OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [gdb-5.0/] [gdb/] [valops.c] - Diff between revs 105 and 1765

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 105 Rev 1765
/* Perform non-arithmetic operations on values, for GDB.
/* Perform non-arithmetic operations on values, for GDB.
   Copyright 1986, 87, 89, 91, 92, 93, 94, 95, 96, 97, 1998
   Copyright 1986, 87, 89, 91, 92, 93, 94, 95, 96, 97, 1998
   Free Software Foundation, Inc.
   Free Software Foundation, Inc.
 
 
   This file is part of GDB.
   This file is part of GDB.
 
 
   This program is free software; you can redistribute it and/or modify
   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2 of the License, or
   the Free Software Foundation; either version 2 of the License, or
   (at your option) any later version.
   (at your option) any later version.
 
 
   This program is distributed in the hope that it will be useful,
   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.
   GNU General Public License for more details.
 
 
   You should have received a copy of the GNU General Public License
   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   along with this program; if not, write to the Free Software
   Foundation, Inc., 59 Temple Place - Suite 330,
   Foundation, Inc., 59 Temple Place - Suite 330,
   Boston, MA 02111-1307, USA.  */
   Boston, MA 02111-1307, USA.  */
 
 
#include "defs.h"
#include "defs.h"
#include "symtab.h"
#include "symtab.h"
#include "gdbtypes.h"
#include "gdbtypes.h"
#include "value.h"
#include "value.h"
#include "frame.h"
#include "frame.h"
#include "inferior.h"
#include "inferior.h"
#include "gdbcore.h"
#include "gdbcore.h"
#include "target.h"
#include "target.h"
#include "demangle.h"
#include "demangle.h"
#include "language.h"
#include "language.h"
#include "gdbcmd.h"
#include "gdbcmd.h"
 
 
#include <errno.h>
#include <errno.h>
#include "gdb_string.h"
#include "gdb_string.h"
 
 
/* Flag indicating HP compilers were used; needed to correctly handle some
/* Flag indicating HP compilers were used; needed to correctly handle some
   value operations with HP aCC code/runtime. */
   value operations with HP aCC code/runtime. */
extern int hp_som_som_object_present;
extern int hp_som_som_object_present;
 
 
extern int overload_debug;
extern int overload_debug;
/* Local functions.  */
/* Local functions.  */
 
 
static int typecmp PARAMS ((int staticp, struct type * t1[], value_ptr t2[]));
static int typecmp PARAMS ((int staticp, struct type * t1[], value_ptr t2[]));
 
 
static CORE_ADDR find_function_addr PARAMS ((value_ptr, struct type **));
static CORE_ADDR find_function_addr PARAMS ((value_ptr, struct type **));
static value_ptr value_arg_coerce PARAMS ((value_ptr, struct type *, int));
static value_ptr value_arg_coerce PARAMS ((value_ptr, struct type *, int));
 
 
 
 
static CORE_ADDR value_push PARAMS ((CORE_ADDR, value_ptr));
static CORE_ADDR value_push PARAMS ((CORE_ADDR, value_ptr));
 
 
static value_ptr search_struct_field PARAMS ((char *, value_ptr, int,
static value_ptr search_struct_field PARAMS ((char *, value_ptr, int,
                                              struct type *, int));
                                              struct type *, int));
 
 
static value_ptr search_struct_method PARAMS ((char *, value_ptr *,
static value_ptr search_struct_method PARAMS ((char *, value_ptr *,
                                               value_ptr *,
                                               value_ptr *,
                                               int, int *, struct type *));
                                               int, int *, struct type *));
 
 
static int check_field_in PARAMS ((struct type *, const char *));
static int check_field_in PARAMS ((struct type *, const char *));
 
 
static CORE_ADDR allocate_space_in_inferior PARAMS ((int));
static CORE_ADDR allocate_space_in_inferior PARAMS ((int));
 
 
static value_ptr cast_into_complex PARAMS ((struct type *, value_ptr));
static value_ptr cast_into_complex PARAMS ((struct type *, value_ptr));
 
 
static struct fn_field *find_method_list PARAMS ((value_ptr * argp, char *method, int offset, int *static_memfuncp, struct type * type, int *num_fns, struct type ** basetype, int *boffset));
static struct fn_field *find_method_list PARAMS ((value_ptr * argp, char *method, int offset, int *static_memfuncp, struct type * type, int *num_fns, struct type ** basetype, int *boffset));
 
 
void _initialize_valops PARAMS ((void));
void _initialize_valops PARAMS ((void));
 
 
#define VALUE_SUBSTRING_START(VAL) VALUE_FRAME(VAL)
#define VALUE_SUBSTRING_START(VAL) VALUE_FRAME(VAL)
 
 
/* Flag for whether we want to abandon failed expression evals by default.  */
/* Flag for whether we want to abandon failed expression evals by default.  */
 
 
#if 0
#if 0
static int auto_abandon = 0;
static int auto_abandon = 0;
#endif
#endif
 
 
int overload_resolution = 0;
int overload_resolution = 0;
 
 
/* This boolean tells what gdb should do if a signal is received while in
/* This boolean tells what gdb should do if a signal is received while in
   a function called from gdb (call dummy).  If set, gdb unwinds the stack
   a function called from gdb (call dummy).  If set, gdb unwinds the stack
   and restore the context to what as it was before the call.
   and restore the context to what as it was before the call.
   The default is to stop in the frame where the signal was received. */
   The default is to stop in the frame where the signal was received. */
 
 
int unwind_on_signal_p = 0;
int unwind_on_signal_p = 0;


 
 
 
 
/* Find the address of function name NAME in the inferior.  */
/* Find the address of function name NAME in the inferior.  */
 
 
value_ptr
value_ptr
find_function_in_inferior (name)
find_function_in_inferior (name)
     char *name;
     char *name;
{
{
  register struct symbol *sym;
  register struct symbol *sym;
  sym = lookup_symbol (name, 0, VAR_NAMESPACE, 0, NULL);
  sym = lookup_symbol (name, 0, VAR_NAMESPACE, 0, NULL);
  if (sym != NULL)
  if (sym != NULL)
    {
    {
      if (SYMBOL_CLASS (sym) != LOC_BLOCK)
      if (SYMBOL_CLASS (sym) != LOC_BLOCK)
        {
        {
          error ("\"%s\" exists in this program but is not a function.",
          error ("\"%s\" exists in this program but is not a function.",
                 name);
                 name);
        }
        }
      return value_of_variable (sym, NULL);
      return value_of_variable (sym, NULL);
    }
    }
  else
  else
    {
    {
      struct minimal_symbol *msymbol = lookup_minimal_symbol (name, NULL, NULL);
      struct minimal_symbol *msymbol = lookup_minimal_symbol (name, NULL, NULL);
      if (msymbol != NULL)
      if (msymbol != NULL)
        {
        {
          struct type *type;
          struct type *type;
          LONGEST maddr;
          LONGEST maddr;
          type = lookup_pointer_type (builtin_type_char);
          type = lookup_pointer_type (builtin_type_char);
          type = lookup_function_type (type);
          type = lookup_function_type (type);
          type = lookup_pointer_type (type);
          type = lookup_pointer_type (type);
          maddr = (LONGEST) SYMBOL_VALUE_ADDRESS (msymbol);
          maddr = (LONGEST) SYMBOL_VALUE_ADDRESS (msymbol);
          return value_from_longest (type, maddr);
          return value_from_longest (type, maddr);
        }
        }
      else
      else
        {
        {
          if (!target_has_execution)
          if (!target_has_execution)
            error ("evaluation of this expression requires the target program to be active");
            error ("evaluation of this expression requires the target program to be active");
          else
          else
            error ("evaluation of this expression requires the program to have a function \"%s\".", name);
            error ("evaluation of this expression requires the program to have a function \"%s\".", name);
        }
        }
    }
    }
}
}
 
 
/* Allocate NBYTES of space in the inferior using the inferior's malloc
/* Allocate NBYTES of space in the inferior using the inferior's malloc
   and return a value that is a pointer to the allocated space. */
   and return a value that is a pointer to the allocated space. */
 
 
value_ptr
value_ptr
value_allocate_space_in_inferior (len)
value_allocate_space_in_inferior (len)
     int len;
     int len;
{
{
  value_ptr blocklen;
  value_ptr blocklen;
  register value_ptr val = find_function_in_inferior ("malloc");
  register value_ptr val = find_function_in_inferior ("malloc");
 
 
  blocklen = value_from_longest (builtin_type_int, (LONGEST) len);
  blocklen = value_from_longest (builtin_type_int, (LONGEST) len);
  val = call_function_by_hand (val, 1, &blocklen);
  val = call_function_by_hand (val, 1, &blocklen);
  if (value_logical_not (val))
  if (value_logical_not (val))
    {
    {
      if (!target_has_execution)
      if (!target_has_execution)
        error ("No memory available to program now: you need to start the target first");
        error ("No memory available to program now: you need to start the target first");
      else
      else
        error ("No memory available to program: call to malloc failed");
        error ("No memory available to program: call to malloc failed");
    }
    }
  return val;
  return val;
}
}
 
 
static CORE_ADDR
static CORE_ADDR
allocate_space_in_inferior (len)
allocate_space_in_inferior (len)
     int len;
     int len;
{
{
  return value_as_long (value_allocate_space_in_inferior (len));
  return value_as_long (value_allocate_space_in_inferior (len));
}
}
 
 
/* Cast value ARG2 to type TYPE and return as a value.
/* Cast value ARG2 to type TYPE and return as a value.
   More general than a C cast: accepts any two types of the same length,
   More general than a C cast: accepts any two types of the same length,
   and if ARG2 is an lvalue it can be cast into anything at all.  */
   and if ARG2 is an lvalue it can be cast into anything at all.  */
/* In C++, casts may change pointer or object representations.  */
/* In C++, casts may change pointer or object representations.  */
 
 
value_ptr
value_ptr
value_cast (type, arg2)
value_cast (type, arg2)
     struct type *type;
     struct type *type;
     register value_ptr arg2;
     register value_ptr arg2;
{
{
  register enum type_code code1;
  register enum type_code code1;
  register enum type_code code2;
  register enum type_code code2;
  register int scalar;
  register int scalar;
  struct type *type2;
  struct type *type2;
 
 
  int convert_to_boolean = 0;
  int convert_to_boolean = 0;
 
 
  if (VALUE_TYPE (arg2) == type)
  if (VALUE_TYPE (arg2) == type)
    return arg2;
    return arg2;
 
 
  CHECK_TYPEDEF (type);
  CHECK_TYPEDEF (type);
  code1 = TYPE_CODE (type);
  code1 = TYPE_CODE (type);
  COERCE_REF (arg2);
  COERCE_REF (arg2);
  type2 = check_typedef (VALUE_TYPE (arg2));
  type2 = check_typedef (VALUE_TYPE (arg2));
 
 
  /* A cast to an undetermined-length array_type, such as (TYPE [])OBJECT,
  /* A cast to an undetermined-length array_type, such as (TYPE [])OBJECT,
     is treated like a cast to (TYPE [N])OBJECT,
     is treated like a cast to (TYPE [N])OBJECT,
     where N is sizeof(OBJECT)/sizeof(TYPE). */
     where N is sizeof(OBJECT)/sizeof(TYPE). */
  if (code1 == TYPE_CODE_ARRAY)
  if (code1 == TYPE_CODE_ARRAY)
    {
    {
      struct type *element_type = TYPE_TARGET_TYPE (type);
      struct type *element_type = TYPE_TARGET_TYPE (type);
      unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
      unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
      if (element_length > 0
      if (element_length > 0
        && TYPE_ARRAY_UPPER_BOUND_TYPE (type) == BOUND_CANNOT_BE_DETERMINED)
        && TYPE_ARRAY_UPPER_BOUND_TYPE (type) == BOUND_CANNOT_BE_DETERMINED)
        {
        {
          struct type *range_type = TYPE_INDEX_TYPE (type);
          struct type *range_type = TYPE_INDEX_TYPE (type);
          int val_length = TYPE_LENGTH (type2);
          int val_length = TYPE_LENGTH (type2);
          LONGEST low_bound, high_bound, new_length;
          LONGEST low_bound, high_bound, new_length;
          if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
          if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
            low_bound = 0, high_bound = 0;
            low_bound = 0, high_bound = 0;
          new_length = val_length / element_length;
          new_length = val_length / element_length;
          if (val_length % element_length != 0)
          if (val_length % element_length != 0)
            warning ("array element type size does not divide object size in cast");
            warning ("array element type size does not divide object size in cast");
          /* FIXME-type-allocation: need a way to free this type when we are
          /* FIXME-type-allocation: need a way to free this type when we are
             done with it.  */
             done with it.  */
          range_type = create_range_type ((struct type *) NULL,
          range_type = create_range_type ((struct type *) NULL,
                                          TYPE_TARGET_TYPE (range_type),
                                          TYPE_TARGET_TYPE (range_type),
                                          low_bound,
                                          low_bound,
                                          new_length + low_bound - 1);
                                          new_length + low_bound - 1);
          VALUE_TYPE (arg2) = create_array_type ((struct type *) NULL,
          VALUE_TYPE (arg2) = create_array_type ((struct type *) NULL,
                                                 element_type, range_type);
                                                 element_type, range_type);
          return arg2;
          return arg2;
        }
        }
    }
    }
 
 
  if (current_language->c_style_arrays
  if (current_language->c_style_arrays
      && TYPE_CODE (type2) == TYPE_CODE_ARRAY)
      && TYPE_CODE (type2) == TYPE_CODE_ARRAY)
    arg2 = value_coerce_array (arg2);
    arg2 = value_coerce_array (arg2);
 
 
  if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
  if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
    arg2 = value_coerce_function (arg2);
    arg2 = value_coerce_function (arg2);
 
 
  type2 = check_typedef (VALUE_TYPE (arg2));
  type2 = check_typedef (VALUE_TYPE (arg2));
  COERCE_VARYING_ARRAY (arg2, type2);
  COERCE_VARYING_ARRAY (arg2, type2);
  code2 = TYPE_CODE (type2);
  code2 = TYPE_CODE (type2);
 
 
  if (code1 == TYPE_CODE_COMPLEX)
  if (code1 == TYPE_CODE_COMPLEX)
    return cast_into_complex (type, arg2);
    return cast_into_complex (type, arg2);
  if (code1 == TYPE_CODE_BOOL)
  if (code1 == TYPE_CODE_BOOL)
    {
    {
      code1 = TYPE_CODE_INT;
      code1 = TYPE_CODE_INT;
      convert_to_boolean = 1;
      convert_to_boolean = 1;
    }
    }
  if (code1 == TYPE_CODE_CHAR)
  if (code1 == TYPE_CODE_CHAR)
    code1 = TYPE_CODE_INT;
    code1 = TYPE_CODE_INT;
  if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
  if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
    code2 = TYPE_CODE_INT;
    code2 = TYPE_CODE_INT;
 
 
  scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
  scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
            || code2 == TYPE_CODE_ENUM || code2 == TYPE_CODE_RANGE);
            || code2 == TYPE_CODE_ENUM || code2 == TYPE_CODE_RANGE);
 
 
  if (code1 == TYPE_CODE_STRUCT
  if (code1 == TYPE_CODE_STRUCT
      && code2 == TYPE_CODE_STRUCT
      && code2 == TYPE_CODE_STRUCT
      && TYPE_NAME (type) != 0)
      && TYPE_NAME (type) != 0)
    {
    {
      /* Look in the type of the source to see if it contains the
      /* Look in the type of the source to see if it contains the
         type of the target as a superclass.  If so, we'll need to
         type of the target as a superclass.  If so, we'll need to
         offset the object in addition to changing its type.  */
         offset the object in addition to changing its type.  */
      value_ptr v = search_struct_field (type_name_no_tag (type),
      value_ptr v = search_struct_field (type_name_no_tag (type),
                                         arg2, 0, type2, 1);
                                         arg2, 0, type2, 1);
      if (v)
      if (v)
        {
        {
          VALUE_TYPE (v) = type;
          VALUE_TYPE (v) = type;
          return v;
          return v;
        }
        }
    }
    }
  if (code1 == TYPE_CODE_FLT && scalar)
  if (code1 == TYPE_CODE_FLT && scalar)
    return value_from_double (type, value_as_double (arg2));
    return value_from_double (type, value_as_double (arg2));
  else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
  else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
            || code1 == TYPE_CODE_RANGE)
            || code1 == TYPE_CODE_RANGE)
           && (scalar || code2 == TYPE_CODE_PTR))
           && (scalar || code2 == TYPE_CODE_PTR))
    {
    {
      LONGEST longest;
      LONGEST longest;
 
 
      if (hp_som_som_object_present &&  /* if target compiled by HP aCC */
      if (hp_som_som_object_present &&  /* if target compiled by HP aCC */
          (code2 == TYPE_CODE_PTR))
          (code2 == TYPE_CODE_PTR))
        {
        {
          unsigned int *ptr;
          unsigned int *ptr;
          value_ptr retvalp;
          value_ptr retvalp;
 
 
          switch (TYPE_CODE (TYPE_TARGET_TYPE (type2)))
          switch (TYPE_CODE (TYPE_TARGET_TYPE (type2)))
            {
            {
              /* With HP aCC, pointers to data members have a bias */
              /* With HP aCC, pointers to data members have a bias */
            case TYPE_CODE_MEMBER:
            case TYPE_CODE_MEMBER:
              retvalp = value_from_longest (type, value_as_long (arg2));
              retvalp = value_from_longest (type, value_as_long (arg2));
              ptr = (unsigned int *) VALUE_CONTENTS (retvalp);  /* force evaluation */
              ptr = (unsigned int *) VALUE_CONTENTS (retvalp);  /* force evaluation */
              *ptr &= ~0x20000000;      /* zap 29th bit to remove bias */
              *ptr &= ~0x20000000;      /* zap 29th bit to remove bias */
              return retvalp;
              return retvalp;
 
 
              /* While pointers to methods don't really point to a function */
              /* While pointers to methods don't really point to a function */
            case TYPE_CODE_METHOD:
            case TYPE_CODE_METHOD:
              error ("Pointers to methods not supported with HP aCC");
              error ("Pointers to methods not supported with HP aCC");
 
 
            default:
            default:
              break;            /* fall out and go to normal handling */
              break;            /* fall out and go to normal handling */
            }
            }
        }
        }
      longest = value_as_long (arg2);
      longest = value_as_long (arg2);
      return value_from_longest (type, convert_to_boolean ? (LONGEST) (longest ? 1 : 0) : longest);
      return value_from_longest (type, convert_to_boolean ? (LONGEST) (longest ? 1 : 0) : longest);
    }
    }
  else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
  else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
    {
    {
      if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
      if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
        {
        {
          struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type));
          struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type));
          struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
          struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
          if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
          if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
              && TYPE_CODE (t2) == TYPE_CODE_STRUCT
              && TYPE_CODE (t2) == TYPE_CODE_STRUCT
              && !value_logical_not (arg2))
              && !value_logical_not (arg2))
            {
            {
              value_ptr v;
              value_ptr v;
 
 
              /* Look in the type of the source to see if it contains the
              /* Look in the type of the source to see if it contains the
                 type of the target as a superclass.  If so, we'll need to
                 type of the target as a superclass.  If so, we'll need to
                 offset the pointer rather than just change its type.  */
                 offset the pointer rather than just change its type.  */
              if (TYPE_NAME (t1) != NULL)
              if (TYPE_NAME (t1) != NULL)
                {
                {
                  v = search_struct_field (type_name_no_tag (t1),
                  v = search_struct_field (type_name_no_tag (t1),
                                           value_ind (arg2), 0, t2, 1);
                                           value_ind (arg2), 0, t2, 1);
                  if (v)
                  if (v)
                    {
                    {
                      v = value_addr (v);
                      v = value_addr (v);
                      VALUE_TYPE (v) = type;
                      VALUE_TYPE (v) = type;
                      return v;
                      return v;
                    }
                    }
                }
                }
 
