OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [gdb-5.0/] [gdb/] [tic80-tdep.c] - Diff between revs 105 and 1765

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 105 Rev 1765
/* Target-dependent code for the TI TMS320C80 (MVP) for GDB, the GNU debugger.
/* Target-dependent code for the TI TMS320C80 (MVP) for GDB, the GNU debugger.
   Copyright 1996, Free Software Foundation, Inc.
   Copyright 1996, Free Software Foundation, Inc.
 
 
   This file is part of GDB.
   This file is part of GDB.
 
 
   This program is free software; you can redistribute it and/or modify
   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2 of the License, or
   the Free Software Foundation; either version 2 of the License, or
   (at your option) any later version.
   (at your option) any later version.
 
 
   This program is distributed in the hope that it will be useful,
   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.
   GNU General Public License for more details.
 
 
   You should have received a copy of the GNU General Public License
   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   along with this program; if not, write to the Free Software
   Foundation, Inc., 59 Temple Place - Suite 330,
   Foundation, Inc., 59 Temple Place - Suite 330,
   Boston, MA 02111-1307, USA.  */
   Boston, MA 02111-1307, USA.  */
 
 
#include "defs.h"
#include "defs.h"
#include "value.h"
#include "value.h"
#include "frame.h"
#include "frame.h"
#include "inferior.h"
#include "inferior.h"
#include "obstack.h"
#include "obstack.h"
#include "target.h"
#include "target.h"
#include "bfd.h"
#include "bfd.h"
#include "gdb_string.h"
#include "gdb_string.h"
#include "gdbcore.h"
#include "gdbcore.h"
#include "symfile.h"
#include "symfile.h"
 
 
/* Function: frame_find_saved_regs
/* Function: frame_find_saved_regs
   Return the frame_saved_regs structure for the frame.
   Return the frame_saved_regs structure for the frame.
   Doesn't really work for dummy frames, but it does pass back
   Doesn't really work for dummy frames, but it does pass back
   an empty frame_saved_regs, so I guess that's better than total failure */
   an empty frame_saved_regs, so I guess that's better than total failure */
 
 
void
void
tic80_frame_find_saved_regs (fi, regaddr)
tic80_frame_find_saved_regs (fi, regaddr)
     struct frame_info *fi;
     struct frame_info *fi;
     struct frame_saved_regs *regaddr;
     struct frame_saved_regs *regaddr;
{
{
  memcpy (regaddr, &fi->fsr, sizeof (struct frame_saved_regs));
  memcpy (regaddr, &fi->fsr, sizeof (struct frame_saved_regs));
}
}
 
 
/* Function: skip_prologue
/* Function: skip_prologue
   Find end of function prologue.  */
   Find end of function prologue.  */
 
 
CORE_ADDR
CORE_ADDR
tic80_skip_prologue (pc)
tic80_skip_prologue (pc)
     CORE_ADDR pc;
     CORE_ADDR pc;
{
{
  CORE_ADDR func_addr, func_end;
  CORE_ADDR func_addr, func_end;
  struct symtab_and_line sal;
  struct symtab_and_line sal;
 
 
  /* See what the symbol table says */
  /* See what the symbol table says */
 
 
  if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
  if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
    {
    {
      sal = find_pc_line (func_addr, 0);
      sal = find_pc_line (func_addr, 0);
 
 
      if (sal.line != 0 && sal.end < func_end)
      if (sal.line != 0 && sal.end < func_end)
        return sal.end;
        return sal.end;
      else
      else
        /* Either there's no line info, or the line after the prologue is after
        /* Either there's no line info, or the line after the prologue is after
           the end of the function.  In this case, there probably isn't a
           the end of the function.  In this case, there probably isn't a
           prologue.  */
           prologue.  */
        return pc;
        return pc;
    }
    }
 
 
  /* We can't find the start of this function, so there's nothing we can do. */
  /* We can't find the start of this function, so there's nothing we can do. */
  return pc;
  return pc;
}
}
 
