 0 or errno value.  */
   Result is 0 or errno value.  */
 
 
static int
static int
target_xfer_memory (memaddr, myaddr, len, write, bfd_section)
target_xfer_memory (memaddr, myaddr, len, write, bfd_section)
     CORE_ADDR memaddr;
     CORE_ADDR memaddr;
     char *myaddr;
     char *myaddr;
     int len;
     int len;
     int write;
     int write;
     asection *bfd_section;
     asection *bfd_section;
{
{
  int curlen;
  int curlen;
  int res;
  int res;
  struct target_ops *t;
  struct target_ops *t;
  struct target_stack_item *item;
  struct target_stack_item *item;
 
 
  /* Zero length requests are ok and require no work.  */
  /* Zero length requests are ok and require no work.  */
  if (len == 0)
  if (len == 0)
    return 0;
    return 0;
 
 
  target_memory_bfd_section = bfd_section;
  target_memory_bfd_section = bfd_section;
 
 
  /* to_xfer_memory is not guaranteed to set errno, even when it returns
  /* to_xfer_memory is not guaranteed to set errno, even when it returns
     0.  */
     0.  */
  errno = 0;
  errno = 0;
 
 
  /* The quick case is that the top target does it all.  */
  /* The quick case is that the top target does it all.  */
  res = current_target.to_xfer_memory
  res = current_target.to_xfer_memory
    (memaddr, myaddr, len, write, &current_target);
    (memaddr, myaddr, len, write, &current_target);
  if (res == len)
  if (res == len)
    return 0;
    return 0;
 
 
  if (res > 0)
  if (res > 0)
    goto bump;
    goto bump;
  /* If res <= 0 then we call it again in the loop.  Ah well.  */
  /* If res <= 0 then we call it again in the loop.  Ah well.  */
 
 
  for (; len > 0;)
  for (; len > 0;)
    {
    {
      curlen = len;             /* Want to do it all */
      curlen = len;             /* Want to do it all */
      for (item = target_stack; item; item = item->next)
      for (item = target_stack; item; item = item->next)
        {
        {
          t = item->target_ops;
          t = item->target_ops;
          if (!t->to_has_memory)
          if (!t->to_has_memory)
            continue;
            continue;
 
 
          res = t->to_xfer_memory (memaddr, myaddr, curlen, write, t);
          res = t->to_xfer_memory (memaddr, myaddr, curlen, write, t);
          if (res > 0)
          if (res > 0)
            break;              /* Handled all or part of xfer */
            break;              /* Handled all or part of xfer */
          if (t->to_has_all_memory)
          if (t->to_has_all_memory)
            break;
            break;
        }
        }
 
 
      if (res <= 0)
      if (res <= 0)
        {
        {
          /* If this address is for nonexistent memory,
          /* If this address is for nonexistent memory,
             read zeros if reading, or do nothing if writing.  Return error. */
             read zeros if reading, or do nothing if writing.  Return error. */
          if (!write)
          if (!write)
            memset (myaddr, 0, len);
            memset (myaddr, 0, len);
          if (errno == 0)
          if (errno == 0)
            return EIO;
            return EIO;
          else
          else
            return errno;
            return errno;
        }
        }
    bump:
    bump:
      memaddr += res;
      memaddr += res;
      myaddr += res;
      myaddr += res;
      len -= res;
      len -= res;
    }
    }
  return 0;                      /* We managed to cover it all somehow. */
  return 0;                      /* We managed to cover it all somehow. */
}
}
 
 
 
 
/* Perform a partial memory transfer.  */
/* Perform a partial memory transfer.  */
 
 
static int
static int
target_xfer_memory_partial (CORE_ADDR memaddr, char *buf, int len,
target_xfer_memory_partial (CORE_ADDR memaddr, char *buf, int len,
                            int write_p, int *err)
                            int write_p, int *err)
{
{
  int res;
  int res;
  int err_res;
  int err_res;
  int len_res;
  int len_res;
  struct target_ops *t;
  struct target_ops *t;
  struct target_stack_item *item;
  struct target_stack_item *item;
 
 
  /* Zero length requests are ok and require no work.  */
  /* Zero length requests are ok and require no work.  */
  if (len == 0)
  if (len == 0)
    {
    {
      *err = 0;
      *err = 0;
      return 0;
      return 0;
    }
    }
 
 
  /* The quick case is that the top target does it all.  */
  /* The quick case is that the top target does it all.  */
  res = current_target.to_xfer_memory (memaddr, buf, len, write_p, &current_target);
  res = current_target.to_xfer_memory (memaddr, buf, len, write_p, &current_target);
  if (res > 0)
  if (res > 0)
    {
    {
      *err = 0;
      *err = 0;
      return res;
      return res;
    }
    }
 
 
  /* xfer memory doesn't always reliably set errno. */
  /* xfer memory doesn't always reliably set errno. */
  errno = 0;
  errno = 0;
 
 
  /* Try all levels of the target stack to see one can handle it. */
  /* Try all levels of the target stack to see one can handle it. */
  for (item = target_stack; item; item = item->next)
  for (item = target_stack; item; item = item->next)
    {
    {
      t = item->target_ops;
      t = item->target_ops;
      if (!t->to_has_memory)
      if (!t->to_has_memory)
        continue;
        continue;
      res = t->to_xfer_memory (memaddr, buf, len, write_p, t);
      res = t->to_xfer_memory (memaddr, buf, len, write_p, t);
      if (res > 0)
      if (res > 0)
        {
        {
          /* Handled all or part of xfer */
          /* Handled all or part of xfer */
          *err = 0;
          *err = 0;
          return res;
          return res;
        }
        }
      if (t->to_has_all_memory)
      if (t->to_has_all_memory)
        break;
        break;
    }
    }
 
 
  /* Total failure.  Return error. */
  /* Total failure.  Return error. */
  if (errno != 0)
  if (errno != 0)
    {
    {
      *err = errno;
      *err = errno;
      return -1;
      return -1;
    }
    }
  *err = EIO;
  *err = EIO;
  return -1;
  return -1;
}
}
 
 
int
int
target_read_memory_partial (CORE_ADDR memaddr, char *buf, int len, int *err)
target_read_memory_partial (CORE_ADDR memaddr, char *buf, int len, int *err)
{
{
  return target_xfer_memory_partial (memaddr, buf, len, 0, err);
  return target_xfer_memory_partial (memaddr, buf, len, 0, err);
}
}
 
 
int
int
target_write_memory_partial (CORE_ADDR memaddr, char *buf, int len, int *err)
target_write_memory_partial (CORE_ADDR memaddr, char *buf, int len, int *err)
{
{
  return target_xfer_memory_partial (memaddr, buf, len, 1, err);
  return target_xfer_memory_partial (memaddr, buf, len, 1, err);
}
}
 
 
/* ARGSUSED */
/* ARGSUSED */
static void
static void
target_info (args, from_tty)
target_info (args, from_tty)
     char *args;
     char *args;
     int from_tty;
     int from_tty;
{
{
  struct target_ops *t;
  struct target_ops *t;
  struct target_stack_item *item;
  struct target_stack_item *item;
  int has_all_mem = 0;
  int has_all_mem = 0;
 
 
  if (symfile_objfile != NULL)
  if (symfile_objfile != NULL)
    printf_unfiltered ("Symbols from \"%s\".\n", symfile_objfile->name);
    printf_unfiltered ("Symbols from \"%s\".\n", symfile_objfile->name);
 
 
#ifdef FILES_INFO_HOOK
#ifdef FILES_INFO_HOOK
  if (FILES_INFO_HOOK ())
  if (FILES_INFO_HOOK ())
    return;
    return;
#endif
#endif
 
 
  for (item = target_stack; item; item = item->next)
  for (item = target_stack; item; item = item->next)
    {
    {
      t = item->target_ops;
      t = item->target_ops;
 
 
      if (!t->to_has_memory)
      if (!t->to_has_memory)
        continue;
        continue;
 
 
      if ((int) (t->to_stratum) <= (int) dummy_stratum)
      if ((int) (t->to_stratum) <= (int) dummy_stratum)
        continue;
        continue;
      if (has_all_mem)
      if (has_all_mem)
        printf_unfiltered ("\tWhile running this, GDB does not access memory from...\n");
        printf_unfiltered ("\tWhile running this, GDB does not access memory from...\n");
      printf_unfiltered ("%s:\n", t->to_longname);
      printf_unfiltered ("%s:\n", t->to_longname);
      (t->to_files_info) (t);
      (t->to_files_info) (t);
      has_all_mem = t->to_has_all_memory;
      has_all_mem = t->to_has_all_memory;
    }
    }
}
}
 
 
/* This is to be called by the open routine before it does
/* This is to be called by the open routine before it does
   anything.  */
   anything.  */
 
 
void
void
target_preopen (from_tty)
target_preopen (from_tty)
     int from_tty;
     int from_tty;
{
{
  dont_repeat ();
  dont_repeat ();
 
 
  if (target_has_execution)
  if (target_has_execution)
    {
    {
      if (!from_tty
      if (!from_tty
          || query ("A program is being debugged already.  Kill it? "))
          || query ("A program is being debugged already.  Kill it? "))
        target_kill ();
        target_kill ();
      else
      else
        error ("Program not killed.");
        error ("Program not killed.");
    }
    }
 
 
  /* Calling target_kill may remove the target from the stack.  But if
  /* Calling target_kill may remove the target from the stack.  But if
     it doesn't (which seems like a win for UDI), remove it now.  */
     it doesn't (which seems like a win for UDI), remove it now.  */
 
 
  if (target_has_execution)
  if (target_has_execution)
    pop_target ();
    pop_target ();
}
}
 
 
/* Detach a target after doing deferred register stores.  */
/* Detach a target after doing deferred register stores.  */
 
 
void
void
target_detach (args, from_tty)
target_detach (args, from_tty)
     char *args;
     char *args;
     int from_tty;
     int from_tty;
{
{
  /* Handle any optimized stores to the inferior.  */
  /* Handle any optimized stores to the inferior.  */
#ifdef DO_DEFERRED_STORES
#ifdef DO_DEFERRED_STORES
  DO_DEFERRED_STORES;
  DO_DEFERRED_STORES;
#endif
#endif
  (current_target.to_detach) (args, from_tty);
  (current_target.to_detach) (args, from_tty);
}
}
 
 
void
void
target_link (modname, t_reloc)
target_link (modname, t_reloc)
     char *modname;
     char *modname;
     CORE_ADDR *t_reloc;
     CORE_ADDR *t_reloc;
{
{
  if (STREQ (current_target.to_shortname, "rombug"))
  if (STREQ (current_target.to_shortname, "rombug"))
    {
    {
      (current_target.to_lookup_symbol) (modname, t_reloc);
      (current_target.to_lookup_symbol) (modname, t_reloc);
      if (*t_reloc == 0)
      if (*t_reloc == 0)
        error ("Unable to link to %s and get relocation in rombug", modname);
        error ("Unable to link to %s and get relocation in rombug", modname);
    }
    }
  else
  else
    *t_reloc = (CORE_ADDR) -1;
    *t_reloc = (CORE_ADDR) -1;
}
}
 
 
int
int
target_async_mask (int mask)
target_async_mask (int mask)
{
{
  int saved_async_masked_status = target_async_mask_value;
  int saved_async_masked_status = target_async_mask_value;
  target_async_mask_value = mask;
  target_async_mask_value = mask;
  return saved_async_masked_status;
  return saved_async_masked_status;
}
}
 
 
/* Look through the list of possible targets for a target that can
/* Look through the list of possible targets for a target that can
   execute a run or attach command without any other data.  This is
   execute a run or attach command without any other data.  This is
   used to locate the default process stratum.
   used to locate the default process stratum.
 
 
   Result is always valid (error() is called for errors).  */
   Result is always valid (error() is called for errors).  */
 
 
static struct target_ops *
static struct target_ops *
find_default_run_target (do_mesg)
find_default_run_target (do_mesg)
     char *do_mesg;
     char *do_mesg;
{
{
  struct target_ops **t;
  struct target_ops **t;
  struct target_ops *runable = NULL;
  struct target_ops *runable = NULL;
  int count;
  int count;
 
 
  count = 0;
  count = 0;
 
 
  for (t = target_structs; t < target_structs + target_struct_size;
  for (t = target_structs; t < target_structs + target_struct_size;
       ++t)
       ++t)
    {
    {
      if ((*t)->to_can_run && target_can_run (*t))
      if ((*t)->to_can_run && target_can_run (*t))
        {
        {
          runable = *t;
          runable = *t;
          ++count;
          ++count;
        }
        }
    }
    }
 
 
  if (count != 1)
  if (count != 1)
    error ("Don't know how to %s.  Try \"help target\".", do_mesg);
    error ("Don't know how to %s.  Try \"help target\".", do_mesg);
 
 
  return runable;
  return runable;
}
}
 
 
void
void
find_default_attach (args, from_tty)
find_default_attach (args, from_tty)
     char *args;
     char *args;
     int from_tty;
     int from_tty;
{
{
  struct target_ops *t;
  struct target_ops *t;
 
 
  t = find_default_run_target ("attach");
  t = find_default_run_target ("attach");
  (t->to_attach) (args, from_tty);
  (t->to_attach) (args, from_tty);
  return;
  return;
}
}
 
 
void
void
find_default_require_attach (args, from_tty)
find_default_require_attach (args, from_tty)
     char *args;
     char *args;
     int from_tty;
     int from_tty;
{
{
  struct target_ops *t;
  struct target_ops *t;
 
 
  t = find_default_run_target ("require_attach");
  t = find_default_run_target ("require_attach");
  (t->to_require_attach) (args, from_tty);
  (t->to_require_attach) (args, from_tty);
  return;
  return;
}
}
 
 
void
void
find_default_require_detach (pid, args, from_tty)
find_default_require_detach (pid, args, from_tty)
     int pid;
     int pid;
     char *args;
     char *args;
     int from_tty;
     int from_tty;
{
{
  struct target_ops *t;
  struct target_ops *t;
 
 
  t = find_default_run_target ("require_detach");
  t = find_default_run_target ("require_detach");
  (t->to_require_detach) (pid, args, from_tty);
  (t->to_require_detach) (pid, args, from_tty);
  return;
  return;
}
}
 
 
void
void
find_default_create_inferior (exec_file, allargs, env)
find_default_create_inferior (exec_file, allargs, env)
     char *exec_file;
     char *exec_file;
     char *allargs;
     char *allargs;
     char **env;
     char **env;
{
{
  struct target_ops *t;
  struct target_ops *t;
 
 
  t = find_default_run_target ("run");
  t = find_default_run_target ("run");
  (t->to_create_inferior) (exec_file, allargs, env);
  (t->to_create_inferior) (exec_file, allargs, env);
  return;
  return;
}
}
 
 
void
void
find_default_clone_and_follow_inferior (child_pid, followed_child)
find_default_clone_and_follow_inferior (child_pid, followed_child)
     int child_pid;
     int child_pid;
     int *followed_child;
     int *followed_child;
{
{
  struct target_ops *t;
  struct target_ops *t;
 
 
  t = find_default_run_target ("run");
  t = find_default_run_target ("run");
  (t->to_clone_and_follow_inferior) (child_pid, followed_child);
  (t->to_clone_and_follow_inferior) (child_pid, followed_child);
  return;
  return;
}
}
 
 
static int
static int
return_zero ()
return_zero ()
{
{
  return 0;
  return 0;
}
}
 
 
static int
static int
return_one ()
return_one ()
{
{
  return 1;
  return 1;
}
}
 
 
/*
/*
 * Resize the to_sections pointer.  Also make sure that anyone that
 * Resize the to_sections pointer.  Also make sure that anyone that
 * was holding on to an old value of it gets updated.
 * was holding on to an old value of it gets updated.
 * Returns the old size.
 * Returns the old size.
 */
 */
 
 
int
int
target_resize_to_sections (struct target_ops *target, int num_added)
target_resize_to_sections (struct target_ops *target, int num_added)
{
{
  struct target_ops **t;
  struct target_ops **t;
  struct section_table *old_value;
  struct section_table *old_value;
  int old_count;
  int old_count;
 
 
  old_value = target->to_sections;
  old_value = target->to_sections;
 
 
  if (target->to_sections)
  if (target->to_sections)
    {
    {
      old_count = target->to_sections_end - target->to_sections;
      old_count = target->to_sections_end - target->to_sections;
      target->to_sections = (struct section_table *)
      target->to_sections = (struct section_table *)
        xrealloc ((char *) target->to_sections,
        xrealloc ((char *) target->to_sections,
                  (sizeof (struct section_table)) * (num_added + old_count));
                  (sizeof (struct section_table)) * (num_added + old_count));
    }
    }
  else
  else
    {
    {
      old_count = 0;
      old_count = 0;
      target->to_sections = (struct section_table *)
      target->to_sections = (struct section_table *)
        xmalloc ((sizeof (struct section_table)) * num_added);
        xmalloc ((sizeof (struct section_table)) * num_added);
    }
    }
  target->to_sections_end = target->to_sections + (num_added + old_count);
  target->to_sections_end = target->to_sections + (num_added + old_count);
 
 
  /* Check to see if anyone else was pointing to this structure.
  /* Check to see if anyone else was pointing to this structure.
     If old_value was null, then no one was. */
     If old_value was null, then no one was. */
 
 
  if (old_value)
  if (old_value)
    {
    {
      for (t = target_structs; t < target_structs + target_struct_size;
      for (t = target_structs; t < target_structs + target_struct_size;
           ++t)
           ++t)
        {
        {
          if ((*t)->to_sections == old_value)
          if ((*t)->to_sections == old_value)
            {
            {
              (*t)->to_sections = target->to_sections;
              (*t)->to_sections = target->to_sections;
              (*t)->to_sections_end = target->to_sections_end;
              (*t)->to_sections_end = target->to_sections_end;
            }
            }
        }
        }
    }
    }
 
 
  return old_count;
  return old_count;
 
 
}
}
 
 
/* Remove all target sections taken from ABFD.
/* Remove all target sections taken from ABFD.
 