 
              /* Look in the type of the target to see if it contains the
              /* Look in the type of the target to see if it contains the
                 type of the source as a superclass.  If so, we'll need to
                 type of the source as a superclass.  If so, we'll need to
                 offset the pointer rather than just change its type.
                 offset the pointer rather than just change its type.
                 FIXME: This fails silently with virtual inheritance.  */
                 FIXME: This fails silently with virtual inheritance.  */
              if (TYPE_NAME (t2) != NULL)
              if (TYPE_NAME (t2) != NULL)
                {
                {
                  v = search_struct_field (type_name_no_tag (t2),
                  v = search_struct_field (type_name_no_tag (t2),
                                       value_zero (t1, not_lval), 0, t1, 1);
                                       value_zero (t1, not_lval), 0, t1, 1);
                  if (v)
                  if (v)
                    {
                    {
                      value_ptr v2 = value_ind (arg2);
                      value_ptr v2 = value_ind (arg2);
                      VALUE_ADDRESS (v2) -= VALUE_ADDRESS (v)
                      VALUE_ADDRESS (v2) -= VALUE_ADDRESS (v)
                        + VALUE_OFFSET (v);
                        + VALUE_OFFSET (v);
 
 
                      /* JYG: adjust the new pointer value and
                      /* JYG: adjust the new pointer value and
                         embedded offset. */
                         embedded offset. */
                      v2->aligner.contents[0] -=  VALUE_EMBEDDED_OFFSET (v);
                      v2->aligner.contents[0] -=  VALUE_EMBEDDED_OFFSET (v);
                      VALUE_EMBEDDED_OFFSET (v2) = 0;
                      VALUE_EMBEDDED_OFFSET (v2) = 0;
 
 
                      v2 = value_addr (v2);
                      v2 = value_addr (v2);
                      VALUE_TYPE (v2) = type;
                      VALUE_TYPE (v2) = type;
                      return v2;
                      return v2;
                    }
                    }
                }
                }
            }
            }
          /* No superclass found, just fall through to change ptr type.  */
          /* No superclass found, just fall through to change ptr type.  */
        }
        }
      VALUE_TYPE (arg2) = type;
      VALUE_TYPE (arg2) = type;
      VALUE_ENCLOSING_TYPE (arg2) = type;       /* pai: chk_val */
      VALUE_ENCLOSING_TYPE (arg2) = type;       /* pai: chk_val */
      VALUE_POINTED_TO_OFFSET (arg2) = 0;        /* pai: chk_val */
      VALUE_POINTED_TO_OFFSET (arg2) = 0;        /* pai: chk_val */
      return arg2;
      return arg2;
    }
    }
  else if (chill_varying_type (type))
  else if (chill_varying_type (type))
    {
    {
      struct type *range1, *range2, *eltype1, *eltype2;
      struct type *range1, *range2, *eltype1, *eltype2;
      value_ptr val;
      value_ptr val;
      int count1, count2;
      int count1, count2;
      LONGEST low_bound, high_bound;
      LONGEST low_bound, high_bound;
      char *valaddr, *valaddr_data;
      char *valaddr, *valaddr_data;
      /* For lint warning about eltype2 possibly uninitialized: */
      /* For lint warning about eltype2 possibly uninitialized: */
      eltype2 = NULL;
      eltype2 = NULL;
      if (code2 == TYPE_CODE_BITSTRING)
      if (code2 == TYPE_CODE_BITSTRING)
        error ("not implemented: converting bitstring to varying type");
        error ("not implemented: converting bitstring to varying type");
      if ((code2 != TYPE_CODE_ARRAY && code2 != TYPE_CODE_STRING)
      if ((code2 != TYPE_CODE_ARRAY && code2 != TYPE_CODE_STRING)
          || (eltype1 = check_typedef (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 1))),
          || (eltype1 = check_typedef (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 1))),
              eltype2 = check_typedef (TYPE_TARGET_TYPE (type2)),
              eltype2 = check_typedef (TYPE_TARGET_TYPE (type2)),
              (TYPE_LENGTH (eltype1) != TYPE_LENGTH (eltype2)
              (TYPE_LENGTH (eltype1) != TYPE_LENGTH (eltype2)
      /* || TYPE_CODE (eltype1) != TYPE_CODE (eltype2) */ )))
      /* || TYPE_CODE (eltype1) != TYPE_CODE (eltype2) */ )))
        error ("Invalid conversion to varying type");
        error ("Invalid conversion to varying type");
      range1 = TYPE_FIELD_TYPE (TYPE_FIELD_TYPE (type, 1), 0);
      range1 = TYPE_FIELD_TYPE (TYPE_FIELD_TYPE (type, 1), 0);
      range2 = TYPE_FIELD_TYPE (type2, 0);
      range2 = TYPE_FIELD_TYPE (type2, 0);
      if (get_discrete_bounds (range1, &low_bound, &high_bound) < 0)
      if (get_discrete_bounds (range1, &low_bound, &high_bound) < 0)
        count1 = -1;
        count1 = -1;
      else
      else
        count1 = high_bound - low_bound + 1;
        count1 = high_bound - low_bound + 1;
      if (get_discrete_bounds (range2, &low_bound, &high_bound) < 0)
      if (get_discrete_bounds (range2, &low_bound, &high_bound) < 0)
        count1 = -1, count2 = 0; /* To force error before */
        count1 = -1, count2 = 0; /* To force error before */
      else
      else
        count2 = high_bound - low_bound + 1;
        count2 = high_bound - low_bound + 1;
      if (count2 > count1)
      if (count2 > count1)
        error ("target varying type is too small");
        error ("target varying type is too small");
      val = allocate_value (type);
      val = allocate_value (type);
      valaddr = VALUE_CONTENTS_RAW (val);
      valaddr = VALUE_CONTENTS_RAW (val);
      valaddr_data = valaddr + TYPE_FIELD_BITPOS (type, 1) / 8;
      valaddr_data = valaddr + TYPE_FIELD_BITPOS (type, 1) / 8;
      /* Set val's __var_length field to count2. */
      /* Set val's __var_length field to count2. */
      store_signed_integer (valaddr, TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)),
      store_signed_integer (valaddr, TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)),
                            count2);
                            count2);
      /* Set the __var_data field to count2 elements copied from arg2. */
      /* Set the __var_data field to count2 elements copied from arg2. */
      memcpy (valaddr_data, VALUE_CONTENTS (arg2),
      memcpy (valaddr_data, VALUE_CONTENTS (arg2),
              count2 * TYPE_LENGTH (eltype2));
              count2 * TYPE_LENGTH (eltype2));
      /* Zero the rest of the __var_data field of val. */
      /* Zero the rest of the __var_data field of val. */
      memset (valaddr_data + count2 * TYPE_LENGTH (eltype2), '\0',
      memset (valaddr_data + count2 * TYPE_LENGTH (eltype2), '\0',
              (count1 - count2) * TYPE_LENGTH (eltype2));
              (count1 - count2) * TYPE_LENGTH (eltype2));
      return val;
      return val;
    }
    }
  else if (VALUE_LVAL (arg2) == lval_memory)
  else if (VALUE_LVAL (arg2) == lval_memory)
    {
    {
      return value_at_lazy (type, VALUE_ADDRESS (arg2) + VALUE_OFFSET (arg2),
      return value_at_lazy (type, VALUE_ADDRESS (arg2) + VALUE_OFFSET (arg2),
                            VALUE_BFD_SECTION (arg2));
                            VALUE_BFD_SECTION (arg2));
    }
    }
  else if (code1 == TYPE_CODE_VOID)
  else if (code1 == TYPE_CODE_VOID)
    {
    {
      return value_zero (builtin_type_void, not_lval);
      return value_zero (builtin_type_void, not_lval);
    }
    }
  else
  else
    {
    {
      error ("Invalid cast.");
      error ("Invalid cast.");
      return 0;
      return 0;
    }
    }
}
}
 
 
/* Create a value of type TYPE that is zero, and return it.  */
/* Create a value of type TYPE that is zero, and return it.  */
 
 
value_ptr
value_ptr
value_zero (type, lv)
value_zero (type, lv)
     struct type *type;
     struct type *type;
     enum lval_type lv;
     enum lval_type lv;
{
{
  register value_ptr val = allocate_value (type);
  register value_ptr val = allocate_value (type);
 
 
  memset (VALUE_CONTENTS (val), 0, TYPE_LENGTH (check_typedef (type)));
  memset (VALUE_CONTENTS (val), 0, TYPE_LENGTH (check_typedef (type)));
  VALUE_LVAL (val) = lv;
  VALUE_LVAL (val) = lv;
 
 
  return val;
  return val;
}
}
 
 
/* Return a value with type TYPE located at ADDR.
/* Return a value with type TYPE located at ADDR.
 
 
   Call value_at only if the data needs to be fetched immediately;
   Call value_at only if the data needs to be fetched immediately;
   if we can be 'lazy' and defer the fetch, perhaps indefinately, call
   if we can be 'lazy' and defer the fetch, perhaps indefinately, call
   value_at_lazy instead.  value_at_lazy simply records the address of
   value_at_lazy instead.  value_at_lazy simply records the address of
   the data and sets the lazy-evaluation-required flag.  The lazy flag
   the data and sets the lazy-evaluation-required flag.  The lazy flag
   is tested in the VALUE_CONTENTS macro, which is used if and when
   is tested in the VALUE_CONTENTS macro, which is used if and when
   the contents are actually required.
   the contents are actually required.
 
 
   Note: value_at does *NOT* handle embedded offsets; perform such
   Note: value_at does *NOT* handle embedded offsets; perform such
   adjustments before or after calling it. */
   adjustments before or after calling it. */
 
 
value_ptr
value_ptr
value_at (type, addr, sect)
value_at (type, addr, sect)
     struct type *type;
     struct type *type;
     CORE_ADDR addr;
     CORE_ADDR addr;
     asection *sect;
     asection *sect;
{
{
  register value_ptr val;
  register value_ptr val;
 
 
  if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
  if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
    error ("Attempt to dereference a generic pointer.");
    error ("Attempt to dereference a generic pointer.");
 
 
  val = allocate_value (type);
  val = allocate_value (type);
 
 
  if (GDB_TARGET_IS_D10V
  if (GDB_TARGET_IS_D10V
      && TYPE_CODE (type) == TYPE_CODE_PTR
      && TYPE_CODE (type) == TYPE_CODE_PTR
      && TYPE_TARGET_TYPE (type)
      && TYPE_TARGET_TYPE (type)
      && (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC))
      && (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC))
    {
    {
      /* pointer to function */
      /* pointer to function */
      unsigned long num;
      unsigned long num;
      unsigned short snum;
      unsigned short snum;
      snum = read_memory_unsigned_integer (addr, 2);
      snum = read_memory_unsigned_integer (addr, 2);
      num = D10V_MAKE_IADDR (snum);
      num = D10V_MAKE_IADDR (snum);
      store_address (VALUE_CONTENTS_RAW (val), 4, num);
      store_address (VALUE_CONTENTS_RAW (val), 4, num);
    }
    }
  else if (GDB_TARGET_IS_D10V
  else if (GDB_TARGET_IS_D10V
           && TYPE_CODE (type) == TYPE_CODE_PTR)
           && TYPE_CODE (type) == TYPE_CODE_PTR)
    {
    {
      /* pointer to data */
      /* pointer to data */
      unsigned long num;
      unsigned long num;
      unsigned short snum;
      unsigned short snum;
      snum = read_memory_unsigned_integer (addr, 2);
      snum = read_memory_unsigned_integer (addr, 2);
      num = D10V_MAKE_DADDR (snum);
      num = D10V_MAKE_DADDR (snum);
      store_address (VALUE_CONTENTS_RAW (val), 4, num);
      store_address (VALUE_CONTENTS_RAW (val), 4, num);
    }
    }
  else
  else
    read_memory_section (addr, VALUE_CONTENTS_ALL_RAW (val), TYPE_LENGTH (type), sect);
    read_memory_section (addr, VALUE_CONTENTS_ALL_RAW (val), TYPE_LENGTH (type), sect);
 
 
  VALUE_LVAL (val) = lval_memory;
  VALUE_LVAL (val) = lval_memory;
  VALUE_ADDRESS (val) = addr;
  VALUE_ADDRESS (val) = addr;
  VALUE_BFD_SECTION (val) = sect;
  VALUE_BFD_SECTION (val) = sect;
 
 
  return val;
  return val;
}
}
 
 
/* Return a lazy value with type TYPE located at ADDR (cf. value_at).  */
/* Return a lazy value with type TYPE located at ADDR (cf. value_at).  */
 
 
value_ptr
value_ptr
value_at_lazy (type, addr, sect)
value_at_lazy (type, addr, sect)
     struct type *type;
     struct type *type;
     CORE_ADDR addr;
     CORE_ADDR addr;
     asection *sect;
     asection *sect;
{
{
  register value_ptr val;
  register value_ptr val;
 
 
  if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
  if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
    error ("Attempt to dereference a generic pointer.");
    error ("Attempt to dereference a generic pointer.");
 
 
  val = allocate_value (type);
  val = allocate_value (type);
 
 
  VALUE_LVAL (val) = lval_memory;
  VALUE_LVAL (val) = lval_memory;
  VALUE_ADDRESS (val) = addr;
  VALUE_ADDRESS (val) = addr;
  VALUE_LAZY (val) = 1;
  VALUE_LAZY (val) = 1;
  VALUE_BFD_SECTION (val) = sect;
  VALUE_BFD_SECTION (val) = sect;
 
 
  return val;
  return val;
}
}
 
 
/* Called only from the VALUE_CONTENTS and VALUE_CONTENTS_ALL macros,
/* Called only from the VALUE_CONTENTS and VALUE_CONTENTS_ALL macros,
   if the current data for a variable needs to be loaded into
   if the current data for a variable needs to be loaded into
   VALUE_CONTENTS(VAL).  Fetches the data from the user's process, and
   VALUE_CONTENTS(VAL).  Fetches the data from the user's process, and
   clears the lazy flag to indicate that the data in the buffer is valid.
   clears the lazy flag to indicate that the data in the buffer is valid.
 
 
   If the value is zero-length, we avoid calling read_memory, which would
   If the value is zero-length, we avoid calling read_memory, which would
   abort.  We mark the value as fetched anyway -- all 0 bytes of it.
   abort.  We mark the value as fetched anyway -- all 0 bytes of it.
 
 
   This function returns a value because it is used in the VALUE_CONTENTS
   This function returns a value because it is used in the VALUE_CONTENTS
   macro as part of an expression, where a void would not work.  The
   macro as part of an expression, where a void would not work.  The
   value is ignored.  */
   value is ignored.  */
 
 
int
int
value_fetch_lazy (val)
value_fetch_lazy (val)
     register value_ptr val;
     register value_ptr val;
{
{
  CORE_ADDR addr = VALUE_ADDRESS (val) + VALUE_OFFSET (val);
  CORE_ADDR addr = VALUE_ADDRESS (val) + VALUE_OFFSET (val);
  int length = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val));
  int length = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val));
 
 
  struct type *type = VALUE_TYPE (val);
  struct type *type = VALUE_TYPE (val);
  if (GDB_TARGET_IS_D10V
  if (GDB_TARGET_IS_D10V
      && TYPE_CODE (type) == TYPE_CODE_PTR
      && TYPE_CODE (type) == TYPE_CODE_PTR
      && TYPE_TARGET_TYPE (type)
      && TYPE_TARGET_TYPE (type)
      && (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC))
      && (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC))
    {
    {
      /* pointer to function */
      /* pointer to function */
      unsigned long num;
      unsigned long num;
      unsigned short snum;
      unsigned short snum;
      snum = read_memory_unsigned_integer (addr, 2);
      snum = read_memory_unsigned_integer (addr, 2);
      num = D10V_MAKE_IADDR (snum);
      num = D10V_MAKE_IADDR (snum);
      store_address (VALUE_CONTENTS_RAW (val), 4, num);
      store_address (VALUE_CONTENTS_RAW (val), 4, num);
    }
    }
  else if (GDB_TARGET_IS_D10V
  else if (GDB_TARGET_IS_D10V
           && TYPE_CODE (type) == TYPE_CODE_PTR)
           && TYPE_CODE (type) == TYPE_CODE_PTR)
    {
    {
      /* pointer to data */
      /* pointer to data */
      unsigned long num;
      unsigned long num;
      unsigned short snum;
      unsigned short snum;
      snum = read_memory_unsigned_integer (addr, 2);
      snum = read_memory_unsigned_integer (addr, 2);
      num = D10V_MAKE_DADDR (snum);
      num = D10V_MAKE_DADDR (snum);
      store_address (VALUE_CONTENTS_RAW (val), 4, num);
      store_address (VALUE_CONTENTS_RAW (val), 4, num);
    }
    }
  else if (length)
  else if (length)
    read_memory_section (addr, VALUE_CONTENTS_ALL_RAW (val), length,
    read_memory_section (addr, VALUE_CONTENTS_ALL_RAW (val), length,
                         VALUE_BFD_SECTION (val));
                         VALUE_BFD_SECTION (val));
  VALUE_LAZY (val) = 0;
  VALUE_LAZY (val) = 0;
  return 0;
  return 0;
}
}
 
 
 
 
/* Store the contents of FROMVAL into the location of TOVAL.
/* Store the contents of FROMVAL into the location of TOVAL.
   Return a new value with the location of TOVAL and contents of FROMVAL.  */
   Return a new value with the location of TOVAL and contents of FROMVAL.  */
 
 
value_ptr
value_ptr
value_assign (toval, fromval)
value_assign (toval, fromval)
     register value_ptr toval, fromval;
     register value_ptr toval, fromval;
{
{
  register struct type *type;
  register struct type *type;
  register value_ptr val;
  register value_ptr val;
  char raw_buffer[MAX_REGISTER_RAW_SIZE];
  char raw_buffer[MAX_REGISTER_RAW_SIZE];
  int use_buffer = 0;
  int use_buffer = 0;
 
 
  if (!toval->modifiable)
  if (!toval->modifiable)
    error ("Left operand of assignment is not a modifiable lvalue.");
    error ("Left operand of assignment is not a modifiable lvalue.");
 
 
  COERCE_REF (toval);
  COERCE_REF (toval);
 
 
  type = VALUE_TYPE (toval);
  type = VALUE_TYPE (toval);
  if (VALUE_LVAL (toval) != lval_internalvar)
  if (VALUE_LVAL (toval) != lval_internalvar)
    fromval = value_cast (type, fromval);
    fromval = value_cast (type, fromval);
  else
  else
    COERCE_ARRAY (fromval);
    COERCE_ARRAY (fromval);
  CHECK_TYPEDEF (type);
  CHECK_TYPEDEF (type);
 
