OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [gdb-5.0/] [gdb/] [valarith.c] - Diff between revs 105 and 1765

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 105 Rev 1765
/* Perform arithmetic and other operations on values, for GDB.
/* Perform arithmetic and other operations on values, for GDB.
   Copyright 1986, 89, 91, 92, 93, 94, 95, 96, 97, 1998
   Copyright 1986, 89, 91, 92, 93, 94, 95, 96, 97, 1998
   Free Software Foundation, Inc.
   Free Software Foundation, Inc.
 
 
   This file is part of GDB.
   This file is part of GDB.
 
 
   This program is free software; you can redistribute it and/or modify
   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2 of the License, or
   the Free Software Foundation; either version 2 of the License, or
   (at your option) any later version.
   (at your option) any later version.
 
 
   This program is distributed in the hope that it will be useful,
   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.
   GNU General Public License for more details.
 
 
   You should have received a copy of the GNU General Public License
   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   along with this program; if not, write to the Free Software
   Foundation, Inc., 59 Temple Place - Suite 330,
   Foundation, Inc., 59 Temple Place - Suite 330,
   Boston, MA 02111-1307, USA.  */
   Boston, MA 02111-1307, USA.  */
 
 
#include "defs.h"
#include "defs.h"
#include "value.h"
#include "value.h"
#include "symtab.h"
#include "symtab.h"
#include "gdbtypes.h"
#include "gdbtypes.h"
#include "expression.h"
#include "expression.h"
#include "target.h"
#include "target.h"
#include "language.h"
#include "language.h"
#include "demangle.h"
#include "demangle.h"
#include "gdb_string.h"
#include "gdb_string.h"
#include <math.h>
#include <math.h>
 
 
/* Define whether or not the C operator '/' truncates towards zero for
/* Define whether or not the C operator '/' truncates towards zero for
   differently signed operands (truncation direction is undefined in C). */
   differently signed operands (truncation direction is undefined in C). */
 
 
#ifndef TRUNCATION_TOWARDS_ZERO
#ifndef TRUNCATION_TOWARDS_ZERO
#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
#endif
#endif
 
 
static value_ptr value_subscripted_rvalue PARAMS ((value_ptr, value_ptr, int));
static value_ptr value_subscripted_rvalue PARAMS ((value_ptr, value_ptr, int));
 
 
void _initialize_valarith PARAMS ((void));
void _initialize_valarith PARAMS ((void));


 
 
value_ptr
value_ptr
value_add (arg1, arg2)
value_add (arg1, arg2)
     value_ptr arg1, arg2;
     value_ptr arg1, arg2;
{
{
  register value_ptr valint, valptr;
  register value_ptr valint, valptr;
  register int len;
  register int len;
  struct type *type1, *type2, *valptrtype;
  struct type *type1, *type2, *valptrtype;
 
 
  COERCE_NUMBER (arg1);
  COERCE_NUMBER (arg1);
  COERCE_NUMBER (arg2);
  COERCE_NUMBER (arg2);
  type1 = check_typedef (VALUE_TYPE (arg1));
  type1 = check_typedef (VALUE_TYPE (arg1));
  type2 = check_typedef (VALUE_TYPE (arg2));
  type2 = check_typedef (VALUE_TYPE (arg2));
 
 
  if ((TYPE_CODE (type1) == TYPE_CODE_PTR
  if ((TYPE_CODE (type1) == TYPE_CODE_PTR
       || TYPE_CODE (type2) == TYPE_CODE_PTR)
       || TYPE_CODE (type2) == TYPE_CODE_PTR)
      &&
      &&
      (TYPE_CODE (type1) == TYPE_CODE_INT
      (TYPE_CODE (type1) == TYPE_CODE_INT
       || TYPE_CODE (type2) == TYPE_CODE_INT))
       || TYPE_CODE (type2) == TYPE_CODE_INT))
    /* Exactly one argument is a pointer, and one is an integer.  */
    /* Exactly one argument is a pointer, and one is an integer.  */
    {
    {
      value_ptr retval;
      value_ptr retval;
 
 
      if (TYPE_CODE (type1) == TYPE_CODE_PTR)
      if (TYPE_CODE (type1) == TYPE_CODE_PTR)
        {
        {
          valptr = arg1;
          valptr = arg1;
          valint = arg2;
          valint = arg2;
          valptrtype = type1;
          valptrtype = type1;
        }
        }
      else
      else
        {
        {
          valptr = arg2;
          valptr = arg2;
          valint = arg1;
          valint = arg1;
          valptrtype = type2;
          valptrtype = type2;
        }
        }
      len = TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (valptrtype)));
      len = TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (valptrtype)));
      if (len == 0)
      if (len == 0)
        len = 1;                /* For (void *) */
        len = 1;                /* For (void *) */
      retval = value_from_longest (valptrtype,
      retval = value_from_longest (valptrtype,
                                   value_as_long (valptr)
                                   value_as_long (valptr)
                                   + (len * value_as_long (valint)));
                                   + (len * value_as_long (valint)));
      VALUE_BFD_SECTION (retval) = VALUE_BFD_SECTION (valptr);
      VALUE_BFD_SECTION (retval) = VALUE_BFD_SECTION (valptr);
      return retval;
      return retval;
    }
    }
 
 
  return value_binop (arg1, arg2, BINOP_ADD);
  return value_binop (arg1, arg2, BINOP_ADD);
}
}
 
 
value_ptr
value_ptr
value_sub (arg1, arg2)
value_sub (arg1, arg2)
     value_ptr arg1, arg2;
     value_ptr arg1, arg2;
{
{
  struct type *type1, *type2;
  struct type *type1, *type2;
  COERCE_NUMBER (arg1);
  COERCE_NUMBER (arg1);
  COERCE_NUMBER (arg2);
  COERCE_NUMBER (arg2);
  type1 = check_typedef (VALUE_TYPE (arg1));
  type1 = check_typedef (VALUE_TYPE (arg1));
  type2 = check_typedef (VALUE_TYPE (arg2));
  type2 = check_typedef (VALUE_TYPE (arg2));
 
 
  if (TYPE_CODE (type1) == TYPE_CODE_PTR)
  if (TYPE_CODE (type1) == TYPE_CODE_PTR)
    {
    {
      if (TYPE_CODE (type2) == TYPE_CODE_INT)
      if (TYPE_CODE (type2) == TYPE_CODE_INT)
        {
        {
          /* pointer - integer.  */
          /* pointer - integer.  */
          LONGEST sz = TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type1)));
          LONGEST sz = TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type1)));
          return value_from_longest
          return value_from_longest
            (VALUE_TYPE (arg1),
            (VALUE_TYPE (arg1),
             value_as_long (arg1) - (sz * value_as_long (arg2)));
             value_as_long (arg1) - (sz * value_as_long (arg2)));
        }
        }
      else if (TYPE_CODE (type2) == TYPE_CODE_PTR
      else if (TYPE_CODE (type2) == TYPE_CODE_PTR
               && TYPE_LENGTH (TYPE_TARGET_TYPE (type1))
               && TYPE_LENGTH (TYPE_TARGET_TYPE (type1))
               == TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
               == TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
        {
        {
          /* pointer to <type x> - pointer to <type x>.  */
          /* pointer to <type x> - pointer to <type x>.  */
          LONGEST sz = TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type1)));
          LONGEST sz = TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type1)));
          return value_from_longest
          return value_from_longest
            (builtin_type_long, /* FIXME -- should be ptrdiff_t */
            (builtin_type_long, /* FIXME -- should be ptrdiff_t */
             (value_as_long (arg1) - value_as_long (arg2)) / sz);
             (value_as_long (arg1) - value_as_long (arg2)) / sz);
        }
        }
      else
      else
        {
        {
          error ("\
          error ("\
First argument of `-' is a pointer and second argument is neither\n\
First argument of `-' is a pointer and second argument is neither\n\
an integer nor a pointer of the same type.");
an integer nor a pointer of the same type.");
        }
        }
    }
    }
 
 
  return value_binop (arg1, arg2, BINOP_SUB);
  return value_binop (arg1, arg2, BINOP_SUB);
}
}
 
 
/* Return the value of ARRAY[IDX].
/* Return the value of ARRAY[IDX].
   See comments in value_coerce_array() for rationale for reason for
   See comments in value_coerce_array() for rationale for reason for
   doing lower bounds adjustment here rather than there.
   doing lower bounds adjustment here rather than there.
   FIXME:  Perhaps we should validate that the index is valid and if
   FIXME:  Perhaps we should validate that the index is valid and if
   verbosity is set, warn about invalid indices (but still use them). */
   verbosity is set, warn about invalid indices (but still use them). */
 
 
value_ptr
value_ptr
value_subscript (array, idx)
value_subscript (array, idx)
     value_ptr array, idx;
     value_ptr array, idx;
{
{
  value_ptr bound;
  value_ptr bound;
  int c_style = current_language->c_style_arrays;
  int c_style = current_language->c_style_arrays;
  struct type *tarray;
  struct type *tarray;
 
 
  COERCE_REF (array);
  COERCE_REF (array);
  tarray = check_typedef (VALUE_TYPE (array));
  tarray = check_typedef (VALUE_TYPE (array));
  COERCE_VARYING_ARRAY (array, tarray);
  COERCE_VARYING_ARRAY (array, tarray);
 
 
  if (TYPE_CODE (tarray) == TYPE_CODE_ARRAY
  if (TYPE_CODE (tarray) == TYPE_CODE_ARRAY
      || TYPE_CODE (tarray) == TYPE_CODE_STRING)
      || TYPE_CODE (tarray) == TYPE_CODE_STRING)
    {
    {
      struct type *range_type = TYPE_INDEX_TYPE (tarray);
      struct type *range_type = TYPE_INDEX_TYPE (tarray);
      LONGEST lowerbound, upperbound;
      LONGEST lowerbound, upperbound;
      get_discrete_bounds (range_type, &lowerbound, &upperbound);
      get_discrete_bounds (range_type, &lowerbound, &upperbound);
 
 
      if (VALUE_LVAL (array) != lval_memory)
      if (VALUE_LVAL (array) != lval_memory)
        return value_subscripted_rvalue (array, idx, lowerbound);
        return value_subscripted_rvalue (array, idx, lowerbound);
 
 
      if (c_style == 0)
      if (c_style == 0)
        {
        {
          LONGEST index = value_as_long (idx);
          LONGEST index = value_as_long (idx);
          if (index >= lowerbound && index <= upperbound)
          if (index >= lowerbound && index <= upperbound)
            return value_subscripted_rvalue (array, idx, lowerbound);
            return value_subscripted_rvalue (array, idx, lowerbound);
          warning ("array or string index out of range");
          warning ("array or string index out of range");
          /* fall doing C stuff */
          /* fall doing C stuff */
          c_style = 1;
          c_style = 1;
        }
        }
 
 
      if (lowerbound != 0)
      if (lowerbound != 0)
        {
        {
          bound = value_from_longest (builtin_type_int, (LONGEST) lowerbound);
          bound = value_from_longest (builtin_type_int, (LONGEST) lowerbound);
          idx = value_sub (idx, bound);
          idx = value_sub (idx, bound);
        }
        }
 