 
   Scan the current target stack for targets whose section tables
   Scan the current target stack for targets whose section tables
   refer to sections from BFD, and remove those sections.  We use this
   refer to sections from BFD, and remove those sections.  We use this
   when we notice that the inferior has unloaded a shared object, for
   when we notice that the inferior has unloaded a shared object, for
   example.  */
   example.  */
void
void
remove_target_sections (bfd *abfd)
remove_target_sections (bfd *abfd)
{
{
  struct target_ops **t;
  struct target_ops **t;
 
 
  for (t = target_structs; t < target_structs + target_struct_size; t++)
  for (t = target_structs; t < target_structs + target_struct_size; t++)
    {
    {
      struct section_table *src, *dest;
      struct section_table *src, *dest;
 
 
      dest = (*t)->to_sections;
      dest = (*t)->to_sections;
      for (src = (*t)->to_sections; src < (*t)->to_sections_end; src++)
      for (src = (*t)->to_sections; src < (*t)->to_sections_end; src++)
        if (src->bfd != abfd)
        if (src->bfd != abfd)
          {
          {
            /* Keep this section.  */
            /* Keep this section.  */
            if (dest < src) *dest = *src;
            if (dest < src) *dest = *src;
            dest++;
            dest++;
          }
          }
 
 
      /* If we've dropped any sections, resize the section table.  */
      /* If we've dropped any sections, resize the section table.  */
      if (dest < src)
      if (dest < src)
        target_resize_to_sections (*t, dest - src);
        target_resize_to_sections (*t, dest - src);
    }
    }
}
}
 
 
 
 
 
 
 
 
/* Find a single runnable target in the stack and return it.  If for
/* Find a single runnable target in the stack and return it.  If for
   some reason there is more than one, return NULL.  */
   some reason there is more than one, return NULL.  */
 
 
struct target_ops *
struct target_ops *
find_run_target ()
find_run_target ()
{
{
  struct target_ops **t;
  struct target_ops **t;
  struct target_ops *runable = NULL;
  struct target_ops *runable = NULL;
  int count;
  int count;
 
 
  count = 0;
  count = 0;
 
 
  for (t = target_structs; t < target_structs + target_struct_size; ++t)
  for (t = target_structs; t < target_structs + target_struct_size; ++t)
    {
    {
      if ((*t)->to_can_run && target_can_run (*t))
      if ((*t)->to_can_run && target_can_run (*t))
        {
        {
          runable = *t;
          runable = *t;
          ++count;
          ++count;
        }
        }
    }
    }
 
 
  return (count == 1 ? runable : NULL);
  return (count == 1 ? runable : NULL);
}
}
 
 
/* Find a single core_stratum target in the list of targets and return it.
/* Find a single core_stratum target in the list of targets and return it.
   If for some reason there is more than one, return NULL.  */
   If for some reason there is more than one, return NULL.  */
 
 
struct target_ops *
struct target_ops *
find_core_target ()
find_core_target ()
{
{
  struct target_ops **t;
  struct target_ops **t;
  struct target_ops *runable = NULL;
  struct target_ops *runable = NULL;
  int count;
  int count;
 
 
  count = 0;
  count = 0;
 
 
  for (t = target_structs; t < target_structs + target_struct_size;
  for (t = target_structs; t < target_structs + target_struct_size;
       ++t)
       ++t)
    {
    {
      if ((*t)->to_stratum == core_stratum)
      if ((*t)->to_stratum == core_stratum)
        {
        {
          runable = *t;
          runable = *t;
          ++count;
          ++count;
        }
        }
    }
    }
 
 
  return (count == 1 ? runable : NULL);
  return (count == 1 ? runable : NULL);
}
}
 
 
/*
/*
 * Find the next target down the stack from the specified target.
 * Find the next target down the stack from the specified target.
 */
 */
 
 
struct target_ops *
struct target_ops *
find_target_beneath (t)
find_target_beneath (t)
     struct target_ops *t;
     struct target_ops *t;
{
{
  struct target_stack_item *cur;
  struct target_stack_item *cur;
 
 
  for (cur = target_stack; cur; cur = cur->next)
  for (cur = target_stack; cur; cur = cur->next)
    if (cur->target_ops == t)
    if (cur->target_ops == t)
      break;
      break;
 
 
  if (cur == NULL || cur->next == NULL)
  if (cur == NULL || cur->next == NULL)
    return NULL;
    return NULL;
  else
  else
    return cur->next->target_ops;
    return cur->next->target_ops;
}
}
 
 


/* The inferior process has died.  Long live the inferior!  */
/* The inferior process has died.  Long live the inferior!  */
 
 
void
void
generic_mourn_inferior ()
generic_mourn_inferior ()
{
{
  extern int show_breakpoint_hit_counts;
  extern int show_breakpoint_hit_counts;
 
 
  inferior_pid = 0;
  inferior_pid = 0;
  attach_flag = 0;
  attach_flag = 0;
  breakpoint_init_inferior (inf_exited);
  breakpoint_init_inferior (inf_exited);
  registers_changed ();
  registers_changed ();
 
 
#ifdef CLEAR_DEFERRED_STORES
#ifdef CLEAR_DEFERRED_STORES
  /* Delete any pending stores to the inferior... */
  /* Delete any pending stores to the inferior... */
  CLEAR_DEFERRED_STORES;
  CLEAR_DEFERRED_STORES;
#endif
#endif
 
 
  reopen_exec_file ();
  reopen_exec_file ();
  reinit_frame_cache ();
  reinit_frame_cache ();
 
 
  /* It is confusing to the user for ignore counts to stick around
  /* It is confusing to the user for ignore counts to stick around
     from previous runs of the inferior.  So clear them.  */
     from previous runs of the inferior.  So clear them.  */
  /* However, it is more confusing for the ignore counts to disappear when
  /* However, it is more confusing for the ignore counts to disappear when
     using hit counts.  So don't clear them if we're counting hits.  */
     using hit counts.  So don't clear them if we're counting hits.  */
  if (!show_breakpoint_hit_counts)
  if (!show_breakpoint_hit_counts)
    breakpoint_clear_ignore_counts ();
    breakpoint_clear_ignore_counts ();
}
}


/* This table must match in order and size the signals in enum target_signal
/* This table must match in order and size the signals in enum target_signal
   in target.h.  */
   in target.h.  */
/* *INDENT-OFF* */
/* *INDENT-OFF* */
static struct {
static struct {
  char *name;
  char *name;
  char *string;
  char *string;
  } signals [] =
  } signals [] =
{
{
  {"0", "Signal 0"},
  {"0", "Signal 0"},
  {"SIGHUP", "Hangup"},
  {"SIGHUP", "Hangup"},
  {"SIGINT", "Interrupt"},
  {"SIGINT", "Interrupt"},
  {"SIGQUIT", "Quit"},
  {"SIGQUIT", "Quit"},
  {"SIGILL", "Illegal instruction"},
  {"SIGILL", "Illegal instruction"},
  {"SIGTRAP", "Trace/breakpoint trap"},
  {"SIGTRAP", "Trace/breakpoint trap"},
  {"SIGABRT", "Aborted"},
  {"SIGABRT", "Aborted"},
  {"SIGEMT", "Emulation trap"},
  {"SIGEMT", "Emulation trap"},
  {"SIGFPE", "Arithmetic exception"},
  {"SIGFPE", "Arithmetic exception"},
  {"SIGKILL", "Killed"},
  {"SIGKILL", "Killed"},
  {"SIGBUS", "Bus error"},
  {"SIGBUS", "Bus error"},
  {"SIGSEGV", "Segmentation fault"},
  {"SIGSEGV", "Segmentation fault"},
  {"SIGSYS", "Bad system call"},
  {"SIGSYS", "Bad system call"},
  {"SIGPIPE", "Broken pipe"},
  {"SIGPIPE", "Broken pipe"},
  {"SIGALRM", "Alarm clock"},
  {"SIGALRM", "Alarm clock"},
  {"SIGTERM", "Terminated"},
  {"SIGTERM", "Terminated"},
  {"SIGURG", "Urgent I/O condition"},
  {"SIGURG", "Urgent I/O condition"},
  {"SIGSTOP", "Stopped (signal)"},
  {"SIGSTOP", "Stopped (signal)"},
  {"SIGTSTP", "Stopped (user)"},
  {"SIGTSTP", "Stopped (user)"},
  {"SIGCONT", "Continued"},
  {"SIGCONT", "Continued"},
  {"SIGCHLD", "Child status changed"},
  {"SIGCHLD", "Child status changed"},
  {"SIGTTIN", "Stopped (tty input)"},
  {"SIGTTIN", "Stopped (tty input)"},
  {"SIGTTOU", "Stopped (tty output)"},
  {"SIGTTOU", "Stopped (tty output)"},
  {"SIGIO", "I/O possible"},
  {"SIGIO", "I/O possible"},
  {"SIGXCPU", "CPU time limit exceeded"},
  {"SIGXCPU", "CPU time limit exceeded"},
  {"SIGXFSZ", "File size limit exceeded"},
  {"SIGXFSZ", "File size limit exceeded"},
  {"SIGVTALRM", "Virtual timer expired"},
  {"SIGVTALRM", "Virtual timer expired"},
  {"SIGPROF", "Profiling timer expired"},
  {"SIGPROF", "Profiling timer expired"},
  {"SIGWINCH", "Window size changed"},
  {"SIGWINCH", "Window size changed"},
  {"SIGLOST", "Resource lost"},
  {"SIGLOST", "Resource lost"},
  {"SIGUSR1", "User defined signal 1"},
  {"SIGUSR1", "User defined signal 1"},
  {"SIGUSR2", "User defined signal 2"},
  {"SIGUSR2", "User defined signal 2"},
  {"SIGPWR", "Power fail/restart"},
  {"SIGPWR", "Power fail/restart"},
  {"SIGPOLL", "Pollable event occurred"},
  {"SIGPOLL", "Pollable event occurred"},
  {"SIGWIND", "SIGWIND"},
  {"SIGWIND", "SIGWIND"},
  {"SIGPHONE", "SIGPHONE"},
  {"SIGPHONE", "SIGPHONE"},
  {"SIGWAITING", "Process's LWPs are blocked"},
  {"SIGWAITING", "Process's LWPs are blocked"},
  {"SIGLWP", "Signal LWP"},
  {"SIGLWP", "Signal LWP"},
  {"SIGDANGER", "Swap space dangerously low"},
  {"SIGDANGER", "Swap space dangerously low"},
  {"SIGGRANT", "Monitor mode granted"},
  {"SIGGRANT", "Monitor mode granted"},
  {"SIGRETRACT", "Need to relinquish monitor mode"},
  {"SIGRETRACT", "Need to relinquish monitor mode"},
  {"SIGMSG", "Monitor mode data available"},
  {"SIGMSG", "Monitor mode data available"},
  {"SIGSOUND", "Sound completed"},
  {"SIGSOUND", "Sound completed"},
  {"SIGSAK", "Secure attention"},
  {"SIGSAK", "Secure attention"},
  {"SIGPRIO", "SIGPRIO"},
  {"SIGPRIO", "SIGPRIO"},
  {"SIG33", "Real-time event 33"},
  {"SIG33", "Real-time event 33"},
  {"SIG34", "Real-time event 34"},
  {"SIG34", "Real-time event 34"},
  {"SIG35", "Real-time event 35"},
  {"SIG35", "Real-time event 35"},
  {"SIG36", "Real-time event 36"},
  {"SIG36", "Real-time event 36"},
  {"SIG37", "Real-time event 37"},
  {"SIG37", "Real-time event 37"},
  {"SIG38", "Real-time event 38"},
  {"SIG38", "Real-time event 38"},
  {"SIG39", "Real-time event 39"},
  {"SIG39", "Real-time event 39"},
  {"SIG40", "Real-time event 40"},
  {"SIG40", "Real-time event 40"},
  {"SIG41", "Real-time event 41"},
  {"SIG41", "Real-time event 41"},
  {"SIG42", "Real-time event 42"},
  {"SIG42", "Real-time event 42"},
  {"SIG43", "Real-time event 43"},
  {"SIG43", "Real-time event 43"},
  {"SIG44", "Real-time event 44"},
  {"SIG44", "Real-time event 44"},
  {"SIG45", "Real-time event 45"},
  {"SIG45", "Real-time event 45"},
  {"SIG46", "Real-time event 46"},
  {"SIG46", "Real-time event 46"},
  {"SIG47", "Real-time event 47"},
  {"SIG47", "Real-time event 47"},
  {"SIG48", "Real-time event 48"},
  {"SIG48", "Real-time event 48"},
  {"SIG49", "Real-time event 49"},
  {"SIG49", "Real-time event 49"},
  {"SIG50", "Real-time event 50"},
  {"SIG50", "Real-time event 50"},
  {"SIG51", "Real-time event 51"},
  {"SIG51", "Real-time event 51"},
  {"SIG52", "Real-time event 52"},
  {"SIG52", "Real-time event 52"},
  {"SIG53", "Real-time event 53"},
  {"SIG53", "Real-time event 53"},
  {"SIG54", "Real-time event 54"},
  {"SIG54", "Real-time event 54"},
  {"SIG55", "Real-time event 55"},
  {"SIG55", "Real-time event 55"},
  {"SIG56", "Real-time event 56"},
  {"SIG56", "Real-time event 56"},
  {"SIG57", "Real-time event 57"},
  {"SIG57", "Real-time event 57"},
  {"SIG58", "Real-time event 58"},
  {"SIG58", "Real-time event 58"},
  {"SIG59", "Real-time event 59"},
  {"SIG59", "Real-time event 59"},
  {"SIG60", "Real-time event 60"},
  {"SIG60", "Real-time event 60"},
  {"SIG61", "Real-time event 61"},
  {"SIG61", "Real-time event 61"},
  {"SIG62", "Real-time event 62"},
  {"SIG62", "Real-time event 62"},
  {"SIG63", "Real-time event 63"},
  {"SIG63", "Real-time event 63"},
  {"SIGCANCEL", "LWP internal signal"},
  {"SIGCANCEL", "LWP internal signal"},
  {"SIG32", "Real-time event 32"},
  {"SIG32", "Real-time event 32"},
 