 
/* Function: tic80_scan_prologue
/* Function: tic80_scan_prologue
   This function decodes the target function prologue to determine:
   This function decodes the target function prologue to determine:
   1) the size of the stack frame
   1) the size of the stack frame
   2) which registers are saved on it
   2) which registers are saved on it
   3) the offsets of saved regs
   3) the offsets of saved regs
   4) the frame size
   4) the frame size
   This information is stored in the "extra" fields of the frame_info.  */
   This information is stored in the "extra" fields of the frame_info.  */
 
 
static void
static void
tic80_scan_prologue (fi)
tic80_scan_prologue (fi)
     struct frame_info *fi;
     struct frame_info *fi;
{
{
  struct symtab_and_line sal;
  struct symtab_and_line sal;
  CORE_ADDR prologue_start, prologue_end, current_pc;
  CORE_ADDR prologue_start, prologue_end, current_pc;
 
 
  /* Assume there is no frame until proven otherwise.  */
  /* Assume there is no frame until proven otherwise.  */
  fi->framereg = SP_REGNUM;
  fi->framereg = SP_REGNUM;
  fi->framesize = 0;
  fi->framesize = 0;
  fi->frameoffset = 0;
  fi->frameoffset = 0;
 
 
  /* this code essentially duplicates skip_prologue,
  /* this code essentially duplicates skip_prologue,
     but we need the start address below.  */
     but we need the start address below.  */
 
 
  if (find_pc_partial_function (fi->pc, NULL, &prologue_start, &prologue_end))
  if (find_pc_partial_function (fi->pc, NULL, &prologue_start, &prologue_end))
    {
    {
      sal = find_pc_line (prologue_start, 0);
      sal = find_pc_line (prologue_start, 0);
 
 
      if (sal.line == 0) /* no line info, use current PC */
      if (sal.line == 0) /* no line info, use current PC */
        if (prologue_start != entry_point_address ())
        if (prologue_start != entry_point_address ())
          prologue_end = fi->pc;
          prologue_end = fi->pc;
        else
        else
          return;               /* _start has no frame or prologue */
          return;               /* _start has no frame or prologue */
      else if (sal.end < prologue_end)  /* next line begins after fn end */
      else if (sal.end < prologue_end)  /* next line begins after fn end */
        prologue_end = sal.end; /* (probably means no prologue)  */
        prologue_end = sal.end; /* (probably means no prologue)  */
    }
    }
  else
  else
/* FIXME */
/* FIXME */
    prologue_end = prologue_start + 40;         /* We're in the boondocks: allow for */
    prologue_end = prologue_start + 40;         /* We're in the boondocks: allow for */
  /* 16 pushes, an add, and "mv fp,sp" */
  /* 16 pushes, an add, and "mv fp,sp" */
 
 
  prologue_end = min (prologue_end, fi->pc);
  prologue_end = min (prologue_end, fi->pc);
 
 
  /* Now search the prologue looking for instructions that set up the
  /* Now search the prologue looking for instructions that set up the
     frame pointer, adjust the stack pointer, and save registers.  */
     frame pointer, adjust the stack pointer, and save registers.  */
 
 
  for (current_pc = prologue_start; current_pc < prologue_end; current_pc += 4)
  for (current_pc = prologue_start; current_pc < prologue_end; current_pc += 4)
    {
    {
      unsigned int insn;
      unsigned int insn;
      int regno;
      int regno;
      int offset = 0;
      int offset = 0;
 
 
      insn = read_memory_unsigned_integer (current_pc, 4);
      insn = read_memory_unsigned_integer (current_pc, 4);
 
 
      if ((insn & 0x301000) == 0x301000)        /* Long immediate? */
      if ((insn & 0x301000) == 0x301000)        /* Long immediate? */
/* FIXME - set offset for long immediate instructions */
/* FIXME - set offset for long immediate instructions */
        current_pc += 4;
        current_pc += 4;
      else
      else
        {
        {
          offset = insn & 0x7fff;       /* extract 15-bit offset */
          offset = insn & 0x7fff;       /* extract 15-bit offset */
          if (offset & 0x4000)  /* if negative, sign-extend */
          if (offset & 0x4000)  /* if negative, sign-extend */
            offset = -(0x8000 - offset);
            offset = -(0x8000 - offset);
        }
        }
 