 
      array = value_coerce_array (array);
      array = value_coerce_array (array);
    }
    }
 
 
  if (TYPE_CODE (tarray) == TYPE_CODE_BITSTRING)
  if (TYPE_CODE (tarray) == TYPE_CODE_BITSTRING)
    {
    {
      struct type *range_type = TYPE_INDEX_TYPE (tarray);
      struct type *range_type = TYPE_INDEX_TYPE (tarray);
      LONGEST index = value_as_long (idx);
      LONGEST index = value_as_long (idx);
      value_ptr v;
      value_ptr v;
      int offset, byte, bit_index;
      int offset, byte, bit_index;
      LONGEST lowerbound, upperbound;
      LONGEST lowerbound, upperbound;
      get_discrete_bounds (range_type, &lowerbound, &upperbound);
      get_discrete_bounds (range_type, &lowerbound, &upperbound);
      if (index < lowerbound || index > upperbound)
      if (index < lowerbound || index > upperbound)
        error ("bitstring index out of range");
        error ("bitstring index out of range");
      index -= lowerbound;
      index -= lowerbound;
      offset = index / TARGET_CHAR_BIT;
      offset = index / TARGET_CHAR_BIT;
      byte = *((char *) VALUE_CONTENTS (array) + offset);
      byte = *((char *) VALUE_CONTENTS (array) + offset);
      bit_index = index % TARGET_CHAR_BIT;
      bit_index = index % TARGET_CHAR_BIT;
      byte >>= (BITS_BIG_ENDIAN ? TARGET_CHAR_BIT - 1 - bit_index : bit_index);
      byte >>= (BITS_BIG_ENDIAN ? TARGET_CHAR_BIT - 1 - bit_index : bit_index);
      v = value_from_longest (LA_BOOL_TYPE, byte & 1);
      v = value_from_longest (LA_BOOL_TYPE, byte & 1);
      VALUE_BITPOS (v) = bit_index;
      VALUE_BITPOS (v) = bit_index;
      VALUE_BITSIZE (v) = 1;
      VALUE_BITSIZE (v) = 1;
      VALUE_LVAL (v) = VALUE_LVAL (array);
      VALUE_LVAL (v) = VALUE_LVAL (array);
      if (VALUE_LVAL (array) == lval_internalvar)
      if (VALUE_LVAL (array) == lval_internalvar)
        VALUE_LVAL (v) = lval_internalvar_component;
        VALUE_LVAL (v) = lval_internalvar_component;
      VALUE_ADDRESS (v) = VALUE_ADDRESS (array);
      VALUE_ADDRESS (v) = VALUE_ADDRESS (array);
      VALUE_OFFSET (v) = offset + VALUE_OFFSET (array);
      VALUE_OFFSET (v) = offset + VALUE_OFFSET (array);
      return v;
      return v;
    }
    }
 
 
  if (c_style)
  if (c_style)
    return value_ind (value_add (array, idx));
    return value_ind (value_add (array, idx));
  else
  else
    error ("not an array or string");
    error ("not an array or string");
}
}
 
 
/* Return the value of EXPR[IDX], expr an aggregate rvalue
/* Return the value of EXPR[IDX], expr an aggregate rvalue
   (eg, a vector register).  This routine used to promote floats
   (eg, a vector register).  This routine used to promote floats
   to doubles, but no longer does.  */
   to doubles, but no longer does.  */
 
 
static value_ptr
static value_ptr
value_subscripted_rvalue (array, idx, lowerbound)
value_subscripted_rvalue (array, idx, lowerbound)
     value_ptr array, idx;
     value_ptr array, idx;
     int lowerbound;
     int lowerbound;
{
{
  struct type *array_type = check_typedef (VALUE_TYPE (array));
  struct type *array_type = check_typedef (VALUE_TYPE (array));
  struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (array_type));
  struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (array_type));
  unsigned int elt_size = TYPE_LENGTH (elt_type);
  unsigned int elt_size = TYPE_LENGTH (elt_type);
  LONGEST index = value_as_long (idx);
  LONGEST index = value_as_long (idx);
  unsigned int elt_offs = elt_size * longest_to_int (index - lowerbound);
  unsigned int elt_offs = elt_size * longest_to_int (index - lowerbound);
  value_ptr v;
  value_ptr v;
 
 
  if (index < lowerbound || elt_offs >= TYPE_LENGTH (array_type))
  if (index < lowerbound || elt_offs >= TYPE_LENGTH (array_type))
    error ("no such vector element");
    error ("no such vector element");
 
 
  v = allocate_value (elt_type);
  v = allocate_value (elt_type);
  if (VALUE_LAZY (array))
  if (VALUE_LAZY (array))
    VALUE_LAZY (v) = 1;
    VALUE_LAZY (v) = 1;
  else
  else
    memcpy (VALUE_CONTENTS (v), VALUE_CONTENTS (array) + elt_offs, elt_size);
    memcpy (VALUE_CONTENTS (v), VALUE_CONTENTS (array) + elt_offs, elt_size);
 
 
  if (VALUE_LVAL (array) == lval_internalvar)
  if (VALUE_LVAL (array) == lval_internalvar)
    VALUE_LVAL (v) = lval_internalvar_component;
    VALUE_LVAL (v) = lval_internalvar_component;
  else
  else
    VALUE_LVAL (v) = VALUE_LVAL (array);
    VALUE_LVAL (v) = VALUE_LVAL (array);
  VALUE_ADDRESS (v) = VALUE_ADDRESS (array);
  VALUE_ADDRESS (v) = VALUE_ADDRESS (array);
  VALUE_OFFSET (v) = VALUE_OFFSET (array) + elt_offs;
  VALUE_OFFSET (v) = VALUE_OFFSET (array) + elt_offs;
  return v;
  return v;
}
}


/* Check to see if either argument is a structure.  This is called so
/* Check to see if either argument is a structure.  This is called so
   we know whether to go ahead with the normal binop or look for a
   we know whether to go ahead with the normal binop or look for a
   user defined function instead.
   user defined function instead.
 
 
   For now, we do not overload the `=' operator.  */
   For now, we do not overload the `=' operator.  */
 
 
int
int
binop_user_defined_p (op, arg1, arg2)
binop_user_defined_p (op, arg1, arg2)
     enum exp_opcode op;
     enum exp_opcode op;
     value_ptr arg1, arg2;
     value_ptr arg1, arg2;
{
{
  struct type *type1, *type2;
  struct type *type1, *type2;
  if (op == BINOP_ASSIGN || op == BINOP_CONCAT)
  if (op == BINOP_ASSIGN || op == BINOP_CONCAT)
    return 0;
    return 0;
  type1 = check_typedef (VALUE_TYPE (arg1));
  type1 = check_typedef (VALUE_TYPE (arg1));
  type2 = check_typedef (VALUE_TYPE (arg2));
  type2 = check_typedef (VALUE_TYPE (arg2));
  return (TYPE_CODE (type1) == TYPE_CODE_STRUCT
  return (TYPE_CODE (type1) == TYPE_CODE_STRUCT
          || TYPE_CODE (type2) == TYPE_CODE_STRUCT
          || TYPE_CODE (type2) == TYPE_CODE_STRUCT
          || (TYPE_CODE (type1) == TYPE_CODE_REF
          || (TYPE_CODE (type1) == TYPE_CODE_REF
              && TYPE_CODE (TYPE_TARGET_TYPE (type1)) == TYPE_CODE_STRUCT)
              && TYPE_CODE (TYPE_TARGET_TYPE (type1)) == TYPE_CODE_STRUCT)
          || (TYPE_CODE (type2) == TYPE_CODE_REF
          || (TYPE_CODE (type2) == TYPE_CODE_REF
              && TYPE_CODE (TYPE_TARGET_TYPE (type2)) == TYPE_CODE_STRUCT));
              && TYPE_CODE (TYPE_TARGET_TYPE (type2)) == TYPE_CODE_STRUCT));
}
}
 
 
/* Check to see if argument is a structure.  This is called so
/* Check to see if argument is a structure.  This is called so
   we know whether to go ahead with the normal unop or look for a
   we know whether to go ahead with the normal unop or look for a
   user defined function instead.
   user defined function instead.
 
 
   For now, we do not overload the `&' operator.  */
   For now, we do not overload the `&' operator.  */
 
 
int
int
unop_user_defined_p (op, arg1)
unop_user_defined_p (op, arg1)
     enum exp_opcode op;
     enum exp_opcode op;
     value_ptr arg1;
     value_ptr arg1;
{
{
  struct type *type1;
  struct type *type1;
  if (op == UNOP_ADDR)
  if (op == UNOP_ADDR)
    return 0;
    return 0;
  type1 = check_typedef (VALUE_TYPE (arg1));
  type1 = check_typedef (VALUE_TYPE (arg1));
  for (;;)
  for (;;)
    {
    {
      if (TYPE_CODE (type1) == TYPE_CODE_STRUCT)
      if (TYPE_CODE (type1) == TYPE_CODE_STRUCT)
        return 1;
        return 1;
      else if (TYPE_CODE (type1) == TYPE_CODE_REF)
      else if (TYPE_CODE (type1) == TYPE_CODE_REF)
        type1 = TYPE_TARGET_TYPE (type1);
        type1 = TYPE_TARGET_TYPE (type1);
      else
      else
        return 0;
        return 0;
    }
    }
}
}
 
 
/* We know either arg1 or arg2 is a structure, so try to find the right
/* We know either arg1 or arg2 is a structure, so try to find the right
   user defined function.  Create an argument vector that calls
   user defined function.  Create an argument vector that calls
   arg1.operator @ (arg1,arg2) and return that value (where '@' is any
   arg1.operator @ (arg1,arg2) and return that value (where '@' is any
   binary operator which is legal for GNU C++).
   binary operator which is legal for GNU C++).
 