 
#if defined(MACH) || defined(__MACH__)
#if defined(MACH) || defined(__MACH__)
  /* Mach exceptions */
  /* Mach exceptions */
  {"EXC_BAD_ACCESS", "Could not access memory"},
  {"EXC_BAD_ACCESS", "Could not access memory"},
  {"EXC_BAD_INSTRUCTION", "Illegal instruction/operand"},
  {"EXC_BAD_INSTRUCTION", "Illegal instruction/operand"},
  {"EXC_ARITHMETIC", "Arithmetic exception"},
  {"EXC_ARITHMETIC", "Arithmetic exception"},
  {"EXC_EMULATION", "Emulation instruction"},
  {"EXC_EMULATION", "Emulation instruction"},
  {"EXC_SOFTWARE", "Software generated exception"},
  {"EXC_SOFTWARE", "Software generated exception"},
  {"EXC_BREAKPOINT", "Breakpoint"},
  {"EXC_BREAKPOINT", "Breakpoint"},
#endif
#endif
  {"SIGINFO", "Information request"},
  {"SIGINFO", "Information request"},
 
 
  {NULL, "Unknown signal"},
  {NULL, "Unknown signal"},
  {NULL, "Internal error: printing TARGET_SIGNAL_DEFAULT"},
  {NULL, "Internal error: printing TARGET_SIGNAL_DEFAULT"},
 
 
  /* Last entry, used to check whether the table is the right size.  */
  /* Last entry, used to check whether the table is the right size.  */
  {NULL, "TARGET_SIGNAL_MAGIC"}
  {NULL, "TARGET_SIGNAL_MAGIC"}
};
};
/* *INDENT-ON* */
/* *INDENT-ON* */
 
 
 
 
 
 
/* Return the string for a signal.  */
/* Return the string for a signal.  */
char *
char *
target_signal_to_string (sig)
target_signal_to_string (sig)
     enum target_signal sig;
     enum target_signal sig;
{
{
  if ((sig >= TARGET_SIGNAL_FIRST) && (sig <= TARGET_SIGNAL_LAST))
  if ((sig >= TARGET_SIGNAL_FIRST) && (sig <= TARGET_SIGNAL_LAST))
    return signals[sig].string;
    return signals[sig].string;
  else
  else
    return signals[TARGET_SIGNAL_UNKNOWN].string;
    return signals[TARGET_SIGNAL_UNKNOWN].string;
}
}
 
 
/* Return the name for a signal.  */
/* Return the name for a signal.  */
char *
char *
target_signal_to_name (sig)
target_signal_to_name (sig)
     enum target_signal sig;
     enum target_signal sig;
{
{
  if (sig == TARGET_SIGNAL_UNKNOWN)
  if (sig == TARGET_SIGNAL_UNKNOWN)
    /* I think the code which prints this will always print it along with
    /* I think the code which prints this will always print it along with
       the string, so no need to be verbose.  */
       the string, so no need to be verbose.  */
    return "?";
    return "?";
  return signals[sig].name;
  return signals[sig].name;
}
}
 
 
/* Given a name, return its signal.  */
/* Given a name, return its signal.  */
enum target_signal
enum target_signal
target_signal_from_name (name)
target_signal_from_name (name)
     char *name;
     char *name;
{
{
  enum target_signal sig;
  enum target_signal sig;
 
 
  /* It's possible we also should allow "SIGCLD" as well as "SIGCHLD"
  /* It's possible we also should allow "SIGCLD" as well as "SIGCHLD"
     for TARGET_SIGNAL_SIGCHLD.  SIGIOT, on the other hand, is more
     for TARGET_SIGNAL_SIGCHLD.  SIGIOT, on the other hand, is more
     questionable; seems like by now people should call it SIGABRT
     questionable; seems like by now people should call it SIGABRT
     instead.  */
     instead.  */
 
 
  /* This ugly cast brought to you by the native VAX compiler.  */
  /* This ugly cast brought to you by the native VAX compiler.  */
  for (sig = TARGET_SIGNAL_HUP;
  for (sig = TARGET_SIGNAL_HUP;
       signals[sig].name != NULL;
       signals[sig].name != NULL;
       sig = (enum target_signal) ((int) sig + 1))
       sig = (enum target_signal) ((int) sig + 1))
    if (STREQ (name, signals[sig].name))
    if (STREQ (name, signals[sig].name))
      return sig;
      return sig;
  return TARGET_SIGNAL_UNKNOWN;
  return TARGET_SIGNAL_UNKNOWN;
}
}


/* The following functions are to help certain targets deal
/* The following functions are to help certain targets deal
   with the signal/waitstatus stuff.  They could just as well be in
   with the signal/waitstatus stuff.  They could just as well be in
   a file called native-utils.c or unixwaitstatus-utils.c or whatever.  */
   a file called native-utils.c or unixwaitstatus-utils.c or whatever.  */
 
 
/* Convert host signal to our signals.  */
/* Convert host signal to our signals.  */
enum target_signal
enum target_signal
target_signal_from_host (hostsig)
target_signal_from_host (hostsig)
     int hostsig;
     int hostsig;
{
{
  /* A switch statement would make sense but would require special kludges
  /* A switch statement would make sense but would require special kludges
     to deal with the cases where more than one signal has the same number.  */
     to deal with the cases where more than one signal has the same number.  */
 
 
  if (hostsig == 0)
  if (hostsig == 0)
    return TARGET_SIGNAL_0;
    return TARGET_SIGNAL_0;
 
 
#if defined (SIGHUP)
#if defined (SIGHUP)
  if (hostsig == SIGHUP)
  if (hostsig == SIGHUP)
    return TARGET_SIGNAL_HUP;
    return TARGET_SIGNAL_HUP;
#endif
#endif
#if defined (SIGINT)
#if defined (SIGINT)
  if (hostsig == SIGINT)
  if (hostsig == SIGINT)
    return TARGET_SIGNAL_INT;
    return TARGET_SIGNAL_INT;
#endif
#endif
#if defined (SIGQUIT)
#if defined (SIGQUIT)
  if (hostsig == SIGQUIT)
  if (hostsig == SIGQUIT)
    return TARGET_SIGNAL_QUIT;
    return TARGET_SIGNAL_QUIT;
#endif
#endif
#if defined (SIGILL)
#if defined (SIGILL)
  if (hostsig == SIGILL)
  if (hostsig == SIGILL)
    return TARGET_SIGNAL_ILL;
    return TARGET_SIGNAL_ILL;
#endif
#endif
#if defined (SIGTRAP)
#if defined (SIGTRAP)
  if (hostsig == SIGTRAP)
  if (hostsig == SIGTRAP)
    return TARGET_SIGNAL_TRAP;
    return TARGET_SIGNAL_TRAP;
#endif
#endif
#if defined (SIGABRT)
#if defined (SIGABRT)
  if (hostsig == SIGABRT)
  if (hostsig == SIGABRT)
    return TARGET_SIGNAL_ABRT;
    return TARGET_SIGNAL_ABRT;
#endif
#endif
#if defined (SIGEMT)
#if defined (SIGEMT)
  if (hostsig == SIGEMT)
  if (hostsig == SIGEMT)
    return TARGET_SIGNAL_EMT;
    return TARGET_SIGNAL_EMT;
#endif
#endif
#if defined (SIGFPE)
#if defined (SIGFPE)
  if (hostsig == SIGFPE)
  if (hostsig == SIGFPE)
    return TARGET_SIGNAL_FPE;
    return TARGET_SIGNAL_FPE;
#endif
#endif
#if defined (SIGKILL)
#if defined (SIGKILL)
  if (hostsig == SIGKILL)
  if (hostsig == SIGKILL)
    return TARGET_SIGNAL_KILL;
    return TARGET_SIGNAL_KILL;
#endif
#endif
#if defined (SIGBUS)
#if defined (SIGBUS)
  if (hostsig == SIGBUS)
  if (hostsig == SIGBUS)
    return TARGET_SIGNAL_BUS;
    return TARGET_SIGNAL_BUS;
#endif
#endif
#if defined (SIGSEGV)
#if defined (SIGSEGV)
  if (hostsig == SIGSEGV)
  if (hostsig == SIGSEGV)
    return TARGET_SIGNAL_SEGV;
    return TARGET_SIGNAL_SEGV;
#endif
#endif
#if defined (SIGSYS)
#if defined (SIGSYS)
  if (hostsig == SIGSYS)
  if (hostsig == SIGSYS)
    return TARGET_SIGNAL_SYS;
    return TARGET_SIGNAL_SYS;
#endif
#endif
#if defined (SIGPIPE)
#if defined (SIGPIPE)
  if (hostsig == SIGPIPE)
  if (hostsig == SIGPIPE)
    return TARGET_SIGNAL_PIPE;
    return TARGET_SIGNAL_PIPE;
#endif
#endif
#if defined (SIGALRM)
#if defined (SIGALRM)
  if (hostsig == SIGALRM)
  if (hostsig == SIGALRM)
    return TARGET_SIGNAL_ALRM;
    return TARGET_SIGNAL_ALRM;
#endif
#endif
#if defined (SIGTERM)
#if defined (SIGTERM)
  if (hostsig == SIGTERM)
  if (hostsig == SIGTERM)
    return TARGET_SIGNAL_TERM;
    return TARGET_SIGNAL_TERM;
#endif
#endif
#if defined (SIGUSR1)
#if defined (SIGUSR1)
  if (hostsig == SIGUSR1)
  if (hostsig == SIGUSR1)
    return TARGET_SIGNAL_USR1;
    return TARGET_SIGNAL_USR1;
#endif
#endif
#if defined (SIGUSR2)
#if defined (SIGUSR2)
  if (hostsig == SIGUSR2)
  if (hostsig == SIGUSR2)
    return TARGET_SIGNAL_USR2;
    return TARGET_SIGNAL_USR2;
#endif
#endif
#if defined (SIGCLD)
#if defined (SIGCLD)
  if (hostsig == SIGCLD)
  if (hostsig == SIGCLD)
    return TARGET_SIGNAL_CHLD;
    return TARGET_SIGNAL_CHLD;
#endif
#endif
#if defined (SIGCHLD)
#if defined (SIGCHLD)
  if (hostsig == SIGCHLD)
  if (hostsig == SIGCHLD)
    return TARGET_SIGNAL_CHLD;
    return TARGET_SIGNAL_CHLD;
#endif
#endif
#if defined (SIGPWR)
#if defined (SIGPWR)
  if (hostsig == SIGPWR)
  if (hostsig == SIGPWR)
    return TARGET_SIGNAL_PWR;
    return TARGET_SIGNAL_PWR;
#endif
#endif
#if defined (SIGWINCH)
#if defined (SIGWINCH)
  if (hostsig == SIGWINCH)
  if (hostsig == SIGWINCH)
    return TARGET_SIGNAL_WINCH;
    return TARGET_SIGNAL_WINCH;
#endif
#endif
#if defined (SIGURG)
#if defined (SIGURG)
  if (hostsig == SIGURG)
  if (hostsig == SIGURG)
    return TARGET_SIGNAL_URG;
    return TARGET_SIGNAL_URG;
#endif
#endif
#if defined (SIGIO)
#if defined (SIGIO)
  if (hostsig == SIGIO)
  if (hostsig == SIGIO)
    return TARGET_SIGNAL_IO;
    return TARGET_SIGNAL_IO;
#endif
#endif
#if defined (SIGPOLL)
#if defined (SIGPOLL)
  if (hostsig == SIGPOLL)
  if (hostsig == SIGPOLL)
    return TARGET_SIGNAL_POLL;
    return TARGET_SIGNAL_POLL;
#endif
#endif
#if defined (SIGSTOP)
#if defined (SIGSTOP)
  if (hostsig == SIGSTOP)
  if (hostsig == SIGSTOP)
    return TARGET_SIGNAL_STOP;
    return TARGET_SIGNAL_STOP;
#endif
#endif
#if defined (SIGTSTP)
#if defined (SIGTSTP)
  if (hostsig == SIGTSTP)
  if (hostsig == SIGTSTP)
    return TARGET_SIGNAL_TSTP;
    return TARGET_SIGNAL_TSTP;
#endif
#endif
#if defined (SIGCONT)
#if defined (SIGCONT)
  if (hostsig == SIGCONT)
  if (hostsig == SIGCONT)
    return TARGET_SIGNAL_CONT;
    return TARGET_SIGNAL_CONT;
#endif
#endif
#if defined (SIGTTIN)
#if defined (SIGTTIN)
  if (hostsig == SIGTTIN)
  if (hostsig == SIGTTIN)
    return TARGET_SIGNAL_TTIN;
    return TARGET_SIGNAL_TTIN;
#endif
#endif
#if defined (SIGTTOU)
#if defined (SIGTTOU)
  if (hostsig == SIGTTOU)
  if (hostsig == SIGTTOU)
    return TARGET_SIGNAL_TTOU;
    return TARGET_SIGNAL_TTOU;
#endif
#endif
#if defined (SIGVTALRM)
#if defined (SIGVTALRM)
  if (hostsig == SIGVTALRM)
  if (hostsig == SIGVTALRM)
    return TARGET_SIGNAL_VTALRM;
    return TARGET_SIGNAL_VTALRM;
#endif
#endif
#if defined (SIGPROF)
#if defined (SIGPROF)
  if (hostsig == SIGPROF)
  if (hostsig == SIGPROF)
    return TARGET_SIGNAL_PROF;
    return TARGET_SIGNAL_PROF;
#endif
#endif
#if defined (SIGXCPU)
#if defined (SIGXCPU)
  if (hostsig == SIGXCPU)
  if (hostsig == SIGXCPU)
    return TARGET_SIGNAL_XCPU;
    return TARGET_SIGNAL_XCPU;
#endif
#endif
#if defined (SIGXFSZ)
#if defined (SIGXFSZ)
  if (hostsig == SIGXFSZ)
  if (hostsig == SIGXFSZ)
    return TARGET_SIGNAL_XFSZ;
    return TARGET_SIGNAL_XFSZ;
#endif
#endif
#if defined (SIGWIND)
#if defined (SIGWIND)
  if (hostsig == SIGWIND)
  if (hostsig == SIGWIND)
    return TARGET_SIGNAL_WIND;
    return TARGET_SIGNAL_WIND;
#endif
#endif
#if defined (SIGPHONE)
#if defined (SIGPHONE)
  if (hostsig == SIGPHONE)
  if (hostsig == SIGPHONE)
    return TARGET_SIGNAL_PHONE;
    return TARGET_SIGNAL_PHONE;
#endif
#endif
#if defined (SIGLOST)
#if defined (SIGLOST)
  if (hostsig == SIGLOST)
  if (hostsig == SIGLOST)
    return TARGET_SIGNAL_LOST;
    return TARGET_SIGNAL_LOST;
#endif
#endif
#if defined (SIGWAITING)
#if defined (SIGWAITING)
  if (hostsig == SIGWAITING)
  if (hostsig == SIGWAITING)
    return TARGET_SIGNAL_WAITING;
    return TARGET_SIGNAL_WAITING;
#endif
#endif
#if defined (SIGCANCEL)
#if defined (SIGCANCEL)
  if (hostsig == SIGCANCEL)
  if (hostsig == SIGCANCEL)
    return TARGET_SIGNAL_CANCEL;
    return TARGET_SIGNAL_CANCEL;
#endif
#endif
#if defined (SIGLWP)
#if defined (SIGLWP)
  if (hostsig == SIGLWP)
  if (hostsig == SIGLWP)
    return TARGET_SIGNAL_LWP;
    return TARGET_SIGNAL_LWP;
#endif
#endif
#if defined (SIGDANGER)
#if defined (SIGDANGER)
  if (hostsig == SIGDANGER)
  if (hostsig == SIGDANGER)
    return TARGET_SIGNAL_DANGER;
    return TARGET_SIGNAL_DANGER;
#endif
#endif
#if defined (SIGGRANT)
#if defined (SIGGRANT)
  if (hostsig == SIGGRANT)
  if (hostsig == SIGGRANT)
    return TARGET_SIGNAL_GRANT;
    return TARGET_SIGNAL_GRANT;
#endif
#endif
#if defined (SIGRETRACT)
#if defined (SIGRETRACT)
  if (hostsig == SIGRETRACT)
  if (hostsig == SIGRETRACT)
    return TARGET_SIGNAL_RETRACT;
    return TARGET_SIGNAL_RETRACT;
#endif
#endif
#if defined (SIGMSG)
#if defined (SIGMSG)
  if (hostsig == SIGMSG)
  if (hostsig == SIGMSG)
    return TARGET_SIGNAL_MSG;
    return TARGET_SIGNAL_MSG;
#endif
#endif
#if defined (SIGSOUND)
#if defined (SIGSOUND)
  if (hostsig == SIGSOUND)
  if (hostsig == SIGSOUND)
    return TARGET_SIGNAL_SOUND;
    return TARGET_SIGNAL_SOUND;
#endif
#endif
#if defined (SIGSAK)
#if defined (SIGSAK)
  if (hostsig == SIGSAK)
  if (hostsig == SIGSAK)
    return TARGET_SIGNAL_SAK;
    return TARGET_SIGNAL_SAK;
#endif
#endif
#if defined (SIGPRIO)
#if defined (SIGPRIO)
  if (hostsig == SIGPRIO)
  if (hostsig == SIGPRIO)
    return TARGET_SIGNAL_PRIO;
    return TARGET_SIGNAL_PRIO;
#endif
#endif
 