 
      if ((insn & 0x7fd0000) == 0x590000)       /* st.{w,d} reg, xx(r1) */
      if ((insn & 0x7fd0000) == 0x590000)       /* st.{w,d} reg, xx(r1) */
        {
        {
          regno = ((insn >> 27) & 0x1f);
          regno = ((insn >> 27) & 0x1f);
          fi->fsr.regs[regno] = offset;
          fi->fsr.regs[regno] = offset;
          if (insn & 0x8000)    /* 64-bit store (st.d)? */
          if (insn & 0x8000)    /* 64-bit store (st.d)? */
            fi->fsr.regs[regno + 1] = offset + 4;
            fi->fsr.regs[regno + 1] = offset + 4;
        }
        }
      else if ((insn & 0xffff8000) == 0x086c8000)       /* addu xx, r1, r1 */
      else if ((insn & 0xffff8000) == 0x086c8000)       /* addu xx, r1, r1 */
        fi->framesize = -offset;
        fi->framesize = -offset;
      else if ((insn & 0xffff8000) == 0xf06c8000)       /* addu xx, r1, r30 */
      else if ((insn & 0xffff8000) == 0xf06c8000)       /* addu xx, r1, r30 */
        {
        {
          fi->framereg = FP_REGNUM;     /* fp is now valid */
          fi->framereg = FP_REGNUM;     /* fp is now valid */
          fi->frameoffset = offset;
          fi->frameoffset = offset;
          break;                /* end of stack adjustments */
          break;                /* end of stack adjustments */
        }
        }
      else if (insn == 0xf03b2001)      /* addu r1, r0, r30 */
      else if (insn == 0xf03b2001)      /* addu r1, r0, r30 */
        {
        {
          fi->framereg = FP_REGNUM;     /* fp is now valid */
          fi->framereg = FP_REGNUM;     /* fp is now valid */
          fi->frameoffset = 0;
          fi->frameoffset = 0;
          break;                /* end of stack adjustments */
          break;                /* end of stack adjustments */
        }
        }
      else
      else
/* FIXME - handle long immediate instructions */
/* FIXME - handle long immediate instructions */
        break;                  /* anything else isn't prologue */
        break;                  /* anything else isn't prologue */
    }
    }
}
}
 
 
/* Function: init_extra_frame_info
/* Function: init_extra_frame_info
   This function actually figures out the frame address for a given pc and
   This function actually figures out the frame address for a given pc and
   sp.  This is tricky on the c80 because we sometimes don't use an explicit
   sp.  This is tricky on the c80 because we sometimes don't use an explicit
   frame pointer, and the previous stack pointer isn't necessarily recorded
   frame pointer, and the previous stack pointer isn't necessarily recorded
   on the stack.  The only reliable way to get this info is to
   on the stack.  The only reliable way to get this info is to
   examine the prologue.  */
   examine the prologue.  */
 
 
void
void
tic80_init_extra_frame_info (fi)
tic80_init_extra_frame_info (fi)
     struct frame_info *fi;
     struct frame_info *fi;
{
{
  int reg;
  int reg;
 
 
  if (fi->next)
  if (fi->next)
    fi->pc = FRAME_SAVED_PC (fi->next);
    fi->pc = FRAME_SAVED_PC (fi->next);
 
 
  /* Because zero is a valid register offset relative to SP, we initialize
  /* Because zero is a valid register offset relative to SP, we initialize
     the offsets to -1 to indicate unused entries.  */
     the offsets to -1 to indicate unused entries.  */
  for (reg = 0; reg < NUM_REGS; reg++)
  for (reg = 0; reg < NUM_REGS; reg++)
    fi->fsr.regs[reg] = -1;
    fi->fsr.regs[reg] = -1;
 