 
   OP is the operatore, and if it is BINOP_ASSIGN_MODIFY, then OTHEROP
   OP is the operatore, and if it is BINOP_ASSIGN_MODIFY, then OTHEROP
   is the opcode saying how to modify it.  Otherwise, OTHEROP is
   is the opcode saying how to modify it.  Otherwise, OTHEROP is
   unused.  */
   unused.  */
 
 
value_ptr
value_ptr
value_x_binop (arg1, arg2, op, otherop, noside)
value_x_binop (arg1, arg2, op, otherop, noside)
     value_ptr arg1, arg2;
     value_ptr arg1, arg2;
     enum exp_opcode op, otherop;
     enum exp_opcode op, otherop;
     enum noside noside;
     enum noside noside;
{
{
  value_ptr *argvec;
  value_ptr *argvec;
  char *ptr;
  char *ptr;
  char tstr[13];
  char tstr[13];
  int static_memfuncp;
  int static_memfuncp;
 
 
  COERCE_REF (arg1);
  COERCE_REF (arg1);
  COERCE_REF (arg2);
  COERCE_REF (arg2);
  COERCE_ENUM (arg1);
  COERCE_ENUM (arg1);
  COERCE_ENUM (arg2);
  COERCE_ENUM (arg2);
 
 
  /* now we know that what we have to do is construct our
  /* now we know that what we have to do is construct our
     arg vector and find the right function to call it with.  */
     arg vector and find the right function to call it with.  */
 
 
  if (TYPE_CODE (check_typedef (VALUE_TYPE (arg1))) != TYPE_CODE_STRUCT)
  if (TYPE_CODE (check_typedef (VALUE_TYPE (arg1))) != TYPE_CODE_STRUCT)
    error ("Can't do that binary op on that type");     /* FIXME be explicit */
    error ("Can't do that binary op on that type");     /* FIXME be explicit */
 
 
  argvec = (value_ptr *) alloca (sizeof (value_ptr) * 4);
  argvec = (value_ptr *) alloca (sizeof (value_ptr) * 4);
  argvec[1] = value_addr (arg1);
  argvec[1] = value_addr (arg1);
  argvec[2] = arg2;
  argvec[2] = arg2;
  argvec[3] = 0;
  argvec[3] = 0;
 
 
  /* make the right function name up */
  /* make the right function name up */
  strcpy (tstr, "operator__");
  strcpy (tstr, "operator__");
  ptr = tstr + 8;
  ptr = tstr + 8;
  switch (op)
  switch (op)
    {
    {
    case BINOP_ADD:
    case BINOP_ADD:
      strcpy (ptr, "+");
      strcpy (ptr, "+");
      break;
      break;
    case BINOP_SUB:
    case BINOP_SUB:
      strcpy (ptr, "-");
      strcpy (ptr, "-");
      break;
      break;
    case BINOP_MUL:
    case BINOP_MUL:
      strcpy (ptr, "*");
      strcpy (ptr, "*");
      break;
      break;
    case BINOP_DIV:
    case BINOP_DIV:
      strcpy (ptr, "/");
      strcpy (ptr, "/");
      break;
      break;
    case BINOP_REM:
    case BINOP_REM:
      strcpy (ptr, "%");
      strcpy (ptr, "%");
      break;
      break;
    case BINOP_LSH:
    case BINOP_LSH:
      strcpy (ptr, "<<");
      strcpy (ptr, "<<");
      break;
      break;
    case BINOP_RSH:
    case BINOP_RSH:
      strcpy (ptr, ">>");
      strcpy (ptr, ">>");
      break;
      break;
    case BINOP_BITWISE_AND:
    case BINOP_BITWISE_AND:
      strcpy (ptr, "&");
      strcpy (ptr, "&");
      break;
      break;
    case BINOP_BITWISE_IOR:
    case BINOP_BITWISE_IOR:
      strcpy (ptr, "|");
      strcpy (ptr, "|");
      break;
      break;
    case BINOP_BITWISE_XOR:
    case BINOP_BITWISE_XOR:
      strcpy (ptr, "^");
      strcpy (ptr, "^");
      break;
      break;
    case BINOP_LOGICAL_AND:
    case BINOP_LOGICAL_AND:
      strcpy (ptr, "&&");
      strcpy (ptr, "&&");
      break;
      break;
    case BINOP_LOGICAL_OR:
    case BINOP_LOGICAL_OR:
      strcpy (ptr, "||");
      strcpy (ptr, "||");
      break;
      break;
    case BINOP_MIN:
    case BINOP_MIN:
      strcpy (ptr, "<?");
      strcpy (ptr, "<?");
      break;
      break;
    case BINOP_MAX:
    case BINOP_MAX:
      strcpy (ptr, ">?");
      strcpy (ptr, ">?");
      break;
      break;
    case BINOP_ASSIGN:
    case BINOP_ASSIGN:
      strcpy (ptr, "=");
      strcpy (ptr, "=");
      break;
      break;
    case BINOP_ASSIGN_MODIFY:
    case BINOP_ASSIGN_MODIFY:
      switch (otherop)
      switch (otherop)
        {
        {
        case BINOP_ADD:
        case BINOP_ADD:
          strcpy (ptr, "+=");
          strcpy (ptr, "+=");
          break;
          break;
        case BINOP_SUB:
        case BINOP_SUB:
          strcpy (ptr, "-=");
          strcpy (ptr, "-=");
          break;
          break;
        case BINOP_MUL:
        case BINOP_MUL:
          strcpy (ptr, "*=");
          strcpy (ptr, "*=");
          break;
          break;
        case BINOP_DIV:
        case BINOP_DIV:
          strcpy (ptr, "/=");
          strcpy (ptr, "/=");
          break;
          break;
        case BINOP_REM:
        case BINOP_REM:
          strcpy (ptr, "%=");
          strcpy (ptr, "%=");
          break;
          break;
        case BINOP_BITWISE_AND:
        case BINOP_BITWISE_AND:
          strcpy (ptr, "&=");
          strcpy (ptr, "&=");
          break;
          break;
        case BINOP_BITWISE_IOR:
        case BINOP_BITWISE_IOR:
          strcpy (ptr, "|=");
          strcpy (ptr, "|=");
          break;
          break;
        case BINOP_BITWISE_XOR:
        case BINOP_BITWISE_XOR:
          strcpy (ptr, "^=");
          strcpy (ptr, "^=");
          break;
          break;
        case BINOP_MOD: /* invalid */
        case BINOP_MOD: /* invalid */
        default:
        default:
          error ("Invalid binary operation specified.");
          error ("Invalid binary operation specified.");
        }
        }
      break;
      break;
    case BINOP_SUBSCRIPT:
    case BINOP_SUBSCRIPT:
      strcpy (ptr, "[]");
      strcpy (ptr, "[]");
      break;
      break;
    case BINOP_EQUAL:
    case BINOP_EQUAL:
      strcpy (ptr, "==");
      strcpy (ptr, "==");
      break;
      break;
    case BINOP_NOTEQUAL:
    case BINOP_NOTEQUAL:
      strcpy (ptr, "!=");
      strcpy (ptr, "!=");
      break;
      break;
    case BINOP_LESS:
    case BINOP_LESS:
      strcpy (ptr, "<");
      strcpy (ptr, "<");
      break;
      break;
    case BINOP_GTR:
    case BINOP_GTR:
      strcpy (ptr, ">");
      strcpy (ptr, ">");
      break;
      break;
    case BINOP_GEQ:
    case BINOP_GEQ:
      strcpy (ptr, ">=");
      strcpy (ptr, ">=");
      break;
      break;
    case BINOP_LEQ:
    case BINOP_LEQ:
      strcpy (ptr, "<=");
      strcpy (ptr, "<=");
      break;
      break;
    case BINOP_MOD:             /* invalid */
    case BINOP_MOD:             /* invalid */
    default:
    default:
      error ("Invalid binary operation specified.");
      error ("Invalid binary operation specified.");
    }
    }
 
 
  argvec[0] = value_struct_elt (&arg1, argvec + 1, tstr, &static_memfuncp, "structure");
  argvec[0] = value_struct_elt (&arg1, argvec + 1, tstr, &static_memfuncp, "structure");
 
 
  if (argvec[0])
  if (argvec[0])
    {
    {
      if (static_memfuncp)
      if (static_memfuncp)
        {
        {
          argvec[1] = argvec[0];
          argvec[1] = argvec[0];
          argvec++;
          argvec++;
        }
        }
      if (noside == EVAL_AVOID_SIDE_EFFECTS)
      if (noside == EVAL_AVOID_SIDE_EFFECTS)
        {
        {
          struct type *return_type;
          struct type *return_type;
          return_type
          return_type
            = TYPE_TARGET_TYPE (check_typedef (VALUE_TYPE (argvec[0])));
            = TYPE_TARGET_TYPE (check_typedef (VALUE_TYPE (argvec[0])));
          return value_zero (return_type, VALUE_LVAL (arg1));
          return value_zero (return_type, VALUE_LVAL (arg1));
        }
        }
      return call_function_by_hand (argvec[0], 2 - static_memfuncp, argvec + 1);
      return call_function_by_hand (argvec[0], 2 - static_memfuncp, argvec + 1);
    }
    }
  error ("member function %s not found", tstr);
  error ("member function %s not found", tstr);
#ifdef lint
#ifdef lint
  return call_function_by_hand (argvec[0], 2 - static_memfuncp, argvec + 1);
  return call_function_by_hand (argvec[0], 2 - static_memfuncp, argvec + 1);
#endif
#endif
}
}
 
 
/* We know that arg1 is a structure, so try to find a unary user
/* We know that arg1 is a structure, so try to find a unary user
   defined operator that matches the operator in question.
   defined operator that matches the operator in question.
   Create an argument vector that calls arg1.operator @ (arg1)
   Create an argument vector that calls arg1.operator @ (arg1)
   and return that value (where '@' is (almost) any unary operator which
   and return that value (where '@' is (almost) any unary operator which
   is legal for GNU C++).  */
   is legal for GNU C++).  */
 
 
value_ptr
value_ptr
value_x_unop (arg1, op, noside)
value_x_unop (arg1, op, noside)
     value_ptr arg1;
     value_ptr arg1;
     enum exp_opcode op;
     enum exp_opcode op;
     enum noside noside;
     enum noside noside;
{
{
  value_ptr *argvec;
  value_ptr *argvec;
  char *ptr, *mangle_ptr;
  char *ptr, *mangle_ptr;
  char tstr[13], mangle_tstr[13];
  char tstr[13], mangle_tstr[13];
  int static_memfuncp;
  int static_memfuncp;
 
 
  COERCE_REF (arg1);
  COERCE_REF (arg1);
  COERCE_ENUM (arg1);
  COERCE_ENUM (arg1);
 
 
  /* now we know that what we have to do is construct our
  /* now we know that what we have to do is construct our
     arg vector and find the right function to call it with.  */
     arg vector and find the right function to call it with.  */
 
 
  if (TYPE_CODE (check_typedef (VALUE_TYPE (arg1))) != TYPE_CODE_STRUCT)
  if (TYPE_CODE (check_typedef (VALUE_TYPE (arg1))) != TYPE_CODE_STRUCT)
    error ("Can't do that unary op on that type");      /* FIXME be explicit */
    error ("Can't do that unary op on that type");      /* FIXME be explicit */
 
 
  argvec = (value_ptr *) alloca (sizeof (value_ptr) * 3);
  argvec = (value_ptr *) alloca (sizeof (value_ptr) * 3);
  argvec[1] = value_addr (arg1);
  argvec[1] = value_addr (arg1);
  argvec[2] = 0;
  argvec[2] = 0;
 