 
  /* Mach exceptions.  Assumes that the values for EXC_ are positive! */
  /* Mach exceptions.  Assumes that the values for EXC_ are positive! */
#if defined (EXC_BAD_ACCESS) && defined (_NSIG)
#if defined (EXC_BAD_ACCESS) && defined (_NSIG)
  if (hostsig == _NSIG + EXC_BAD_ACCESS)
  if (hostsig == _NSIG + EXC_BAD_ACCESS)
    return TARGET_EXC_BAD_ACCESS;
    return TARGET_EXC_BAD_ACCESS;
#endif
#endif
#if defined (EXC_BAD_INSTRUCTION) && defined (_NSIG)
#if defined (EXC_BAD_INSTRUCTION) && defined (_NSIG)
  if (hostsig == _NSIG + EXC_BAD_INSTRUCTION)
  if (hostsig == _NSIG + EXC_BAD_INSTRUCTION)
    return TARGET_EXC_BAD_INSTRUCTION;
    return TARGET_EXC_BAD_INSTRUCTION;
#endif
#endif
#if defined (EXC_ARITHMETIC) && defined (_NSIG)
#if defined (EXC_ARITHMETIC) && defined (_NSIG)
  if (hostsig == _NSIG + EXC_ARITHMETIC)
  if (hostsig == _NSIG + EXC_ARITHMETIC)
    return TARGET_EXC_ARITHMETIC;
    return TARGET_EXC_ARITHMETIC;
#endif
#endif
#if defined (EXC_EMULATION) && defined (_NSIG)
#if defined (EXC_EMULATION) && defined (_NSIG)
  if (hostsig == _NSIG + EXC_EMULATION)
  if (hostsig == _NSIG + EXC_EMULATION)
    return TARGET_EXC_EMULATION;
    return TARGET_EXC_EMULATION;
#endif
#endif
#if defined (EXC_SOFTWARE) && defined (_NSIG)
#if defined (EXC_SOFTWARE) && defined (_NSIG)
  if (hostsig == _NSIG + EXC_SOFTWARE)
  if (hostsig == _NSIG + EXC_SOFTWARE)
    return TARGET_EXC_SOFTWARE;
    return TARGET_EXC_SOFTWARE;
#endif
#endif
#if defined (EXC_BREAKPOINT) && defined (_NSIG)
#if defined (EXC_BREAKPOINT) && defined (_NSIG)
  if (hostsig == _NSIG + EXC_BREAKPOINT)
  if (hostsig == _NSIG + EXC_BREAKPOINT)
    return TARGET_EXC_BREAKPOINT;
    return TARGET_EXC_BREAKPOINT;
#endif
#endif
 
 
#if defined (SIGINFO)
#if defined (SIGINFO)
  if (hostsig == SIGINFO)
  if (hostsig == SIGINFO)
    return TARGET_SIGNAL_INFO;
    return TARGET_SIGNAL_INFO;
#endif
#endif
 
 
#if defined (REALTIME_LO)
#if defined (REALTIME_LO)
  if (hostsig >= REALTIME_LO && hostsig < REALTIME_HI)
  if (hostsig >= REALTIME_LO && hostsig < REALTIME_HI)
    {
    {
      /* This block of TARGET_SIGNAL_REALTIME value is in order.  */
      /* This block of TARGET_SIGNAL_REALTIME value is in order.  */
      if (33 <= hostsig && hostsig <= 63)
      if (33 <= hostsig && hostsig <= 63)
        return (enum target_signal)
        return (enum target_signal)
          (hostsig - 33 + (int) TARGET_SIGNAL_REALTIME_33);
          (hostsig - 33 + (int) TARGET_SIGNAL_REALTIME_33);
      else if (hostsig == 32)
      else if (hostsig == 32)
        return TARGET_SIGNAL_REALTIME_32;
        return TARGET_SIGNAL_REALTIME_32;
      else
      else
        error ("GDB bug: target.c (target_signal_from_host): unrecognized real-time signal");
        error ("GDB bug: target.c (target_signal_from_host): unrecognized real-time signal");
    }
    }
#endif
#endif
  return TARGET_SIGNAL_UNKNOWN;
  return TARGET_SIGNAL_UNKNOWN;
}
}
 
 
/* Convert a OURSIG (an enum target_signal) to the form used by the
/* Convert a OURSIG (an enum target_signal) to the form used by the
   target operating system (refered to as the ``host'') or zero if the
   target operating system (refered to as the ``host'') or zero if the
   equivalent host signal is not available.  Set/clear OURSIG_OK
   equivalent host signal is not available.  Set/clear OURSIG_OK
   accordingly. */
   accordingly. */
 
 
static int
static int
do_target_signal_to_host (enum target_signal oursig,
do_target_signal_to_host (enum target_signal oursig,
                          int *oursig_ok)
                          int *oursig_ok)
{
{
  *oursig_ok = 1;
  *oursig_ok = 1;
  switch (oursig)
  switch (oursig)
    {
    {
    case TARGET_SIGNAL_0:
    case TARGET_SIGNAL_0:
      return 0;
      return 0;
 
 
#if defined (SIGHUP)
#if defined (SIGHUP)
    case TARGET_SIGNAL_HUP:
    case TARGET_SIGNAL_HUP:
      return SIGHUP;
      return SIGHUP;
#endif
#endif
#if defined (SIGINT)
#if defined (SIGINT)
    case TARGET_SIGNAL_INT:
    case TARGET_SIGNAL_INT:
      return SIGINT;
      return SIGINT;
#endif
#endif
#if defined (SIGQUIT)
#if defined (SIGQUIT)
    case TARGET_SIGNAL_QUIT:
    case TARGET_SIGNAL_QUIT:
      return SIGQUIT;
      return SIGQUIT;
#endif
#endif
#if defined (SIGILL)
#if defined (SIGILL)
    case TARGET_SIGNAL_ILL:
    case TARGET_SIGNAL_ILL:
      return SIGILL;
      return SIGILL;
#endif
#endif
#if defined (SIGTRAP)
#if defined (SIGTRAP)
    case TARGET_SIGNAL_TRAP:
    case TARGET_SIGNAL_TRAP:
      return SIGTRAP;
      return SIGTRAP;
#endif
#endif
#if defined (SIGABRT)
#if defined (SIGABRT)
    case TARGET_SIGNAL_ABRT:
    case TARGET_SIGNAL_ABRT:
      return SIGABRT;
      return SIGABRT;
#endif
#endif
#if defined (SIGEMT)
#if defined (SIGEMT)
    case TARGET_SIGNAL_EMT:
    case TARGET_SIGNAL_EMT:
      return SIGEMT;
      return SIGEMT;
#endif
#endif
#if defined (SIGFPE)
#if defined (SIGFPE)
    case TARGET_SIGNAL_FPE:
    case TARGET_SIGNAL_FPE:
      return SIGFPE;
      return SIGFPE;
#endif
#endif
#if defined (SIGKILL)
#if defined (SIGKILL)
    case TARGET_SIGNAL_KILL:
    case TARGET_SIGNAL_KILL:
      return SIGKILL;
      return SIGKILL;
#endif
#endif
#if defined (SIGBUS)
#if defined (SIGBUS)
    case TARGET_SIGNAL_BUS:
    case TARGET_SIGNAL_BUS:
      return SIGBUS;
      return SIGBUS;
#endif
#endif
#if defined (SIGSEGV)
#if defined (SIGSEGV)
    case TARGET_SIGNAL_SEGV:
    case TARGET_SIGNAL_SEGV:
      return SIGSEGV;
      return SIGSEGV;
#endif
#endif
#if defined (SIGSYS)
#if defined (SIGSYS)
    case TARGET_SIGNAL_SYS:
    case TARGET_SIGNAL_SYS:
      return SIGSYS;
      return SIGSYS;
#endif
#endif
#if defined (SIGPIPE)
#if defined (SIGPIPE)
    case TARGET_SIGNAL_PIPE:
    case TARGET_SIGNAL_PIPE:
      return SIGPIPE;
      return SIGPIPE;
#endif
#endif
#if defined (SIGALRM)
#if defined (SIGALRM)
    case TARGET_SIGNAL_ALRM:
    case TARGET_SIGNAL_ALRM:
      return SIGALRM;
      return SIGALRM;
#endif
#endif
#if defined (SIGTERM)
#if defined (SIGTERM)
    case TARGET_SIGNAL_TERM:
    case TARGET_SIGNAL_TERM:
      return SIGTERM;
      return SIGTERM;
#endif
#endif
#if defined (SIGUSR1)
#if defined (SIGUSR1)
    case TARGET_SIGNAL_USR1:
    case TARGET_SIGNAL_USR1:
      return SIGUSR1;
      return SIGUSR1;
#endif
#endif
#if defined (SIGUSR2)
#if defined (SIGUSR2)
    case TARGET_SIGNAL_USR2:
    case TARGET_SIGNAL_USR2:
      return SIGUSR2;
      return SIGUSR2;
#endif
#endif
#if defined (SIGCHLD) || defined (SIGCLD)
#if defined (SIGCHLD) || defined (SIGCLD)
    case TARGET_SIGNAL_CHLD:
    case TARGET_SIGNAL_CHLD:
#if defined (SIGCHLD)
#if defined (SIGCHLD)
      return SIGCHLD;
      return SIGCHLD;
#else
#else
      return SIGCLD;
      return SIGCLD;
#endif
#endif
#endif /* SIGCLD or SIGCHLD */
#endif /* SIGCLD or SIGCHLD */
#if defined (SIGPWR)
#if defined (SIGPWR)
    case TARGET_SIGNAL_PWR:
    case TARGET_SIGNAL_PWR:
      return SIGPWR;
      return SIGPWR;
#endif
#endif
#if defined (SIGWINCH)
#if defined (SIGWINCH)
    case TARGET_SIGNAL_WINCH:
    case TARGET_SIGNAL_WINCH:
      return SIGWINCH;
      return SIGWINCH;
#endif
#endif
#if defined (SIGURG)
#if defined (SIGURG)
    case TARGET_SIGNAL_URG:
    case TARGET_SIGNAL_URG:
      return SIGURG;
      return SIGURG;
#endif
#endif
#if defined (SIGIO)
#if defined (SIGIO)
    case TARGET_SIGNAL_IO:
    case TARGET_SIGNAL_IO:
      return SIGIO;
      return SIGIO;
#endif
#endif
#if defined (SIGPOLL)
#if defined (SIGPOLL)
    case TARGET_SIGNAL_POLL:
    case TARGET_SIGNAL_POLL:
      return SIGPOLL;
      return SIGPOLL;
#endif
#endif
#if defined (SIGSTOP)
#if defined (SIGSTOP)
    case TARGET_SIGNAL_STOP:
    case TARGET_SIGNAL_STOP:
      return SIGSTOP;
      return SIGSTOP;
#endif
#endif
#if defined (SIGTSTP)
#if defined (SIGTSTP)
    case TARGET_SIGNAL_TSTP:
    case TARGET_SIGNAL_TSTP:
      return SIGTSTP;
      return SIGTSTP;
#endif
#endif
#if defined (SIGCONT)
#if defined (SIGCONT)
    case TARGET_SIGNAL_CONT:
    case TARGET_SIGNAL_CONT:
      return SIGCONT;
      return SIGCONT;
#endif
#endif
#if defined (SIGTTIN)
#if defined (SIGTTIN)
    case TARGET_SIGNAL_TTIN:
    case TARGET_SIGNAL_TTIN:
      return SIGTTIN;
      return SIGTTIN;
#endif
#endif
#if defined (SIGTTOU)
#if defined (SIGTTOU)
    case TARGET_SIGNAL_TTOU:
    case TARGET_SIGNAL_TTOU:
      return SIGTTOU;
      return SIGTTOU;
#endif
#endif
#if defined (SIGVTALRM)
#if defined (SIGVTALRM)
    case TARGET_SIGNAL_VTALRM:
    case TARGET_SIGNAL_VTALRM:
      return SIGVTALRM;
      return SIGVTALRM;
#endif
#endif
#if defined (SIGPROF)
#if defined (SIGPROF)
    case TARGET_SIGNAL_PROF:
    case TARGET_SIGNAL_PROF:
      return SIGPROF;
      return SIGPROF;
#endif
#endif
#if defined (SIGXCPU)
#if defined (SIGXCPU)
    case TARGET_SIGNAL_XCPU:
    case TARGET_SIGNAL_XCPU:
      return SIGXCPU;
      return SIGXCPU;
#endif
#endif
#if defined (SIGXFSZ)
#if defined (SIGXFSZ)
    case TARGET_SIGNAL_XFSZ:
    case TARGET_SIGNAL_XFSZ:
      return SIGXFSZ;
      return SIGXFSZ;
#endif
#endif
#if defined (SIGWIND)
#if defined (SIGWIND)
    case TARGET_SIGNAL_WIND:
    case TARGET_SIGNAL_WIND:
      return SIGWIND;
      return SIGWIND;
#endif
#endif
#if defined (SIGPHONE)
#if defined (SIGPHONE)
    case TARGET_SIGNAL_PHONE:
    case TARGET_SIGNAL_PHONE:
      return SIGPHONE;
      return SIGPHONE;
#endif
#endif
#if defined (SIGLOST)
#if defined (SIGLOST)
    case TARGET_SIGNAL_LOST:
    case TARGET_SIGNAL_LOST:
      return SIGLOST;
      return SIGLOST;
#endif
#endif
#if defined (SIGWAITING)
#if defined (SIGWAITING)
    case TARGET_SIGNAL_WAITING:
    case TARGET_SIGNAL_WAITING:
      return SIGWAITING;
      return SIGWAITING;
#endif
#endif
#if defined (SIGCANCEL)
#if defined (SIGCANCEL)
    case TARGET_SIGNAL_CANCEL:
    case TARGET_SIGNAL_CANCEL:
      return SIGCANCEL;
      return SIGCANCEL;
#endif
#endif
#if defined (SIGLWP)
#if defined (SIGLWP)
    case TARGET_SIGNAL_LWP:
    case TARGET_SIGNAL_LWP:
      return SIGLWP;
      return SIGLWP;
#endif
#endif
#if defined (SIGDANGER)
#if defined (SIGDANGER)
    case TARGET_SIGNAL_DANGER:
    case TARGET_SIGNAL_DANGER:
      return SIGDANGER;
      return SIGDANGER;
#endif
#endif
#if defined (SIGGRANT)
#if defined (SIGGRANT)
    case TARGET_SIGNAL_GRANT:
    case TARGET_SIGNAL_GRANT:
      return SIGGRANT;
      return SIGGRANT;
#endif
#endif
#if defined (SIGRETRACT)
#if defined (SIGRETRACT)
    case TARGET_SIGNAL_RETRACT:
    case TARGET_SIGNAL_RETRACT:
      return SIGRETRACT;
      return SIGRETRACT;
#endif
#endif
#if defined (SIGMSG)
#if defined (SIGMSG)
    case TARGET_SIGNAL_MSG:
    case TARGET_SIGNAL_MSG:
      return SIGMSG;
      return SIGMSG;
#endif
#endif
#if defined (SIGSOUND)
#if defined (SIGSOUND)
    case TARGET_SIGNAL_SOUND:
    case TARGET_SIGNAL_SOUND:
      return SIGSOUND;
      return SIGSOUND;
#endif
#endif
#if defined (SIGSAK)
#if defined (SIGSAK)
    case TARGET_SIGNAL_SAK:
    case TARGET_SIGNAL_SAK:
      return SIGSAK;
      return SIGSAK;
#endif
#endif
#if defined (SIGPRIO)
#if defined (SIGPRIO)
    case TARGET_SIGNAL_PRIO:
    case TARGET_SIGNAL_PRIO:
      return SIGPRIO;
      return SIGPRIO;
#endif
#endif
 