 
  if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
  if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
    {
    {
      /* We need to setup fi->frame here because run_stack_dummy gets it wrong
      /* We need to setup fi->frame here because run_stack_dummy gets it wrong
         by assuming it's always FP.  */
         by assuming it's always FP.  */
      fi->frame = generic_read_register_dummy (fi->pc, fi->frame, SP_REGNUM);
      fi->frame = generic_read_register_dummy (fi->pc, fi->frame, SP_REGNUM);
      fi->framesize = 0;
      fi->framesize = 0;
      fi->frameoffset = 0;
      fi->frameoffset = 0;
      return;
      return;
    }
    }
  else
  else
    {
    {
      tic80_scan_prologue (fi);
      tic80_scan_prologue (fi);
 
 
      if (!fi->next)            /* this is the innermost frame? */
      if (!fi->next)            /* this is the innermost frame? */
        fi->frame = read_register (fi->framereg);
        fi->frame = read_register (fi->framereg);
      else
      else
        /* not the innermost frame */
        /* not the innermost frame */
        /* If this function uses FP as the frame register, and the function
        /* If this function uses FP as the frame register, and the function
           it called saved the FP, get the saved FP.  */ if (fi->framereg == FP_REGNUM &&
           it called saved the FP, get the saved FP.  */ if (fi->framereg == FP_REGNUM &&
                             fi->next->fsr.regs[FP_REGNUM] != (unsigned) -1)
                             fi->next->fsr.regs[FP_REGNUM] != (unsigned) -1)
        fi->frame = read_memory_integer (fi->next->fsr.regs[FP_REGNUM], 4);
        fi->frame = read_memory_integer (fi->next->fsr.regs[FP_REGNUM], 4);
 
 
      /* Convert SP-relative offsets of saved registers to real addresses.  */
      /* Convert SP-relative offsets of saved registers to real addresses.  */
      for (reg = 0; reg < NUM_REGS; reg++)
      for (reg = 0; reg < NUM_REGS; reg++)
        if (fi->fsr.regs[reg] == (unsigned) -1)
        if (fi->fsr.regs[reg] == (unsigned) -1)
          fi->fsr.regs[reg] = 0; /* unused entry */
          fi->fsr.regs[reg] = 0; /* unused entry */
        else
        else
          fi->fsr.regs[reg] += fi->frame - fi->frameoffset;
          fi->fsr.regs[reg] += fi->frame - fi->frameoffset;
    }
    }
}
}
 
 
/* Function: find_callers_reg
/* Function: find_callers_reg
   Find REGNUM on the stack.  Otherwise, it's in an active register.  One thing
   Find REGNUM on the stack.  Otherwise, it's in an active register.  One thing
   we might want to do here is to check REGNUM against the clobber mask, and
   we might want to do here is to check REGNUM against the clobber mask, and
   somehow flag it as invalid if it isn't saved on the stack somewhere.  This
   somehow flag it as invalid if it isn't saved on the stack somewhere.  This
   would provide a graceful failure mode when trying to get the value of
   would provide a graceful failure mode when trying to get the value of
   caller-saves registers for an inner frame.  */
   caller-saves registers for an inner frame.  */
 
 
CORE_ADDR
CORE_ADDR
tic80_find_callers_reg (fi, regnum)
tic80_find_callers_reg (fi, regnum)
     struct frame_info *fi;
     struct frame_info *fi;
     int regnum;
     int regnum;
{
{
  for (; fi; fi = fi->next)
  for (; fi; fi = fi->next)
    if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
    if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
      return generic_read_register_dummy (fi->pc, fi->frame, regnum);
      return generic_read_register_dummy (fi->pc, fi->frame, regnum);
    else if (fi->fsr.regs[regnum] != 0)
    else if (fi->fsr.regs[regnum] != 0)
      return read_memory_integer (fi->fsr.regs[regnum],
      return read_memory_integer (fi->fsr.regs[regnum],
                                  REGISTER_RAW_SIZE (regnum));
                                  REGISTER_RAW_SIZE (regnum));
  return read_register (regnum);
  return read_register (regnum);
}
}
 
 
/* Function: frame_chain
/* Function: frame_chain
   Given a GDB frame, determine the address of the calling function's frame.
   Given a GDB frame, determine the address of the calling function's frame.
   This will be used to create a new GDB frame struct, and then
   This will be used to create a new GDB frame struct, and then
   INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
   INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
   For c80, we save the frame size when we initialize the frame_info.  */
   For c80, we save the frame size when we initialize the frame_info.  */
 