 
  /* make the right function name up */
  /* make the right function name up */
  strcpy (tstr, "operator__");
  strcpy (tstr, "operator__");
  ptr = tstr + 8;
  ptr = tstr + 8;
  strcpy (mangle_tstr, "__");
  strcpy (mangle_tstr, "__");
  mangle_ptr = mangle_tstr + 2;
  mangle_ptr = mangle_tstr + 2;
  switch (op)
  switch (op)
    {
    {
    case UNOP_PREINCREMENT:
    case UNOP_PREINCREMENT:
      strcpy (ptr, "++");
      strcpy (ptr, "++");
      break;
      break;
    case UNOP_PREDECREMENT:
    case UNOP_PREDECREMENT:
      strcpy (ptr, "++");
      strcpy (ptr, "++");
      break;
      break;
    case UNOP_POSTINCREMENT:
    case UNOP_POSTINCREMENT:
      strcpy (ptr, "++");
      strcpy (ptr, "++");
      break;
      break;
    case UNOP_POSTDECREMENT:
    case UNOP_POSTDECREMENT:
      strcpy (ptr, "++");
      strcpy (ptr, "++");
      break;
      break;
    case UNOP_LOGICAL_NOT:
    case UNOP_LOGICAL_NOT:
      strcpy (ptr, "!");
      strcpy (ptr, "!");
      break;
      break;
    case UNOP_COMPLEMENT:
    case UNOP_COMPLEMENT:
      strcpy (ptr, "~");
      strcpy (ptr, "~");
      break;
      break;
    case UNOP_NEG:
    case UNOP_NEG:
      strcpy (ptr, "-");
      strcpy (ptr, "-");
      break;
      break;
    case UNOP_IND:
    case UNOP_IND:
      strcpy (ptr, "*");
      strcpy (ptr, "*");
      break;
      break;
    default:
    default:
      error ("Invalid unary operation specified.");
      error ("Invalid unary operation specified.");
    }
    }
 
 
  argvec[0] = value_struct_elt (&arg1, argvec + 1, tstr, &static_memfuncp, "structure");
  argvec[0] = value_struct_elt (&arg1, argvec + 1, tstr, &static_memfuncp, "structure");
 
 
  if (argvec[0])
  if (argvec[0])
    {
    {
      if (static_memfuncp)
      if (static_memfuncp)
        {
        {
          argvec[1] = argvec[0];
          argvec[1] = argvec[0];
          argvec++;
          argvec++;
        }
        }
      if (noside == EVAL_AVOID_SIDE_EFFECTS)
      if (noside == EVAL_AVOID_SIDE_EFFECTS)
        {
        {
          struct type *return_type;
          struct type *return_type;
          return_type
          return_type
            = TYPE_TARGET_TYPE (check_typedef (VALUE_TYPE (argvec[0])));
            = TYPE_TARGET_TYPE (check_typedef (VALUE_TYPE (argvec[0])));
          return value_zero (return_type, VALUE_LVAL (arg1));
          return value_zero (return_type, VALUE_LVAL (arg1));
        }
        }
      return call_function_by_hand (argvec[0], 1 - static_memfuncp, argvec + 1);
      return call_function_by_hand (argvec[0], 1 - static_memfuncp, argvec + 1);
    }
    }
  error ("member function %s not found", tstr);
  error ("member function %s not found", tstr);
  return 0;                      /* For lint -- never reached */
  return 0;                      /* For lint -- never reached */
}
}


 
 
/* Concatenate two values with the following conditions:
/* Concatenate two values with the following conditions:
 
 
   (1)  Both values must be either bitstring values or character string
   (1)  Both values must be either bitstring values or character string
   values and the resulting value consists of the concatenation of
   values and the resulting value consists of the concatenation of
   ARG1 followed by ARG2.
   ARG1 followed by ARG2.
 
 
   or
   or
 
 
   One value must be an integer value and the other value must be
   One value must be an integer value and the other value must be
   either a bitstring value or character string value, which is
   either a bitstring value or character string value, which is
   to be repeated by the number of times specified by the integer
   to be repeated by the number of times specified by the integer
   value.
   value.
 
 
 
 
   (2)  Boolean values are also allowed and are treated as bit string
   (2)  Boolean values are also allowed and are treated as bit string
   values of length 1.
   values of length 1.
 
 
   (3)  Character values are also allowed and are treated as character
   (3)  Character values are also allowed and are treated as character
   string values of length 1.
   string values of length 1.
 */
 */
 
 
value_ptr
value_ptr
value_concat (arg1, arg2)
value_concat (arg1, arg2)
     value_ptr arg1, arg2;
     value_ptr arg1, arg2;
{
{
  register value_ptr inval1, inval2, outval = NULL;
  register value_ptr inval1, inval2, outval = NULL;
  int inval1len, inval2len;
  int inval1len, inval2len;
  int count, idx;
  int count, idx;
  char *ptr;
  char *ptr;
  char inchar;
  char inchar;
  struct type *type1 = check_typedef (VALUE_TYPE (arg1));
  struct type *type1 = check_typedef (VALUE_TYPE (arg1));
  struct type *type2 = check_typedef (VALUE_TYPE (arg2));
  struct type *type2 = check_typedef (VALUE_TYPE (arg2));
 
 
  COERCE_VARYING_ARRAY (arg1, type1);
  COERCE_VARYING_ARRAY (arg1, type1);
  COERCE_VARYING_ARRAY (arg2, type2);
  COERCE_VARYING_ARRAY (arg2, type2);
 
 
  /* First figure out if we are dealing with two values to be concatenated
  /* First figure out if we are dealing with two values to be concatenated
     or a repeat count and a value to be repeated.  INVAL1 is set to the
     or a repeat count and a value to be repeated.  INVAL1 is set to the
     first of two concatenated values, or the repeat count.  INVAL2 is set
     first of two concatenated values, or the repeat count.  INVAL2 is set
     to the second of the two concatenated values or the value to be
     to the second of the two concatenated values or the value to be
     repeated. */
     repeated. */
 
 
  if (TYPE_CODE (type2) == TYPE_CODE_INT)
  if (TYPE_CODE (type2) == TYPE_CODE_INT)
    {
    {
      struct type *tmp = type1;
      struct type *tmp = type1;
      type1 = tmp;
      type1 = tmp;
      tmp = type2;
      tmp = type2;
      inval1 = arg2;
      inval1 = arg2;
      inval2 = arg1;
      inval2 = arg1;
    }
    }
  else
  else
    {
    {
      inval1 = arg1;
      inval1 = arg1;
      inval2 = arg2;
      inval2 = arg2;
    }
    }
 
 
  /* Now process the input values. */
  /* Now process the input values. */
 
 
  if (TYPE_CODE (type1) == TYPE_CODE_INT)
  if (TYPE_CODE (type1) == TYPE_CODE_INT)
    {
    {
      /* We have a repeat count.  Validate the second value and then
      /* We have a repeat count.  Validate the second value and then
         construct a value repeated that many times. */
         construct a value repeated that many times. */
      if (TYPE_CODE (type2) == TYPE_CODE_STRING
      if (TYPE_CODE (type2) == TYPE_CODE_STRING
          || TYPE_CODE (type2) == TYPE_CODE_CHAR)
          || TYPE_CODE (type2) == TYPE_CODE_CHAR)
        {
        {
          count = longest_to_int (value_as_long (inval1));
          count = longest_to_int (value_as_long (inval1));
          inval2len = TYPE_LENGTH (type2);
          inval2len = TYPE_LENGTH (type2);
          ptr = (char *) alloca (count * inval2len);
          ptr = (char *) alloca (count * inval2len);
          if (TYPE_CODE (type2) == TYPE_CODE_CHAR)
          if (TYPE_CODE (type2) == TYPE_CODE_CHAR)
            {
            {
              inchar = (char) unpack_long (type2,
              inchar = (char) unpack_long (type2,
                                           VALUE_CONTENTS (inval2));
                                           VALUE_CONTENTS (inval2));
              for (idx = 0; idx < count; idx++)
              for (idx = 0; idx < count; idx++)
                {
                {
                  *(ptr + idx) = inchar;
                  *(ptr + idx) = inchar;
                }
                }
            }
            }
          else
          else
            {
            {
              for (idx = 0; idx < count; idx++)
              for (idx = 0; idx < count; idx++)
                {
                {
                  memcpy (ptr + (idx * inval2len), VALUE_CONTENTS (inval2),
                  memcpy (ptr + (idx * inval2len), VALUE_CONTENTS (inval2),
                          inval2len);
                          inval2len);
                }
                }
            }
            }
          outval = value_string (ptr, count * inval2len);
          outval = value_string (ptr, count * inval2len);
        }
        }
      else if (TYPE_CODE (type2) == TYPE_CODE_BITSTRING
      else if (TYPE_CODE (type2) == TYPE_CODE_BITSTRING
               || TYPE_CODE (type2) == TYPE_CODE_BOOL)
               || TYPE_CODE (type2) == TYPE_CODE_BOOL)
        {
        {
          error ("unimplemented support for bitstring/boolean repeats");
          error ("unimplemented support for bitstring/boolean repeats");
        }
        }
      else
      else
        {
        {
          error ("can't repeat values of that type");
          error ("can't repeat values of that type");
        }
        }
    }
    }
  else if (TYPE_CODE (type1) == TYPE_CODE_STRING
  else if (TYPE_CODE (type1) == TYPE_CODE_STRING
           || TYPE_CODE (type1) == TYPE_CODE_CHAR)
           || TYPE_CODE (type1) == TYPE_CODE_CHAR)
    {
    {
      /* We have two character strings to concatenate. */
      /* We have two character strings to concatenate. */
      if (TYPE_CODE (type2) != TYPE_CODE_STRING
      if (TYPE_CODE (type2) != TYPE_CODE_STRING
          && TYPE_CODE (type2) != TYPE_CODE_CHAR)
          && TYPE_CODE (type2) != TYPE_CODE_CHAR)
        {
        {
          error ("Strings can only be concatenated with other strings.");
          error ("Strings can only be concatenated with other strings.");
        }
        }
      inval1len = TYPE_LENGTH (type1);
      inval1len = TYPE_LENGTH (type1);
      inval2len = TYPE_LENGTH (type2);
      inval2len = TYPE_LENGTH (type2);
      ptr = (char *) alloca (inval1len + inval2len);
      ptr = (char *) alloca (inval1len + inval2len);
      if (TYPE_CODE (type1) == TYPE_CODE_CHAR)
      if (TYPE_CODE (type1) == TYPE_CODE_CHAR)
        {
        {
          *ptr = (char) unpack_long (type1, VALUE_CONTENTS (inval1));
          *ptr = (char) unpack_long (type1, VALUE_CONTENTS (inval1));
        }
        }
      else
      else
        {
        {
          memcpy (ptr, VALUE_CONTENTS (inval1), inval1len);
          memcpy (ptr, VALUE_CONTENTS (inval1), inval1len);
        }
        }
      if (TYPE_CODE (type2) == TYPE_CODE_CHAR)
      if (TYPE_CODE (type2) == TYPE_CODE_CHAR)
        {
        {
          *(ptr + inval1len) =
          *(ptr + inval1len) =
            (char) unpack_long (type2, VALUE_CONTENTS (inval2));
            (char) unpack_long (type2, VALUE_CONTENTS (inval2));
        }
        }
      else
      else
        {
        {
          memcpy (ptr + inval1len, VALUE_CONTENTS (inval2), inval2len);
          memcpy (ptr + inval1len, VALUE_CONTENTS (inval2), inval2len);
        }
        }
      outval = value_string (ptr, inval1len + inval2len);
      outval = value_string (ptr, inval1len + inval2len);
    }
    }
  else if (TYPE_CODE (type1) == TYPE_CODE_BITSTRING
  else if (TYPE_CODE (type1) == TYPE_CODE_BITSTRING
           || TYPE_CODE (type1) == TYPE_CODE_BOOL)
           || TYPE_CODE (type1) == TYPE_CODE_BOOL)
    {
    {
      /* We have two bitstrings to concatenate. */
      /* We have two bitstrings to concatenate. */
      if (TYPE_CODE (type2) != TYPE_CODE_BITSTRING
      if (TYPE_CODE (type2) != TYPE_CODE_BITSTRING
          && TYPE_CODE (type2) != TYPE_CODE_BOOL)
          && TYPE_CODE (type2) != TYPE_CODE_BOOL)
        {
        {
          error ("Bitstrings or booleans can only be concatenated with other bitstrings or booleans.");
          error ("Bitstrings or booleans can only be concatenated with other bitstrings or booleans.");
        }
        }
      error ("unimplemented support for bitstring/boolean concatenation.");
      error ("unimplemented support for bitstring/boolean concatenation.");
    }
    }
  else
  else
    {
    {
      /* We don't know how to concatenate these operands. */
      /* We don't know how to concatenate these operands. */
      error ("illegal operands for concatenation.");
      error ("illegal operands for concatenation.");
    }
    }
  return (outval);
  return (outval);
}
}