 
      /* Mach exceptions.  Assumes that the values for EXC_ are positive! */
      /* Mach exceptions.  Assumes that the values for EXC_ are positive! */
#if defined (EXC_BAD_ACCESS) && defined (_NSIG)
#if defined (EXC_BAD_ACCESS) && defined (_NSIG)
    case TARGET_EXC_BAD_ACCESS:
    case TARGET_EXC_BAD_ACCESS:
      return _NSIG + EXC_BAD_ACCESS;
      return _NSIG + EXC_BAD_ACCESS;
#endif
#endif
#if defined (EXC_BAD_INSTRUCTION) && defined (_NSIG)
#if defined (EXC_BAD_INSTRUCTION) && defined (_NSIG)
    case TARGET_EXC_BAD_INSTRUCTION:
    case TARGET_EXC_BAD_INSTRUCTION:
      return _NSIG + EXC_BAD_INSTRUCTION;
      return _NSIG + EXC_BAD_INSTRUCTION;
#endif
#endif
#if defined (EXC_ARITHMETIC) && defined (_NSIG)
#if defined (EXC_ARITHMETIC) && defined (_NSIG)
    case TARGET_EXC_ARITHMETIC:
    case TARGET_EXC_ARITHMETIC:
      return _NSIG + EXC_ARITHMETIC;
      return _NSIG + EXC_ARITHMETIC;
#endif
#endif
#if defined (EXC_EMULATION) && defined (_NSIG)
#if defined (EXC_EMULATION) && defined (_NSIG)
    case TARGET_EXC_EMULATION:
    case TARGET_EXC_EMULATION:
      return _NSIG + EXC_EMULATION;
      return _NSIG + EXC_EMULATION;
#endif
#endif
#if defined (EXC_SOFTWARE) && defined (_NSIG)
#if defined (EXC_SOFTWARE) && defined (_NSIG)
    case TARGET_EXC_SOFTWARE:
    case TARGET_EXC_SOFTWARE:
      return _NSIG + EXC_SOFTWARE;
      return _NSIG + EXC_SOFTWARE;
#endif
#endif
#if defined (EXC_BREAKPOINT) && defined (_NSIG)
#if defined (EXC_BREAKPOINT) && defined (_NSIG)
    case TARGET_EXC_BREAKPOINT:
    case TARGET_EXC_BREAKPOINT:
      return _NSIG + EXC_BREAKPOINT;
      return _NSIG + EXC_BREAKPOINT;
#endif
#endif
 
 
#if defined (SIGINFO)
#if defined (SIGINFO)
    case TARGET_SIGNAL_INFO:
    case TARGET_SIGNAL_INFO:
      return SIGINFO;
      return SIGINFO;
#endif
#endif
 
 
    default:
    default:
#if defined (REALTIME_LO)
#if defined (REALTIME_LO)
      if (oursig >= TARGET_SIGNAL_REALTIME_33
      if (oursig >= TARGET_SIGNAL_REALTIME_33
          && oursig <= TARGET_SIGNAL_REALTIME_63)
          && oursig <= TARGET_SIGNAL_REALTIME_63)
        {
        {
          /* This block of signals is continuous, and
          /* This block of signals is continuous, and
             TARGET_SIGNAL_REALTIME_33 is 33 by definition.  */
             TARGET_SIGNAL_REALTIME_33 is 33 by definition.  */
          int retsig =
          int retsig =
            (int) oursig - (int) TARGET_SIGNAL_REALTIME_33 + 33;
            (int) oursig - (int) TARGET_SIGNAL_REALTIME_33 + 33;
          if (retsig >= REALTIME_LO && retsig < REALTIME_HI)
          if (retsig >= REALTIME_LO && retsig < REALTIME_HI)
            return retsig;
            return retsig;
        }
        }
#if (REALTIME_LO < 33)
#if (REALTIME_LO < 33)
      else if (oursig == TARGET_SIGNAL_REALTIME_32)
      else if (oursig == TARGET_SIGNAL_REALTIME_32)
        {
        {
          /* TARGET_SIGNAL_REALTIME_32 isn't contiguous with
          /* TARGET_SIGNAL_REALTIME_32 isn't contiguous with
             TARGET_SIGNAL_REALTIME_33.  It is 32 by definition.  */
             TARGET_SIGNAL_REALTIME_33.  It is 32 by definition.  */
          return 32;
          return 32;
        }
        }
#endif
#endif
#endif
#endif
      *oursig_ok = 0;
      *oursig_ok = 0;
      return 0;
      return 0;
    }
    }
}
}
 
 
int
int
target_signal_to_host_p (enum target_signal oursig)
target_signal_to_host_p (enum target_signal oursig)
{
{
  int oursig_ok;
  int oursig_ok;
  do_target_signal_to_host (oursig, &oursig_ok);
  do_target_signal_to_host (oursig, &oursig_ok);
  return oursig_ok;
  return oursig_ok;
}
}
 
 
int
int
target_signal_to_host (enum target_signal oursig)
target_signal_to_host (enum target_signal oursig)
{
{
  int oursig_ok;
  int oursig_ok;
  int targ_signo = do_target_signal_to_host (oursig, &oursig_ok);
  int targ_signo = do_target_signal_to_host (oursig, &oursig_ok);
  if (!oursig_ok)
  if (!oursig_ok)
    {
    {
      /* The user might be trying to do "signal SIGSAK" where this system
      /* The user might be trying to do "signal SIGSAK" where this system
         doesn't have SIGSAK.  */
         doesn't have SIGSAK.  */
      warning ("Signal %s does not exist on this system.\n",
      warning ("Signal %s does not exist on this system.\n",
               target_signal_to_name (oursig));
               target_signal_to_name (oursig));
      return 0;
      return 0;
    }
    }
  else
  else
    return targ_signo;
    return targ_signo;
}
}
 
 
/* Helper function for child_wait and the Lynx derivatives of child_wait.
/* Helper function for child_wait and the Lynx derivatives of child_wait.
   HOSTSTATUS is the waitstatus from wait() or the equivalent; store our
   HOSTSTATUS is the waitstatus from wait() or the equivalent; store our
   translation of that in OURSTATUS.  */
   translation of that in OURSTATUS.  */
void
void
store_waitstatus (ourstatus, hoststatus)
store_waitstatus (ourstatus, hoststatus)
     struct target_waitstatus *ourstatus;
     struct target_waitstatus *ourstatus;
     int hoststatus;
     int hoststatus;
{
{
#ifdef CHILD_SPECIAL_WAITSTATUS
#ifdef CHILD_SPECIAL_WAITSTATUS
  /* CHILD_SPECIAL_WAITSTATUS should return nonzero and set *OURSTATUS
  /* CHILD_SPECIAL_WAITSTATUS should return nonzero and set *OURSTATUS
     if it wants to deal with hoststatus.  */
     if it wants to deal with hoststatus.  */
  if (CHILD_SPECIAL_WAITSTATUS (ourstatus, hoststatus))
  if (CHILD_SPECIAL_WAITSTATUS (ourstatus, hoststatus))
    return;
    return;
#endif
#endif
 
 
  if (WIFEXITED (hoststatus))
  if (WIFEXITED (hoststatus))
    {
    {
      ourstatus->kind = TARGET_WAITKIND_EXITED;
      ourstatus->kind = TARGET_WAITKIND_EXITED;
      ourstatus->value.integer = WEXITSTATUS (hoststatus);
      ourstatus->value.integer = WEXITSTATUS (hoststatus);
    }
    }
  else if (!WIFSTOPPED (hoststatus))
  else if (!WIFSTOPPED (hoststatus))
    {
    {
      ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
      ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
      ourstatus->value.sig = target_signal_from_host (WTERMSIG (hoststatus));
      ourstatus->value.sig = target_signal_from_host (WTERMSIG (hoststatus));
    }
    }
  else
  else
    {
    {
      ourstatus->kind = TARGET_WAITKIND_STOPPED;
      ourstatus->kind = TARGET_WAITKIND_STOPPED;
      ourstatus->value.sig = target_signal_from_host (WSTOPSIG (hoststatus));
      ourstatus->value.sig = target_signal_from_host (WSTOPSIG (hoststatus));
    }
    }
}
}


/* In some circumstances we allow a command to specify a numeric
/* In some circumstances we allow a command to specify a numeric
   signal.  The idea is to keep these circumstances limited so that
   signal.  The idea is to keep these circumstances limited so that
   users (and scripts) develop portable habits.  For comparison,
   users (and scripts) develop portable habits.  For comparison,
   POSIX.2 `kill' requires that 1,2,3,6,9,14, and 15 work (and using a
   POSIX.2 `kill' requires that 1,2,3,6,9,14, and 15 work (and using a
   numeric signal at all is obscelescent.  We are slightly more
   numeric signal at all is obscelescent.  We are slightly more
   lenient and allow 1-15 which should match host signal numbers on
   lenient and allow 1-15 which should match host signal numbers on
   most systems.  Use of symbolic signal names is strongly encouraged.  */
   most systems.  Use of symbolic signal names is strongly encouraged.  */
 
 
enum target_signal
enum target_signal
target_signal_from_command (num)
target_signal_from_command (num)
     int num;
     int num;
{
{
  if (num >= 1 && num <= 15)
  if (num >= 1 && num <= 15)
    return (enum target_signal) num;
    return (enum target_signal) num;
  error ("Only signals 1-15 are valid as numeric signals.\n\
  error ("Only signals 1-15 are valid as numeric signals.\n\
Use \"info signals\" for a list of symbolic signals.");
Use \"info signals\" for a list of symbolic signals.");
}
}


/* Returns zero to leave the inferior alone, one to interrupt it.  */
/* Returns zero to leave the inferior alone, one to interrupt it.  */
int (*target_activity_function) PARAMS ((void));
int (*target_activity_function) PARAMS ((void));
int target_activity_fd;
int target_activity_fd;


/* Convert a normal process ID to a string.  Returns the string in a static
/* Convert a normal process ID to a string.  Returns the string in a static
   buffer.  */
   buffer.  */
 
 
char *
char *
normal_pid_to_str (pid)
normal_pid_to_str (pid)
     int pid;
     int pid;
{
{
  static char buf[30];
  static char buf[30];
 
 
  if (STREQ (current_target.to_shortname, "remote"))
  if (STREQ (current_target.to_shortname, "remote"))
    sprintf (buf, "thread %d", pid);
    sprintf (buf, "thread %d", pid);
  else
  else
    sprintf (buf, "process %d", pid);
    sprintf (buf, "process %d", pid);
 
 
  return buf;
  return buf;
}
}
 
 
/* Some targets (such as ttrace-based HPUX) don't allow us to request
/* Some targets (such as ttrace-based HPUX) don't allow us to request
   notification of inferior events such as fork and vork immediately
   notification of inferior events such as fork and vork immediately
   after the inferior is created.  (This because of how gdb gets an
   after the inferior is created.  (This because of how gdb gets an
   inferior created via invoking a shell to do it.  In such a scenario,
   inferior created via invoking a shell to do it.  In such a scenario,
   if the shell init file has commands in it, the shell will fork and
   if the shell init file has commands in it, the shell will fork and
   exec for each of those commands, and we will see each such fork
   exec for each of those commands, and we will see each such fork
   event.  Very bad.)
   event.  Very bad.)
 
 
   This function is used by all targets that allow us to request
   This function is used by all targets that allow us to request
   notification of forks, etc at inferior creation time; e.g., in
   notification of forks, etc at inferior creation time; e.g., in
   target_acknowledge_forked_child.
   target_acknowledge_forked_child.
 */
 */
static void
static void
normal_target_post_startup_inferior (pid)
normal_target_post_startup_inferior (pid)
     int pid;
     int pid;
{
{
  /* This space intentionally left blank. */
  /* This space intentionally left blank. */
}
}
 
 
/* Set up the handful of non-empty slots needed by the dummy target
/* Set up the handful of non-empty slots needed by the dummy target
   vector.  */
   vector.  */
 
 
static void
static void
init_dummy_target ()
init_dummy_target ()
{
{
  dummy_target.to_shortname = "None";
  dummy_target.to_shortname = "None";
  dummy_target.to_longname = "None";
  dummy_target.to_longname = "None";
  dummy_target.to_doc = "";
  dummy_target.to_doc = "";
  dummy_target.to_attach = find_default_attach;
  dummy_target.to_attach = find_default_attach;
  dummy_target.to_require_attach = find_default_require_attach;
  dummy_target.to_require_attach = find_default_require_attach;
  dummy_target.to_require_detach = find_default_require_detach;
  dummy_target.to_require_detach = find_default_require_detach;
  dummy_target.to_create_inferior = find_default_create_inferior;
  dummy_target.to_create_inferior = find_default_create_inferior;
  dummy_target.to_clone_and_follow_inferior = find_default_clone_and_follow_inferior;
  dummy_target.to_clone_and_follow_inferior = find_default_clone_and_follow_inferior;
  dummy_target.to_pid_to_str = normal_pid_to_str;
  dummy_target.to_pid_to_str = normal_pid_to_str;
  dummy_target.to_stratum = dummy_stratum;
  dummy_target.to_stratum = dummy_stratum;
  dummy_target.to_magic = OPS_MAGIC;
  dummy_target.to_magic = OPS_MAGIC;
}
}


 
 
static struct target_ops debug_target;
static struct target_ops debug_target;
 
 
static void
static void
debug_to_open (args, from_tty)
debug_to_open (args, from_tty)
     char *args;
     char *args;
     int from_tty;
     int from_tty;
{
{
  debug_target.to_open (args, from_tty);
  debug_target.to_open (args, from_tty);
 
 
  fprintf_unfiltered (gdb_stdlog, "target_open (%s, %d)\n", args, from_tty);
  fprintf_unfiltered (gdb_stdlog, "target_open (%s, %d)\n", args, from_tty);
}
}
 
 
static void
static void
debug_to_close (quitting)
debug_to_close (quitting)
     int quitting;
     int quitting;
{
{
  debug_target.to_close (quitting);
  debug_target.to_close (quitting);
 
 
  fprintf_unfiltered (gdb_stdlog, "target_close (%d)\n", quitting);
  fprintf_unfiltered (gdb_stdlog, "target_close (%d)\n", quitting);
}
}
 
 
static void
static void
debug_to_attach (args, from_tty)
debug_to_attach (args, from_tty)
     char *args;
     char *args;
     int from_tty;
     int from_tty;
{
{
  debug_target.to_attach (args, from_tty);
  debug_target.to_attach (args, from_tty);
 
 
  fprintf_unfiltered (gdb_stdlog, "target_attach (%s, %d)\n", args, from_tty);
  fprintf_unfiltered (gdb_stdlog, "target_attach (%s, %d)\n", args, from_tty);
}
}
 