 
CORE_ADDR
CORE_ADDR
tic80_frame_chain (fi)
tic80_frame_chain (fi)
     struct frame_info *fi;
     struct frame_info *fi;
{
{
  CORE_ADDR fn_start, callers_pc, fp;
  CORE_ADDR fn_start, callers_pc, fp;
 
 
  /* is this a dummy frame? */
  /* is this a dummy frame? */
  if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
  if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
    return fi->frame;           /* dummy frame same as caller's frame */
    return fi->frame;           /* dummy frame same as caller's frame */
 
 
  /* is caller-of-this a dummy frame? */
  /* is caller-of-this a dummy frame? */
  callers_pc = FRAME_SAVED_PC (fi);     /* find out who called us: */
  callers_pc = FRAME_SAVED_PC (fi);     /* find out who called us: */
  fp = tic80_find_callers_reg (fi, FP_REGNUM);
  fp = tic80_find_callers_reg (fi, FP_REGNUM);
  if (PC_IN_CALL_DUMMY (callers_pc, fp, fp))
  if (PC_IN_CALL_DUMMY (callers_pc, fp, fp))
    return fp;                  /* dummy frame's frame may bear no relation to ours */
    return fp;                  /* dummy frame's frame may bear no relation to ours */
 
 
  if (find_pc_partial_function (fi->pc, 0, &fn_start, 0))
  if (find_pc_partial_function (fi->pc, 0, &fn_start, 0))
    if (fn_start == entry_point_address ())
    if (fn_start == entry_point_address ())
      return 0;                  /* in _start fn, don't chain further */
      return 0;                  /* in _start fn, don't chain further */
 
 
  if (fi->framereg == FP_REGNUM)
  if (fi->framereg == FP_REGNUM)
    return tic80_find_callers_reg (fi, FP_REGNUM);
    return tic80_find_callers_reg (fi, FP_REGNUM);
  else
  else
    return fi->frame + fi->framesize;
    return fi->frame + fi->framesize;
}
}
 
 
/* Function: pop_frame
/* Function: pop_frame
   Discard from the stack the innermost frame,
   Discard from the stack the innermost frame,
   restoring all saved registers.  */
   restoring all saved registers.  */
 
 
struct frame_info *
struct frame_info *
tic80_pop_frame (frame)
tic80_pop_frame (frame)
     struct frame_info *frame;
     struct frame_info *frame;
{
{
  int regnum;
  int regnum;
 
 
  if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
  if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
    generic_pop_dummy_frame ();
    generic_pop_dummy_frame ();
  else
  else
    {
    {
      for (regnum = 0; regnum < NUM_REGS; regnum++)
      for (regnum = 0; regnum < NUM_REGS; regnum++)
        if (frame->fsr.regs[regnum] != 0)
        if (frame->fsr.regs[regnum] != 0)
          write_register (regnum,
          write_register (regnum,
                          read_memory_integer (frame->fsr.regs[regnum], 4));
                          read_memory_integer (frame->fsr.regs[regnum], 4));
 
 
      write_register (PC_REGNUM, FRAME_SAVED_PC (frame));
      write_register (PC_REGNUM, FRAME_SAVED_PC (frame));
      write_register (SP_REGNUM, read_register (FP_REGNUM));
      write_register (SP_REGNUM, read_register (FP_REGNUM));
#if 0
#if 0
      if (read_register (PSW_REGNUM) & 0x80)
      if (read_register (PSW_REGNUM) & 0x80)
        write_register (SPU_REGNUM, read_register (SP_REGNUM));
        write_register (SPU_REGNUM, read_register (SP_REGNUM));
      else
      else
        write_register (SPI_REGNUM, read_register (SP_REGNUM));
        write_register (SPI_REGNUM, read_register (SP_REGNUM));
#endif
#endif
    }
    }
  flush_cached_frames ();
  flush_cached_frames ();
  return NULL;
  return NULL;
}
}
 