 
 
 
 
/* Perform a binary operation on two operands which have reasonable
/* Perform a binary operation on two operands which have reasonable
   representations as integers or floats.  This includes booleans,
   representations as integers or floats.  This includes booleans,
   characters, integers, or floats.
   characters, integers, or floats.
   Does not support addition and subtraction on pointers;
   Does not support addition and subtraction on pointers;
   use value_add or value_sub if you want to handle those possibilities.  */
   use value_add or value_sub if you want to handle those possibilities.  */
 
 
value_ptr
value_ptr
value_binop (arg1, arg2, op)
value_binop (arg1, arg2, op)
     value_ptr arg1, arg2;
     value_ptr arg1, arg2;
     enum exp_opcode op;
     enum exp_opcode op;
{
{
  register value_ptr val;
  register value_ptr val;
  struct type *type1, *type2;
  struct type *type1, *type2;
 
 
  COERCE_REF (arg1);
  COERCE_REF (arg1);
  COERCE_REF (arg2);
  COERCE_REF (arg2);
  COERCE_ENUM (arg1);
  COERCE_ENUM (arg1);
  COERCE_ENUM (arg2);
  COERCE_ENUM (arg2);
  type1 = check_typedef (VALUE_TYPE (arg1));
  type1 = check_typedef (VALUE_TYPE (arg1));
  type2 = check_typedef (VALUE_TYPE (arg2));
  type2 = check_typedef (VALUE_TYPE (arg2));
 
 
  if ((TYPE_CODE (type1) != TYPE_CODE_FLT
  if ((TYPE_CODE (type1) != TYPE_CODE_FLT
       && TYPE_CODE (type1) != TYPE_CODE_CHAR
       && TYPE_CODE (type1) != TYPE_CODE_CHAR
       && TYPE_CODE (type1) != TYPE_CODE_INT
       && TYPE_CODE (type1) != TYPE_CODE_INT
       && TYPE_CODE (type1) != TYPE_CODE_BOOL
       && TYPE_CODE (type1) != TYPE_CODE_BOOL
       && TYPE_CODE (type1) != TYPE_CODE_RANGE)
       && TYPE_CODE (type1) != TYPE_CODE_RANGE)
      ||
      ||
      (TYPE_CODE (type2) != TYPE_CODE_FLT
      (TYPE_CODE (type2) != TYPE_CODE_FLT
       && TYPE_CODE (type2) != TYPE_CODE_CHAR
       && TYPE_CODE (type2) != TYPE_CODE_CHAR
       && TYPE_CODE (type2) != TYPE_CODE_INT
       && TYPE_CODE (type2) != TYPE_CODE_INT
       && TYPE_CODE (type2) != TYPE_CODE_BOOL
       && TYPE_CODE (type2) != TYPE_CODE_BOOL
       && TYPE_CODE (type2) != TYPE_CODE_RANGE))
       && TYPE_CODE (type2) != TYPE_CODE_RANGE))
    error ("Argument to arithmetic operation not a number or boolean.");
    error ("Argument to arithmetic operation not a number or boolean.");
 
 
  if (TYPE_CODE (type1) == TYPE_CODE_FLT
  if (TYPE_CODE (type1) == TYPE_CODE_FLT
      ||
      ||
      TYPE_CODE (type2) == TYPE_CODE_FLT)
      TYPE_CODE (type2) == TYPE_CODE_FLT)
    {
    {
      /* FIXME-if-picky-about-floating-accuracy: Should be doing this
      /* FIXME-if-picky-about-floating-accuracy: Should be doing this
         in target format.  real.c in GCC probably has the necessary
         in target format.  real.c in GCC probably has the necessary
         code.  */
         code.  */
      DOUBLEST v1, v2, v = 0;
      DOUBLEST v1, v2, v = 0;
      v1 = value_as_double (arg1);
      v1 = value_as_double (arg1);
      v2 = value_as_double (arg2);
      v2 = value_as_double (arg2);
      switch (op)
      switch (op)
        {
        {
        case BINOP_ADD:
        case BINOP_ADD:
          v = v1 + v2;
          v = v1 + v2;
          break;
          break;
 
 
        case BINOP_SUB:
        case BINOP_SUB:
          v = v1 - v2;
          v = v1 - v2;
          break;
          break;
 
 
        case BINOP_MUL:
        case BINOP_MUL:
          v = v1 * v2;
          v = v1 * v2;
          break;
          break;
 
 
        case BINOP_DIV:
        case BINOP_DIV:
          v = v1 / v2;
          v = v1 / v2;
          break;
          break;
 
 
        case BINOP_EXP:
        case BINOP_EXP:
          v = pow (v1, v2);
          v = pow (v1, v2);
          if (errno)
          if (errno)
            error ("Cannot perform exponentiation: %s", strerror (errno));
            error ("Cannot perform exponentiation: %s", strerror (errno));
          break;
          break;
 
 
        default:
        default:
          error ("Integer-only operation on floating point number.");
          error ("Integer-only operation on floating point number.");
        }
        }
 
 
      /* If either arg was long double, make sure that value is also long
      /* If either arg was long double, make sure that value is also long
         double.  */
         double.  */
 
 
      if (TYPE_LENGTH (type1) * 8 > TARGET_DOUBLE_BIT
      if (TYPE_LENGTH (type1) * 8 > TARGET_DOUBLE_BIT
          || TYPE_LENGTH (type2) * 8 > TARGET_DOUBLE_BIT)
          || TYPE_LENGTH (type2) * 8 > TARGET_DOUBLE_BIT)
        val = allocate_value (builtin_type_long_double);
        val = allocate_value (builtin_type_long_double);
      else
      else
        val = allocate_value (builtin_type_double);
        val = allocate_value (builtin_type_double);
 
 
      store_floating (VALUE_CONTENTS_RAW (val), TYPE_LENGTH (VALUE_TYPE (val)),
      store_floating (VALUE_CONTENTS_RAW (val), TYPE_LENGTH (VALUE_TYPE (val)),
                      v);
                      v);
    }
    }
  else if (TYPE_CODE (type1) == TYPE_CODE_BOOL
  else if (TYPE_CODE (type1) == TYPE_CODE_BOOL
           &&
           &&
           TYPE_CODE (type2) == TYPE_CODE_BOOL)
           TYPE_CODE (type2) == TYPE_CODE_BOOL)
    {
    {
      LONGEST v1, v2, v = 0;
      LONGEST v1, v2, v = 0;
      v1 = value_as_long (arg1);
      v1 = value_as_long (arg1);
      v2 = value_as_long (arg2);
      v2 = value_as_long (arg2);
 
 
      switch (op)
      switch (op)
        {
        {
        case BINOP_BITWISE_AND:
        case BINOP_BITWISE_AND:
          v = v1 & v2;
          v = v1 & v2;
          break;
          break;
 
 
        case BINOP_BITWISE_IOR:
        case BINOP_BITWISE_IOR:
          v = v1 | v2;
          v = v1 | v2;
          break;
          break;
 
 
        case BINOP_BITWISE_XOR:
        case BINOP_BITWISE_XOR:
          v = v1 ^ v2;
          v = v1 ^ v2;
          break;
          break;
 
 
        case BINOP_EQUAL:
        case BINOP_EQUAL:
          v = v1 == v2;
          v = v1 == v2;
          break;
          break;
 
 
        case BINOP_NOTEQUAL:
        case BINOP_NOTEQUAL:
          v = v1 != v2;
          v = v1 != v2;
          break;
          break;
 
 
        default:
        default:
          error ("Invalid operation on booleans.");
          error ("Invalid operation on booleans.");
        }
        }
 
 
      val = allocate_value (type1);
      val = allocate_value (type1);
      store_signed_integer (VALUE_CONTENTS_RAW (val),
      store_signed_integer (VALUE_CONTENTS_RAW (val),
                            TYPE_LENGTH (type1),
                            TYPE_LENGTH (type1),
                            v);
                            v);
    }
    }
  else
  else
    /* Integral operations here.  */
    /* Integral operations here.  */
    /* FIXME:  Also mixed integral/booleans, with result an integer. */
    /* FIXME:  Also mixed integral/booleans, with result an integer. */
    /* FIXME: This implements ANSI C rules (also correct for C++).
    /* FIXME: This implements ANSI C rules (also correct for C++).
       What about FORTRAN and chill?  */
       What about FORTRAN and chill?  */
    {
    {
      unsigned int promoted_len1 = TYPE_LENGTH (type1);
      unsigned int promoted_len1 = TYPE_LENGTH (type1);
      unsigned int promoted_len2 = TYPE_LENGTH (type2);
      unsigned int promoted_len2 = TYPE_LENGTH (type2);
      int is_unsigned1 = TYPE_UNSIGNED (type1);
      int is_unsigned1 = TYPE_UNSIGNED (type1);
      int is_unsigned2 = TYPE_UNSIGNED (type2);
      int is_unsigned2 = TYPE_UNSIGNED (type2);
      unsigned int result_len;
      unsigned int result_len;
      int unsigned_operation;
      int unsigned_operation;
 
 
      /* Determine type length and signedness after promotion for
      /* Determine type length and signedness after promotion for
         both operands.  */
         both operands.  */
      if (promoted_len1 < TYPE_LENGTH (builtin_type_int))
      if (promoted_len1 < TYPE_LENGTH (builtin_type_int))
        {
        {
          is_unsigned1 = 0;
          is_unsigned1 = 0;
          promoted_len1 = TYPE_LENGTH (builtin_type_int);
          promoted_len1 = TYPE_LENGTH (builtin_type_int);
        }
        }
      if (promoted_len2 < TYPE_LENGTH (builtin_type_int))
      if (promoted_len2 < TYPE_LENGTH (builtin_type_int))
        {
        {
          is_unsigned2 = 0;
          is_unsigned2 = 0;
          promoted_len2 = TYPE_LENGTH (builtin_type_int);
          promoted_len2 = TYPE_LENGTH (builtin_type_int);
        }
        }
 