 
 
 
static void
static void
debug_to_post_attach (pid)
debug_to_post_attach (pid)
     int pid;
     int pid;
{
{
  debug_target.to_post_attach (pid);
  debug_target.to_post_attach (pid);
 
 
  fprintf_unfiltered (gdb_stdlog, "target_post_attach (%d)\n", pid);
  fprintf_unfiltered (gdb_stdlog, "target_post_attach (%d)\n", pid);
}
}
 
 
static void
static void
debug_to_require_attach (args, from_tty)
debug_to_require_attach (args, from_tty)
     char *args;
     char *args;
     int from_tty;
     int from_tty;
{
{
  debug_target.to_require_attach (args, from_tty);
  debug_target.to_require_attach (args, from_tty);
 
 
  fprintf_unfiltered (gdb_stdlog,
  fprintf_unfiltered (gdb_stdlog,
                      "target_require_attach (%s, %d)\n", args, from_tty);
                      "target_require_attach (%s, %d)\n", args, from_tty);
}
}
 
 
static void
static void
debug_to_detach (args, from_tty)
debug_to_detach (args, from_tty)
     char *args;
     char *args;
     int from_tty;
     int from_tty;
{
{
  debug_target.to_detach (args, from_tty);
  debug_target.to_detach (args, from_tty);
 
 
  fprintf_unfiltered (gdb_stdlog, "target_detach (%s, %d)\n", args, from_tty);
  fprintf_unfiltered (gdb_stdlog, "target_detach (%s, %d)\n", args, from_tty);
}
}
 
 
static void
static void
debug_to_require_detach (pid, args, from_tty)
debug_to_require_detach (pid, args, from_tty)
     int pid;
     int pid;
     char *args;
     char *args;
     int from_tty;
     int from_tty;
{
{
  debug_target.to_require_detach (pid, args, from_tty);
  debug_target.to_require_detach (pid, args, from_tty);
 
 
  fprintf_unfiltered (gdb_stdlog,
  fprintf_unfiltered (gdb_stdlog,
               "target_require_detach (%d, %s, %d)\n", pid, args, from_tty);
               "target_require_detach (%d, %s, %d)\n", pid, args, from_tty);
}
}
 
 
static void
static void
debug_to_resume (pid, step, siggnal)
debug_to_resume (pid, step, siggnal)
     int pid;
     int pid;
     int step;
     int step;
     enum target_signal siggnal;
     enum target_signal siggnal;
{
{
  debug_target.to_resume (pid, step, siggnal);
  debug_target.to_resume (pid, step, siggnal);
 
 
  fprintf_unfiltered (gdb_stdlog, "target_resume (%d, %s, %s)\n", pid,
  fprintf_unfiltered (gdb_stdlog, "target_resume (%d, %s, %s)\n", pid,
                      step ? "step" : "continue",
                      step ? "step" : "continue",
                      target_signal_to_name (siggnal));
                      target_signal_to_name (siggnal));
}
}
 
 
static int
static int
debug_to_wait (pid, status)
debug_to_wait (pid, status)
     int pid;
     int pid;
     struct target_waitstatus *status;
     struct target_waitstatus *status;
{
{
  int retval;
  int retval;
 
 
  retval = debug_target.to_wait (pid, status);
  retval = debug_target.to_wait (pid, status);
 
 
  fprintf_unfiltered (gdb_stdlog,
  fprintf_unfiltered (gdb_stdlog,
                      "target_wait (%d, status) = %d,   ", pid, retval);
                      "target_wait (%d, status) = %d,   ", pid, retval);
  fprintf_unfiltered (gdb_stdlog, "status->kind = ");
  fprintf_unfiltered (gdb_stdlog, "status->kind = ");
  switch (status->kind)
  switch (status->kind)
    {
    {
    case TARGET_WAITKIND_EXITED:
    case TARGET_WAITKIND_EXITED:
      fprintf_unfiltered (gdb_stdlog, "exited, status = %d\n",
      fprintf_unfiltered (gdb_stdlog, "exited, status = %d\n",
                          status->value.integer);
                          status->value.integer);
      break;
      break;
    case TARGET_WAITKIND_STOPPED:
    case TARGET_WAITKIND_STOPPED:
      fprintf_unfiltered (gdb_stdlog, "stopped, signal = %s\n",
      fprintf_unfiltered (gdb_stdlog, "stopped, signal = %s\n",
                          target_signal_to_name (status->value.sig));
                          target_signal_to_name (status->value.sig));
      break;
      break;
    case TARGET_WAITKIND_SIGNALLED:
    case TARGET_WAITKIND_SIGNALLED:
      fprintf_unfiltered (gdb_stdlog, "signalled, signal = %s\n",
      fprintf_unfiltered (gdb_stdlog, "signalled, signal = %s\n",
                          target_signal_to_name (status->value.sig));
                          target_signal_to_name (status->value.sig));
      break;
      break;
    case TARGET_WAITKIND_LOADED:
    case TARGET_WAITKIND_LOADED:
      fprintf_unfiltered (gdb_stdlog, "loaded\n");
      fprintf_unfiltered (gdb_stdlog, "loaded\n");
      break;
      break;
    case TARGET_WAITKIND_FORKED:
    case TARGET_WAITKIND_FORKED:
      fprintf_unfiltered (gdb_stdlog, "forked\n");
      fprintf_unfiltered (gdb_stdlog, "forked\n");
      break;
      break;
    case TARGET_WAITKIND_VFORKED:
    case TARGET_WAITKIND_VFORKED:
      fprintf_unfiltered (gdb_stdlog, "vforked\n");
      fprintf_unfiltered (gdb_stdlog, "vforked\n");
      break;
      break;
    case TARGET_WAITKIND_EXECD:
    case TARGET_WAITKIND_EXECD:
      fprintf_unfiltered (gdb_stdlog, "execd\n");
      fprintf_unfiltered (gdb_stdlog, "execd\n");
      break;
      break;
    case TARGET_WAITKIND_SPURIOUS:
    case TARGET_WAITKIND_SPURIOUS:
      fprintf_unfiltered (gdb_stdlog, "spurious\n");
      fprintf_unfiltered (gdb_stdlog, "spurious\n");
      break;
      break;
    default:
    default:
      fprintf_unfiltered (gdb_stdlog, "unknown???\n");
      fprintf_unfiltered (gdb_stdlog, "unknown???\n");
      break;
      break;
    }
    }
 
 
  return retval;
  return retval;
}
}
 
 
static void
static void
debug_to_post_wait (pid, status)
debug_to_post_wait (pid, status)
     int pid;
     int pid;
     int status;
     int status;
{
{
  debug_target.to_post_wait (pid, status);
  debug_target.to_post_wait (pid, status);
 
 
  fprintf_unfiltered (gdb_stdlog, "target_post_wait (%d, %d)\n",
  fprintf_unfiltered (gdb_stdlog, "target_post_wait (%d, %d)\n",
                      pid, status);
                      pid, status);
}
}
 
 
static void
static void
debug_to_fetch_registers (regno)
debug_to_fetch_registers (regno)
     int regno;
     int regno;
{
{
  debug_target.to_fetch_registers (regno);
  debug_target.to_fetch_registers (regno);
 
 
  fprintf_unfiltered (gdb_stdlog, "target_fetch_registers (%s)",
  fprintf_unfiltered (gdb_stdlog, "target_fetch_registers (%s)",
                      regno != -1 ? REGISTER_NAME (regno) : "-1");
                      regno != -1 ? REGISTER_NAME (regno) : "-1");
  if (regno != -1)
  if (regno != -1)
    fprintf_unfiltered (gdb_stdlog, " = 0x%lx %ld",
    fprintf_unfiltered (gdb_stdlog, " = 0x%lx %ld",
                        (unsigned long) read_register (regno),
                        (unsigned long) read_register (regno),
                        (unsigned long) read_register (regno));
                        (unsigned long) read_register (regno));
  fprintf_unfiltered (gdb_stdlog, "\n");
  fprintf_unfiltered (gdb_stdlog, "\n");
}
}
 
 
static void
static void
debug_to_store_registers (regno)
debug_to_store_registers (regno)
     int regno;
     int regno;
{
{
  debug_target.to_store_registers (regno);
  debug_target.to_store_registers (regno);
 
 
  if (regno >= 0 && regno < NUM_REGS)
  if (regno >= 0 && regno < NUM_REGS)
    fprintf_unfiltered (gdb_stdlog, "target_store_registers (%s) = 0x%lx %ld\n",
    fprintf_unfiltered (gdb_stdlog, "target_store_registers (%s) = 0x%lx %ld\n",
                        REGISTER_NAME (regno),
                        REGISTER_NAME (regno),
                        (unsigned long) read_register (regno),
                        (unsigned long) read_register (regno),
                        (unsigned long) read_register (regno));
                        (unsigned long) read_register (regno));
  else
  else
    fprintf_unfiltered (gdb_stdlog, "target_store_registers (%d)\n", regno);
    fprintf_unfiltered (gdb_stdlog, "target_store_registers (%d)\n", regno);
}
}
 
 
static void
static void
debug_to_prepare_to_store ()
debug_to_prepare_to_store ()
{
{
  debug_target.to_prepare_to_store ();
  debug_target.to_prepare_to_store ();
 
 
  fprintf_unfiltered (gdb_stdlog, "target_prepare_to_store ()\n");
  fprintf_unfiltered (gdb_stdlog, "target_prepare_to_store ()\n");
}
}
 
 
static int
static int
debug_to_xfer_memory (memaddr, myaddr, len, write, target)
debug_to_xfer_memory (memaddr, myaddr, len, write, target)
     CORE_ADDR memaddr;
     CORE_ADDR memaddr;
     char *myaddr;
     char *myaddr;
     int len;
     int len;
     int write;
     int write;
     struct target_ops *target;
     struct target_ops *target;
{
{
  int retval;
  int retval;
 
 
  retval = debug_target.to_xfer_memory (memaddr, myaddr, len, write, target);
  retval = debug_target.to_xfer_memory (memaddr, myaddr, len, write, target);
 
 
  fprintf_unfiltered (gdb_stdlog,
  fprintf_unfiltered (gdb_stdlog,
                      "target_xfer_memory (0x%x, xxx, %d, %s, xxx) = %d",
                      "target_xfer_memory (0x%x, xxx, %d, %s, xxx) = %d",
                      (unsigned int) memaddr,   /* possable truncate long long */
                      (unsigned int) memaddr,   /* possable truncate long long */
                      len, write ? "write" : "read", retval);
                      len, write ? "write" : "read", retval);
 
 
 
 
 
 
  if (retval > 0)
  if (retval > 0)
    {
    {
      int i;
      int i;
 
 
      fputs_unfiltered (", bytes =", gdb_stdlog);
      fputs_unfiltered (", bytes =", gdb_stdlog);
      for (i = 0; i < retval; i++)
      for (i = 0; i < retval; i++)
        {
        {
          if ((((long) &(myaddr[i])) & 0xf) == 0)
          if ((((long) &(myaddr[i])) & 0xf) == 0)
            fprintf_unfiltered (gdb_stdlog, "\n");
            fprintf_unfiltered (gdb_stdlog, "\n");
          fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
          fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
        }
        }
    }
    }
 
 
  fputc_unfiltered ('\n', gdb_stdlog);
  fputc_unfiltered ('\n', gdb_stdlog);
 
 
  return retval;
  return retval;
}
}
 
 
static void
static void
debug_to_files_info (target)
debug_to_files_info (target)
     struct target_ops *target;
     struct target_ops *target;
{
{
  debug_target.to_files_info (target);
  debug_target.to_files_info (target);
 
 
  fprintf_unfiltered (gdb_stdlog, "target_files_info (xxx)\n");
  fprintf_unfiltered (gdb_stdlog, "target_files_info (xxx)\n");
}
}
 
 
static int
static int
debug_to_insert_breakpoint (addr, save)
debug_to_insert_breakpoint (addr, save)
     CORE_ADDR addr;
     CORE_ADDR addr;
     char *save;
     char *save;
{
{
  int retval;
  int retval;
 
 
  retval = debug_target.to_insert_breakpoint (addr, save);
  retval = debug_target.to_insert_breakpoint (addr, save);
 
 
  fprintf_unfiltered (gdb_stdlog,
  fprintf_unfiltered (gdb_stdlog,
                      "target_insert_breakpoint (0x%lx, xxx) = %ld\n",
                      "target_insert_breakpoint (0x%lx, xxx) = %ld\n",
                      (unsigned long) addr,
                      (unsigned long) addr,
                      (unsigned long) retval);
                      (unsigned long) retval);
  return retval;
  return retval;
}
}
 
 
static int
static int
debug_to_remove_breakpoint (addr, save)
debug_to_remove_breakpoint (addr, save)
     CORE_ADDR addr;
     CORE_ADDR addr;
     char *save;
     char *save;
{
{
  int retval;
  int retval;
 
 
  retval = debug_target.to_remove_breakpoint (addr, save);
  retval = debug_target.to_remove_breakpoint (addr, save);
 
 
  fprintf_unfiltered (gdb_stdlog,
  fprintf_unfiltered (gdb_stdlog,
                      "target_remove_breakpoint (0x%lx, xxx) = %ld\n",
                      "target_remove_breakpoint (0x%lx, xxx) = %ld\n",
                      (unsigned long) addr,
                      (unsigned long) addr,
                      (unsigned long) retval);
                      (unsigned long) retval);
  return retval;
  return retval;
}
}
 
 
static void
static void
debug_to_terminal_init ()
debug_to_terminal_init ()
{
{
  debug_target.to_terminal_init ();
  debug_target.to_terminal_init ();
 
 
  fprintf_unfiltered (gdb_stdlog, "target_terminal_init ()\n");
  fprintf_unfiltered (gdb_stdlog, "target_terminal_init ()\n");
}
}
 
 
static void
static void
debug_to_terminal_inferior ()
debug_to_terminal_inferior ()
{
{
  debug_target.to_terminal_inferior ();
  debug_target.to_terminal_inferior ();
 
 
  fprintf_unfiltered (gdb_stdlog, "target_terminal_inferior ()\n");
  fprintf_unfiltered (gdb_stdlog, "target_terminal_inferior ()\n");
}
}
 
 
static void
static void
debug_to_terminal_ours_for_output ()
debug_to_terminal_ours_for_output ()
{
{
  debug_target.to_terminal_ours_for_output ();
  debug_target.to_terminal_ours_for_output ();
 
 
  fprintf_unfiltered (gdb_stdlog, "target_terminal_ours_for_output ()\n");
  fprintf_unfiltered (gdb_stdlog, "target_terminal_ours_for_output ()\n");
}
}
 
 
static void
static void
debug_to_terminal_ours ()
debug_to_terminal_ours ()
{
{
  debug_target.to_terminal_ours ();
  debug_target.to_terminal_ours ();
 
 
  fprintf_unfiltered (gdb_stdlog, "target_terminal_ours ()\n");
  fprintf_unfiltered (gdb_stdlog, "target_terminal_ours ()\n");
}
}
 
 
static void
static void
debug_to_terminal_info (arg, from_tty)
debug_to_terminal_info (arg, from_tty)
     char *arg;
     char *arg;
     int from_tty;
     int from_tty;
{
{
  debug_target.to_terminal_info (arg, from_tty);
  debug_target.to_terminal_info (arg, from_tty);
 
 
  fprintf_unfiltered (gdb_stdlog, "target_terminal_info (%s, %d)\n", arg,
  fprintf_unfiltered (gdb_stdlog, "target_terminal_info (%s, %d)\n", arg,
                      from_tty);
                      from_tty);
}
}
 
 
static void
static void
debug_to_kill ()
debug_to_kill ()
{
{
  debug_target.to_kill ();
  debug_target.to_kill ();
 
 
  fprintf_unfiltered (gdb_stdlog, "target_kill ()\n");
  fprintf_unfiltered (gdb_stdlog, "target_kill ()\n");
}
}
 
 
static void
static void
debug_to_load (args, from_tty)
debug_to_load (args, from_tty)
     char *args;
     char *args;
     int from_tty;
     int from_tty;
{
{
  debug_target.to_load (args, from_tty);
  debug_target.to_load (args, from_tty);
 
 
  fprintf_unfiltered (gdb_stdlog, "target_load (%s, %d)\n", args, from_tty);
  fprintf_unfiltered (gdb_stdlog, "target_load (%s, %d)\n", args, from_tty);
}
}
 
 
static int
static int
debug_to_lookup_symbol (name, addrp)
debug_to_lookup_symbol (name, addrp)
     char *name;
     char *name;
     CORE_ADDR *addrp;
     CORE_ADDR *addrp;
{
{
  int retval;
  int retval;
 