 
  /* If TOVAL is a special machine register requiring conversion
  /* If TOVAL is a special machine register requiring conversion
     of program values to a special raw format,
     of program values to a special raw format,
     convert FROMVAL's contents now, with result in `raw_buffer',
     convert FROMVAL's contents now, with result in `raw_buffer',
     and set USE_BUFFER to the number of bytes to write.  */
     and set USE_BUFFER to the number of bytes to write.  */
 
 
  if (VALUE_REGNO (toval) >= 0)
  if (VALUE_REGNO (toval) >= 0)
    {
    {
      int regno = VALUE_REGNO (toval);
      int regno = VALUE_REGNO (toval);
      if (REGISTER_CONVERTIBLE (regno))
      if (REGISTER_CONVERTIBLE (regno))
        {
        {
          struct type *fromtype = check_typedef (VALUE_TYPE (fromval));
          struct type *fromtype = check_typedef (VALUE_TYPE (fromval));
          REGISTER_CONVERT_TO_RAW (fromtype, regno,
          REGISTER_CONVERT_TO_RAW (fromtype, regno,
                                   VALUE_CONTENTS (fromval), raw_buffer);
                                   VALUE_CONTENTS (fromval), raw_buffer);
          use_buffer = REGISTER_RAW_SIZE (regno);
          use_buffer = REGISTER_RAW_SIZE (regno);
        }
        }
    }
    }
 
 
  switch (VALUE_LVAL (toval))
  switch (VALUE_LVAL (toval))
    {
    {
    case lval_internalvar:
    case lval_internalvar:
      set_internalvar (VALUE_INTERNALVAR (toval), fromval);
      set_internalvar (VALUE_INTERNALVAR (toval), fromval);
      val = value_copy (VALUE_INTERNALVAR (toval)->value);
      val = value_copy (VALUE_INTERNALVAR (toval)->value);
      VALUE_ENCLOSING_TYPE (val) = VALUE_ENCLOSING_TYPE (fromval);
      VALUE_ENCLOSING_TYPE (val) = VALUE_ENCLOSING_TYPE (fromval);
      VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
      VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
      VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
      VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
      return val;
      return val;
 
 
    case lval_internalvar_component:
    case lval_internalvar_component:
      set_internalvar_component (VALUE_INTERNALVAR (toval),
      set_internalvar_component (VALUE_INTERNALVAR (toval),
                                 VALUE_OFFSET (toval),
                                 VALUE_OFFSET (toval),
                                 VALUE_BITPOS (toval),
                                 VALUE_BITPOS (toval),
                                 VALUE_BITSIZE (toval),
                                 VALUE_BITSIZE (toval),
                                 fromval);
                                 fromval);
      break;
      break;
 
 
    case lval_memory:
    case lval_memory:
      {
      {
        char *dest_buffer;
        char *dest_buffer;
        CORE_ADDR changed_addr;
        CORE_ADDR changed_addr;
        int changed_len;
        int changed_len;
 
 
        if (VALUE_BITSIZE (toval))
        if (VALUE_BITSIZE (toval))
          {
          {
            char buffer[sizeof (LONGEST)];
            char buffer[sizeof (LONGEST)];
            /* We assume that the argument to read_memory is in units of
            /* We assume that the argument to read_memory is in units of
               host chars.  FIXME:  Is that correct?  */
               host chars.  FIXME:  Is that correct?  */
            changed_len = (VALUE_BITPOS (toval)
            changed_len = (VALUE_BITPOS (toval)
                           + VALUE_BITSIZE (toval)
                           + VALUE_BITSIZE (toval)
                           + HOST_CHAR_BIT - 1)
                           + HOST_CHAR_BIT - 1)
              / HOST_CHAR_BIT;
              / HOST_CHAR_BIT;
 
 
            if (changed_len > (int) sizeof (LONGEST))
            if (changed_len > (int) sizeof (LONGEST))
              error ("Can't handle bitfields which don't fit in a %d bit word.",
              error ("Can't handle bitfields which don't fit in a %d bit word.",
                     sizeof (LONGEST) * HOST_CHAR_BIT);
                     sizeof (LONGEST) * HOST_CHAR_BIT);
 
 
            read_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
            read_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
                         buffer, changed_len);
                         buffer, changed_len);
            modify_field (buffer, value_as_long (fromval),
            modify_field (buffer, value_as_long (fromval),
                          VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
                          VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
            changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
            changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
            dest_buffer = buffer;
            dest_buffer = buffer;
          }
          }
        else if (use_buffer)
        else if (use_buffer)
          {
          {
            changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
            changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
            changed_len = use_buffer;
            changed_len = use_buffer;
            dest_buffer = raw_buffer;
            dest_buffer = raw_buffer;
          }
          }
        else
        else
          {
          {
            changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
            changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
            changed_len = TYPE_LENGTH (type);
            changed_len = TYPE_LENGTH (type);
            dest_buffer = VALUE_CONTENTS (fromval);
            dest_buffer = VALUE_CONTENTS (fromval);
          }
          }
 
 
        write_memory (changed_addr, dest_buffer, changed_len);
        write_memory (changed_addr, dest_buffer, changed_len);
        if (memory_changed_hook)
        if (memory_changed_hook)
          memory_changed_hook (changed_addr, changed_len);
          memory_changed_hook (changed_addr, changed_len);
      }
      }
      break;
      break;
 
 
    case lval_register:
    case lval_register:
      if (VALUE_BITSIZE (toval))
      if (VALUE_BITSIZE (toval))
        {
        {
          char buffer[sizeof (LONGEST)];
          char buffer[sizeof (LONGEST)];
          int len = REGISTER_RAW_SIZE (VALUE_REGNO (toval));
          int len = REGISTER_RAW_SIZE (VALUE_REGNO (toval));
 
 
          if (len > (int) sizeof (LONGEST))
          if (len > (int) sizeof (LONGEST))
            error ("Can't handle bitfields in registers larger than %d bits.",
            error ("Can't handle bitfields in registers larger than %d bits.",
                   sizeof (LONGEST) * HOST_CHAR_BIT);
                   sizeof (LONGEST) * HOST_CHAR_BIT);
 
 
          if (VALUE_BITPOS (toval) + VALUE_BITSIZE (toval)
          if (VALUE_BITPOS (toval) + VALUE_BITSIZE (toval)
              > len * HOST_CHAR_BIT)
              > len * HOST_CHAR_BIT)
            /* Getting this right would involve being very careful about
            /* Getting this right would involve being very careful about
               byte order.  */
               byte order.  */
            error ("Can't assign to bitfields that cross register "
            error ("Can't assign to bitfields that cross register "
                   "boundaries.");
                   "boundaries.");
 
 
          read_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
          read_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
                               buffer, len);
                               buffer, len);
          modify_field (buffer, value_as_long (fromval),
          modify_field (buffer, value_as_long (fromval),
                        VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
                        VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
          write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
          write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
                                buffer, len);
                                buffer, len);
        }
        }
      else if (use_buffer)
      else if (use_buffer)
        write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
        write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
                              raw_buffer, use_buffer);
                              raw_buffer, use_buffer);
      else
      else
        {
        {
          /* Do any conversion necessary when storing this type to more
          /* Do any conversion necessary when storing this type to more
             than one register.  */
             than one register.  */
#ifdef REGISTER_CONVERT_FROM_TYPE
#ifdef REGISTER_CONVERT_FROM_TYPE
          memcpy (raw_buffer, VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
          memcpy (raw_buffer, VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
          REGISTER_CONVERT_FROM_TYPE (VALUE_REGNO (toval), type, raw_buffer);
          REGISTER_CONVERT_FROM_TYPE (VALUE_REGNO (toval), type, raw_buffer);
          write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
          write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
                                raw_buffer, TYPE_LENGTH (type));
                                raw_buffer, TYPE_LENGTH (type));
#else
#else
          write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
          write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
                              VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
                              VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
#endif
#endif
        }
        }
      /* Assigning to the stack pointer, frame pointer, and other
      /* Assigning to the stack pointer, frame pointer, and other
         (architecture and calling convention specific) registers may
         (architecture and calling convention specific) registers may
         cause the frame cache to be out of date.  We just do this
         cause the frame cache to be out of date.  We just do this
         on all assignments to registers for simplicity; I doubt the slowdown
         on all assignments to registers for simplicity; I doubt the slowdown
         matters.  */
         matters.  */
      reinit_frame_cache ();
      reinit_frame_cache ();
      break;
      break;
 
 
    case lval_reg_frame_relative:
    case lval_reg_frame_relative:
      {
      {
        /* value is stored in a series of registers in the frame
        /* value is stored in a series of registers in the frame
           specified by the structure.  Copy that value out, modify
           specified by the structure.  Copy that value out, modify
           it, and copy it back in.  */
           it, and copy it back in.  */
        int amount_to_copy = (VALUE_BITSIZE (toval) ? 1 : TYPE_LENGTH (type));
        int amount_to_copy = (VALUE_BITSIZE (toval) ? 1 : TYPE_LENGTH (type));
        int reg_size = REGISTER_RAW_SIZE (VALUE_FRAME_REGNUM (toval));
        int reg_size = REGISTER_RAW_SIZE (VALUE_FRAME_REGNUM (toval));
        int byte_offset = VALUE_OFFSET (toval) % reg_size;
        int byte_offset = VALUE_OFFSET (toval) % reg_size;
        int reg_offset = VALUE_OFFSET (toval) / reg_size;
        int reg_offset = VALUE_OFFSET (toval) / reg_size;
        int amount_copied;
        int amount_copied;
 
 
        /* Make the buffer large enough in all cases.  */
        /* Make the buffer large enough in all cases.  */
        char *buffer = (char *) alloca (amount_to_copy
        char *buffer = (char *) alloca (amount_to_copy
                                        + sizeof (LONGEST)
                                        + sizeof (LONGEST)
                                        + MAX_REGISTER_RAW_SIZE);
                                        + MAX_REGISTER_RAW_SIZE);
 
 
        int regno;
        int regno;
        struct frame_info *frame;
        struct frame_info *frame;
 
 
        /* Figure out which frame this is in currently.  */
        /* Figure out which frame this is in currently.  */
        for (frame = get_current_frame ();
        for (frame = get_current_frame ();
             frame && FRAME_FP (frame) != VALUE_FRAME (toval);
             frame && FRAME_FP (frame) != VALUE_FRAME (toval);
             frame = get_prev_frame (frame))
             frame = get_prev_frame (frame))
          ;
          ;
 
 
        if (!frame)
        if (!frame)
          error ("Value being assigned to is no longer active.");
          error ("Value being assigned to is no longer active.");
 
 
        amount_to_copy += (reg_size - amount_to_copy % reg_size);
        amount_to_copy += (reg_size - amount_to_copy % reg_size);
 
 
        /* Copy it out.  */
        /* Copy it out.  */
        for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset,
        for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset,
              amount_copied = 0);
              amount_copied = 0);
             amount_copied < amount_to_copy;
             amount_copied < amount_to_copy;
             amount_copied += reg_size, regno++)
             amount_copied += reg_size, regno++)
          {
          {
            get_saved_register (buffer + amount_copied,
            get_saved_register (buffer + amount_copied,
                                (int *) NULL, (CORE_ADDR *) NULL,
                                (int *) NULL, (CORE_ADDR *) NULL,
                                frame, regno, (enum lval_type *) NULL);
                                frame, regno, (enum lval_type *) NULL);
          }
          }
 
 
        /* Modify what needs to be modified.  */
        /* Modify what needs to be modified.  */
        if (VALUE_BITSIZE (toval))
        if (VALUE_BITSIZE (toval))
          modify_field (buffer + byte_offset,
          modify_field (buffer + byte_offset,
                        value_as_long (fromval),
                        value_as_long (fromval),
                        VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
                        VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
        else if (use_buffer)
        else if (use_buffer)
          memcpy (buffer + byte_offset, raw_buffer, use_buffer);
          memcpy (buffer + byte_offset, raw_buffer, use_buffer);
        else
        else
          memcpy (buffer + byte_offset, VALUE_CONTENTS (fromval),
          memcpy (buffer + byte_offset, VALUE_CONTENTS (fromval),
                  TYPE_LENGTH (type));
                  TYPE_LENGTH (type));
 
 
        /* Copy it back.  */
        /* Copy it back.  */
        for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset,
        for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset,
              amount_copied = 0);
              amount_copied = 0);
             amount_copied < amount_to_copy;
             amount_copied < amount_to_copy;
             amount_copied += reg_size, regno++)
             amount_copied += reg_size, regno++)
          {
          {
            enum lval_type lval;
            enum lval_type lval;
            CORE_ADDR addr;
            CORE_ADDR addr;
            int optim;
            int optim;
 
 
            /* Just find out where to put it.  */
            /* Just find out where to put it.  */
            get_saved_register ((char *) NULL,
            get_saved_register ((char *) NULL,
                                &optim, &addr, frame, regno, &lval);
                                &optim, &addr, frame, regno, &lval);
 
 
            if (optim)
            if (optim)
              error ("Attempt to assign to a value that was optimized out.");
              error ("Attempt to assign to a value that was optimized out.");
            if (lval == lval_memory)
            if (lval == lval_memory)
              write_memory (addr, buffer + amount_copied, reg_size);
              write_memory (addr, buffer + amount_copied, reg_size);
            else if (lval == lval_register)
            else if (lval == lval_register)
              write_register_bytes (addr, buffer + amount_copied, reg_size);
              write_register_bytes (addr, buffer + amount_copied, reg_size);
            else
            else
              error ("Attempt to assign to an unmodifiable value.");
              error ("Attempt to assign to an unmodifiable value.");
          }
          }
 
 
        if (register_changed_hook)
        if (register_changed_hook)
          register_changed_hook (-1);
          register_changed_hook (-1);
      }
      }
      break;
      break;
 
 
 
 
    default:
    default:
      error ("Left operand of assignment is not an lvalue.");
      error ("Left operand of assignment is not an lvalue.");
    }
    }
 
 
  /* If the field does not entirely fill a LONGEST, then zero the sign bits.
  /* If the field does not entirely fill a LONGEST, then zero the sign bits.
     If the field is signed, and is negative, then sign extend. */
     If the field is signed, and is negative, then sign extend. */
  if ((VALUE_BITSIZE (toval) > 0)
  if ((VALUE_BITSIZE (toval) > 0)
      && (VALUE_BITSIZE (toval) < 8 * (int) sizeof (LONGEST)))
      && (VALUE_BITSIZE (toval) < 8 * (int) sizeof (LONGEST)))
    {
    {
      LONGEST fieldval = value_as_long (fromval);
      LONGEST fieldval = value_as_long (fromval);
      LONGEST valmask = (((ULONGEST) 1) << VALUE_BITSIZE (toval)) - 1;
      LONGEST valmask = (((ULONGEST) 1) << VALUE_BITSIZE (toval)) - 1;
 
 
      fieldval &= valmask;
      fieldval &= valmask;
      if (!TYPE_UNSIGNED (type) && (fieldval & (valmask ^ (valmask >> 1))))
      if (!TYPE_UNSIGNED (type) && (fieldval & (valmask ^ (valmask >> 1))))
        fieldval |= ~valmask;
        fieldval |= ~valmask;
 
 
      fromval = value_from_longest (type, fieldval);
      fromval = value_from_longest (type, fieldval);
    }
    }
 
 
  val = value_copy (toval);
  val = value_copy (toval);
  memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS (fromval),
  memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS (fromval),
          TYPE_LENGTH (type));
          TYPE_LENGTH (type));
  VALUE_TYPE (val) = type;
  VALUE_TYPE (val) = type;
  VALUE_ENCLOSING_TYPE (val) = VALUE_ENCLOSING_TYPE (fromval);
  VALUE_ENCLOSING_TYPE (val) = VALUE_ENCLOSING_TYPE (fromval);
  VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
  VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
  VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
  VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
 
 
  return val;
  return val;
}
}
 
 
/* Extend a value VAL to COUNT repetitions of its type.  */
/* Extend a value VAL to COUNT repetitions of its type.  */
 
 
value_ptr
value_ptr
value_repeat (arg1, count)
value_repeat (arg1, count)
     value_ptr arg1;
     value_ptr arg1;
     int count;
     int count;
{
{
  register value_ptr val;
  register value_ptr val;
 
 
  if (VALUE_LVAL (arg1) != lval_memory)
  if (VALUE_LVAL (arg1) != lval_memory)
    error ("Only values in memory can be extended with '@'.");
    error ("Only values in memory can be extended with '@'.");
  if (count < 1)
  if (count < 1)
    error ("Invalid number %d of repetitions.", count);
    error ("Invalid number %d of repetitions.", count);
 
 
  val = allocate_repeat_value (VALUE_ENCLOSING_TYPE (arg1), count);
  val = allocate_repeat_value (VALUE_ENCLOSING_TYPE (arg1), count);
 
 
  read_memory (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1),
  read_memory (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1),
               VALUE_CONTENTS_ALL_RAW (val),
               VALUE_CONTENTS_ALL_RAW (val),
               TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val)));
               TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val)));
  VALUE_LVAL (val) = lval_memory;
  VALUE_LVAL (val) = lval_memory;
  VALUE_ADDRESS (val) = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1);
  VALUE_ADDRESS (val) = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1);
 
 
  return val;
  return val;
}
}
 
 
value_ptr
value_ptr
value_of_variable (var, b)
value_of_variable (var, b)
     struct symbol *var;
     struct symbol *var;
     struct block *b;
     struct block *b;
{
{
  value_ptr val;
  value_ptr val;
  struct frame_info *frame = NULL;
  struct frame_info *frame = NULL;
 
 
  if (!b)
  if (!b)
    frame = NULL;               /* Use selected frame.  */
    frame = NULL;               /* Use selected frame.  */
  else if (symbol_read_needs_frame (var))
  else if (symbol_read_needs_frame (var))
    {
    {
      frame = block_innermost_frame (b);
      frame = block_innermost_frame (b);
      if (!frame)
      if (!frame)
        {
        {
          if (BLOCK_FUNCTION (b)
          if (BLOCK_FUNCTION (b)
              && SYMBOL_SOURCE_NAME (BLOCK_FUNCTION (b)))
              && SYMBOL_SOURCE_NAME (BLOCK_FUNCTION (b)))
            error ("No frame is currently executing in block %s.",
            error ("No frame is currently executing in block %s.",
                   SYMBOL_SOURCE_NAME (BLOCK_FUNCTION (b)));
                   SYMBOL_SOURCE_NAME (BLOCK_FUNCTION (b)));
          else
          else
            error ("No frame is currently executing in specified block");
            error ("No frame is currently executing in specified block");
        }
        }
    }
    }
 
 
  val = read_var_value (var, frame);
  val = read_var_value (var, frame);
  if (!val)
  if (!val)
    error ("Address of symbol \"%s\" is unknown.", SYMBOL_SOURCE_NAME (var));
    error ("Address of symbol \"%s\" is unknown.", SYMBOL_SOURCE_NAME (var));
 
 
  return val;
  return val;
}
}
 
 
/* Given a value which is an array, return a value which is a pointer to its
/* Given a value which is an array, return a value which is a pointer to its
   first element, regardless of whether or not the array has a nonzero lower
   first element, regardless of whether or not the array has a nonzero lower
   bound.
   bound.
 