 
      /* Determine type length of the result, and if the operation should
      /* Determine type length of the result, and if the operation should
         be done unsigned.
         be done unsigned.
         Use the signedness of the operand with the greater length.
         Use the signedness of the operand with the greater length.
         If both operands are of equal length, use unsigned operation
         If both operands are of equal length, use unsigned operation
         if one of the operands is unsigned.  */
         if one of the operands is unsigned.  */
      if (promoted_len1 > promoted_len2)
      if (promoted_len1 > promoted_len2)
        {
        {
          unsigned_operation = is_unsigned1;
          unsigned_operation = is_unsigned1;
          result_len = promoted_len1;
          result_len = promoted_len1;
        }
        }
      else if (promoted_len2 > promoted_len1)
      else if (promoted_len2 > promoted_len1)
        {
        {
          unsigned_operation = is_unsigned2;
          unsigned_operation = is_unsigned2;
          result_len = promoted_len2;
          result_len = promoted_len2;
        }
        }
      else
      else
        {
        {
          unsigned_operation = is_unsigned1 || is_unsigned2;
          unsigned_operation = is_unsigned1 || is_unsigned2;
          result_len = promoted_len1;
          result_len = promoted_len1;
        }
        }
 
 
      if (unsigned_operation)
      if (unsigned_operation)
        {
        {
          ULONGEST v1, v2, v = 0;
          ULONGEST v1, v2, v = 0;
          v1 = (ULONGEST) value_as_long (arg1);
          v1 = (ULONGEST) value_as_long (arg1);
          v2 = (ULONGEST) value_as_long (arg2);
          v2 = (ULONGEST) value_as_long (arg2);
 
 
          /* Truncate values to the type length of the result.  */
          /* Truncate values to the type length of the result.  */
          if (result_len < sizeof (ULONGEST))
          if (result_len < sizeof (ULONGEST))
            {
            {
              v1 &= ((LONGEST) 1 << HOST_CHAR_BIT * result_len) - 1;
              v1 &= ((LONGEST) 1 << HOST_CHAR_BIT * result_len) - 1;
              v2 &= ((LONGEST) 1 << HOST_CHAR_BIT * result_len) - 1;
              v2 &= ((LONGEST) 1 << HOST_CHAR_BIT * result_len) - 1;
            }
            }
 
 
          switch (op)
          switch (op)
            {
            {
            case BINOP_ADD:
            case BINOP_ADD:
              v = v1 + v2;
              v = v1 + v2;
              break;
              break;
 
 
            case BINOP_SUB:
            case BINOP_SUB:
              v = v1 - v2;
              v = v1 - v2;
              break;
              break;
 
 
            case BINOP_MUL:
            case BINOP_MUL:
              v = v1 * v2;
              v = v1 * v2;
              break;
              break;
 
 
            case BINOP_DIV:
            case BINOP_DIV:
              v = v1 / v2;
              v = v1 / v2;
              break;
              break;
 
 
            case BINOP_EXP:
            case BINOP_EXP:
              v = pow (v1, v2);
              v = pow (v1, v2);
              if (errno)
              if (errno)
                error ("Cannot perform exponentiation: %s", strerror (errno));
                error ("Cannot perform exponentiation: %s", strerror (errno));
              break;
              break;
 
 
            case BINOP_REM:
            case BINOP_REM:
              v = v1 % v2;
              v = v1 % v2;
              break;
              break;
 
 
            case BINOP_MOD:
            case BINOP_MOD:
              /* Knuth 1.2.4, integer only.  Note that unlike the C '%' op,
              /* Knuth 1.2.4, integer only.  Note that unlike the C '%' op,
                 v1 mod 0 has a defined value, v1. */
                 v1 mod 0 has a defined value, v1. */
              /* Chill specifies that v2 must be > 0, so check for that. */
              /* Chill specifies that v2 must be > 0, so check for that. */
              if (current_language->la_language == language_chill
              if (current_language->la_language == language_chill
                  && value_as_long (arg2) <= 0)
                  && value_as_long (arg2) <= 0)
                {
                {
                  error ("Second operand of MOD must be greater than zero.");
                  error ("Second operand of MOD must be greater than zero.");
                }
                }
              if (v2 == 0)
              if (v2 == 0)
                {
                {
                  v = v1;
                  v = v1;
                }
                }
              else
              else
                {
                {
                  v = v1 / v2;
                  v = v1 / v2;
                  /* Note floor(v1/v2) == v1/v2 for unsigned. */
                  /* Note floor(v1/v2) == v1/v2 for unsigned. */
                  v = v1 - (v2 * v);
                  v = v1 - (v2 * v);
                }
                }
              break;
              break;
 
 
            case BINOP_LSH:
            case BINOP_LSH:
              v = v1 << v2;
              v = v1 << v2;
              break;
              break;
 
 
            case BINOP_RSH:
            case BINOP_RSH:
              v = v1 >> v2;
              v = v1 >> v2;
              break;
              break;
 
 
            case BINOP_BITWISE_AND:
            case BINOP_BITWISE_AND:
              v = v1 & v2;
              v = v1 & v2;
              break;
              break;
 
 
            case BINOP_BITWISE_IOR:
            case BINOP_BITWISE_IOR:
              v = v1 | v2;
              v = v1 | v2;
              break;
              break;
 
 
            case BINOP_BITWISE_XOR:
            case BINOP_BITWISE_XOR:
              v = v1 ^ v2;
              v = v1 ^ v2;
              break;
              break;
 
 
            case BINOP_LOGICAL_AND:
            case BINOP_LOGICAL_AND:
              v = v1 && v2;
              v = v1 && v2;
              break;
              break;
 
 
            case BINOP_LOGICAL_OR:
            case BINOP_LOGICAL_OR:
              v = v1 || v2;
              v = v1 || v2;
              break;
              break;
 
 
            case BINOP_MIN:
            case BINOP_MIN:
              v = v1 < v2 ? v1 : v2;
              v = v1 < v2 ? v1 : v2;
              break;
              break;
 
 
            case BINOP_MAX:
            case BINOP_MAX:
              v = v1 > v2 ? v1 : v2;
              v = v1 > v2 ? v1 : v2;
              break;
              break;
 
 
            case BINOP_EQUAL:
            case BINOP_EQUAL:
              v = v1 == v2;
              v = v1 == v2;
              break;
              break;
 
 
            case BINOP_NOTEQUAL:
            case BINOP_NOTEQUAL:
              v = v1 != v2;
              v = v1 != v2;
              break;
              break;
 
 
            case BINOP_LESS:
            case BINOP_LESS:
              v = v1 < v2;
              v = v1 < v2;
              break;
              break;
 
 
            default:
            default:
              error ("Invalid binary operation on numbers.");
              error ("Invalid binary operation on numbers.");
            }
            }
 
 
          /* This is a kludge to get around the fact that we don't
          /* This is a kludge to get around the fact that we don't
             know how to determine the result type from the types of
             know how to determine the result type from the types of
             the operands.  (I'm not really sure how much we feel the
             the operands.  (I'm not really sure how much we feel the
             need to duplicate the exact rules of the current
             need to duplicate the exact rules of the current
             language.  They can get really hairy.  But not to do so
             language.  They can get really hairy.  But not to do so
             makes it hard to document just what we *do* do).  */
             makes it hard to document just what we *do* do).  */
 
 
          /* Can't just call init_type because we wouldn't know what
          /* Can't just call init_type because we wouldn't know what
             name to give the type.  */
             name to give the type.  */
          val = allocate_value
          val = allocate_value
            (result_len > TARGET_LONG_BIT / HOST_CHAR_BIT
            (result_len > TARGET_LONG_BIT / HOST_CHAR_BIT
             ? builtin_type_unsigned_long_long
             ? builtin_type_unsigned_long_long
             : builtin_type_unsigned_long);
             : builtin_type_unsigned_long);
          store_unsigned_integer (VALUE_CONTENTS_RAW (val),
          store_unsigned_integer (VALUE_CONTENTS_RAW (val),
                                  TYPE_LENGTH (VALUE_TYPE (val)),
                                  TYPE_LENGTH (VALUE_TYPE (val)),
                                  v);
                                  v);
        }
        }
      else
      else
        {
        {
          LONGEST v1, v2, v = 0;
          LONGEST v1, v2, v = 0;
          v1 = value_as_long (arg1);
          v1 = value_as_long (arg1);
          v2 = value_as_long (arg2);
          v2 = value_as_long (arg2);
 
 
          switch (op)
          switch (op)
            {
            {
            case BINOP_ADD:
            case BINOP_ADD:
              v = v1 + v2;
              v = v1 + v2;
              break;
              break;
 
 
            case BINOP_SUB:
            case BINOP_SUB:
              v = v1 - v2;
              v = v1 - v2;
              break;
              break;
 
 
            case BINOP_MUL:
            case BINOP_MUL:
              v = v1 * v2;
              v = v1 * v2;
              break;
              break;
 
 
            case BINOP_DIV:
            case BINOP_DIV:
              v = v1 / v2;
              v = v1 / v2;
              break;
              break;
 
 
            case BINOP_EXP:
            case BINOP_EXP:
              v = pow (v1, v2);
              v = pow (v1, v2);
              if (errno)
              if (errno)
                error ("Cannot perform exponentiation: %s", strerror (errno));
                error ("Cannot perform exponentiation: %s", strerror (errno));
              break;
              break;
 
 
            case BINOP_REM:
            case BINOP_REM:
              v = v1 % v2;
              v = v1 % v2;
              break;
              break;
 
 
            case BINOP_MOD:
            case BINOP_MOD:
              /* Knuth 1.2.4, integer only.  Note that unlike the C '%' op,
              /* Knuth 1.2.4, integer only.  Note that unlike the C '%' op,
                 X mod 0 has a defined value, X. */
                 X mod 0 has a defined value, X. */
              /* Chill specifies that v2 must be > 0, so check for that. */
              /* Chill specifies that v2 must be > 0, so check for that. */
              if (current_language->la_language == language_chill
              if (current_language->la_language == language_chill
                  && v2 <= 0)
                  && v2 <= 0)
                {
                {
                  error ("Second operand of MOD must be greater than zero.");
                  error ("Second operand of MOD must be greater than zero.");
                }
                }
              if (v2 == 0)
              if (v2 == 0)
                {
                {
                  v = v1;
                  v = v1;
                }
                }
              else
              else
                {
                {
                  v = v1 / v2;
                  v = v1 / v2;
                  /* Compute floor. */
                  /* Compute floor. */
                  if (TRUNCATION_TOWARDS_ZERO && (v < 0) && ((v1 % v2) != 0))
                  if (TRUNCATION_TOWARDS_ZERO && (v < 0) && ((v1 % v2) != 0))
                    {
                    {
                      v--;
                      v--;
                    }
                    }
                  v = v1 - (v2 * v);
                  v = v1 - (v2 * v);
                }
                }
              break;
              break;
 