 
/* Function: frame_saved_pc
/* Function: frame_saved_pc
   Find the caller of this frame.  We do this by seeing if LR_REGNUM is saved
   Find the caller of this frame.  We do this by seeing if LR_REGNUM is saved
   in the stack anywhere, otherwise we get it from the registers. */
   in the stack anywhere, otherwise we get it from the registers. */
 
 
CORE_ADDR
CORE_ADDR
tic80_frame_saved_pc (fi)
tic80_frame_saved_pc (fi)
     struct frame_info *fi;
     struct frame_info *fi;
{
{
  if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
  if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
    return generic_read_register_dummy (fi->pc, fi->frame, PC_REGNUM);
    return generic_read_register_dummy (fi->pc, fi->frame, PC_REGNUM);
  else
  else
    return tic80_find_callers_reg (fi, LR_REGNUM);
    return tic80_find_callers_reg (fi, LR_REGNUM);
}
}
 
 
/* Function: tic80_push_return_address (pc, sp)
/* Function: tic80_push_return_address (pc, sp)
   Set up the return address for the inferior function call.
   Set up the return address for the inferior function call.
   Necessary for targets that don't actually execute a JSR/BSR instruction
   Necessary for targets that don't actually execute a JSR/BSR instruction
   (ie. when using an empty CALL_DUMMY) */
   (ie. when using an empty CALL_DUMMY) */
 
 
CORE_ADDR
CORE_ADDR
tic80_push_return_address (pc, sp)
tic80_push_return_address (pc, sp)
     CORE_ADDR pc;
     CORE_ADDR pc;
     CORE_ADDR sp;
     CORE_ADDR sp;
{
{
  write_register (LR_REGNUM, CALL_DUMMY_ADDRESS ());
  write_register (LR_REGNUM, CALL_DUMMY_ADDRESS ());
  return sp;
  return sp;
}
}
 
 
 
 
/* Function: push_arguments
/* Function: push_arguments
   Setup the function arguments for calling a function in the inferior.
   Setup the function arguments for calling a function in the inferior.
 
 
   On the TI C80 architecture, there are six register pairs (R2/R3 to R12/13)
   On the TI C80 architecture, there are six register pairs (R2/R3 to R12/13)
   which are dedicated for passing function arguments.  Up to the first six
   which are dedicated for passing function arguments.  Up to the first six
   arguments (depending on size) may go into these registers.
   arguments (depending on size) may go into these registers.
   The rest go on the stack.
   The rest go on the stack.
 
 
   Arguments that are smaller than 4 bytes will still take up a whole
   Arguments that are smaller than 4 bytes will still take up a whole
   register or a whole 32-bit word on the stack, and will be
   register or a whole 32-bit word on the stack, and will be
   right-justified in the register or the stack word.  This includes
   right-justified in the register or the stack word.  This includes
   chars, shorts, and small aggregate types.
   chars, shorts, and small aggregate types.
 
 
   Arguments that are four bytes or less in size are placed in the
   Arguments that are four bytes or less in size are placed in the
   even-numbered register of a register pair, and the odd-numbered
   even-numbered register of a register pair, and the odd-numbered
   register is not used.
   register is not used.
 
 
   Arguments of 8 bytes size (such as floating point doubles) are placed
   Arguments of 8 bytes size (such as floating point doubles) are placed
   in a register pair.  The least significant 32-bit word is placed in
   in a register pair.  The least significant 32-bit word is placed in
   the even-numbered register, and the most significant word in the
   the even-numbered register, and the most significant word in the
   odd-numbered register.
   odd-numbered register.
 
 
   Aggregate types with sizes between 4 and 8 bytes are passed
   Aggregate types with sizes between 4 and 8 bytes are passed
   entirely on the stack, and are left-justified within the
   entirely on the stack, and are left-justified within the
   double-word (as opposed to aggregates smaller than 4 bytes
   double-word (as opposed to aggregates smaller than 4 bytes
   which are right-justified).
   which are right-justified).
 
 
   Aggregates of greater than 8 bytes are first copied onto the stack,
   Aggregates of greater than 8 bytes are first copied onto the stack,
   and then a pointer to the copy is passed in the place of the normal
   and then a pointer to the copy is passed in the place of the normal
   argument (either in a register if available, or on the stack).
   argument (either in a register if available, or on the stack).
 