 
   FIXME:  A previous comment here indicated that this routine should be
   FIXME:  A previous comment here indicated that this routine should be
   substracting the array's lower bound.  It's not clear to me that this
   substracting the array's lower bound.  It's not clear to me that this
   is correct.  Given an array subscripting operation, it would certainly
   is correct.  Given an array subscripting operation, it would certainly
   work to do the adjustment here, essentially computing:
   work to do the adjustment here, essentially computing:
 
 
   (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
   (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
 
 
   However I believe a more appropriate and logical place to account for
   However I believe a more appropriate and logical place to account for
   the lower bound is to do so in value_subscript, essentially computing:
   the lower bound is to do so in value_subscript, essentially computing:
 
 
   (&array[0] + ((index - lowerbound) * sizeof array[0]))
   (&array[0] + ((index - lowerbound) * sizeof array[0]))
 
 
   As further evidence consider what would happen with operations other
   As further evidence consider what would happen with operations other
   than array subscripting, where the caller would get back a value that
   than array subscripting, where the caller would get back a value that
   had an address somewhere before the actual first element of the array,
   had an address somewhere before the actual first element of the array,
   and the information about the lower bound would be lost because of
   and the information about the lower bound would be lost because of
   the coercion to pointer type.
   the coercion to pointer type.
 */
 */
 
 
value_ptr
value_ptr
value_coerce_array (arg1)
value_coerce_array (arg1)
     value_ptr arg1;
     value_ptr arg1;
{
{
  register struct type *type = check_typedef (VALUE_TYPE (arg1));
  register struct type *type = check_typedef (VALUE_TYPE (arg1));
 
 
  if (VALUE_LVAL (arg1) != lval_memory)
  if (VALUE_LVAL (arg1) != lval_memory)
    error ("Attempt to take address of value not located in memory.");
    error ("Attempt to take address of value not located in memory.");
 
 
  return value_from_longest (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
  return value_from_longest (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
                    (LONGEST) (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
                    (LONGEST) (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
}
}
 
 
/* Given a value which is a function, return a value which is a pointer
/* Given a value which is a function, return a value which is a pointer
   to it.  */
   to it.  */
 
 
value_ptr
value_ptr
value_coerce_function (arg1)
value_coerce_function (arg1)
     value_ptr arg1;
     value_ptr arg1;
{
{
  value_ptr retval;
  value_ptr retval;
 
 
  if (VALUE_LVAL (arg1) != lval_memory)
  if (VALUE_LVAL (arg1) != lval_memory)
    error ("Attempt to take address of value not located in memory.");
    error ("Attempt to take address of value not located in memory.");
 
 
  retval = value_from_longest (lookup_pointer_type (VALUE_TYPE (arg1)),
  retval = value_from_longest (lookup_pointer_type (VALUE_TYPE (arg1)),
                    (LONGEST) (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
                    (LONGEST) (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
  VALUE_BFD_SECTION (retval) = VALUE_BFD_SECTION (arg1);
  VALUE_BFD_SECTION (retval) = VALUE_BFD_SECTION (arg1);
  return retval;
  return retval;
}
}
 
 
/* Return a pointer value for the object for which ARG1 is the contents.  */
/* Return a pointer value for the object for which ARG1 is the contents.  */
 
 
value_ptr
value_ptr
value_addr (arg1)
value_addr (arg1)
     value_ptr arg1;
     value_ptr arg1;
{
{
  value_ptr arg2;
  value_ptr arg2;
 
 
  struct type *type = check_typedef (VALUE_TYPE (arg1));
  struct type *type = check_typedef (VALUE_TYPE (arg1));
  if (TYPE_CODE (type) == TYPE_CODE_REF)
  if (TYPE_CODE (type) == TYPE_CODE_REF)
    {
    {
      /* Copy the value, but change the type from (T&) to (T*).
      /* Copy the value, but change the type from (T&) to (T*).
         We keep the same location information, which is efficient,
         We keep the same location information, which is efficient,
         and allows &(&X) to get the location containing the reference. */
         and allows &(&X) to get the location containing the reference. */
      arg2 = value_copy (arg1);
      arg2 = value_copy (arg1);
      VALUE_TYPE (arg2) = lookup_pointer_type (TYPE_TARGET_TYPE (type));
      VALUE_TYPE (arg2) = lookup_pointer_type (TYPE_TARGET_TYPE (type));
      return arg2;
      return arg2;
    }
    }
  if (TYPE_CODE (type) == TYPE_CODE_FUNC)
  if (TYPE_CODE (type) == TYPE_CODE_FUNC)
    return value_coerce_function (arg1);
    return value_coerce_function (arg1);
 
 
  if (VALUE_LVAL (arg1) != lval_memory)
  if (VALUE_LVAL (arg1) != lval_memory)
    error ("Attempt to take address of value not located in memory.");
    error ("Attempt to take address of value not located in memory.");
 
 
  /* Get target memory address */
  /* Get target memory address */
  arg2 = value_from_longest (lookup_pointer_type (VALUE_TYPE (arg1)),
  arg2 = value_from_longest (lookup_pointer_type (VALUE_TYPE (arg1)),
                             (LONGEST) (VALUE_ADDRESS (arg1)
                             (LONGEST) (VALUE_ADDRESS (arg1)
                                        + VALUE_OFFSET (arg1)
                                        + VALUE_OFFSET (arg1)
                                        + VALUE_EMBEDDED_OFFSET (arg1)));
                                        + VALUE_EMBEDDED_OFFSET (arg1)));
 
 
  /* This may be a pointer to a base subobject; so remember the
  /* This may be a pointer to a base subobject; so remember the
     full derived object's type ... */
     full derived object's type ... */
  VALUE_ENCLOSING_TYPE (arg2) = lookup_pointer_type (VALUE_ENCLOSING_TYPE (arg1));
  VALUE_ENCLOSING_TYPE (arg2) = lookup_pointer_type (VALUE_ENCLOSING_TYPE (arg1));
  /* ... and also the relative position of the subobject in the full object */
  /* ... and also the relative position of the subobject in the full object */
  VALUE_POINTED_TO_OFFSET (arg2) = VALUE_EMBEDDED_OFFSET (arg1);
  VALUE_POINTED_TO_OFFSET (arg2) = VALUE_EMBEDDED_OFFSET (arg1);
  VALUE_BFD_SECTION (arg2) = VALUE_BFD_SECTION (arg1);
  VALUE_BFD_SECTION (arg2) = VALUE_BFD_SECTION (arg1);
  return arg2;
  return arg2;
}
}
 
 
/* Given a value of a pointer type, apply the C unary * operator to it.  */
/* Given a value of a pointer type, apply the C unary * operator to it.  */
 
 
value_ptr
value_ptr
value_ind (arg1)
value_ind (arg1)
     value_ptr arg1;
     value_ptr arg1;
{
{
  struct type *base_type;
  struct type *base_type;
  value_ptr arg2;
  value_ptr arg2;
 
 
  COERCE_ARRAY (arg1);
  COERCE_ARRAY (arg1);
 
 
  base_type = check_typedef (VALUE_TYPE (arg1));
  base_type = check_typedef (VALUE_TYPE (arg1));
 
 
  if (TYPE_CODE (base_type) == TYPE_CODE_MEMBER)
  if (TYPE_CODE (base_type) == TYPE_CODE_MEMBER)
    error ("not implemented: member types in value_ind");
    error ("not implemented: member types in value_ind");
 
 
  /* Allow * on an integer so we can cast it to whatever we want.
  /* Allow * on an integer so we can cast it to whatever we want.
     This returns an int, which seems like the most C-like thing
     This returns an int, which seems like the most C-like thing
     to do.  "long long" variables are rare enough that
     to do.  "long long" variables are rare enough that
     BUILTIN_TYPE_LONGEST would seem to be a mistake.  */
     BUILTIN_TYPE_LONGEST would seem to be a mistake.  */
  if (TYPE_CODE (base_type) == TYPE_CODE_INT)
  if (TYPE_CODE (base_type) == TYPE_CODE_INT)
    return value_at (builtin_type_int,
    return value_at (builtin_type_int,
                     (CORE_ADDR) value_as_long (arg1),
                     (CORE_ADDR) value_as_long (arg1),
                     VALUE_BFD_SECTION (arg1));
                     VALUE_BFD_SECTION (arg1));
  else if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
  else if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
    {
    {
      struct type *enc_type;
      struct type *enc_type;
      /* We may be pointing to something embedded in a larger object */
      /* We may be pointing to something embedded in a larger object */
      /* Get the real type of the enclosing object */
      /* Get the real type of the enclosing object */
      enc_type = check_typedef (VALUE_ENCLOSING_TYPE (arg1));
      enc_type = check_typedef (VALUE_ENCLOSING_TYPE (arg1));
      enc_type = TYPE_TARGET_TYPE (enc_type);
      enc_type = TYPE_TARGET_TYPE (enc_type);
      /* Retrieve the enclosing object pointed to */
      /* Retrieve the enclosing object pointed to */
      arg2 = value_at_lazy (enc_type,
      arg2 = value_at_lazy (enc_type,
                   value_as_pointer (arg1) - VALUE_POINTED_TO_OFFSET (arg1),
                   value_as_pointer (arg1) - VALUE_POINTED_TO_OFFSET (arg1),
                            VALUE_BFD_SECTION (arg1));
                            VALUE_BFD_SECTION (arg1));
      /* Re-adjust type */
      /* Re-adjust type */
      VALUE_TYPE (arg2) = TYPE_TARGET_TYPE (base_type);
      VALUE_TYPE (arg2) = TYPE_TARGET_TYPE (base_type);
      /* Add embedding info */
      /* Add embedding info */
      VALUE_ENCLOSING_TYPE (arg2) = enc_type;
      VALUE_ENCLOSING_TYPE (arg2) = enc_type;
      VALUE_EMBEDDED_OFFSET (arg2) = VALUE_POINTED_TO_OFFSET (arg1);
      VALUE_EMBEDDED_OFFSET (arg2) = VALUE_POINTED_TO_OFFSET (arg1);
 
 
      /* We may be pointing to an object of some derived type */
      /* We may be pointing to an object of some derived type */
      arg2 = value_full_object (arg2, NULL, 0, 0, 0);
      arg2 = value_full_object (arg2, NULL, 0, 0, 0);
      return arg2;
      return arg2;
    }
    }
 
 
  error ("Attempt to take contents of a non-pointer value.");
  error ("Attempt to take contents of a non-pointer value.");
  return 0;                      /* For lint -- never reached */
  return 0;                      /* For lint -- never reached */
}
}


/* Pushing small parts of stack frames.  */
/* Pushing small parts of stack frames.  */
 
 
/* Push one word (the size of object that a register holds).  */
/* Push one word (the size of object that a register holds).  */
 
 
CORE_ADDR
CORE_ADDR
push_word (sp, word)
push_word (sp, word)
     CORE_ADDR sp;
     CORE_ADDR sp;
     ULONGEST word;
     ULONGEST word;
{
{
  register int len = REGISTER_SIZE;
  register int len = REGISTER_SIZE;
  char buffer[MAX_REGISTER_RAW_SIZE];
  char buffer[MAX_REGISTER_RAW_SIZE];
 
 
  store_unsigned_integer (buffer, len, word);
  store_unsigned_integer (buffer, len, word);
  if (INNER_THAN (1, 2))
  if (INNER_THAN (1, 2))
    {
    {
      /* stack grows downward */
      /* stack grows downward */
      sp -= len;
      sp -= len;
      write_memory (sp, buffer, len);
      write_memory (sp, buffer, len);
    }
    }
  else
  else
    {
    {
      /* stack grows upward */
      /* stack grows upward */
      write_memory (sp, buffer, len);
      write_memory (sp, buffer, len);
      sp += len;
      sp += len;
    }
    }
 
 
  return sp;
  return sp;
}
}
 
 
/* Push LEN bytes with data at BUFFER.  */
/* Push LEN bytes with data at BUFFER.  */
 
 
CORE_ADDR
CORE_ADDR
push_bytes (sp, buffer, len)
push_bytes (sp, buffer, len)
     CORE_ADDR sp;
     CORE_ADDR sp;
     char *buffer;
     char *buffer;
     int len;
     int len;
{
{
  if (INNER_THAN (1, 2))
  if (INNER_THAN (1, 2))
    {
    {
      /* stack grows downward */
      /* stack grows downward */
      sp -= len;
      sp -= len;
      write_memory (sp, buffer, len);
      write_memory (sp, buffer, len);
    }
    }
  else
  else
    {
    {
      /* stack grows upward */
      /* stack grows upward */
      write_memory (sp, buffer, len);
      write_memory (sp, buffer, len);
      sp += len;
      sp += len;
    }
    }
 
 
  return sp;
  return sp;
}
}
 
 
#ifndef PARM_BOUNDARY
#ifndef PARM_BOUNDARY
#define PARM_BOUNDARY (0)
#define PARM_BOUNDARY (0)
#endif
#endif
 
 
/* Push onto the stack the specified value VALUE.  Pad it correctly for
/* Push onto the stack the specified value VALUE.  Pad it correctly for
   it to be an argument to a function.  */
   it to be an argument to a function.  */
 
 
static CORE_ADDR
static CORE_ADDR
value_push (sp, arg)
value_push (sp, arg)
     register CORE_ADDR sp;
     register CORE_ADDR sp;
     value_ptr arg;
     value_ptr arg;
{
{
  register int len = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg));
  register int len = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg));
  register int container_len = len;
  register int container_len = len;
  register int offset;
  register int offset;
 
 
  /* How big is the container we're going to put this value in?  */
  /* How big is the container we're going to put this value in?  */
  if (PARM_BOUNDARY)
  if (PARM_BOUNDARY)
    container_len = ((len + PARM_BOUNDARY / TARGET_CHAR_BIT - 1)
    container_len = ((len + PARM_BOUNDARY / TARGET_CHAR_BIT - 1)
                     & ~(PARM_BOUNDARY / TARGET_CHAR_BIT - 1));
                     & ~(PARM_BOUNDARY / TARGET_CHAR_BIT - 1));
 
 
  /* Are we going to put it at the high or low end of the container?  */
  /* Are we going to put it at the high or low end of the container?  */
  if (TARGET_BYTE_ORDER == BIG_ENDIAN)
  if (TARGET_BYTE_ORDER == BIG_ENDIAN)
    offset = container_len - len;
    offset = container_len - len;
  else
  else
    offset = 0;
    offset = 0;
 
 
  if (INNER_THAN (1, 2))
  if (INNER_THAN (1, 2))
    {
    {
      /* stack grows downward */
      /* stack grows downward */
      sp -= container_len;
      sp -= container_len;
      write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len);
      write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len);
    }
    }
  else
  else
    {
    {
      /* stack grows upward */
      /* stack grows upward */
      write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len);
      write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len);
      sp += container_len;
      sp += container_len;
    }
    }
 
 
  return sp;
  return sp;
}
}
 
 
#ifndef PUSH_ARGUMENTS
#ifndef PUSH_ARGUMENTS
#define PUSH_ARGUMENTS default_push_arguments
#define PUSH_ARGUMENTS default_push_arguments
#endif
#endif
 
 
CORE_ADDR
CORE_ADDR
default_push_arguments (nargs, args, sp, struct_return, struct_addr)
default_push_arguments (nargs, args, sp, struct_return, struct_addr)
     int nargs;
     int nargs;
     value_ptr *args;
     value_ptr *args;
     CORE_ADDR sp;
     CORE_ADDR sp;
     int struct_return;
     int struct_return;
     CORE_ADDR struct_addr;
     CORE_ADDR struct_addr;
{
{
  /* ASSERT ( !struct_return); */
  /* ASSERT ( !struct_return); */
  int i;
  int i;
  for (i = nargs - 1; i >= 0; i--)
  for (i = nargs - 1; i >= 0; i--)
    sp = value_push (sp, args[i]);
    sp = value_push (sp, args[i]);
  return sp;
  return sp;
}
}
 
 
 
 
/* If we're calling a function declared without a prototype, should we
/* If we're calling a function declared without a prototype, should we
   promote floats to doubles?  FORMAL and ACTUAL are the types of the
   promote floats to doubles?  FORMAL and ACTUAL are the types of the
   arguments; FORMAL may be NULL.
   arguments; FORMAL may be NULL.
 
 
   If we have no definition for this macro, either from the target or
   If we have no definition for this macro, either from the target or
   from gdbarch, provide a default.  */
   from gdbarch, provide a default.  */
#ifndef COERCE_FLOAT_TO_DOUBLE
#ifndef COERCE_FLOAT_TO_DOUBLE
#define COERCE_FLOAT_TO_DOUBLE(formal, actual) \
#define COERCE_FLOAT_TO_DOUBLE(formal, actual) \
  (default_coerce_float_to_double ((formal), (actual)))
  (default_coerce_float_to_double ((formal), (actual)))
#endif
#endif
 
 
 
 
/* A default function for COERCE_FLOAT_TO_DOUBLE: do the coercion only
/* A default function for COERCE_FLOAT_TO_DOUBLE: do the coercion only
   when we don't have any type for the argument at hand.  This occurs
   when we don't have any type for the argument at hand.  This occurs
   when we have no debug info, or when passing varargs.
   when we have no debug info, or when passing varargs.
 
 
   This is an annoying default: the rule the compiler follows is to do
   This is an annoying default: the rule the compiler follows is to do
   the standard promotions whenever there is no prototype in scope,
   the standard promotions whenever there is no prototype in scope,
   and almost all targets want this behavior.  But there are some old
   and almost all targets want this behavior.  But there are some old
   architectures which want this odd behavior.  If you want to go
   architectures which want this odd behavior.  If you want to go
   through them all and fix them, please do.  Modern gdbarch-style
   through them all and fix them, please do.  Modern gdbarch-style
   targets may find it convenient to use standard_coerce_float_to_double.  */
   targets may find it convenient to use standard_coerce_float_to_double.  */
int
int
default_coerce_float_to_double (struct type *formal, struct type *actual)
default_coerce_float_to_double (struct type *formal, struct type *actual)
{
{
  return formal == NULL;
  return formal == NULL;
}
}
 
 
 
 
/* Always coerce floats to doubles when there is no prototype in scope.
/* Always coerce floats to doubles when there is no prototype in scope.
   If your architecture follows the standard type promotion rules for
   If your architecture follows the standard type promotion rules for
   calling unprototyped functions, your gdbarch init function can pass
   calling unprototyped functions, your gdbarch init function can pass
   this function to set_gdbarch_coerce_float_to_double to use its logic.  */
   this function to set_gdbarch_coerce_float_to_double to use its logic.  */
int
int
standard_coerce_float_to_double (struct type *formal, struct type *actual)
standard_coerce_float_to_double (struct type *formal, struct type *actual)
{
{
  return 1;
  return 1;
}
}
 
 
 
 
/* Perform the standard coercions that are specified
/* Perform the standard coercions that are specified
   for arguments to be passed to C functions.
   for arguments to be passed to C functions.
 
 
   If PARAM_TYPE is non-NULL, it is the expected parameter type.
   If PARAM_TYPE is non-NULL, it is the expected parameter type.
   IS_PROTOTYPED is non-zero if the function declaration is prototyped.  */
   IS_PROTOTYPED is non-zero if the function declaration is prototyped.  */
 
 
static value_ptr
static value_ptr
value_arg_coerce (arg, param_type, is_prototyped)
value_arg_coerce (arg, param_type, is_prototyped)
     value_ptr arg;
     value_ptr arg;
     struct type *param_type;
     struct type *param_type;
     int is_prototyped;
     int is_prototyped;
{
{
  register struct type *arg_type = check_typedef (VALUE_TYPE (arg));
  register struct type *arg_type = check_typedef (VALUE_TYPE (arg));
  register struct type *type
  register struct type *type
  = param_type ? check_typedef (param_type) : arg_type;
  = param_type ? check_typedef (param_type) : arg_type;
 
 
  switch (TYPE_CODE (type))
  switch (TYPE_CODE (type))
    {
    {
    case TYPE_CODE_REF:
    case TYPE_CODE_REF:
      if (TYPE_CODE (arg_type) != TYPE_CODE_REF)
      if (TYPE_CODE (arg_type) != TYPE_CODE_REF)
        {
        {
          arg = value_addr (arg);
          arg = value_addr (arg);
          VALUE_TYPE (arg) = param_type;
          VALUE_TYPE (arg) = param_type;
          return arg;
          return arg;
        }
        }
      break;
      break;
    case TYPE_CODE_INT:
    case TYPE_CODE_INT:
    case TYPE_CODE_CHAR:
    case TYPE_CODE_CHAR:
    case TYPE_CODE_BOOL:
    case TYPE_CODE_BOOL:
    case TYPE_CODE_ENUM:
    case TYPE_CODE_ENUM:
      /* If we don't have a prototype, coerce to integer type if necessary.  */
      /* If we don't have a prototype, coerce to integer type if necessary.  */
      if (!is_prototyped)
      if (!is_prototyped)
        {
        {
          if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
          if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
            type = builtin_type_int;
            type = builtin_type_int;
        }
        }
      /* Currently all target ABIs require at least the width of an integer
      /* Currently all target ABIs require at least the width of an integer
         type for an argument.  We may have to conditionalize the following
         type for an argument.  We may have to conditionalize the following
         type coercion for future targets.  */
         type coercion for future targets.  */
      if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
      if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
        type = builtin_type_int;
        type = builtin_type_int;
      break;
      break;
    case TYPE_CODE_FLT:
    case TYPE_CODE_FLT:
      /* FIXME: We should always convert floats to doubles in the
      /* FIXME: We should always convert floats to doubles in the
         non-prototyped case.  As many debugging formats include
         non-prototyped case.  As many debugging formats include
         no information about prototyping, we have to live with
         no information about prototyping, we have to live with
         COERCE_FLOAT_TO_DOUBLE for now.  */
         COERCE_FLOAT_TO_DOUBLE for now.  */
      if (!is_prototyped && COERCE_FLOAT_TO_DOUBLE (param_type, arg_type))
      if (!is_prototyped && COERCE_FLOAT_TO_DOUBLE (param_type, arg_type))
        {
        {
          if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_double))
          if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_double))
            type = builtin_type_double;
            type = builtin_type_double;
          else if (TYPE_LENGTH (type) > TYPE_LENGTH (builtin_type_double))
          else if (TYPE_LENGTH (type) > TYPE_LENGTH (builtin_type_double))
            type = builtin_type_long_double;
            type = builtin_type_long_double;
        }
        }
      break;
      break;
    case TYPE_CODE_FUNC:
    case TYPE_CODE_FUNC:
      type = lookup_pointer_type (type);
      type = lookup_pointer_type (type);
      break;
      break;
    case TYPE_CODE_ARRAY:
    case TYPE_CODE_ARRAY:
      if (current_language->c_style_arrays)
      if (current_language->c_style_arrays)
        type = lookup_pointer_type (TYPE_TARGET_TYPE (type));
        type = lookup_pointer_type (TYPE_TARGET_TYPE (type));
      break;
      break;
    case TYPE_CODE_UNDEF:
    case TYPE_CODE_UNDEF:
    case TYPE_CODE_PTR:
    case TYPE_CODE_PTR:
    case TYPE_CODE_STRUCT:
    case TYPE_CODE_STRUCT:
    case TYPE_CODE_UNION:
    case TYPE_CODE_UNION:
    case TYPE_CODE_VOID:
    case TYPE_CODE_VOID:
    case TYPE_CODE_SET:
    case TYPE_CODE_SET:
    case TYPE_CODE_RANGE:
    case TYPE_CODE_RANGE:
    case TYPE_CODE_STRING:
    case TYPE_CODE_STRING:
    case TYPE_CODE_BITSTRING:
    case TYPE_CODE_BITSTRING:
    case TYPE_CODE_ERROR:
    case TYPE_CODE_ERROR:
    case TYPE_CODE_MEMBER:
    case TYPE_CODE_MEMBER:
    case TYPE_CODE_METHOD:
    case TYPE_CODE_METHOD:
    case TYPE_CODE_COMPLEX:
    case TYPE_CODE_COMPLEX:
    default:
    default:
      break;
      break;
    }
    }
 
 
  return value_cast (type, arg);
  return value_cast (type, arg);
}
}
 
 
/* Determine a function's address and its return type from its value.
/* Determine a function's address and its return type from its value.
   Calls error() if the function is not valid for calling.  */
   Calls error() if the function is not valid for calling.  */
 
 
static CORE_ADDR
static CORE_ADDR
find_function_addr (function, retval_type)
find_function_addr (function, retval_type)
     value_ptr function;
     value_ptr function;
     struct type **retval_type;
     struct type **retval_type;
{
{
  register struct type *ftype = check_typedef (VALUE_TYPE (function));
  register struct type *ftype = check_typedef (VALUE_TYPE (function));
  register enum type_code code = TYPE_CODE (ftype);
  register enum type_code code = TYPE_CODE (ftype);
  struct type *value_type;
  struct type *value_type;
  CORE_ADDR funaddr;
  CORE_ADDR funaddr;
 