 
            case BINOP_LSH:
            case BINOP_LSH:
              v = v1 << v2;
              v = v1 << v2;
              break;
              break;
 
 
            case BINOP_RSH:
            case BINOP_RSH:
              v = v1 >> v2;
              v = v1 >> v2;
              break;
              break;
 
 
            case BINOP_BITWISE_AND:
            case BINOP_BITWISE_AND:
              v = v1 & v2;
              v = v1 & v2;
              break;
              break;
 
 
            case BINOP_BITWISE_IOR:
            case BINOP_BITWISE_IOR:
              v = v1 | v2;
              v = v1 | v2;
              break;
              break;
 
 
            case BINOP_BITWISE_XOR:
            case BINOP_BITWISE_XOR:
              v = v1 ^ v2;
              v = v1 ^ v2;
              break;
              break;
 
 
            case BINOP_LOGICAL_AND:
            case BINOP_LOGICAL_AND:
              v = v1 && v2;
              v = v1 && v2;
              break;
              break;
 
 
            case BINOP_LOGICAL_OR:
            case BINOP_LOGICAL_OR:
              v = v1 || v2;
              v = v1 || v2;
              break;
              break;
 
 
            case BINOP_MIN:
            case BINOP_MIN:
              v = v1 < v2 ? v1 : v2;
              v = v1 < v2 ? v1 : v2;
              break;
              break;
 
 
            case BINOP_MAX:
            case BINOP_MAX:
              v = v1 > v2 ? v1 : v2;
              v = v1 > v2 ? v1 : v2;
              break;
              break;
 
 
            case BINOP_EQUAL:
            case BINOP_EQUAL:
              v = v1 == v2;
              v = v1 == v2;
              break;
              break;
 
 
            case BINOP_LESS:
            case BINOP_LESS:
              v = v1 < v2;
              v = v1 < v2;
              break;
              break;
 
 
            default:
            default:
              error ("Invalid binary operation on numbers.");
              error ("Invalid binary operation on numbers.");
            }
            }
 
 
          /* This is a kludge to get around the fact that we don't
          /* This is a kludge to get around the fact that we don't
             know how to determine the result type from the types of
             know how to determine the result type from the types of
             the operands.  (I'm not really sure how much we feel the
             the operands.  (I'm not really sure how much we feel the
             need to duplicate the exact rules of the current
             need to duplicate the exact rules of the current
             language.  They can get really hairy.  But not to do so
             language.  They can get really hairy.  But not to do so
             makes it hard to document just what we *do* do).  */
             makes it hard to document just what we *do* do).  */
 
 
          /* Can't just call init_type because we wouldn't know what
          /* Can't just call init_type because we wouldn't know what
             name to give the type.  */
             name to give the type.  */
          val = allocate_value
          val = allocate_value
            (result_len > TARGET_LONG_BIT / HOST_CHAR_BIT
            (result_len > TARGET_LONG_BIT / HOST_CHAR_BIT
             ? builtin_type_long_long
             ? builtin_type_long_long
             : builtin_type_long);
             : builtin_type_long);
          store_signed_integer (VALUE_CONTENTS_RAW (val),
          store_signed_integer (VALUE_CONTENTS_RAW (val),
                                TYPE_LENGTH (VALUE_TYPE (val)),
                                TYPE_LENGTH (VALUE_TYPE (val)),
                                v);
                                v);
        }
        }
    }
    }
 
 
  return val;
  return val;
}
}


/* Simulate the C operator ! -- return 1 if ARG1 contains zero.  */
/* Simulate the C operator ! -- return 1 if ARG1 contains zero.  */
 
 
int
int
value_logical_not (arg1)
value_logical_not (arg1)
     value_ptr arg1;
     value_ptr arg1;
{
{
  register int len;
  register int len;
  register char *p;
  register char *p;
  struct type *type1;
  struct type *type1;
 
 
  COERCE_NUMBER (arg1);
  COERCE_NUMBER (arg1);
  type1 = check_typedef (VALUE_TYPE (arg1));
  type1 = check_typedef (VALUE_TYPE (arg1));
 
 
  if (TYPE_CODE (type1) == TYPE_CODE_FLT)
  if (TYPE_CODE (type1) == TYPE_CODE_FLT)
    return 0 == value_as_double (arg1);
    return 0 == value_as_double (arg1);
 
 
  len = TYPE_LENGTH (type1);
  len = TYPE_LENGTH (type1);
  p = VALUE_CONTENTS (arg1);
  p = VALUE_CONTENTS (arg1);
 
 
  while (--len >= 0)
  while (--len >= 0)
    {
    {
      if (*p++)
      if (*p++)
        break;
        break;
    }
    }
 
 
  return len < 0;
  return len < 0;
}
}
 
 
/* Perform a comparison on two string values (whose content are not
/* Perform a comparison on two string values (whose content are not
   necessarily null terminated) based on their length */
   necessarily null terminated) based on their length */
 
 
static int
static int
value_strcmp (arg1, arg2)
value_strcmp (arg1, arg2)
     register value_ptr arg1, arg2;
     register value_ptr arg1, arg2;
{
{
  int len1 = TYPE_LENGTH (VALUE_TYPE (arg1));
  int len1 = TYPE_LENGTH (VALUE_TYPE (arg1));
  int len2 = TYPE_LENGTH (VALUE_TYPE (arg2));
  int len2 = TYPE_LENGTH (VALUE_TYPE (arg2));
  char *s1 = VALUE_CONTENTS (arg1);
  char *s1 = VALUE_CONTENTS (arg1);
  char *s2 = VALUE_CONTENTS (arg2);
  char *s2 = VALUE_CONTENTS (arg2);
  int i, len = len1 < len2 ? len1 : len2;
  int i, len = len1 < len2 ? len1 : len2;
 
 
  for (i = 0; i < len; i++)
  for (i = 0; i < len; i++)
    {
    {
      if (s1[i] < s2[i])
      if (s1[i] < s2[i])
        return -1;
        return -1;
      else if (s1[i] > s2[i])
      else if (s1[i] > s2[i])
        return 1;
        return 1;
      else
      else
        continue;
        continue;
    }
    }
 
 
  if (len1 < len2)
  if (len1 < len2)
    return -1;
    return -1;
  else if (len1 > len2)
  else if (len1 > len2)
    return 1;
    return 1;
  else
  else
    return 0;
    return 0;
}
}
 
 
/* Simulate the C operator == by returning a 1
/* Simulate the C operator == by returning a 1
   iff ARG1 and ARG2 have equal contents.  */
   iff ARG1 and ARG2 have equal contents.  */
 
 
int
int
value_equal (arg1, arg2)
value_equal (arg1, arg2)
     register value_ptr arg1, arg2;
     register value_ptr arg1, arg2;
 
 
{
{
  register int len;
  register int len;
  register char *p1, *p2;
  register char *p1, *p2;
  struct type *type1, *type2;
  struct type *type1, *type2;
  enum type_code code1;
  enum type_code code1;
  enum type_code code2;
  enum type_code code2;
 
 
  COERCE_NUMBER (arg1);
  COERCE_NUMBER (arg1);
  COERCE_NUMBER (arg2);
  COERCE_NUMBER (arg2);
 
 
  type1 = check_typedef (VALUE_TYPE (arg1));
  type1 = check_typedef (VALUE_TYPE (arg1));
  type2 = check_typedef (VALUE_TYPE (arg2));
  type2 = check_typedef (VALUE_TYPE (arg2));
  code1 = TYPE_CODE (type1);
  code1 = TYPE_CODE (type1);
  code2 = TYPE_CODE (type2);
  code2 = TYPE_CODE (type2);
 
 
  if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_BOOL) &&
  if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_BOOL) &&
      (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_BOOL))
      (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_BOOL))
    return longest_to_int (value_as_long (value_binop (arg1, arg2,
    return longest_to_int (value_as_long (value_binop (arg1, arg2,
                                                       BINOP_EQUAL)));
                                                       BINOP_EQUAL)));
  else if ((code1 == TYPE_CODE_FLT || code1 == TYPE_CODE_INT || code1 == TYPE_CODE_BOOL)
  else if ((code1 == TYPE_CODE_FLT || code1 == TYPE_CODE_INT || code1 == TYPE_CODE_BOOL)
           && (code2 == TYPE_CODE_FLT || code2 == TYPE_CODE_INT || code2 == TYPE_CODE_BOOL))
           && (code2 == TYPE_CODE_FLT || code2 == TYPE_CODE_INT || code2 == TYPE_CODE_BOOL))
    return value_as_double (arg1) == value_as_double (arg2);
    return value_as_double (arg1) == value_as_double (arg2);
 
 
  /* FIXME: Need to promote to either CORE_ADDR or LONGEST, whichever
  /* FIXME: Need to promote to either CORE_ADDR or LONGEST, whichever
     is bigger.  */
     is bigger.  */
  else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_BOOL))
  else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_BOOL))
    return value_as_pointer (arg1) == (CORE_ADDR) value_as_long (arg2);
    return value_as_pointer (arg1) == (CORE_ADDR) value_as_long (arg2);
  else if (code2 == TYPE_CODE_PTR && (code1 == TYPE_CODE_INT || code1 == TYPE_CODE_BOOL))
  else if (code2 == TYPE_CODE_PTR && (code1 == TYPE_CODE_INT || code1 == TYPE_CODE_BOOL))
    return (CORE_ADDR) value_as_long (arg1) == value_as_pointer (arg2);
    return (CORE_ADDR) value_as_long (arg1) == value_as_pointer (arg2);
 
 
  else if (code1 == code2
  else if (code1 == code2
           && ((len = (int) TYPE_LENGTH (type1))
           && ((len = (int) TYPE_LENGTH (type1))
               == (int) TYPE_LENGTH (type2)))
               == (int) TYPE_LENGTH (type2)))
    {
    {
      p1 = VALUE_CONTENTS (arg1);
      p1 = VALUE_CONTENTS (arg1);
      p2 = VALUE_CONTENTS (arg2);
      p2 = VALUE_CONTENTS (arg2);
      while (--len >= 0)
      while (--len >= 0)
        {
        {
          if (*p1++ != *p2++)
          if (*p1++ != *p2++)
            break;
            break;
        }
        }
      return len < 0;
      return len < 0;
    }
    }
  else if (code1 == TYPE_CODE_STRING && code2 == TYPE_CODE_STRING)
  else if (code1 == TYPE_CODE_STRING && code2 == TYPE_CODE_STRING)
    {
    {
      return value_strcmp (arg1, arg2) == 0;
      return value_strcmp (arg1, arg2) == 0;
    }
    }
  else
  else
    {
    {
      error ("Invalid type combination in equality test.");
      error ("Invalid type combination in equality test.");
      return 0;                  /* For lint -- never reached */
      return 0;                  /* For lint -- never reached */
    }
    }
}
}
 
 
/* Simulate the C operator < by returning 1
/* Simulate the C operator < by returning 1
   iff ARG1's contents are less than ARG2's.  */
   iff ARG1's contents are less than ARG2's.  */
 
 
int
int
value_less (arg1, arg2)
value_less (arg1, arg2)
     register value_ptr arg1, arg2;
     register value_ptr arg1, arg2;
{
{
  register enum type_code code1;
  register enum type_code code1;
  register enum type_code code2;
  register enum type_code code2;
  struct type *type1, *type2;
  struct type *type1, *type2;
 