 
  retval = debug_target.to_lookup_symbol (name, addrp);
  retval = debug_target.to_lookup_symbol (name, addrp);
 
 
  fprintf_unfiltered (gdb_stdlog, "target_lookup_symbol (%s, xxx)\n", name);
  fprintf_unfiltered (gdb_stdlog, "target_lookup_symbol (%s, xxx)\n", name);
 
 
  return retval;
  return retval;
}
}
 
 
static void
static void
debug_to_create_inferior (exec_file, args, env)
debug_to_create_inferior (exec_file, args, env)
     char *exec_file;
     char *exec_file;
     char *args;
     char *args;
     char **env;
     char **env;
{
{
  debug_target.to_create_inferior (exec_file, args, env);
  debug_target.to_create_inferior (exec_file, args, env);
 
 
  fprintf_unfiltered (gdb_stdlog, "target_create_inferior (%s, %s, xxx)\n",
  fprintf_unfiltered (gdb_stdlog, "target_create_inferior (%s, %s, xxx)\n",
                      exec_file, args);
                      exec_file, args);
}
}
 
 
static void
static void
debug_to_post_startup_inferior (pid)
debug_to_post_startup_inferior (pid)
     int pid;
     int pid;
{
{
  debug_target.to_post_startup_inferior (pid);
  debug_target.to_post_startup_inferior (pid);
 
 
  fprintf_unfiltered (gdb_stdlog, "target_post_startup_inferior (%d)\n",
  fprintf_unfiltered (gdb_stdlog, "target_post_startup_inferior (%d)\n",
                      pid);
                      pid);
}
}
 
 
static void
static void
debug_to_acknowledge_created_inferior (pid)
debug_to_acknowledge_created_inferior (pid)
     int pid;
     int pid;
{
{
  debug_target.to_acknowledge_created_inferior (pid);
  debug_target.to_acknowledge_created_inferior (pid);
 
 
  fprintf_unfiltered (gdb_stdlog, "target_acknowledge_created_inferior (%d)\n",
  fprintf_unfiltered (gdb_stdlog, "target_acknowledge_created_inferior (%d)\n",
                      pid);
                      pid);
}
}
 
 
static void
static void
debug_to_clone_and_follow_inferior (child_pid, followed_child)
debug_to_clone_and_follow_inferior (child_pid, followed_child)
     int child_pid;
     int child_pid;
     int *followed_child;
     int *followed_child;
{
{
  debug_target.to_clone_and_follow_inferior (child_pid, followed_child);
  debug_target.to_clone_and_follow_inferior (child_pid, followed_child);
 
 
  fprintf_unfiltered (gdb_stdlog,
  fprintf_unfiltered (gdb_stdlog,
                      "target_clone_and_follow_inferior (%d, %d)\n",
                      "target_clone_and_follow_inferior (%d, %d)\n",
                      child_pid, *followed_child);
                      child_pid, *followed_child);
}
}
 
 
static void
static void
debug_to_post_follow_inferior_by_clone ()
debug_to_post_follow_inferior_by_clone ()
{
{
  debug_target.to_post_follow_inferior_by_clone ();
  debug_target.to_post_follow_inferior_by_clone ();
 
 
  fprintf_unfiltered (gdb_stdlog, "target_post_follow_inferior_by_clone ()\n");
  fprintf_unfiltered (gdb_stdlog, "target_post_follow_inferior_by_clone ()\n");
}
}
 
 
static int
static int
debug_to_insert_fork_catchpoint (pid)
debug_to_insert_fork_catchpoint (pid)
     int pid;
     int pid;
{
{
  int retval;
  int retval;
 
 
  retval = debug_target.to_insert_fork_catchpoint (pid);
  retval = debug_target.to_insert_fork_catchpoint (pid);
 
 
  fprintf_unfiltered (gdb_stdlog, "target_insert_fork_catchpoint (%d) = %d\n",
  fprintf_unfiltered (gdb_stdlog, "target_insert_fork_catchpoint (%d) = %d\n",
                      pid, retval);
                      pid, retval);
 
 
  return retval;
  return retval;
}
}
 
 
static int
static int
debug_to_remove_fork_catchpoint (pid)
debug_to_remove_fork_catchpoint (pid)
     int pid;
     int pid;
{
{
  int retval;
  int retval;
 
 
  retval = debug_target.to_remove_fork_catchpoint (pid);
  retval = debug_target.to_remove_fork_catchpoint (pid);
 
 
  fprintf_unfiltered (gdb_stdlog, "target_remove_fork_catchpoint (%d) = %d\n",
  fprintf_unfiltered (gdb_stdlog, "target_remove_fork_catchpoint (%d) = %d\n",
                      pid, retval);
                      pid, retval);
 
 
  return retval;
  return retval;
}
}
 
 
static int
static int
debug_to_insert_vfork_catchpoint (pid)
debug_to_insert_vfork_catchpoint (pid)
     int pid;
     int pid;
{
{
  int retval;
  int retval;
 
 
  retval = debug_target.to_insert_vfork_catchpoint (pid);
  retval = debug_target.to_insert_vfork_catchpoint (pid);
 
 
  fprintf_unfiltered (gdb_stdlog, "target_insert_vfork_catchpoint (%d)= %d\n",
  fprintf_unfiltered (gdb_stdlog, "target_insert_vfork_catchpoint (%d)= %d\n",
                      pid, retval);
                      pid, retval);
 
 
  return retval;
  return retval;
}
}
 
 
static int
static int
debug_to_remove_vfork_catchpoint (pid)
debug_to_remove_vfork_catchpoint (pid)
     int pid;
     int pid;
{
{
  int retval;
  int retval;
 
 
  retval = debug_target.to_remove_vfork_catchpoint (pid);
  retval = debug_target.to_remove_vfork_catchpoint (pid);
 
 
  fprintf_unfiltered (gdb_stdlog, "target_remove_vfork_catchpoint (%d) = %d\n",
  fprintf_unfiltered (gdb_stdlog, "target_remove_vfork_catchpoint (%d) = %d\n",
                      pid, retval);
                      pid, retval);
 
 
  return retval;
  return retval;
}
}
 
 
static int
static int
debug_to_has_forked (pid, child_pid)
debug_to_has_forked (pid, child_pid)
     int pid;
     int pid;
     int *child_pid;
     int *child_pid;
{
{
  int has_forked;
  int has_forked;
 
 
  has_forked = debug_target.to_has_forked (pid, child_pid);
  has_forked = debug_target.to_has_forked (pid, child_pid);
 
 
  fprintf_unfiltered (gdb_stdlog, "target_has_forked (%d, %d) = %d\n",
  fprintf_unfiltered (gdb_stdlog, "target_has_forked (%d, %d) = %d\n",
                      pid, *child_pid, has_forked);
                      pid, *child_pid, has_forked);
 
 
  return has_forked;
  return has_forked;
}
}
 
 
static int
static int
debug_to_has_vforked (pid, child_pid)
debug_to_has_vforked (pid, child_pid)
     int pid;
     int pid;
     int *child_pid;
     int *child_pid;
{
{
  int has_vforked;
  int has_vforked;
 
 
  has_vforked = debug_target.to_has_vforked (pid, child_pid);
  has_vforked = debug_target.to_has_vforked (pid, child_pid);
 
 
  fprintf_unfiltered (gdb_stdlog, "target_has_vforked (%d, %d) = %d\n",
  fprintf_unfiltered (gdb_stdlog, "target_has_vforked (%d, %d) = %d\n",
                      pid, *child_pid, has_vforked);
                      pid, *child_pid, has_vforked);
 
 
  return has_vforked;
  return has_vforked;
}
}
 
 
static int
static int
debug_to_can_follow_vfork_prior_to_exec ()
debug_to_can_follow_vfork_prior_to_exec ()
{
{
  int can_immediately_follow_vfork;
  int can_immediately_follow_vfork;
 
 
  can_immediately_follow_vfork = debug_target.to_can_follow_vfork_prior_to_exec ();
  can_immediately_follow_vfork = debug_target.to_can_follow_vfork_prior_to_exec ();
 
 
  fprintf_unfiltered (gdb_stdlog, "target_can_follow_vfork_prior_to_exec () = %d\n",
  fprintf_unfiltered (gdb_stdlog, "target_can_follow_vfork_prior_to_exec () = %d\n",
                      can_immediately_follow_vfork);
                      can_immediately_follow_vfork);
 
 
  return can_immediately_follow_vfork;
  return can_immediately_follow_vfork;
}
}
 
 
static void
static void
debug_to_post_follow_vfork (parent_pid, followed_parent, child_pid, followed_child)
debug_to_post_follow_vfork (parent_pid, followed_parent, child_pid, followed_child)
     int parent_pid;
     int parent_pid;
     int followed_parent;
     int followed_parent;
     int child_pid;
     int child_pid;
     int followed_child;
     int followed_child;
{
{
  debug_target.to_post_follow_vfork (parent_pid, followed_parent, child_pid, followed_child);
  debug_target.to_post_follow_vfork (parent_pid, followed_parent, child_pid, followed_child);
 
 
  fprintf_unfiltered (gdb_stdlog,
  fprintf_unfiltered (gdb_stdlog,
                      "target_post_follow_vfork (%d, %d, %d, %d)\n",
                      "target_post_follow_vfork (%d, %d, %d, %d)\n",
                    parent_pid, followed_parent, child_pid, followed_child);
                    parent_pid, followed_parent, child_pid, followed_child);
}
}
 
 
static int
static int
debug_to_insert_exec_catchpoint (pid)
debug_to_insert_exec_catchpoint (pid)
     int pid;
     int pid;
{
{
  int retval;
  int retval;
 
 
  retval = debug_target.to_insert_exec_catchpoint (pid);
  retval = debug_target.to_insert_exec_catchpoint (pid);
 
 
  fprintf_unfiltered (gdb_stdlog, "target_insert_exec_catchpoint (%d) = %d\n",
  fprintf_unfiltered (gdb_stdlog, "target_insert_exec_catchpoint (%d) = %d\n",
                      pid, retval);
                      pid, retval);
 
 
  return retval;
  return retval;
}
}
 
 
static int
static int
debug_to_remove_exec_catchpoint (pid)
debug_to_remove_exec_catchpoint (pid)
     int pid;
     int pid;
{
{
  int retval;
  int retval;
 
 
  retval = debug_target.to_remove_exec_catchpoint (pid);
  retval = debug_target.to_remove_exec_catchpoint (pid);
 
 
  fprintf_unfiltered (gdb_stdlog, "target_remove_exec_catchpoint (%d) = %d\n",
  fprintf_unfiltered (gdb_stdlog, "target_remove_exec_catchpoint (%d) = %d\n",
                      pid, retval);
                      pid, retval);
 
 
  return retval;
  return retval;
}
}
 
 
static int
static int
debug_to_has_execd (pid, execd_pathname)
debug_to_has_execd (pid, execd_pathname)
     int pid;
     int pid;
     char **execd_pathname;
     char **execd_pathname;
{
{
  int has_execd;
  int has_execd;
 
 
  has_execd = debug_target.to_has_execd (pid, execd_pathname);
  has_execd = debug_target.to_has_execd (pid, execd_pathname);
 
 
  fprintf_unfiltered (gdb_stdlog, "target_has_execd (%d, %s) = %d\n",
  fprintf_unfiltered (gdb_stdlog, "target_has_execd (%d, %s) = %d\n",
                      pid, (*execd_pathname ? *execd_pathname : "<NULL>"),
                      pid, (*execd_pathname ? *execd_pathname : "<NULL>"),
                      has_execd);
                      has_execd);
 
 
  return has_execd;
  return has_execd;
}
}
 
 
static int
static int
debug_to_reported_exec_events_per_exec_call ()
debug_to_reported_exec_events_per_exec_call ()
{
{
  int reported_exec_events;
  int reported_exec_events;
 
 
  reported_exec_events = debug_target.to_reported_exec_events_per_exec_call ();
  reported_exec_events = debug_target.to_reported_exec_events_per_exec_call ();
 
 
  fprintf_unfiltered (gdb_stdlog,
  fprintf_unfiltered (gdb_stdlog,
                      "target_reported_exec_events_per_exec_call () = %d\n",
                      "target_reported_exec_events_per_exec_call () = %d\n",
                      reported_exec_events);
                      reported_exec_events);
 
 
  return reported_exec_events;
  return reported_exec_events;
}
}
 
 
static int
static int
debug_to_has_syscall_event (pid, kind, syscall_id)
debug_to_has_syscall_event (pid, kind, syscall_id)
     int pid;
     int pid;
     enum target_waitkind *kind;
     enum target_waitkind *kind;
     int *syscall_id;
     int *syscall_id;
{
{
  int has_syscall_event;
  int has_syscall_event;
  char *kind_spelling = "??";
  char *kind_spelling = "??";
 
 
  has_syscall_event = debug_target.to_has_syscall_event (pid, kind, syscall_id);
  has_syscall_event = debug_target.to_has_syscall_event (pid, kind, syscall_id);
  if (has_syscall_event)
  if (has_syscall_event)
    {
    {
      switch (*kind)
      switch (*kind)
        {
        {
        case TARGET_WAITKIND_SYSCALL_ENTRY:
        case TARGET_WAITKIND_SYSCALL_ENTRY:
          kind_spelling = "SYSCALL_ENTRY";
          kind_spelling = "SYSCALL_ENTRY";
          break;
          break;
        case TARGET_WAITKIND_SYSCALL_RETURN:
        case TARGET_WAITKIND_SYSCALL_RETURN:
          kind_spelling = "SYSCALL_RETURN";
          kind_spelling = "SYSCALL_RETURN";
          break;
          break;
        default:
        default:
          break;
          break;
        }
        }
    }
    }
 
 
  fprintf_unfiltered (gdb_stdlog,
  fprintf_unfiltered (gdb_stdlog,
                      "target_has_syscall_event (%d, %s, %d) = %d\n",
                      "target_has_syscall_event (%d, %s, %d) = %d\n",
                      pid, kind_spelling, *syscall_id, has_syscall_event);
                      pid, kind_spelling, *syscall_id, has_syscall_event);
 
 
  return has_syscall_event;
  return has_syscall_event;
}
}
 
 
static int
static int
debug_to_has_exited (pid, wait_status, exit_status)
debug_to_has_exited (pid, wait_status, exit_status)
     int pid;
     int pid;
     int wait_status;
     int wait_status;
     int *exit_status;
     int *exit_status;
{
{
  int has_exited;
  int has_exited;
 
 
  has_exited = debug_target.to_has_exited (pid, wait_status, exit_status);
  has_exited = debug_target.to_has_exited (pid, wait_status, exit_status);
 
 
  fprintf_unfiltered (gdb_stdlog, "target_has_exited (%d, %d, %d) = %d\n",
  fprintf_unfiltered (gdb_stdlog, "target_has_exited (%d, %d, %d) = %d\n",
                      pid, wait_status, *exit_status, has_exited);
                      pid, wait_status, *exit_status, has_exited);
 
 
  return has_exited;
  return has_exited;
}
}
 
 
static void
static void
debug_to_mourn_inferior ()
debug_to_mourn_inferior ()
{
{
  debug_target.to_mourn_inferior ();
  debug_target.to_mourn_inferior ();
 
 
  fprintf_unfiltered (gdb_stdlog, "target_mourn_inferior ()\n");
  fprintf_unfiltered (gdb_stdlog, "target_mourn_inferior ()\n");
}
}
 
 
static int
static int
debug_to_can_run ()
debug_to_can_run ()
{
{
  int retval;
  int retval;
 
 
  retval = debug_target.to_can_run ();
  retval = debug_target.to_can_run ();
 
 
  fprintf_unfiltered (gdb_stdlog, "target_can_run () = %d\n", retval);
  fprintf_unfiltered (gdb_stdlog, "target_can_run () = %d\n", retval);
 
 
  return retval;
  return retval;
}
}
 
 
static void
static void
debug_to_notice_signals (pid)
debug_to_notice_signals (pid)
     int pid;
     int pid;
{
{
  debug_target.to_notice_signals (pid);
  debug_target.to_notice_signals (pid);
 