 
  /* If it's a member function, just look at the function
  /* If it's a member function, just look at the function
     part of it.  */
     part of it.  */
 
 
  /* Determine address to call.  */
  /* Determine address to call.  */
  if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
  if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
    {
    {
      funaddr = VALUE_ADDRESS (function);
      funaddr = VALUE_ADDRESS (function);
      value_type = TYPE_TARGET_TYPE (ftype);
      value_type = TYPE_TARGET_TYPE (ftype);
    }
    }
  else if (code == TYPE_CODE_PTR)
  else if (code == TYPE_CODE_PTR)
    {
    {
      funaddr = value_as_pointer (function);
      funaddr = value_as_pointer (function);
      ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
      ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
      if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
      if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
          || TYPE_CODE (ftype) == TYPE_CODE_METHOD)
          || TYPE_CODE (ftype) == TYPE_CODE_METHOD)
        {
        {
#ifdef CONVERT_FROM_FUNC_PTR_ADDR
#ifdef CONVERT_FROM_FUNC_PTR_ADDR
          /* FIXME: This is a workaround for the unusual function
          /* FIXME: This is a workaround for the unusual function
             pointer representation on the RS/6000, see comment
             pointer representation on the RS/6000, see comment
             in config/rs6000/tm-rs6000.h  */
             in config/rs6000/tm-rs6000.h  */
          funaddr = CONVERT_FROM_FUNC_PTR_ADDR (funaddr);
          funaddr = CONVERT_FROM_FUNC_PTR_ADDR (funaddr);
#endif
#endif
          value_type = TYPE_TARGET_TYPE (ftype);
          value_type = TYPE_TARGET_TYPE (ftype);
        }
        }
      else
      else
        value_type = builtin_type_int;
        value_type = builtin_type_int;
    }
    }
  else if (code == TYPE_CODE_INT)
  else if (code == TYPE_CODE_INT)
    {
    {
      /* Handle the case of functions lacking debugging info.
      /* Handle the case of functions lacking debugging info.
         Their values are characters since their addresses are char */
         Their values are characters since their addresses are char */
      if (TYPE_LENGTH (ftype) == 1)
      if (TYPE_LENGTH (ftype) == 1)
        funaddr = value_as_pointer (value_addr (function));
        funaddr = value_as_pointer (value_addr (function));
      else
      else
        /* Handle integer used as address of a function.  */
        /* Handle integer used as address of a function.  */
        funaddr = (CORE_ADDR) value_as_long (function);
        funaddr = (CORE_ADDR) value_as_long (function);
 
 
      value_type = builtin_type_int;
      value_type = builtin_type_int;
    }
    }
  else
  else
    error ("Invalid data type for function to be called.");
    error ("Invalid data type for function to be called.");
 
 
  *retval_type = value_type;
  *retval_type = value_type;
  return funaddr;
  return funaddr;
}
}
 
 
/* All this stuff with a dummy frame may seem unnecessarily complicated
/* All this stuff with a dummy frame may seem unnecessarily complicated
   (why not just save registers in GDB?).  The purpose of pushing a dummy
   (why not just save registers in GDB?).  The purpose of pushing a dummy
   frame which looks just like a real frame is so that if you call a
   frame which looks just like a real frame is so that if you call a
   function and then hit a breakpoint (get a signal, etc), "backtrace"
   function and then hit a breakpoint (get a signal, etc), "backtrace"
   will look right.  Whether the backtrace needs to actually show the
   will look right.  Whether the backtrace needs to actually show the
   stack at the time the inferior function was called is debatable, but
   stack at the time the inferior function was called is debatable, but
   it certainly needs to not display garbage.  So if you are contemplating
   it certainly needs to not display garbage.  So if you are contemplating
   making dummy frames be different from normal frames, consider that.  */
   making dummy frames be different from normal frames, consider that.  */
 
 
/* Perform a function call in the inferior.
/* Perform a function call in the inferior.
   ARGS is a vector of values of arguments (NARGS of them).
   ARGS is a vector of values of arguments (NARGS of them).
   FUNCTION is a value, the function to be called.
   FUNCTION is a value, the function to be called.
   Returns a value representing what the function returned.
   Returns a value representing what the function returned.
   May fail to return, if a breakpoint or signal is hit
   May fail to return, if a breakpoint or signal is hit
   during the execution of the function.
   during the execution of the function.
 
 
   ARGS is modified to contain coerced values. */
   ARGS is modified to contain coerced values. */
 
 
static value_ptr hand_function_call PARAMS ((value_ptr function, int nargs, value_ptr * args));
static value_ptr hand_function_call PARAMS ((value_ptr function, int nargs, value_ptr * args));
static value_ptr
static value_ptr
hand_function_call (function, nargs, args)
hand_function_call (function, nargs, args)
     value_ptr function;
     value_ptr function;
     int nargs;
     int nargs;
     value_ptr *args;
     value_ptr *args;
{
{
  register CORE_ADDR sp;
  register CORE_ADDR sp;
  register int i;
  register int i;
  int rc;
  int rc;
  CORE_ADDR start_sp;
  CORE_ADDR start_sp;
  /* CALL_DUMMY is an array of words (REGISTER_SIZE), but each word
  /* CALL_DUMMY is an array of words (REGISTER_SIZE), but each word
     is in host byte order.  Before calling FIX_CALL_DUMMY, we byteswap it
     is in host byte order.  Before calling FIX_CALL_DUMMY, we byteswap it
     and remove any extra bytes which might exist because ULONGEST is
     and remove any extra bytes which might exist because ULONGEST is
     bigger than REGISTER_SIZE.
     bigger than REGISTER_SIZE.
 
 
     NOTE: This is pretty wierd, as the call dummy is actually a
     NOTE: This is pretty wierd, as the call dummy is actually a
     sequence of instructions.  But CISC machines will have
     sequence of instructions.  But CISC machines will have
     to pack the instructions into REGISTER_SIZE units (and
     to pack the instructions into REGISTER_SIZE units (and
     so will RISC machines for which INSTRUCTION_SIZE is not
     so will RISC machines for which INSTRUCTION_SIZE is not
     REGISTER_SIZE).
     REGISTER_SIZE).
 
 
     NOTE: This is pretty stupid.  CALL_DUMMY should be in strict
     NOTE: This is pretty stupid.  CALL_DUMMY should be in strict
     target byte order. */
     target byte order. */
 
 
  static ULONGEST *dummy;
  static ULONGEST *dummy;
  int sizeof_dummy1;
  int sizeof_dummy1;
  char *dummy1;
  char *dummy1;
  CORE_ADDR old_sp;
  CORE_ADDR old_sp;
  struct type *value_type;
  struct type *value_type;
  unsigned char struct_return;
  unsigned char struct_return;
  CORE_ADDR struct_addr = 0;
  CORE_ADDR struct_addr = 0;
  struct inferior_status *inf_status;
  struct inferior_status *inf_status;
  struct cleanup *old_chain;
  struct cleanup *old_chain;
  CORE_ADDR funaddr;
  CORE_ADDR funaddr;
  int using_gcc;                /* Set to version of gcc in use, or zero if not gcc */
  int using_gcc;                /* Set to version of gcc in use, or zero if not gcc */
  CORE_ADDR real_pc;
  CORE_ADDR real_pc;
  struct type *param_type = NULL;
  struct type *param_type = NULL;
  struct type *ftype = check_typedef (SYMBOL_TYPE (function));
  struct type *ftype = check_typedef (SYMBOL_TYPE (function));
 
 
  dummy = alloca (SIZEOF_CALL_DUMMY_WORDS);
  dummy = alloca (SIZEOF_CALL_DUMMY_WORDS);
  sizeof_dummy1 = REGISTER_SIZE * SIZEOF_CALL_DUMMY_WORDS / sizeof (ULONGEST);
  sizeof_dummy1 = REGISTER_SIZE * SIZEOF_CALL_DUMMY_WORDS / sizeof (ULONGEST);
  dummy1 = alloca (sizeof_dummy1);
  dummy1 = alloca (sizeof_dummy1);
  memcpy (dummy, CALL_DUMMY_WORDS, SIZEOF_CALL_DUMMY_WORDS);
  memcpy (dummy, CALL_DUMMY_WORDS, SIZEOF_CALL_DUMMY_WORDS);
 
 
  if (!target_has_execution)
  if (!target_has_execution)
    noprocess ();
    noprocess ();
 
 
  inf_status = save_inferior_status (1);
  inf_status = save_inferior_status (1);
  old_chain = make_cleanup ((make_cleanup_func) restore_inferior_status,
  old_chain = make_cleanup ((make_cleanup_func) restore_inferior_status,
                            inf_status);
                            inf_status);
 
 
  /* PUSH_DUMMY_FRAME is responsible for saving the inferior registers
  /* PUSH_DUMMY_FRAME is responsible for saving the inferior registers
     (and POP_FRAME for restoring them).  (At least on most machines)
     (and POP_FRAME for restoring them).  (At least on most machines)
     they are saved on the stack in the inferior.  */
     they are saved on the stack in the inferior.  */
  PUSH_DUMMY_FRAME;
  PUSH_DUMMY_FRAME;
 
 
  old_sp = sp = read_sp ();
  old_sp = sp = read_sp ();
 
 
  if (INNER_THAN (1, 2))
  if (INNER_THAN (1, 2))
    {
    {
      /* Stack grows down */
      /* Stack grows down */
      sp -= sizeof_dummy1;
      sp -= sizeof_dummy1;
      start_sp = sp;
      start_sp = sp;
    }
    }
  else
  else
    {
    {
      /* Stack grows up */
      /* Stack grows up */
      start_sp = sp;
      start_sp = sp;
      sp += sizeof_dummy1;
      sp += sizeof_dummy1;
    }
    }
 
 
  funaddr = find_function_addr (function, &value_type);
  funaddr = find_function_addr (function, &value_type);
  CHECK_TYPEDEF (value_type);
  CHECK_TYPEDEF (value_type);
 
 
  {
  {
    struct block *b = block_for_pc (funaddr);
    struct block *b = block_for_pc (funaddr);
    /* If compiled without -g, assume GCC 2.  */
    /* If compiled without -g, assume GCC 2.  */
    using_gcc = (b == NULL ? 2 : BLOCK_GCC_COMPILED (b));
    using_gcc = (b == NULL ? 2 : BLOCK_GCC_COMPILED (b));
  }
  }
 
 
  /* Are we returning a value using a structure return or a normal
  /* Are we returning a value using a structure return or a normal
     value return? */
     value return? */
 
 
  struct_return = using_struct_return (function, funaddr, value_type,
  struct_return = using_struct_return (function, funaddr, value_type,
                                       using_gcc);
                                       using_gcc);
 
 
  /* Create a call sequence customized for this function
  /* Create a call sequence customized for this function
     and the number of arguments for it.  */
     and the number of arguments for it.  */
  for (i = 0; i < (int) (SIZEOF_CALL_DUMMY_WORDS / sizeof (dummy[0])); i++)
  for (i = 0; i < (int) (SIZEOF_CALL_DUMMY_WORDS / sizeof (dummy[0])); i++)
    store_unsigned_integer (&dummy1[i * REGISTER_SIZE],
    store_unsigned_integer (&dummy1[i * REGISTER_SIZE],
                            REGISTER_SIZE,
                            REGISTER_SIZE,
                            (ULONGEST) dummy[i]);
                            (ULONGEST) dummy[i]);
 
 
#ifdef GDB_TARGET_IS_HPPA
#ifdef GDB_TARGET_IS_HPPA
  real_pc = FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
  real_pc = FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
                            value_type, using_gcc);
                            value_type, using_gcc);
#else
#else
  FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
  FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
                  value_type, using_gcc);
                  value_type, using_gcc);
  real_pc = start_sp;
  real_pc = start_sp;
#endif
#endif
 
 
  if (CALL_DUMMY_LOCATION == ON_STACK)
  if (CALL_DUMMY_LOCATION == ON_STACK)
    {
    {
      write_memory (start_sp, (char *) dummy1, sizeof_dummy1);
      write_memory (start_sp, (char *) dummy1, sizeof_dummy1);
    }
    }
 
 
  if (CALL_DUMMY_LOCATION == BEFORE_TEXT_END)
  if (CALL_DUMMY_LOCATION == BEFORE_TEXT_END)
    {
    {
      /* Convex Unix prohibits executing in the stack segment. */
      /* Convex Unix prohibits executing in the stack segment. */
      /* Hope there is empty room at the top of the text segment. */
      /* Hope there is empty room at the top of the text segment. */
      extern CORE_ADDR text_end;
      extern CORE_ADDR text_end;
      static int checked = 0;
      static int checked = 0;
      if (!checked)
      if (!checked)
        for (start_sp = text_end - sizeof_dummy1; start_sp < text_end; ++start_sp)
        for (start_sp = text_end - sizeof_dummy1; start_sp < text_end; ++start_sp)
          if (read_memory_integer (start_sp, 1) != 0)
          if (read_memory_integer (start_sp, 1) != 0)
            error ("text segment full -- no place to put call");
            error ("text segment full -- no place to put call");
      checked = 1;
      checked = 1;
      sp = old_sp;
      sp = old_sp;
      real_pc = text_end - sizeof_dummy1;
      real_pc = text_end - sizeof_dummy1;
      write_memory (real_pc, (char *) dummy1, sizeof_dummy1);
      write_memory (real_pc, (char *) dummy1, sizeof_dummy1);
    }
    }
 
 
  if (CALL_DUMMY_LOCATION == AFTER_TEXT_END)
  if (CALL_DUMMY_LOCATION == AFTER_TEXT_END)
    {
    {
      extern CORE_ADDR text_end;
      extern CORE_ADDR text_end;
      int errcode;
      int errcode;
      sp = old_sp;
      sp = old_sp;
      real_pc = text_end;
      real_pc = text_end;
      errcode = target_write_memory (real_pc, (char *) dummy1, sizeof_dummy1);
      errcode = target_write_memory (real_pc, (char *) dummy1, sizeof_dummy1);
      if (errcode != 0)
      if (errcode != 0)
        error ("Cannot write text segment -- call_function failed");
        error ("Cannot write text segment -- call_function failed");
    }
    }
 
 
  if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
  if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
    {
    {
      real_pc = funaddr;
      real_pc = funaddr;
    }
    }
 
 
#ifdef lint
#ifdef lint
  sp = old_sp;                  /* It really is used, for some ifdef's... */
  sp = old_sp;                  /* It really is used, for some ifdef's... */
#endif
#endif
 
 
  if (nargs < TYPE_NFIELDS (ftype))
  if (nargs < TYPE_NFIELDS (ftype))
    error ("too few arguments in function call");
    error ("too few arguments in function call");
 
 
  for (i = nargs - 1; i >= 0; i--)
  for (i = nargs - 1; i >= 0; i--)
    {
    {
      /* If we're off the end of the known arguments, do the standard
      /* If we're off the end of the known arguments, do the standard
         promotions.  FIXME: if we had a prototype, this should only
         promotions.  FIXME: if we had a prototype, this should only
         be allowed if ... were present.  */
         be allowed if ... were present.  */
      if (i >= TYPE_NFIELDS (ftype))
      if (i >= TYPE_NFIELDS (ftype))
        args[i] = value_arg_coerce (args[i], NULL, 0);
        args[i] = value_arg_coerce (args[i], NULL, 0);
 
 
      else
      else
        {
        {
          int is_prototyped = TYPE_FLAGS (ftype) & TYPE_FLAG_PROTOTYPED;
          int is_prototyped = TYPE_FLAGS (ftype) & TYPE_FLAG_PROTOTYPED;
          param_type = TYPE_FIELD_TYPE (ftype, i);
          param_type = TYPE_FIELD_TYPE (ftype, i);
 
 
          args[i] = value_arg_coerce (args[i], param_type, is_prototyped);
          args[i] = value_arg_coerce (args[i], param_type, is_prototyped);
        }
        }
 