 
   Functions that must return an aggregate type can return it in the
   Functions that must return an aggregate type can return it in the
   normal return value registers (R2 and R3) if its size is 8 bytes or
   normal return value registers (R2 and R3) if its size is 8 bytes or
   less.  For larger return values, the caller must allocate space for
   less.  For larger return values, the caller must allocate space for
   the callee to copy the return value to.  A pointer to this space is
   the callee to copy the return value to.  A pointer to this space is
   passed as an implicit first argument, always in R0. */
   passed as an implicit first argument, always in R0. */
 
 
CORE_ADDR
CORE_ADDR
tic80_push_arguments (nargs, args, sp, struct_return, struct_addr)
tic80_push_arguments (nargs, args, sp, struct_return, struct_addr)
     int nargs;
     int nargs;
     value_ptr *args;
     value_ptr *args;
     CORE_ADDR sp;
     CORE_ADDR sp;
     unsigned char struct_return;
     unsigned char struct_return;
     CORE_ADDR struct_addr;
     CORE_ADDR struct_addr;
{
{
  int stack_offset, stack_alloc;
  int stack_offset, stack_alloc;
  int argreg;
  int argreg;
  int argnum;
  int argnum;
  struct type *type;
  struct type *type;
  CORE_ADDR regval;
  CORE_ADDR regval;
  char *val;
  char *val;
  char valbuf[4];
  char valbuf[4];
  int len;
  int len;
  int odd_sized_struct;
  int odd_sized_struct;
  int is_struct;
  int is_struct;
 
 
  /* first force sp to a 4-byte alignment */
  /* first force sp to a 4-byte alignment */
  sp = sp & ~3;
  sp = sp & ~3;
 
 
  argreg = ARG0_REGNUM;
  argreg = ARG0_REGNUM;
  /* The "struct return pointer" pseudo-argument goes in R0 */
  /* The "struct return pointer" pseudo-argument goes in R0 */
  if (struct_return)
  if (struct_return)
    write_register (argreg++, struct_addr);
    write_register (argreg++, struct_addr);
 
 
  /* Now make sure there's space on the stack */
  /* Now make sure there's space on the stack */
  for (argnum = 0, stack_alloc = 0;
  for (argnum = 0, stack_alloc = 0;
       argnum < nargs; argnum++)
       argnum < nargs; argnum++)
    stack_alloc += ((TYPE_LENGTH (VALUE_TYPE (args[argnum])) + 3) & ~3);
    stack_alloc += ((TYPE_LENGTH (VALUE_TYPE (args[argnum])) + 3) & ~3);
  sp -= stack_alloc;            /* make room on stack for args */
  sp -= stack_alloc;            /* make room on stack for args */
 
 
 
 
  /* Now load as many as possible of the first arguments into
  /* Now load as many as possible of the first arguments into
     registers, and push the rest onto the stack.  There are 16 bytes
     registers, and push the rest onto the stack.  There are 16 bytes
     in four registers available.  Loop thru args from first to last.  */
     in four registers available.  Loop thru args from first to last.  */
 
 
  argreg = ARG0_REGNUM;
  argreg = ARG0_REGNUM;
  for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
  for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
    {
    {
      type = VALUE_TYPE (args[argnum]);
      type = VALUE_TYPE (args[argnum]);
      len = TYPE_LENGTH (type);
      len = TYPE_LENGTH (type);
      memset (valbuf, 0, sizeof (valbuf));
      memset (valbuf, 0, sizeof (valbuf));
      val = (char *) VALUE_CONTENTS (args[argnum]);
      val = (char *) VALUE_CONTENTS (args[argnum]);
 