 
  fprintf_unfiltered (gdb_stdlog, "target_notice_signals (%d)\n", pid);
  fprintf_unfiltered (gdb_stdlog, "target_notice_signals (%d)\n", pid);
}
}
 
 
static int
static int
debug_to_thread_alive (pid)
debug_to_thread_alive (pid)
     int pid;
     int pid;
{
{
  int retval;
  int retval;
 
 
  retval = debug_target.to_thread_alive (pid);
  retval = debug_target.to_thread_alive (pid);
 
 
  fprintf_unfiltered (gdb_stdlog, "target_thread_alive (%d) = %d\n",
  fprintf_unfiltered (gdb_stdlog, "target_thread_alive (%d) = %d\n",
                      pid, retval);
                      pid, retval);
 
 
  return retval;
  return retval;
}
}
 
 
static void
static void
debug_to_find_new_threads ()
debug_to_find_new_threads ()
{
{
  debug_target.to_find_new_threads ();
  debug_target.to_find_new_threads ();
 
 
  fputs_unfiltered ("target_find_new_threads ()\n", gdb_stdlog);
  fputs_unfiltered ("target_find_new_threads ()\n", gdb_stdlog);
}
}
 
 
static void
static void
debug_to_stop ()
debug_to_stop ()
{
{
  debug_target.to_stop ();
  debug_target.to_stop ();
 
 
  fprintf_unfiltered (gdb_stdlog, "target_stop ()\n");
  fprintf_unfiltered (gdb_stdlog, "target_stop ()\n");
}
}
 
 
static int
static int
debug_to_query (type, req, resp, siz)
debug_to_query (type, req, resp, siz)
     int type;
     int type;
     char *req;
     char *req;
     char *resp;
     char *resp;
     int *siz;
     int *siz;
{
{
  int retval;
  int retval;
 
 
  retval = debug_target.to_query (type, req, resp, siz);
  retval = debug_target.to_query (type, req, resp, siz);
 
 
  fprintf_unfiltered (gdb_stdlog, "target_query (%c, %s, %s,  %d) = %d\n", type, req, resp, *siz, retval);
  fprintf_unfiltered (gdb_stdlog, "target_query (%c, %s, %s,  %d) = %d\n", type, req, resp, *siz, retval);
 
 
  return retval;
  return retval;
}
}
 
 
static void
static void
debug_to_rcmd (char *command,
debug_to_rcmd (char *command,
               struct ui_file *outbuf)
               struct ui_file *outbuf)
{
{
  debug_target.to_rcmd (command, outbuf);
  debug_target.to_rcmd (command, outbuf);
  fprintf_unfiltered (gdb_stdlog, "target_rcmd (%s, ...)\n", command);
  fprintf_unfiltered (gdb_stdlog, "target_rcmd (%s, ...)\n", command);
}
}
 
 
static struct symtab_and_line *
static struct symtab_and_line *
debug_to_enable_exception_callback (kind, enable)
debug_to_enable_exception_callback (kind, enable)
     enum exception_event_kind kind;
     enum exception_event_kind kind;
     int enable;
     int enable;
{
{
  struct symtab_and_line *result;
  struct symtab_and_line *result;
  result = debug_target.to_enable_exception_callback (kind, enable);
  result = debug_target.to_enable_exception_callback (kind, enable);
  fprintf_unfiltered (gdb_stdlog,
  fprintf_unfiltered (gdb_stdlog,
                      "target get_exception_callback_sal (%d, %d)\n",
                      "target get_exception_callback_sal (%d, %d)\n",
                      kind, enable);
                      kind, enable);
  return result;
  return result;
}
}
 
 
static struct exception_event_record *
static struct exception_event_record *
debug_to_get_current_exception_event ()
debug_to_get_current_exception_event ()
{
{
  struct exception_event_record *result;
  struct exception_event_record *result;
  result = debug_target.to_get_current_exception_event ();
  result = debug_target.to_get_current_exception_event ();
  fprintf_unfiltered (gdb_stdlog, "target get_current_exception_event ()\n");
  fprintf_unfiltered (gdb_stdlog, "target get_current_exception_event ()\n");
  return result;
  return result;
}
}
 
 
static char *
static char *
debug_to_pid_to_exec_file (pid)
debug_to_pid_to_exec_file (pid)
     int pid;
     int pid;
{
{
  char *exec_file;
  char *exec_file;
 
 
  exec_file = debug_target.to_pid_to_exec_file (pid);
  exec_file = debug_target.to_pid_to_exec_file (pid);
 
 
  fprintf_unfiltered (gdb_stdlog, "target_pid_to_exec_file (%d) = %s\n",
  fprintf_unfiltered (gdb_stdlog, "target_pid_to_exec_file (%d) = %s\n",
                      pid, exec_file);
                      pid, exec_file);
 
 
  return exec_file;
  return exec_file;
}
}
 
 
static char *
static char *
debug_to_core_file_to_sym_file (core)
debug_to_core_file_to_sym_file (core)
     char *core;
     char *core;
{
{
  char *sym_file;
  char *sym_file;
 
 
  sym_file = debug_target.to_core_file_to_sym_file (core);
  sym_file = debug_target.to_core_file_to_sym_file (core);
 
 
  fprintf_unfiltered (gdb_stdlog, "target_core_file_to_sym_file (%s) = %s\n",
  fprintf_unfiltered (gdb_stdlog, "target_core_file_to_sym_file (%s) = %s\n",
                      core, sym_file);
                      core, sym_file);
 
 
  return sym_file;
  return sym_file;
}
}
 
 
static void
static void
setup_target_debug ()
setup_target_debug ()
{
{
  memcpy (&debug_target, &current_target, sizeof debug_target);
  memcpy (&debug_target, &current_target, sizeof debug_target);
 
 
  current_target.to_open = debug_to_open;
  current_target.to_open = debug_to_open;
  current_target.to_close = debug_to_close;
  current_target.to_close = debug_to_close;
  current_target.to_attach = debug_to_attach;
  current_target.to_attach = debug_to_attach;
  current_target.to_post_attach = debug_to_post_attach;
  current_target.to_post_attach = debug_to_post_attach;
  current_target.to_require_attach = debug_to_require_attach;
  current_target.to_require_attach = debug_to_require_attach;
  current_target.to_detach = debug_to_detach;
  current_target.to_detach = debug_to_detach;
  current_target.to_require_detach = debug_to_require_detach;
  current_target.to_require_detach = debug_to_require_detach;
  current_target.to_resume = debug_to_resume;
  current_target.to_resume = debug_to_resume;
  current_target.to_wait = debug_to_wait;
  current_target.to_wait = debug_to_wait;
  current_target.to_post_wait = debug_to_post_wait;
  current_target.to_post_wait = debug_to_post_wait;
  current_target.to_fetch_registers = debug_to_fetch_registers;
  current_target.to_fetch_registers = debug_to_fetch_registers;
  current_target.to_store_registers = debug_to_store_registers;
  current_target.to_store_registers = debug_to_store_registers;
  current_target.to_prepare_to_store = debug_to_prepare_to_store;
  current_target.to_prepare_to_store = debug_to_prepare_to_store;
  current_target.to_xfer_memory = debug_to_xfer_memory;
  current_target.to_xfer_memory = debug_to_xfer_memory;
  current_target.to_files_info = debug_to_files_info;
  current_target.to_files_info = debug_to_files_info;
  current_target.to_insert_breakpoint = debug_to_insert_breakpoint;
  current_target.to_insert_breakpoint = debug_to_insert_breakpoint;
  current_target.to_remove_breakpoint = debug_to_remove_breakpoint;
  current_target.to_remove_breakpoint = debug_to_remove_breakpoint;
  current_target.to_terminal_init = debug_to_terminal_init;
  current_target.to_terminal_init = debug_to_terminal_init;
  current_target.to_terminal_inferior = debug_to_terminal_inferior;
  current_target.to_terminal_inferior = debug_to_terminal_inferior;
  current_target.to_terminal_ours_for_output = debug_to_terminal_ours_for_output;
  current_target.to_terminal_ours_for_output = debug_to_terminal_ours_for_output;
  current_target.to_terminal_ours = debug_to_terminal_ours;
  current_target.to_terminal_ours = debug_to_terminal_ours;
  current_target.to_terminal_info = debug_to_terminal_info;
  current_target.to_terminal_info = debug_to_terminal_info;
  current_target.to_kill = debug_to_kill;
  current_target.to_kill = debug_to_kill;
  current_target.to_load = debug_to_load;
  current_target.to_load = debug_to_load;
  current_target.to_lookup_symbol = debug_to_lookup_symbol;
  current_target.to_lookup_symbol = debug_to_lookup_symbol;
  current_target.to_create_inferior = debug_to_create_inferior;
  current_target.to_create_inferior = debug_to_create_inferior;
  current_target.to_post_startup_inferior = debug_to_post_startup_inferior;
  current_target.to_post_startup_inferior = debug_to_post_startup_inferior;
  current_target.to_acknowledge_created_inferior = debug_to_acknowledge_created_inferior;
  current_target.to_acknowledge_created_inferior = debug_to_acknowledge_created_inferior;
  current_target.to_clone_and_follow_inferior = debug_to_clone_and_follow_inferior;
  current_target.to_clone_and_follow_inferior = debug_to_clone_and_follow_inferior;
  current_target.to_post_follow_inferior_by_clone = debug_to_post_follow_inferior_by_clone;
  current_target.to_post_follow_inferior_by_clone = debug_to_post_follow_inferior_by_clone;
  current_target.to_insert_fork_catchpoint = debug_to_insert_fork_catchpoint;
  current_target.to_insert_fork_catchpoint = debug_to_insert_fork_catchpoint;
  current_target.to_remove_fork_catchpoint = debug_to_remove_fork_catchpoint;
  current_target.to_remove_fork_catchpoint = debug_to_remove_fork_catchpoint;
  current_target.to_insert_vfork_catchpoint = debug_to_insert_vfork_catchpoint;
  current_target.to_insert_vfork_catchpoint = debug_to_insert_vfork_catchpoint;
  current_target.to_remove_vfork_catchpoint = debug_to_remove_vfork_catchpoint;
  current_target.to_remove_vfork_catchpoint = debug_to_remove_vfork_catchpoint;
  current_target.to_has_forked = debug_to_has_forked;
  current_target.to_has_forked = debug_to_has_forked;
  current_target.to_has_vforked = debug_to_has_vforked;
  current_target.to_has_vforked = debug_to_has_vforked;
  current_target.to_can_follow_vfork_prior_to_exec = debug_to_can_follow_vfork_prior_to_exec;
  current_target.to_can_follow_vfork_prior_to_exec = debug_to_can_follow_vfork_prior_to_exec;
  current_target.to_post_follow_vfork = debug_to_post_follow_vfork;
  current_target.to_post_follow_vfork = debug_to_post_follow_vfork;
  current_target.to_insert_exec_catchpoint = debug_to_insert_exec_catchpoint;
  current_target.to_insert_exec_catchpoint = debug_to_insert_exec_catchpoint;
  current_target.to_remove_exec_catchpoint = debug_to_remove_exec_catchpoint;
  current_target.to_remove_exec_catchpoint = debug_to_remove_exec_catchpoint;
  current_target.to_has_execd = debug_to_has_execd;
  current_target.to_has_execd = debug_to_has_execd;
  current_target.to_reported_exec_events_per_exec_call = debug_to_reported_exec_events_per_exec_call;
  current_target.to_reported_exec_events_per_exec_call = debug_to_reported_exec_events_per_exec_call;
  current_target.to_has_syscall_event = debug_to_has_syscall_event;
  current_target.to_has_syscall_event = debug_to_has_syscall_event;
  current_target.to_has_exited = debug_to_has_exited;
  current_target.to_has_exited = debug_to_has_exited;
  current_target.to_mourn_inferior = debug_to_mourn_inferior;
  current_target.to_mourn_inferior = debug_to_mourn_inferior;
  current_target.to_can_run = debug_to_can_run;
  current_target.to_can_run = debug_to_can_run;
  current_target.to_notice_signals = debug_to_notice_signals;
  current_target.to_notice_signals = debug_to_notice_signals;
  current_target.to_thread_alive = debug_to_thread_alive;
  current_target.to_thread_alive = debug_to_thread_alive;
  current_target.to_find_new_threads = debug_to_find_new_threads;
  current_target.to_find_new_threads = debug_to_find_new_threads;
  current_target.to_stop = debug_to_stop;
  current_target.to_stop = debug_to_stop;
  current_target.to_query = debug_to_query;
  current_target.to_query = debug_to_query;
  current_target.to_rcmd = debug_to_rcmd;
  current_target.to_rcmd = debug_to_rcmd;
  current_target.to_enable_exception_callback = debug_to_enable_exception_callback;
  current_target.to_enable_exception_callback = debug_to_enable_exception_callback;
  current_target.to_get_current_exception_event = debug_to_get_current_exception_event;
  current_target.to_get_current_exception_event = debug_to_get_current_exception_event;
  current_target.to_pid_to_exec_file = debug_to_pid_to_exec_file;
  current_target.to_pid_to_exec_file = debug_to_pid_to_exec_file;
  current_target.to_core_file_to_sym_file = debug_to_core_file_to_sym_file;
  current_target.to_core_file_to_sym_file = debug_to_core_file_to_sym_file;
 
 
}
}


 
 
static char targ_desc[] =
static char targ_desc[] =
"Names of targets and files being debugged.\n\
"Names of targets and files being debugged.\n\
Shows the entire stack of targets currently in use (including the exec-file,\n\
Shows the entire stack of targets currently in use (including the exec-file,\n\
core-file, and process, if any), as well as the symbol file name.";
core-file, and process, if any), as well as the symbol file name.";
 
 
static void
static void
do_monitor_command (char *cmd,
do_monitor_command (char *cmd,
                 int from_tty)
                 int from_tty)
{
{
  if ((current_target.to_rcmd
  if ((current_target.to_rcmd
       == (void (*) (char *, struct ui_file *)) tcomplain)
       == (void (*) (char *, struct ui_file *)) tcomplain)
      || (current_target.to_rcmd == debug_to_rcmd
      || (current_target.to_rcmd == debug_to_rcmd
          && (debug_target.to_rcmd
          && (debug_target.to_rcmd
              == (void (*) (char *, struct ui_file *)) tcomplain)))
              == (void (*) (char *, struct ui_file *)) tcomplain)))
    {
    {
      error ("\"monitor\" command not supported by this target.\n");
      error ("\"monitor\" command not supported by this target.\n");
    }
    }
  target_rcmd (cmd, gdb_stdtarg);
  target_rcmd (cmd, gdb_stdtarg);
}
}
 
 
void
void
initialize_targets ()
initialize_targets ()
{
{
  init_dummy_target ();
  init_dummy_target ();
  push_target (&dummy_target);
  push_target (&dummy_target);
 
 
  add_info ("target", target_info, targ_desc);
  add_info ("target", target_info, targ_desc);
  add_info ("files", target_info, targ_desc);
  add_info ("files", target_info, targ_desc);
 
 
  add_show_from_set (
  add_show_from_set (
                add_set_cmd ("target", class_maintenance, var_zinteger,
                add_set_cmd ("target", class_maintenance, var_zinteger,
                             (char *) &targetdebug,
                             (char *) &targetdebug,
                             "Set target debugging.\n\
                             "Set target debugging.\n\
When non-zero, target debugging is enabled.", &setdebuglist),
When non-zero, target debugging is enabled.", &setdebuglist),
                      &showdebuglist);
                      &showdebuglist);
 
 
 
 
  add_com ("monitor", class_obscure, do_monitor_command,
  add_com ("monitor", class_obscure, do_monitor_command,
           "Send a command to the remote monitor (remote targets only).");
           "Send a command to the remote monitor (remote targets only).");
 
 
  if (!STREQ (signals[TARGET_SIGNAL_LAST].string, "TARGET_SIGNAL_MAGIC"))
  if (!STREQ (signals[TARGET_SIGNAL_LAST].string, "TARGET_SIGNAL_MAGIC"))
    abort ();
    abort ();
}
}
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.