 
      /*elz: this code is to handle the case in which the function to be called
      /*elz: this code is to handle the case in which the function to be called
         has a pointer to function as parameter and the corresponding actual argument
         has a pointer to function as parameter and the corresponding actual argument
         is the address of a function and not a pointer to function variable.
         is the address of a function and not a pointer to function variable.
         In aCC compiled code, the calls through pointers to functions (in the body
         In aCC compiled code, the calls through pointers to functions (in the body
         of the function called by hand) are made via $$dyncall_external which
         of the function called by hand) are made via $$dyncall_external which
         requires some registers setting, this is taken care of if we call
         requires some registers setting, this is taken care of if we call
         via a function pointer variable, but not via a function address.
         via a function pointer variable, but not via a function address.
         In cc this is not a problem. */
         In cc this is not a problem. */
 
 
      if (using_gcc == 0)
      if (using_gcc == 0)
        if (param_type)
        if (param_type)
          /* if this parameter is a pointer to function */
          /* if this parameter is a pointer to function */
          if (TYPE_CODE (param_type) == TYPE_CODE_PTR)
          if (TYPE_CODE (param_type) == TYPE_CODE_PTR)
            if (TYPE_CODE (param_type->target_type) == TYPE_CODE_FUNC)
            if (TYPE_CODE (param_type->target_type) == TYPE_CODE_FUNC)
              /* elz: FIXME here should go the test about the compiler used
              /* elz: FIXME here should go the test about the compiler used
                 to compile the target. We want to issue the error
                 to compile the target. We want to issue the error
                 message only if the compiler used was HP's aCC.
                 message only if the compiler used was HP's aCC.
                 If we used HP's cc, then there is no problem and no need
                 If we used HP's cc, then there is no problem and no need
                 to return at this point */
                 to return at this point */
              if (using_gcc == 0)        /* && compiler == aCC */
              if (using_gcc == 0)        /* && compiler == aCC */
                /* go see if the actual parameter is a variable of type
                /* go see if the actual parameter is a variable of type
                   pointer to function or just a function */
                   pointer to function or just a function */
                if (args[i]->lval == not_lval)
                if (args[i]->lval == not_lval)
                  {
                  {
                    char *arg_name;
                    char *arg_name;
                    if (find_pc_partial_function ((CORE_ADDR) args[i]->aligner.contents[0], &arg_name, NULL, NULL))
                    if (find_pc_partial_function ((CORE_ADDR) args[i]->aligner.contents[0], &arg_name, NULL, NULL))
                      error ("\
                      error ("\
You cannot use function <%s> as argument. \n\
You cannot use function <%s> as argument. \n\
You must use a pointer to function type variable. Command ignored.", arg_name);
You must use a pointer to function type variable. Command ignored.", arg_name);
                  }
                  }
    }
    }
 
 
#if defined (REG_STRUCT_HAS_ADDR)
#if defined (REG_STRUCT_HAS_ADDR)
  {
  {
    /* This is a machine like the sparc, where we may need to pass a pointer
    /* This is a machine like the sparc, where we may need to pass a pointer
       to the structure, not the structure itself.  */
       to the structure, not the structure itself.  */
    for (i = nargs - 1; i >= 0; i--)
    for (i = nargs - 1; i >= 0; i--)
      {
      {
        struct type *arg_type = check_typedef (VALUE_TYPE (args[i]));
        struct type *arg_type = check_typedef (VALUE_TYPE (args[i]));
        if ((TYPE_CODE (arg_type) == TYPE_CODE_STRUCT
        if ((TYPE_CODE (arg_type) == TYPE_CODE_STRUCT
             || TYPE_CODE (arg_type) == TYPE_CODE_UNION
             || TYPE_CODE (arg_type) == TYPE_CODE_UNION
             || TYPE_CODE (arg_type) == TYPE_CODE_ARRAY
             || TYPE_CODE (arg_type) == TYPE_CODE_ARRAY
             || TYPE_CODE (arg_type) == TYPE_CODE_STRING
             || TYPE_CODE (arg_type) == TYPE_CODE_STRING
             || TYPE_CODE (arg_type) == TYPE_CODE_BITSTRING
             || TYPE_CODE (arg_type) == TYPE_CODE_BITSTRING
             || TYPE_CODE (arg_type) == TYPE_CODE_SET
             || TYPE_CODE (arg_type) == TYPE_CODE_SET
             || (TYPE_CODE (arg_type) == TYPE_CODE_FLT
             || (TYPE_CODE (arg_type) == TYPE_CODE_FLT
                 && TYPE_LENGTH (arg_type) > 8)
                 && TYPE_LENGTH (arg_type) > 8)
            )
            )
            && REG_STRUCT_HAS_ADDR (using_gcc, arg_type))
            && REG_STRUCT_HAS_ADDR (using_gcc, arg_type))
          {
          {
            CORE_ADDR addr;
            CORE_ADDR addr;
            int len;            /*  = TYPE_LENGTH (arg_type); */
            int len;            /*  = TYPE_LENGTH (arg_type); */
            int aligned_len;
            int aligned_len;
            arg_type = check_typedef (VALUE_ENCLOSING_TYPE (args[i]));
            arg_type = check_typedef (VALUE_ENCLOSING_TYPE (args[i]));
            len = TYPE_LENGTH (arg_type);
            len = TYPE_LENGTH (arg_type);
 
 
#ifdef STACK_ALIGN
#ifdef STACK_ALIGN
            /* MVS 11/22/96: I think at least some of this stack_align code is
            /* MVS 11/22/96: I think at least some of this stack_align code is
               really broken.  Better to let PUSH_ARGUMENTS adjust the stack in
               really broken.  Better to let PUSH_ARGUMENTS adjust the stack in
               a target-defined manner.  */
               a target-defined manner.  */
            aligned_len = STACK_ALIGN (len);
            aligned_len = STACK_ALIGN (len);
#else
#else
            aligned_len = len;
            aligned_len = len;
#endif
#endif
            if (INNER_THAN (1, 2))
            if (INNER_THAN (1, 2))
              {
              {
                /* stack grows downward */
                /* stack grows downward */
                sp -= aligned_len;
                sp -= aligned_len;
              }
              }
            else
            else
              {
              {
                /* The stack grows up, so the address of the thing we push
                /* The stack grows up, so the address of the thing we push
                   is the stack pointer before we push it.  */
                   is the stack pointer before we push it.  */
                addr = sp;
                addr = sp;
              }
              }
            /* Push the structure.  */
            /* Push the structure.  */
            write_memory (sp, VALUE_CONTENTS_ALL (args[i]), len);
            write_memory (sp, VALUE_CONTENTS_ALL (args[i]), len);
            if (INNER_THAN (1, 2))
            if (INNER_THAN (1, 2))
              {
              {
                /* The stack grows down, so the address of the thing we push
                /* The stack grows down, so the address of the thing we push
                   is the stack pointer after we push it.  */
                   is the stack pointer after we push it.  */
                addr = sp;
                addr = sp;
              }
              }
            else
            else
              {
              {
                /* stack grows upward */
                /* stack grows upward */
                sp += aligned_len;
                sp += aligned_len;
              }
              }
            /* The value we're going to pass is the address of the thing
            /* The value we're going to pass is the address of the thing
               we just pushed.  */
               we just pushed.  */
            /*args[i] = value_from_longest (lookup_pointer_type (value_type),
            /*args[i] = value_from_longest (lookup_pointer_type (value_type),
               (LONGEST) addr); */
               (LONGEST) addr); */
            args[i] = value_from_longest (lookup_pointer_type (arg_type),
            args[i] = value_from_longest (lookup_pointer_type (arg_type),
                                          (LONGEST) addr);
                                          (LONGEST) addr);
          }
          }
      }
      }
  }
  }
#endif /* REG_STRUCT_HAS_ADDR.  */
#endif /* REG_STRUCT_HAS_ADDR.  */
 
 
  /* Reserve space for the return structure to be written on the
  /* Reserve space for the return structure to be written on the
     stack, if necessary */
     stack, if necessary */
 
 
  if (struct_return)
  if (struct_return)
    {
    {
      int len = TYPE_LENGTH (value_type);
      int len = TYPE_LENGTH (value_type);
#ifdef STACK_ALIGN
#ifdef STACK_ALIGN
      /* MVS 11/22/96: I think at least some of this stack_align code is
      /* MVS 11/22/96: I think at least some of this stack_align code is
         really broken.  Better to let PUSH_ARGUMENTS adjust the stack in
         really broken.  Better to let PUSH_ARGUMENTS adjust the stack in
         a target-defined manner.  */
         a target-defined manner.  */
      len = STACK_ALIGN (len);
      len = STACK_ALIGN (len);
#endif
#endif
      if (INNER_THAN (1, 2))
      if (INNER_THAN (1, 2))
        {
        {
          /* stack grows downward */
          /* stack grows downward */
          sp -= len;
          sp -= len;
          struct_addr = sp;
          struct_addr = sp;
        }
        }
      else
      else
        {
        {
          /* stack grows upward */
          /* stack grows upward */
          struct_addr = sp;
          struct_addr = sp;
          sp += len;
          sp += len;
        }
        }
    }
    }
 
 
/* elz: on HPPA no need for this extra alignment, maybe it is needed
/* elz: on HPPA no need for this extra alignment, maybe it is needed
   on other architectures. This is because all the alignment is taken care
   on other architectures. This is because all the alignment is taken care
   of in the above code (ifdef REG_STRUCT_HAS_ADDR) and in
   of in the above code (ifdef REG_STRUCT_HAS_ADDR) and in
   hppa_push_arguments */
   hppa_push_arguments */
#ifndef NO_EXTRA_ALIGNMENT_NEEDED
#ifndef NO_EXTRA_ALIGNMENT_NEEDED
 
 
#if defined(STACK_ALIGN)
#if defined(STACK_ALIGN)
  /* MVS 11/22/96: I think at least some of this stack_align code is
  /* MVS 11/22/96: I think at least some of this stack_align code is
     really broken.  Better to let PUSH_ARGUMENTS adjust the stack in
     really broken.  Better to let PUSH_ARGUMENTS adjust the stack in
     a target-defined manner.  */
     a target-defined manner.  */
  if (INNER_THAN (1, 2))
  if (INNER_THAN (1, 2))
    {
    {
      /* If stack grows down, we must leave a hole at the top. */
      /* If stack grows down, we must leave a hole at the top. */
      int len = 0;
      int len = 0;
 
 
      for (i = nargs - 1; i >= 0; i--)
      for (i = nargs - 1; i >= 0; i--)
        len += TYPE_LENGTH (VALUE_ENCLOSING_TYPE (args[i]));
        len += TYPE_LENGTH (VALUE_ENCLOSING_TYPE (args[i]));
      if (CALL_DUMMY_STACK_ADJUST_P)
      if (CALL_DUMMY_STACK_ADJUST_P)
        len += CALL_DUMMY_STACK_ADJUST;
        len += CALL_DUMMY_STACK_ADJUST;
      sp -= STACK_ALIGN (len) - len;
      sp -= STACK_ALIGN (len) - len;
    }
    }
#endif /* STACK_ALIGN */
#endif /* STACK_ALIGN */
#endif /* NO_EXTRA_ALIGNMENT_NEEDED */
#endif /* NO_EXTRA_ALIGNMENT_NEEDED */
 
 
  sp = PUSH_ARGUMENTS (nargs, args, sp, struct_return, struct_addr);
  sp = PUSH_ARGUMENTS (nargs, args, sp, struct_return, struct_addr);
 
 
#ifdef PUSH_RETURN_ADDRESS      /* for targets that use no CALL_DUMMY */
#ifdef PUSH_RETURN_ADDRESS      /* for targets that use no CALL_DUMMY */
  /* There are a number of targets now which actually don't write any
  /* There are a number of targets now which actually don't write any
     CALL_DUMMY instructions into the target, but instead just save the
     CALL_DUMMY instructions into the target, but instead just save the
     machine state, push the arguments, and jump directly to the callee
     machine state, push the arguments, and jump directly to the callee
     function.  Since this doesn't actually involve executing a JSR/BSR
     function.  Since this doesn't actually involve executing a JSR/BSR
     instruction, the return address must be set up by hand, either by
     instruction, the return address must be set up by hand, either by
     pushing onto the stack or copying into a return-address register
     pushing onto the stack or copying into a return-address register
     as appropriate.  Formerly this has been done in PUSH_ARGUMENTS,
     as appropriate.  Formerly this has been done in PUSH_ARGUMENTS,
     but that's overloading its functionality a bit, so I'm making it
     but that's overloading its functionality a bit, so I'm making it
     explicit to do it here.  */
     explicit to do it here.  */
  sp = PUSH_RETURN_ADDRESS (real_pc, sp);
  sp = PUSH_RETURN_ADDRESS (real_pc, sp);
#endif /* PUSH_RETURN_ADDRESS */
#endif /* PUSH_RETURN_ADDRESS */
 
 
#if defined(STACK_ALIGN)
#if defined(STACK_ALIGN)
  if (!INNER_THAN (1, 2))
  if (!INNER_THAN (1, 2))
    {
    {
      /* If stack grows up, we must leave a hole at the bottom, note
      /* If stack grows up, we must leave a hole at the bottom, note
         that sp already has been advanced for the arguments!  */
         that sp already has been advanced for the arguments!  */
      if (CALL_DUMMY_STACK_ADJUST_P)
      if (CALL_DUMMY_STACK_ADJUST_P)
        sp += CALL_DUMMY_STACK_ADJUST;
        sp += CALL_DUMMY_STACK_ADJUST;
      sp = STACK_ALIGN (sp);
      sp = STACK_ALIGN (sp);
    }
    }
#endif /* STACK_ALIGN */
#endif /* STACK_ALIGN */
 
 
/* XXX This seems wrong.  For stacks that grow down we shouldn't do
/* XXX This seems wrong.  For stacks that grow down we shouldn't do
   anything here!  */
   anything here!  */
  /* MVS 11/22/96: I think at least some of this stack_align code is
  /* MVS 11/22/96: I think at least some of this stack_align code is
     really broken.  Better to let PUSH_ARGUMENTS adjust the stack in
     really broken.  Better to let PUSH_ARGUMENTS adjust the stack in
     a target-defined manner.  */
     a target-defined manner.  */
  if (CALL_DUMMY_STACK_ADJUST_P)
  if (CALL_DUMMY_STACK_ADJUST_P)
    if (INNER_THAN (1, 2))
    if (INNER_THAN (1, 2))
      {
      {
        /* stack grows downward */
        /* stack grows downward */
        sp -= CALL_DUMMY_STACK_ADJUST;
        sp -= CALL_DUMMY_STACK_ADJUST;
      }
      }
 
 
  /* Store the address at which the structure is supposed to be
  /* Store the address at which the structure is supposed to be
     written.  Note that this (and the code which reserved the space
     written.  Note that this (and the code which reserved the space
     above) assumes that gcc was used to compile this function.  Since
     above) assumes that gcc was used to compile this function.  Since
     it doesn't cost us anything but space and if the function is pcc
     it doesn't cost us anything but space and if the function is pcc
     it will ignore this value, we will make that assumption.
     it will ignore this value, we will make that assumption.
 
 
     Also note that on some machines (like the sparc) pcc uses a
     Also note that on some machines (like the sparc) pcc uses a
     convention like gcc's.  */
     convention like gcc's.  */
 
 
  if (struct_return)
  if (struct_return)
    STORE_STRUCT_RETURN (struct_addr, sp);
    STORE_STRUCT_RETURN (struct_addr, sp);
 
 
  /* Write the stack pointer.  This is here because the statements above
  /* Write the stack pointer.  This is here because the statements above
     might fool with it.  On SPARC, this write also stores the register
     might fool with it.  On SPARC, this write also stores the register
     window into the right place in the new stack frame, which otherwise
     window into the right place in the new stack frame, which otherwise
     wouldn't happen.  (See store_inferior_registers in sparc-nat.c.)  */
     wouldn't happen.  (See store_inferior_registers in sparc-nat.c.)  */
  write_sp (sp);
  write_sp (sp);
 
 
#ifdef SAVE_DUMMY_FRAME_TOS
#ifdef SAVE_DUMMY_FRAME_TOS
  SAVE_DUMMY_FRAME_TOS (sp);
  SAVE_DUMMY_FRAME_TOS (sp);
#endif
#endif
 
 
  {
  {
    char retbuf[REGISTER_BYTES];
    char retbuf[REGISTER_BYTES];
    char *name;
    char *name;
    struct symbol *symbol;
    struct symbol *symbol;
 
 
    name = NULL;
    name = NULL;
    symbol = find_pc_function (funaddr);
    symbol = find_pc_function (funaddr);
    if (symbol)
    if (symbol)
      {
      {
        name = SYMBOL_SOURCE_NAME (symbol);
        name = SYMBOL_SOURCE_NAME (symbol);
      }
      }
    else
    else
      {
      {
        /* Try the minimal symbols.  */
        /* Try the minimal symbols.  */
        struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (funaddr);
        struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (funaddr);
 
 
        if (msymbol)
        if (msymbol)
          {
          {
            name = SYMBOL_SOURCE_NAME (msymbol);
            name = SYMBOL_SOURCE_NAME (msymbol);
          }
          }
      }
      }
    if (name == NULL)
    if (name == NULL)
      {
      {
        char format[80];
        char format[80];
        sprintf (format, "at %s", local_hex_format ());
        sprintf (format, "at %s", local_hex_format ());
        name = alloca (80);
        name = alloca (80);
        /* FIXME-32x64: assumes funaddr fits in a long.  */
        /* FIXME-32x64: assumes funaddr fits in a long.  */
        sprintf (name, format, (unsigned long) funaddr);
        sprintf (name, format, (unsigned long) funaddr);
      }
      }
 
 
    /* Execute the stack dummy routine, calling FUNCTION.
    /* Execute the stack dummy routine, calling FUNCTION.
       When it is done, discard the empty frame
       When it is done, discard the empty frame
       after storing the contents of all regs into retbuf.  */
       after storing the contents of all regs into retbuf.  */
    rc = run_stack_dummy (real_pc + CALL_DUMMY_START_OFFSET, retbuf);
    rc = run_stack_dummy (real_pc + CALL_DUMMY_START_OFFSET, retbuf);
 
 
    if (rc == 1)
    if (rc == 1)
      {
      {
        /* We stopped inside the FUNCTION because of a random signal.
        /* We stopped inside the FUNCTION because of a random signal.
           Further execution of the FUNCTION is not allowed. */
           Further execution of the FUNCTION is not allowed. */
 
 
        if (unwind_on_signal_p)
        if (unwind_on_signal_p)
          {
          {
            /* The user wants the context restored. */
            /* The user wants the context restored. */
 
 
            /* We must get back to the frame we were before the dummy call. */
            /* We must get back to the frame we were before the dummy call. */
            POP_FRAME;
            POP_FRAME;
 
 
            /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
            /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
               a C++ name with arguments and stuff.  */
               a C++ name with arguments and stuff.  */
            error ("\
            error ("\
The program being debugged was signaled while in a function called from GDB.\n\
The program being debugged was signaled while in a function called from GDB.\n\
GDB has restored the context to what it was before the call.\n\
GDB has restored the context to what it was before the call.\n\
To change this behavior use \"set unwindonsignal off\"\n\
To change this behavior use \"set unwindonsignal off\"\n\
Evaluation of the expression containing the function (%s) will be abandoned.",
Evaluation of the expression containing the function (%s) will be abandoned.",
                   name);
                   name);
          }
          }
        else
        else
          {
          {
            /* The user wants to stay in the frame where we stopped (default).*/
            /* The user wants to stay in the frame where we stopped (default).*/
 
 
            /* If we did the cleanups, we would print a spurious error
            /* If we did the cleanups, we would print a spurious error
               message (Unable to restore previously selected frame),
               message (Unable to restore previously selected frame),
               would write the registers from the inf_status (which is
               would write the registers from the inf_status (which is
               wrong), and would do other wrong things.  */
               wrong), and would do other wrong things.  */
            discard_cleanups (old_chain);
            discard_cleanups (old_chain);
            discard_inferior_status (inf_status);
            discard_inferior_status (inf_status);
 
 
            /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
            /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
               a C++ name with arguments and stuff.  */
               a C++ name with arguments and stuff.  */
            error ("\
            error ("\
The program being debugged was signaled while in a function called from GDB.\n\
The program being debugged was signaled while in a function called from GDB.\n\
GDB remains in the frame where the signal was received.\n\
GDB remains in the frame where the signal was received.\n\
To change this behavior use \"set unwindonsignal on\"\n\
To change this behavior use \"set unwindonsignal on\"\n\
Evaluation of the expression containing the function (%s) will be abandoned.",
Evaluation of the expression containing the function (%s) will be abandoned.",
                   name);
                   name);
          }
          }
      }
      }
 
 
    if (rc == 2)
    if (rc == 2)
      {
      {
        /* We hit a breakpoint inside the FUNCTION. */
        /* We hit a breakpoint inside the FUNCTION. */
 
 
        /* If we did the cleanups, we would print a spurious error
        /* If we did the cleanups, we would print a spurious error
           message (Unable to restore previously selected frame),
           message (Unable to restore previously selected frame),
           would write the registers from the inf_status (which is
           would write the registers from the inf_status (which is
           wrong), and would do other wrong things.  */
           wrong), and would do other wrong things.  */
        discard_cleanups (old_chain);
        discard_cleanups (old_chain);
        discard_inferior_status (inf_status);
        discard_inferior_status (inf_status);
 