 
/* FIXME -- tic80 can take doubleword arguments in register pairs */
/* FIXME -- tic80 can take doubleword arguments in register pairs */
      is_struct = (type->code == TYPE_CODE_STRUCT);
      is_struct = (type->code == TYPE_CODE_STRUCT);
      odd_sized_struct = 0;
      odd_sized_struct = 0;
 
 
      if (!is_struct)
      if (!is_struct)
        {
        {
          if (len < 4)
          if (len < 4)
            {                   /* value gets right-justified in the register or stack word */
            {                   /* value gets right-justified in the register or stack word */
              memcpy (valbuf + (4 - len), val, len);
              memcpy (valbuf + (4 - len), val, len);
              val = valbuf;
              val = valbuf;
            }
            }
          if (len > 4 && (len & 3) != 0)
          if (len > 4 && (len & 3) != 0)
            odd_sized_struct = 1;       /* such structs go entirely on stack */
            odd_sized_struct = 1;       /* such structs go entirely on stack */
        }
        }
      else
      else
        {
        {
          /* Structs are always passed by reference. */
          /* Structs are always passed by reference. */
          write_register (argreg, sp + stack_offset);
          write_register (argreg, sp + stack_offset);
          argreg++;
          argreg++;
        }
        }
 
 
      while (len > 0)
      while (len > 0)
        {
        {
          if (is_struct || argreg > ARGLAST_REGNUM || odd_sized_struct)
          if (is_struct || argreg > ARGLAST_REGNUM || odd_sized_struct)
            {                   /* must go on the stack */
            {                   /* must go on the stack */
              write_memory (sp + stack_offset, val, 4);
              write_memory (sp + stack_offset, val, 4);
              stack_offset += 4;
              stack_offset += 4;
            }
            }
          /* NOTE WELL!!!!!  This is not an "else if" clause!!!
          /* NOTE WELL!!!!!  This is not an "else if" clause!!!
             That's because some things get passed on the stack
             That's because some things get passed on the stack
             AND in the registers!   */
             AND in the registers!   */
          if (!is_struct && argreg <= ARGLAST_REGNUM)
          if (!is_struct && argreg <= ARGLAST_REGNUM)
            {                   /* there's room in a register */
            {                   /* there's room in a register */
              regval = extract_address (val, REGISTER_RAW_SIZE (argreg));
              regval = extract_address (val, REGISTER_RAW_SIZE (argreg));
              write_register (argreg, regval);
              write_register (argreg, regval);
              argreg += 2;      /* FIXME -- what about doubleword args? */
              argreg += 2;      /* FIXME -- what about doubleword args? */
            }
            }
          /* Store the value 4 bytes at a time.  This means that things
          /* Store the value 4 bytes at a time.  This means that things
             larger than 4 bytes may go partly in registers and partly
             larger than 4 bytes may go partly in registers and partly
             on the stack.  */
             on the stack.  */
          len -= REGISTER_RAW_SIZE (argreg);
          len -= REGISTER_RAW_SIZE (argreg);
          val += REGISTER_RAW_SIZE (argreg);
          val += REGISTER_RAW_SIZE (argreg);
        }
        }
    }
    }
  return sp;
  return sp;
}
}
 
 
/* Function: tic80_write_sp
/* Function: tic80_write_sp
   Because SP is really a read-only register that mirrors either SPU or SPI,
   Because SP is really a read-only register that mirrors either SPU or SPI,
   we must actually write one of those two as well, depending on PSW. */
   we must actually write one of those two as well, depending on PSW. */
 
 
void
void
tic80_write_sp (val)
tic80_write_sp (val)
     CORE_ADDR val;
     CORE_ADDR val;
{
{
#if 0
#if 0
  unsigned long psw = read_register (PSW_REGNUM);
  unsigned long psw = read_register (PSW_REGNUM);
 
 
  if (psw & 0x80)               /* stack mode: user or interrupt */
  if (psw & 0x80)               /* stack mode: user or interrupt */
    write_register (SPU_REGNUM, val);
    write_register (SPU_REGNUM, val);
  else
  else
    write_register (SPI_REGNUM, val);
    write_register (SPI_REGNUM, val);
#endif
#endif
  write_register (SP_REGNUM, val);
  write_register (SP_REGNUM, val);
}
}
 
 
void
void
_initialize_tic80_tdep ()
_initialize_tic80_tdep ()
{
{
  tm_print_insn = print_insn_tic80;
  tm_print_insn = print_insn_tic80;
}
}
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.