 
  COERCE_NUMBER (arg1);
  COERCE_NUMBER (arg1);
  COERCE_NUMBER (arg2);
  COERCE_NUMBER (arg2);
 
 
  type1 = check_typedef (VALUE_TYPE (arg1));
  type1 = check_typedef (VALUE_TYPE (arg1));
  type2 = check_typedef (VALUE_TYPE (arg2));
  type2 = check_typedef (VALUE_TYPE (arg2));
  code1 = TYPE_CODE (type1);
  code1 = TYPE_CODE (type1);
  code2 = TYPE_CODE (type2);
  code2 = TYPE_CODE (type2);
 
 
  if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_BOOL) &&
  if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_BOOL) &&
      (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_BOOL))
      (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_BOOL))
    return longest_to_int (value_as_long (value_binop (arg1, arg2,
    return longest_to_int (value_as_long (value_binop (arg1, arg2,
                                                       BINOP_LESS)));
                                                       BINOP_LESS)));
  else if ((code1 == TYPE_CODE_FLT || code1 == TYPE_CODE_INT || code1 == TYPE_CODE_BOOL)
  else if ((code1 == TYPE_CODE_FLT || code1 == TYPE_CODE_INT || code1 == TYPE_CODE_BOOL)
           && (code2 == TYPE_CODE_FLT || code2 == TYPE_CODE_INT || code2 == TYPE_CODE_BOOL))
           && (code2 == TYPE_CODE_FLT || code2 == TYPE_CODE_INT || code2 == TYPE_CODE_BOOL))
    return value_as_double (arg1) < value_as_double (arg2);
    return value_as_double (arg1) < value_as_double (arg2);
  else if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
  else if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
    return value_as_pointer (arg1) < value_as_pointer (arg2);
    return value_as_pointer (arg1) < value_as_pointer (arg2);
 
 
  /* FIXME: Need to promote to either CORE_ADDR or LONGEST, whichever
  /* FIXME: Need to promote to either CORE_ADDR or LONGEST, whichever
     is bigger.  */
     is bigger.  */
  else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_BOOL))
  else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_BOOL))
    return value_as_pointer (arg1) < (CORE_ADDR) value_as_long (arg2);
    return value_as_pointer (arg1) < (CORE_ADDR) value_as_long (arg2);
  else if (code2 == TYPE_CODE_PTR && (code1 == TYPE_CODE_INT || code1 == TYPE_CODE_BOOL))
  else if (code2 == TYPE_CODE_PTR && (code1 == TYPE_CODE_INT || code1 == TYPE_CODE_BOOL))
    return (CORE_ADDR) value_as_long (arg1) < value_as_pointer (arg2);
    return (CORE_ADDR) value_as_long (arg1) < value_as_pointer (arg2);
  else if (code1 == TYPE_CODE_STRING && code2 == TYPE_CODE_STRING)
  else if (code1 == TYPE_CODE_STRING && code2 == TYPE_CODE_STRING)
    return value_strcmp (arg1, arg2) < 0;
    return value_strcmp (arg1, arg2) < 0;
  else
  else
    {
    {
      error ("Invalid type combination in ordering comparison.");
      error ("Invalid type combination in ordering comparison.");
      return 0;
      return 0;
    }
    }
}
}


/* The unary operators - and ~.  Both free the argument ARG1.  */
/* The unary operators - and ~.  Both free the argument ARG1.  */
 
 
value_ptr
value_ptr
value_neg (arg1)
value_neg (arg1)
     register value_ptr arg1;
     register value_ptr arg1;
{
{
  register struct type *type;
  register struct type *type;
  register struct type *result_type = VALUE_TYPE (arg1);
  register struct type *result_type = VALUE_TYPE (arg1);
 
 
  COERCE_REF (arg1);
  COERCE_REF (arg1);
  COERCE_ENUM (arg1);
  COERCE_ENUM (arg1);
 
 
  type = check_typedef (VALUE_TYPE (arg1));
  type = check_typedef (VALUE_TYPE (arg1));
 
 
  if (TYPE_CODE (type) == TYPE_CODE_FLT)
  if (TYPE_CODE (type) == TYPE_CODE_FLT)
    return value_from_double (result_type, -value_as_double (arg1));
    return value_from_double (result_type, -value_as_double (arg1));
  else if (TYPE_CODE (type) == TYPE_CODE_INT || TYPE_CODE (type) == TYPE_CODE_BOOL)
  else if (TYPE_CODE (type) == TYPE_CODE_INT || TYPE_CODE (type) == TYPE_CODE_BOOL)
    {
    {
      /* Perform integral promotion for ANSI C/C++.
      /* Perform integral promotion for ANSI C/C++.
         FIXME: What about FORTRAN and chill ?  */
         FIXME: What about FORTRAN and chill ?  */
      if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
      if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
        result_type = builtin_type_int;
        result_type = builtin_type_int;
 
 
      return value_from_longest (result_type, -value_as_long (arg1));
      return value_from_longest (result_type, -value_as_long (arg1));
    }
    }
  else
  else
    {
    {
      error ("Argument to negate operation not a number.");
      error ("Argument to negate operation not a number.");
      return 0;                  /* For lint -- never reached */
      return 0;                  /* For lint -- never reached */
    }
    }
}
}
 
 
value_ptr
value_ptr
value_complement (arg1)
value_complement (arg1)
     register value_ptr arg1;
     register value_ptr arg1;
{
{
  register struct type *type;
  register struct type *type;
  register struct type *result_type = VALUE_TYPE (arg1);
  register struct type *result_type = VALUE_TYPE (arg1);
  int typecode;
  int typecode;
 
 
  COERCE_REF (arg1);
  COERCE_REF (arg1);
  COERCE_ENUM (arg1);
  COERCE_ENUM (arg1);
 
 
  type = check_typedef (VALUE_TYPE (arg1));
  type = check_typedef (VALUE_TYPE (arg1));
 
 
  typecode = TYPE_CODE (type);
  typecode = TYPE_CODE (type);
  if ((typecode != TYPE_CODE_INT) && (typecode != TYPE_CODE_BOOL))
  if ((typecode != TYPE_CODE_INT) && (typecode != TYPE_CODE_BOOL))
    error ("Argument to complement operation not an integer or boolean.");
    error ("Argument to complement operation not an integer or boolean.");
 
 
  /* Perform integral promotion for ANSI C/C++.
  /* Perform integral promotion for ANSI C/C++.
     FIXME: What about FORTRAN ?  */
     FIXME: What about FORTRAN ?  */
  if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
  if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
    result_type = builtin_type_int;
    result_type = builtin_type_int;
 
 
  return value_from_longest (result_type, ~value_as_long (arg1));
  return value_from_longest (result_type, ~value_as_long (arg1));
}
}


/* The INDEX'th bit of SET value whose VALUE_TYPE is TYPE,
/* The INDEX'th bit of SET value whose VALUE_TYPE is TYPE,
   and whose VALUE_CONTENTS is valaddr.
   and whose VALUE_CONTENTS is valaddr.
   Return -1 if out of range, -2 other error. */
   Return -1 if out of range, -2 other error. */
 
 
int
int
value_bit_index (type, valaddr, index)
value_bit_index (type, valaddr, index)
     struct type *type;
     struct type *type;
     char *valaddr;
     char *valaddr;
     int index;
     int index;
{
{
  LONGEST low_bound, high_bound;
  LONGEST low_bound, high_bound;
  LONGEST word;
  LONGEST word;
  unsigned rel_index;
  unsigned rel_index;
  struct type *range = TYPE_FIELD_TYPE (type, 0);
  struct type *range = TYPE_FIELD_TYPE (type, 0);
  if (get_discrete_bounds (range, &low_bound, &high_bound) < 0)
  if (get_discrete_bounds (range, &low_bound, &high_bound) < 0)
    return -2;
    return -2;
  if (index < low_bound || index > high_bound)
  if (index < low_bound || index > high_bound)
    return -1;
    return -1;
  rel_index = index - low_bound;
  rel_index = index - low_bound;
  word = unpack_long (builtin_type_unsigned_char,
  word = unpack_long (builtin_type_unsigned_char,
                      valaddr + (rel_index / TARGET_CHAR_BIT));
                      valaddr + (rel_index / TARGET_CHAR_BIT));
  rel_index %= TARGET_CHAR_BIT;
  rel_index %= TARGET_CHAR_BIT;
  if (BITS_BIG_ENDIAN)
  if (BITS_BIG_ENDIAN)
    rel_index = TARGET_CHAR_BIT - 1 - rel_index;
    rel_index = TARGET_CHAR_BIT - 1 - rel_index;
  return (word >> rel_index) & 1;
  return (word >> rel_index) & 1;
}
}
 
 
value_ptr
value_ptr
value_in (element, set)
value_in (element, set)
     value_ptr element, set;
     value_ptr element, set;
{
{
  int member;
  int member;
  struct type *settype = check_typedef (VALUE_TYPE (set));
  struct type *settype = check_typedef (VALUE_TYPE (set));
  struct type *eltype = check_typedef (VALUE_TYPE (element));
  struct type *eltype = check_typedef (VALUE_TYPE (element));
  if (TYPE_CODE (eltype) == TYPE_CODE_RANGE)
  if (TYPE_CODE (eltype) == TYPE_CODE_RANGE)
    eltype = TYPE_TARGET_TYPE (eltype);
    eltype = TYPE_TARGET_TYPE (eltype);
  if (TYPE_CODE (settype) != TYPE_CODE_SET)
  if (TYPE_CODE (settype) != TYPE_CODE_SET)
    error ("Second argument of 'IN' has wrong type");
    error ("Second argument of 'IN' has wrong type");
  if (TYPE_CODE (eltype) != TYPE_CODE_INT
  if (TYPE_CODE (eltype) != TYPE_CODE_INT
      && TYPE_CODE (eltype) != TYPE_CODE_CHAR
      && TYPE_CODE (eltype) != TYPE_CODE_CHAR
      && TYPE_CODE (eltype) != TYPE_CODE_ENUM
      && TYPE_CODE (eltype) != TYPE_CODE_ENUM
      && TYPE_CODE (eltype) != TYPE_CODE_BOOL)
      && TYPE_CODE (eltype) != TYPE_CODE_BOOL)
    error ("First argument of 'IN' has wrong type");
    error ("First argument of 'IN' has wrong type");
  member = value_bit_index (settype, VALUE_CONTENTS (set),
  member = value_bit_index (settype, VALUE_CONTENTS (set),
                            value_as_long (element));
                            value_as_long (element));
  if (member < 0)
  if (member < 0)
    error ("First argument of 'IN' not in range");
    error ("First argument of 'IN' not in range");
  return value_from_longest (LA_BOOL_TYPE, member);
  return value_from_longest (LA_BOOL_TYPE, member);
}
}
 
 
void
void
_initialize_valarith ()
_initialize_valarith ()
{
{
}
}
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.