 
        /* The following error message used to say "The expression
        /* The following error message used to say "The expression
           which contained the function call has been discarded."  It
           which contained the function call has been discarded."  It
           is a hard concept to explain in a few words.  Ideally, GDB
           is a hard concept to explain in a few words.  Ideally, GDB
           would be able to resume evaluation of the expression when
           would be able to resume evaluation of the expression when
           the function finally is done executing.  Perhaps someday
           the function finally is done executing.  Perhaps someday
           this will be implemented (it would not be easy).  */
           this will be implemented (it would not be easy).  */
 
 
        /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
        /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
           a C++ name with arguments and stuff.  */
           a C++ name with arguments and stuff.  */
        error ("\
        error ("\
The program being debugged stopped while in a function called from GDB.\n\
The program being debugged stopped while in a function called from GDB.\n\
When the function (%s) is done executing, GDB will silently\n\
When the function (%s) is done executing, GDB will silently\n\
stop (instead of continuing to evaluate the expression containing\n\
stop (instead of continuing to evaluate the expression containing\n\
the function call).", name);
the function call).", name);
      }
      }
 
 
    /* If we get here the called FUNCTION run to completion. */
    /* If we get here the called FUNCTION run to completion. */
    do_cleanups (old_chain);
    do_cleanups (old_chain);
 
 
    /* Figure out the value returned by the function.  */
    /* Figure out the value returned by the function.  */
/* elz: I defined this new macro for the hppa architecture only.
/* elz: I defined this new macro for the hppa architecture only.
   this gives us a way to get the value returned by the function from the stack,
   this gives us a way to get the value returned by the function from the stack,
   at the same address we told the function to put it.
   at the same address we told the function to put it.
   We cannot assume on the pa that r28 still contains the address of the returned
   We cannot assume on the pa that r28 still contains the address of the returned
   structure. Usually this will be overwritten by the callee.
   structure. Usually this will be overwritten by the callee.
   I don't know about other architectures, so I defined this macro
   I don't know about other architectures, so I defined this macro
 */
 */
 
 
#ifdef VALUE_RETURNED_FROM_STACK
#ifdef VALUE_RETURNED_FROM_STACK
    if (struct_return)
    if (struct_return)
      return (value_ptr) VALUE_RETURNED_FROM_STACK (value_type, struct_addr);
      return (value_ptr) VALUE_RETURNED_FROM_STACK (value_type, struct_addr);
#endif
#endif
 
 
    return value_being_returned (value_type, retbuf, struct_return);
    return value_being_returned (value_type, retbuf, struct_return);
  }
  }
}
}
 
 
value_ptr
value_ptr
call_function_by_hand (function, nargs, args)
call_function_by_hand (function, nargs, args)
     value_ptr function;
     value_ptr function;
     int nargs;
     int nargs;
     value_ptr *args;
     value_ptr *args;
{
{
  if (CALL_DUMMY_P)
  if (CALL_DUMMY_P)
    {
    {
      return hand_function_call (function, nargs, args);
      return hand_function_call (function, nargs, args);
    }
    }
  else
  else
    {
    {
      error ("Cannot invoke functions on this machine.");
      error ("Cannot invoke functions on this machine.");
    }
    }
}
}


 
 
 
 
/* Create a value for an array by allocating space in the inferior, copying
/* Create a value for an array by allocating space in the inferior, copying
   the data into that space, and then setting up an array value.
   the data into that space, and then setting up an array value.
 
 
   The array bounds are set from LOWBOUND and HIGHBOUND, and the array is
   The array bounds are set from LOWBOUND and HIGHBOUND, and the array is
   populated from the values passed in ELEMVEC.
   populated from the values passed in ELEMVEC.
 
 
   The element type of the array is inherited from the type of the
   The element type of the array is inherited from the type of the
   first element, and all elements must have the same size (though we
   first element, and all elements must have the same size (though we
   don't currently enforce any restriction on their types). */
   don't currently enforce any restriction on their types). */
 
 
value_ptr
value_ptr
value_array (lowbound, highbound, elemvec)
value_array (lowbound, highbound, elemvec)
     int lowbound;
     int lowbound;
     int highbound;
     int highbound;
     value_ptr *elemvec;
     value_ptr *elemvec;
{
{
  int nelem;
  int nelem;
  int idx;
  int idx;
  unsigned int typelength;
  unsigned int typelength;
  value_ptr val;
  value_ptr val;
  struct type *rangetype;
  struct type *rangetype;
  struct type *arraytype;
  struct type *arraytype;
  CORE_ADDR addr;
  CORE_ADDR addr;
 
 
  /* Validate that the bounds are reasonable and that each of the elements
  /* Validate that the bounds are reasonable and that each of the elements
     have the same size. */
     have the same size. */
 
 
  nelem = highbound - lowbound + 1;
  nelem = highbound - lowbound + 1;
  if (nelem <= 0)
  if (nelem <= 0)
    {
    {
      error ("bad array bounds (%d, %d)", lowbound, highbound);
      error ("bad array bounds (%d, %d)", lowbound, highbound);
    }
    }
  typelength = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[0]));
  typelength = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[0]));
  for (idx = 1; idx < nelem; idx++)
  for (idx = 1; idx < nelem; idx++)
    {
    {
      if (TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[idx])) != typelength)
      if (TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[idx])) != typelength)
        {
        {
          error ("array elements must all be the same size");
          error ("array elements must all be the same size");
        }
        }
    }
    }
 
 
  rangetype = create_range_type ((struct type *) NULL, builtin_type_int,
  rangetype = create_range_type ((struct type *) NULL, builtin_type_int,
                                 lowbound, highbound);
                                 lowbound, highbound);
  arraytype = create_array_type ((struct type *) NULL,
  arraytype = create_array_type ((struct type *) NULL,
                              VALUE_ENCLOSING_TYPE (elemvec[0]), rangetype);
                              VALUE_ENCLOSING_TYPE (elemvec[0]), rangetype);
 
 
  if (!current_language->c_style_arrays)
  if (!current_language->c_style_arrays)
    {
    {
      val = allocate_value (arraytype);
      val = allocate_value (arraytype);
      for (idx = 0; idx < nelem; idx++)
      for (idx = 0; idx < nelem; idx++)
        {
        {
          memcpy (VALUE_CONTENTS_ALL_RAW (val) + (idx * typelength),
          memcpy (VALUE_CONTENTS_ALL_RAW (val) + (idx * typelength),
                  VALUE_CONTENTS_ALL (elemvec[idx]),
                  VALUE_CONTENTS_ALL (elemvec[idx]),
                  typelength);
                  typelength);
        }
        }
      VALUE_BFD_SECTION (val) = VALUE_BFD_SECTION (elemvec[0]);
      VALUE_BFD_SECTION (val) = VALUE_BFD_SECTION (elemvec[0]);
      return val;
      return val;
    }
    }
 
 
  /* Allocate space to store the array in the inferior, and then initialize
  /* Allocate space to store the array in the inferior, and then initialize
     it by copying in each element.  FIXME:  Is it worth it to create a
     it by copying in each element.  FIXME:  Is it worth it to create a
     local buffer in which to collect each value and then write all the
     local buffer in which to collect each value and then write all the
     bytes in one operation? */
     bytes in one operation? */
 
 
  addr = allocate_space_in_inferior (nelem * typelength);
  addr = allocate_space_in_inferior (nelem * typelength);
  for (idx = 0; idx < nelem; idx++)
  for (idx = 0; idx < nelem; idx++)
    {
    {
      write_memory (addr + (idx * typelength), VALUE_CONTENTS_ALL (elemvec[idx]),
      write_memory (addr + (idx * typelength), VALUE_CONTENTS_ALL (elemvec[idx]),
                    typelength);
                    typelength);
    }
    }
 
 
  /* Create the array type and set up an array value to be evaluated lazily. */
  /* Create the array type and set up an array value to be evaluated lazily. */
 
 
  val = value_at_lazy (arraytype, addr, VALUE_BFD_SECTION (elemvec[0]));
  val = value_at_lazy (arraytype, addr, VALUE_BFD_SECTION (elemvec[0]));
  return (val);
  return (val);
}
}
 
 
/* Create a value for a string constant by allocating space in the inferior,
/* Create a value for a string constant by allocating space in the inferior,
   copying the data into that space, and returning the address with type
   copying the data into that space, and returning the address with type
   TYPE_CODE_STRING.  PTR points to the string constant data; LEN is number
   TYPE_CODE_STRING.  PTR points to the string constant data; LEN is number
   of characters.
   of characters.
   Note that string types are like array of char types with a lower bound of
   Note that string types are like array of char types with a lower bound of
   zero and an upper bound of LEN - 1.  Also note that the string may contain
   zero and an upper bound of LEN - 1.  Also note that the string may contain
   embedded null bytes. */
   embedded null bytes. */
 
 
value_ptr
value_ptr
value_string (ptr, len)
value_string (ptr, len)
     char *ptr;
     char *ptr;
     int len;
     int len;
{
{
  value_ptr val;
  value_ptr val;
  int lowbound = current_language->string_lower_bound;
  int lowbound = current_language->string_lower_bound;
  struct type *rangetype = create_range_type ((struct type *) NULL,
  struct type *rangetype = create_range_type ((struct type *) NULL,
                                              builtin_type_int,
                                              builtin_type_int,
                                              lowbound, len + lowbound - 1);
                                              lowbound, len + lowbound - 1);
  struct type *stringtype
  struct type *stringtype
  = create_string_type ((struct type *) NULL, rangetype);
  = create_string_type ((struct type *) NULL, rangetype);
  CORE_ADDR addr;
  CORE_ADDR addr;
 
 
  if (current_language->c_style_arrays == 0)
  if (current_language->c_style_arrays == 0)
    {
    {
      val = allocate_value (stringtype);
      val = allocate_value (stringtype);
      memcpy (VALUE_CONTENTS_RAW (val), ptr, len);
      memcpy (VALUE_CONTENTS_RAW (val), ptr, len);
      return val;
      return val;
    }
    }
 
 
 
 
  /* Allocate space to store the string in the inferior, and then
  /* Allocate space to store the string in the inferior, and then
     copy LEN bytes from PTR in gdb to that address in the inferior. */
     copy LEN bytes from PTR in gdb to that address in the inferior. */
 
 
  addr = allocate_space_in_inferior (len);
  addr = allocate_space_in_inferior (len);
  write_memory (addr, ptr, len);
  write_memory (addr, ptr, len);
 
 
  val = value_at_lazy (stringtype, addr, NULL);
  val = value_at_lazy (stringtype, addr, NULL);
  return (val);
  return (val);
}
}
 
 
value_ptr
value_ptr
value_bitstring (ptr, len)
value_bitstring (ptr, len)
     char *ptr;
     char *ptr;
     int len;
     int len;
{
{
  value_ptr val;
  value_ptr val;
  struct type *domain_type = create_range_type (NULL, builtin_type_int,
  struct type *domain_type = create_range_type (NULL, builtin_type_int,
                                                0, len - 1);
                                                0, len - 1);
  struct type *type = create_set_type ((struct type *) NULL, domain_type);
  struct type *type = create_set_type ((struct type *) NULL, domain_type);
  TYPE_CODE (type) = TYPE_CODE_BITSTRING;
  TYPE_CODE (type) = TYPE_CODE_BITSTRING;
  val = allocate_value (type);
  val = allocate_value (type);
  memcpy (VALUE_CONTENTS_RAW (val), ptr, TYPE_LENGTH (type));
  memcpy (VALUE_CONTENTS_RAW (val), ptr, TYPE_LENGTH (type));
  return val;
  return val;
}
}


/* See if we can pass arguments in T2 to a function which takes arguments
/* See if we can pass arguments in T2 to a function which takes arguments
   of types T1.  Both t1 and t2 are NULL-terminated vectors.  If some
   of types T1.  Both t1 and t2 are NULL-terminated vectors.  If some
   arguments need coercion of some sort, then the coerced values are written
   arguments need coercion of some sort, then the coerced values are written
   into T2.  Return value is 0 if the arguments could be matched, or the
   into T2.  Return value is 0 if the arguments could be matched, or the
   position at which they differ if not.
   position at which they differ if not.
 
 
   STATICP is nonzero if the T1 argument list came from a
   STATICP is nonzero if the T1 argument list came from a
   static member function.
   static member function.
 
 
   For non-static member functions, we ignore the first argument,
   For non-static member functions, we ignore the first argument,
   which is the type of the instance variable.  This is because we want
   which is the type of the instance variable.  This is because we want
   to handle calls with objects from derived classes.  This is not
   to handle calls with objects from derived classes.  This is not
   entirely correct: we should actually check to make sure that a
   entirely correct: we should actually check to make sure that a
   requested operation is type secure, shouldn't we?  FIXME.  */
   requested operation is type secure, shouldn't we?  FIXME.  */
 
 
static int
static int
typecmp (staticp, t1, t2)
typecmp (staticp, t1, t2)
     int staticp;
     int staticp;
     struct type *t1[];
     struct type *t1[];
     value_ptr t2[];
     value_ptr t2[];
{
{
  int i;
  int i;
 
 
  if (t2 == 0)
  if (t2 == 0)
    return 1;
    return 1;
  if (staticp && t1 == 0)
  if (staticp && t1 == 0)
    return t2[1] != 0;
    return t2[1] != 0;
  if (t1 == 0)
  if (t1 == 0)
    return 1;
    return 1;
  if (TYPE_CODE (t1[0]) == TYPE_CODE_VOID)
  if (TYPE_CODE (t1[0]) == TYPE_CODE_VOID)
    return 0;
    return 0;
  if (t1[!staticp] == 0)
  if (t1[!staticp] == 0)
    return 0;
    return 0;
  for (i = !staticp; t1[i] && TYPE_CODE (t1[i]) != TYPE_CODE_VOID; i++)
  for (i = !staticp; t1[i] && TYPE_CODE (t1[i]) != TYPE_CODE_VOID; i++)
    {
    {
      struct type *tt1, *tt2;
      struct type *tt1, *tt2;
      if (!t2[i])
      if (!t2[i])
        return i + 1;
        return i + 1;
      tt1 = check_typedef (t1[i]);
      tt1 = check_typedef (t1[i]);
      tt2 = check_typedef (VALUE_TYPE (t2[i]));
      tt2 = check_typedef (VALUE_TYPE (t2[i]));
      if (TYPE_CODE (tt1) == TYPE_CODE_REF
      if (TYPE_CODE (tt1) == TYPE_CODE_REF
      /* We should be doing hairy argument matching, as below.  */
      /* We should be doing hairy argument matching, as below.  */
          && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1))) == TYPE_CODE (tt2)))
          && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1))) == TYPE_CODE (tt2)))
        {
        {
          if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
          if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
            t2[i] = value_coerce_array (t2[i]);
            t2[i] = value_coerce_array (t2[i]);
          else
          else
            t2[i] = value_addr (t2[i]);
            t2[i] = value_addr (t2[i]);
          continue;
          continue;
        }
        }
 
 
      while (TYPE_CODE (tt1) == TYPE_CODE_PTR
      while (TYPE_CODE (tt1) == TYPE_CODE_PTR
             && (TYPE_CODE (tt2) == TYPE_CODE_ARRAY
             && (TYPE_CODE (tt2) == TYPE_CODE_ARRAY
                 || TYPE_CODE (tt2) == TYPE_CODE_PTR))
                 || TYPE_CODE (tt2) == TYPE_CODE_PTR))
        {
        {
          tt1 = check_typedef (TYPE_TARGET_TYPE (tt1));
          tt1 = check_typedef (TYPE_TARGET_TYPE (tt1));
          tt2 = check_typedef (TYPE_TARGET_TYPE (tt2));
          tt2 = check_typedef (TYPE_TARGET_TYPE (tt2));
        }
        }
      if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
      if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
        continue;
        continue;
      /* Array to pointer is a `trivial conversion' according to the ARM.  */
      /* Array to pointer is a `trivial conversion' according to the ARM.  */
 
 
      /* We should be doing much hairier argument matching (see section 13.2
      /* We should be doing much hairier argument matching (see section 13.2
         of the ARM), but as a quick kludge, just check for the same type
         of the ARM), but as a quick kludge, just check for the same type
         code.  */
         code.  */
      if (TYPE_CODE (t1[i]) != TYPE_CODE (VALUE_TYPE (t2[i])))
      if (TYPE_CODE (t1[i]) != TYPE_CODE (VALUE_TYPE (t2[i])))
        return i + 1;
        return i + 1;
    }
    }
  if (!t1[i])
  if (!t1[i])
    return 0;
    return 0;
  return t2[i] ? i + 1 : 0;
  return t2[i] ? i + 1 : 0;
}
}
 
 
/* Helper function used by value_struct_elt to recurse through baseclasses.
/* Helper function used by value_struct_elt to recurse through baseclasses.
   Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
   Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
   and search in it assuming it has (class) type TYPE.
   and search in it assuming it has (class) type TYPE.
   If found, return value, else return NULL.
   If found, return value, else return NULL.
 
 
   If LOOKING_FOR_BASECLASS, then instead of looking for struct fields,
   If LOOKING_FOR_BASECLASS, then instead of looking for struct fields,
   look for a baseclass named NAME.  */
   look for a baseclass named NAME.  */
 
 
static value_ptr
static value_ptr
search_struct_field (name, arg1, offset, type, looking_for_baseclass)
search_struct_field (name, arg1, offset, type, looking_for_baseclass)
     char *name;
     char *name;
     register value_ptr arg1;
     register value_ptr arg1;
     int offset;
     int offset;
     register struct type *type;
     register struct type *type;
     int looking_for_baseclass;
     int looking_for_baseclass;
{
{
  int i;
  int i;
  int nbases = TYPE_N_BASECLASSES (type);
  int nbases = TYPE_N_BASECLASSES (type);
 
 
  CHECK_TYPEDEF (type);
  CHECK_TYPEDEF (type);
 
 
  if (!looking_for_baseclass)
  if (!looking_for_baseclass)
    for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
    for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
      {
      {
        char *t_field_name = TYPE_FIELD_NAME (type, i);
        char *t_field_name = TYPE_FIELD_NAME (type, i);
 
 
        if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
        if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
          {
          {
            value_ptr v;
            value_ptr v;
            if (TYPE_FIELD_STATIC (type, i))
            if (TYPE_FIELD_STATIC (type, i))
              v = value_static_field (type, i);
              v = value_static_field (type, i);
            else
            else
              v = value_primitive_field (arg1, offset, i, type);
              v = value_primitive_field (arg1, offset, i, type);
            if (v == 0)
            if (v == 0)
              error ("there is no field named %s", name);
              error ("there is no field named %s", name);
            return v;
            return v;
          }
          }
 
 
        if (t_field_name
        if (t_field_name
            && (t_field_name[0] == '\0'
            && (t_field_name[0] == '\0'
                || (TYPE_CODE (type) == TYPE_CODE_UNION
                || (TYPE_CODE (type) == TYPE_CODE_UNION
                    && (strcmp_iw (t_field_name, "else") == 0))))
                    && (strcmp_iw (t_field_name, "else") == 0))))
          {
          {
            struct type *field_type = TYPE_FIELD_TYPE (type, i);
            struct type *field_type = TYPE_FIELD_TYPE (type, i);
            if (TYPE_CODE (field_type) == TYPE_CODE_UNION
            if (TYPE_CODE (field_type) == TYPE_CODE_UNION
                || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
                || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
              {
              {
                /* Look for a match through the fields of an anonymous union,
                /* Look for a match through the fields of an anonymous union,
                   or anonymous struct.  C++ provides anonymous unions.
                   or anonymous struct.  C++ provides anonymous unions.
 
 
                   In the GNU Chill implementation of variant record types,
                   In the GNU Chill implementation of variant record types,
                   each <alternative field> has an (anonymous) union type,
                   each <alternative field> has an (anonymous) union type,
                   each member of the union represents a <variant alternative>.
                   each member of the union represents a <variant alternative>.
                   Each <variant alternative> is represented as a struct,
                   Each <variant alternative> is represented as a struct,
                   with a member for each <variant field>.  */
                   with a member for each <variant field>.  */
 
 
                value_ptr v;
                value_ptr v;
                int new_offset = offset;
                int new_offset = offset;
 
 
                /* This is pretty gross.  In G++, the offset in an anonymous
                /* This is pretty gross.  In G++, the offset in an anonymous
                   union is relative to the beginning of the enclosing struct.
                   union is relative to the beginning of the enclosing struct.
                   In the GNU Chill implementation of variant records,
                   In the GNU Chill implementation of variant records,
                   the bitpos is zero in an anonymous union field, so we
                   the bitpos is zero in an anonymous union field, so we
                   have to add the offset of the union here. */
                   have to add the offset of the union here. */
                if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
                if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
                    || (TYPE_NFIELDS (field_type) > 0
                    || (TYPE_NFIELDS (field_type) > 0
                        && TYPE_FIELD_BITPOS (field_type, 0) == 0))
                        && TYPE_FIELD_BITPOS (field_type, 0) == 0))
                  new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
                  new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
 
 
                v = search_struct_field (name, arg1, new_offset, field_type,
                v = search_struct_field (name, arg1, new_offset, field_type,
                                         looking_for_baseclass);
                                         looking_for_baseclass);
                if (v)
                if (v)
                  return v;
                  return v;
              }
              }
          }
          }
      }
      }
 
 
  for (i = 0; i < nbases; i++)
  for (i = 0; i < nbases; i++)
    {
    {
      value_ptr v;
      value_ptr v;
      struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
      struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
      /* If we are looking for baseclasses, this is what we get when we
      /* If we are looking for baseclasses, this is what we get when we
         hit them.  But it could happen that the base part's member name
         hit them.  But it could happen that the base part's member name
         is not yet filled in.  */
         is not yet filled in.  */
      int found_baseclass = (looking_for_baseclass
      int found_baseclass = (looking_for_baseclass
                             && TYPE_BASECLASS_NAME (type, i) != NULL
                             && TYPE_BASECLASS_NAME (type, i) != NULL
                             && (strcmp_iw (name, TYPE_BASECLASS_NAME (type, i)) == 0));
                             && (strcmp_iw (name, TYPE_BASECLASS_NAME (type, i)) == 0));
 
 
      if (BASETYPE_VIA_VIRTUAL (type, i))
      if (BASETYPE_VIA_VIRTUAL (type, i))
        {
        {
          int boffset;
          int boffset;
          value_ptr v2 = allocate_value (basetype);
          value_ptr v2 = allocate_value (basetype);
 
 
          boffset = baseclass_offset (type, i,
          boffset = baseclass_offset (type, i,
                                      VALUE_CONTENTS (arg1) + offset,
                                      VALUE_CONTENTS (arg1) + offset,
                                      VALUE_ADDRESS (arg1)
                                      VALUE_ADDRESS (arg1)
                                      + VALUE_OFFSET (arg1) + offset);
                                      + VALUE_OFFSET (arg1) + offset);
          if (boffset == -1)
          if (boffset == -1)
            error ("virtual baseclass botch");
            error ("virtual baseclass botch");
 
 
          /* The virtual base class pointer might have been clobbered by the
          /* The virtual base class pointer might have been clobbered by the
             user program. Make sure that it still points to a valid memory
             user program. Make sure that it still points to a valid memory
             location.  */
             location.  */
 
 
          boffset += offset;
          boffset += offset;
          if (boffset < 0 || boffset >= TYPE_LENGTH (type))
          if (boffset < 0 || boffset >= TYPE_LENGTH (type))
            {
            {
              CORE_ADDR base_addr;
              CORE_ADDR base_addr;
 
 
              base_addr = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1) + boffset;
              base_addr = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1) + boffset;
              if (target_read_memory (base_addr, VALUE_CONTENTS_RAW (v2),
              if (target_read_memory (base_addr, VALUE_CONTENTS_RAW (v2),
                                      TYPE_LENGTH (basetype)) != 0)
                                      TYPE_LENGTH (basetype)) != 0)
                error ("virtual baseclass botch");
                error ("virtual baseclass botch");
              VALUE_LVAL (v2) = lval_memory;
              VALUE_LVAL (v2) = lval_memory;
              VALUE_ADDRESS (v2) = base_addr;
              VALUE_ADDRESS (v2) = base_addr;
            }
            }
          else
          else
            {
            {
              VALUE_LVAL (v2) = VALUE_LVAL (arg1);
              VALUE_LVAL (v2) = VALUE_LVAL (arg1);
              VALUE_ADDRESS (v2) = VALUE_ADDRESS (arg1);
              VALUE_ADDRESS (v2) = VALUE_ADDRESS (arg1);
              VALUE_OFFSET (v2) = VALUE_OFFSET (arg1) + boffset;
              VALUE_OFFSET (v2) = VALUE_OFFSET (arg1) + boffset;
              if (VALUE_LAZY (arg1))
              if (VALUE_LAZY (arg1))
                VALUE_LAZY (v2) = 1;
                VALUE_LAZY (v2) = 1;
              else
              else
                memcpy (VALUE_CONTENTS_RAW (v2),
                memcpy (VALUE_CONTENTS_RAW (v2),
                        VALUE_CONTENTS_RAW (arg1) + boffset,
                        VALUE_CONTENTS_RAW (arg1) + boffset,
                        TYPE_LENGTH (basetype));
                        TYPE_LENGTH (basetype));
            }
            }
 
 
          if (found_baseclass)
          if (found_baseclass)
            return v2;
            return v2;
          v = search_struct_field (name, v2, 0, TYPE_BASECLASS (type, i),
          v = search_struct_field (name, v2, 0, TYPE_BASECLASS (type, i),
                                   looking_for_baseclass);
                                   looking_for_baseclass);
        }
        }
      else if (found_baseclass)
      else if (found_baseclass)
        v = value_primitive_field (arg1, offset, i, type);
        v = value_primitive_field (arg1, offset, i, type);
      else
      else
        v = search_struct_field (name, arg1,
        v = search_struct_field (name, arg1,
                               offset + TYPE_BASECLASS_BITPOS (type, i) / 8,
                               offset + TYPE_BASECLASS_BITPOS (type, i) / 8,
                                 basetype, looking_for_baseclass);
                                 basetype, looking_for_baseclass);
      if (v)
      if (v)
        return v;
        return v;
    }
    }
  return NULL;
  return NULL;
}
}
 
 
 
 
/* Return the offset (in bytes) of the virtual base of type BASETYPE
/* Return the offset (in bytes) of the virtual base of type BASETYPE
 * in an object pointed to by VALADDR (on the host), assumed to be of
 * in an object pointed to by VALADDR (on the host), assumed to be of
 * type TYPE.  OFFSET is number of bytes beyond start of ARG to start
 * type TYPE.  OFFSET is number of bytes beyond start of ARG to start
 * looking (in case VALADDR is the contents of an enclosing object).
 * looking (in case VALADDR is the contents of an enclosing object).
 *
 *
 * This routine recurses on the primary base of the derived class because
 * This routine recurses on the primary base of the derived class because
 * the virtual base entries of the primary base appear before the other
 * the virtual base entries of the primary base appear before the other
 * virtual base entries.
 * virtual base entries.
 *
 *
 * If the virtual base is not found, a negative integer is returned.
 * If the virtual base is not found, a negative integer is returned.
 * The magnitude of the negative integer is the number of entries in
 * The magnitude of the negative integer is the number of entries in
 * the virtual table to skip over (entries corresponding to various
 * the virtual table to skip over (entries corresponding to various
 * ancestral classes in the chain of primary bases).
 * ancestral classes in the chain of primary bases).
 *
 *
 * Important: This assumes the HP / Taligent C++ runtime
 * Important: This assumes the HP / Taligent C++ runtime
 * conventions. Use baseclass_offset() instead to deal with g++
 * conventions. Use baseclass_offset() instead to deal with g++
 * conventions.  */
 * conventions.  */
 
 
void
void
find_rt_vbase_offset (type, basetype, valaddr, offset, boffset_p, skip_p)
find_rt_vbase_offset (type, basetype, valaddr, offset, boffset_p, skip_p)
     struct type *type;
     struct type *type;
     struct type *basetype;
     struct type *basetype;
     char *valaddr;
     char *valaddr;
     int offset;
     int offset;
     int *boffset_p;
     int *boffset_p;
     int *skip_p;
     int *skip_p;
{
{
  int boffset;                  /* offset of virtual base */
  int boffset;                  /* offset of virtual base */
  int index;                    /* displacement to use in virtual table */
  int index;                    /* displacement to use in virtual table */
  int skip;
  int skip;
 
 
  value_ptr vp;
  value_ptr vp;
  CORE_ADDR vtbl;               /* the virtual table pointer */
  CORE_ADDR vtbl;               /* the virtual table pointer */
  struct type *pbc;             /* the primary base class */
  struct type *pbc;             /* the primary base class */
 
 
  /* Look for the virtual base recursively in the primary base, first.
  /* Look for the virtual base recursively in the primary base, first.
   * This is because the derived class object and its primary base
   * This is because the derived class object and its primary base
   * subobject share the primary virtual table.  */
   * subobject share the primary virtual table.  */
 
 
  boffset = 0;
  boffset = 0;
  pbc = TYPE_PRIMARY_BASE (type);
  pbc = TYPE_PRIMARY_BASE (type);
  if (pbc)
  if (pbc)
    {
    {
      find_rt_vbase_offset (pbc, basetype, valaddr, offset, &boffset, &skip);
      find_rt_vbase_offset (pbc, basetype, valaddr, offset, &boffset, &skip);
      if (skip < 0)
      if (skip < 0)
        {
        {
          *boffset_p = boffset;
          *boffset_p = boffset;
          *skip_p = -1;
          *skip_p = -1;
          return;
          return;
        }
        }
    }
    }
  else
  else
    skip = 0;
    skip = 0;
 
 
 
 
  /* Find the index of the virtual base according to HP/Taligent
  /* Find the index of the virtual base according to HP/Taligent
     runtime spec. (Depth-first, left-to-right.)  */
     runtime spec. (Depth-first, left-to-right.)  */
  index = virtual_base_index_skip_primaries (basetype, type);
  index = virtual_base_index_skip_primaries (basetype, type);
 
 
  if (index < 0)
  if (index < 0)
    {
    {
      *skip_p = skip + virtual_base_list_length_skip_primaries (type);
      *skip_p = skip + virtual_base_list_length_skip_primaries (type);
      *boffset_p = 0;
      *boffset_p = 0;
      return;
      return;
    }
    }
 
 
  /* pai: FIXME -- 32x64 possible problem */
  /* pai: FIXME -- 32x64 possible problem */
  /* First word (4 bytes) in object layout is the vtable pointer */
  /* First word (4 bytes) in object layout is the vtable pointer */
  vtbl = *(CORE_ADDR *) (valaddr + offset);
  vtbl = *(CORE_ADDR *) (valaddr + offset);
 
 
  /* Before the constructor is invoked, things are usually zero'd out. */
  /* Before the constructor is invoked, things are usually zero'd out. */
  if (vtbl == 0)
  if (vtbl == 0)
    error ("Couldn't find virtual table -- object may not be constructed yet.");
    error ("Couldn't find virtual table -- object may not be constructed yet.");
 
 
 
 
  /* Find virtual base's offset -- jump over entries for primary base
  /* Find virtual base's offset -- jump over entries for primary base
   * ancestors, then use the index computed above.  But also adjust by
   * ancestors, then use the index computed above.  But also adjust by
   * HP_ACC_VBASE_START for the vtable slots before the start of the
   * HP_ACC_VBASE_START for the vtable slots before the start of the
   * virtual base entries.  Offset is negative -- virtual base entries
   * virtual base entries.  Offset is negative -- virtual base entries
   * appear _before_ the address point of the virtual table. */
   * appear _before_ the address point of the virtual table. */
 
 
  /* pai: FIXME -- 32x64 problem, if word = 8 bytes, change multiplier
  /* pai: FIXME -- 32x64 problem, if word = 8 bytes, change multiplier
     & use long type */
     & use long type */
 
 
  /* epstein : FIXME -- added param for overlay section. May not be correct */
  /* epstein : FIXME -- added param for overlay section. May not be correct */
  vp = value_at (builtin_type_int, vtbl + 4 * (-skip - index - HP_ACC_VBASE_START), NULL);
  vp = value_at (builtin_type_int, vtbl + 4 * (-skip - index - HP_ACC_VBASE_START), NULL);
  boffset = value_as_long (vp);
  boffset = value_as_long (vp);
  *skip_p = -1;
  *skip_p = -1;
  *boffset_p = boffset;
  *boffset_p = boffset;
  return;
  return;
}
}
 
 
 
 
/* Helper function used by value_struct_elt to recurse through baseclasses.
/* Helper function used by value_struct_elt to recurse through baseclasses.
   Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
   Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
   and search in it assuming it has (class) type TYPE.
   and search in it assuming it has (class) type TYPE.
   If found, return value, else if name matched and args not return (value)-1,
   If found, return value, else if name matched and args not return (value)-1,
   else return NULL. */
   else return NULL. */
 
 
static value_ptr
static value_ptr
search_struct_method (name, arg1p, args, offset, static_memfuncp, type)
search_struct_method (name, arg1p, args, offset, static_memfuncp, type)
     char *name;
     char *name;
     register value_ptr *arg1p, *args;
     register value_ptr *arg1p, *args;
     int offset, *static_memfuncp;
     int offset, *static_memfuncp;
     register struct type *type;
     register struct type *type;
{
{
  int i;
  int i;
  value_ptr v;
  value_ptr v;
  int name_matched = 0;
  int name_matched = 0;
  char dem_opname[64];
  char dem_opname[64];
 
 
  CHECK_TYPEDEF (type);
  CHECK_TYPEDEF (type);
  for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
  for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
    {
    {
      char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
      char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
      /* FIXME!  May need to check for ARM demangling here */
      /* FIXME!  May need to check for ARM demangling here */
      if (strncmp (t_field_name, "__", 2) == 0 ||
      if (strncmp (t_field_name, "__", 2) == 0 ||
          strncmp (t_field_name, "op", 2) == 0 ||
          strncmp (t_field_name, "op", 2) == 0 ||
          strncmp (t_field_name, "type", 4) == 0)
          strncmp (t_field_name, "type", 4) == 0)
        {
        {
          if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
          if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
            t_field_name = dem_opname;
            t_field_name = dem_opname;
          else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
          else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
            t_field_name = dem_opname;
            t_field_name = dem_opname;
        }
        }
      if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
      if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
        {
        {
          int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
          int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
          struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
          struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
          name_matched = 1;
          name_matched = 1;
 
 
          if (j > 0 && args == 0)
          if (j > 0 && args == 0)
            error ("cannot resolve overloaded method `%s': no arguments supplied", name);
            error ("cannot resolve overloaded method `%s': no arguments supplied", name);
          while (j >= 0)
          while (j >= 0)
            {
            {
              if (TYPE_FN_FIELD_STUB (f, j))
              if (TYPE_FN_FIELD_STUB (f, j))
                check_stub_method (type, i, j);
                check_stub_method (type, i, j);
              if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
              if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
                            TYPE_FN_FIELD_ARGS (f, j), args))
                            TYPE_FN_FIELD_ARGS (f, j), args))
                {
                {
                  if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
                  if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
                    return value_virtual_fn_field (arg1p, f, j, type, offset);
                    return value_virtual_fn_field (arg1p, f, j, type, offset);
                  if (TYPE_FN_FIELD_STATIC_P (f, j) && static_memfuncp)
                  if (TYPE_FN_FIELD_STATIC_P (f, j) && static_memfuncp)
                    *static_memfuncp = 1;
                    *static_memfuncp = 1;
                  v = value_fn_field (arg1p, f, j, type, offset);
                  v = value_fn_field (arg1p, f, j, type, offset);
                  if (v != NULL)
                  if (v != NULL)
                    return v;
                    return v;
                }
                }
              j--;
              j--;
            }
            }
        }
        }
    }
    }
 
 
  for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
  for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
    {
    {
      int base_offset;
      int base_offset;
 
 
      if (BASETYPE_VIA_VIRTUAL (type, i))
      if (BASETYPE_VIA_VIRTUAL (type, i))
        {
        {
          if (TYPE_HAS_VTABLE (type))
          if (TYPE_HAS_VTABLE (type))
            {
            {
              /* HP aCC compiled type, search for virtual base offset
              /* HP aCC compiled type, search for virtual base offset
                 according to HP/Taligent runtime spec.  */
                 according to HP/Taligent runtime spec.  */
              int skip;
              int skip;
              find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
              find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
                                    VALUE_CONTENTS_ALL (*arg1p),
                                    VALUE_CONTENTS_ALL (*arg1p),
                                    offset + VALUE_EMBEDDED_OFFSET (*arg1p),
                                    offset + VALUE_EMBEDDED_OFFSET (*arg1p),
                                    &base_offset, &skip);
                                    &base_offset, &skip);
              if (skip >= 0)
              if (skip >= 0)
                error ("Virtual base class offset not found in vtable");
                error ("Virtual base class offset not found in vtable");
            }
            }
          else
          else
            {
            {
              struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
              struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
              char *base_valaddr;
              char *base_valaddr;
 
 
              /* The virtual base class pointer might have been clobbered by the
              /* The virtual base class pointer might have been clobbered by the
                 user program. Make sure that it still points to a valid memory
                 user program. Make sure that it still points to a valid memory
                 location.  */
                 location.  */
 
 
              if (offset < 0 || offset >= TYPE_LENGTH (type))
              if (offset < 0 || offset >= TYPE_LENGTH (type))
                {
                {
                  base_valaddr = (char *) alloca (TYPE_LENGTH (baseclass));
                  base_valaddr = (char *) alloca (TYPE_LENGTH (baseclass));
                  if (target_read_memory (VALUE_ADDRESS (*arg1p)
                  if (target_read_memory (VALUE_ADDRESS (*arg1p)
                                          + VALUE_OFFSET (*arg1p) + offset,
                                          + VALUE_OFFSET (*arg1p) + offset,
                                          base_valaddr,
                                          base_valaddr,
                                          TYPE_LENGTH (baseclass)) != 0)
                                          TYPE_LENGTH (baseclass)) != 0)
                    error ("virtual baseclass botch");
                    error ("virtual baseclass botch");
                }
                }
              else
              else
                base_valaddr = VALUE_CONTENTS (*arg1p) + offset;
                base_valaddr = VALUE_CONTENTS (*arg1p) + offset;
 
 
              base_offset =
              base_offset =
                baseclass_offset (type, i, base_valaddr,
                baseclass_offset (type, i, base_valaddr,
                                  VALUE_ADDRESS (*arg1p)
                                  VALUE_ADDRESS (*arg1p)
                                  + VALUE_OFFSET (*arg1p) + offset);
                                  + VALUE_OFFSET (*arg1p) + offset);
              if (base_offset == -1)
              if (base_offset == -1)
                error ("virtual baseclass botch");
                error ("virtual baseclass botch");
            }
            }
        }
        }
      else
      else
        {
        {
          base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
          base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
        }
        }
      v = search_struct_method (name, arg1p, args, base_offset + offset,
      v = search_struct_method (name, arg1p, args, base_offset + offset,
                                static_memfuncp, TYPE_BASECLASS (type, i));
                                static_memfuncp, TYPE_BASECLASS (type, i));
      if (v == (value_ptr) - 1)
      if (v == (value_ptr) - 1)
        {
        {
          name_matched = 1;
          name_matched = 1;
        }
        }
      else if (v)
      else if (v)
        {
        {
/* FIXME-bothner:  Why is this commented out?  Why is it here?  */
/* FIXME-bothner:  Why is this commented out?  Why is it here?  */
/*        *arg1p = arg1_tmp; */
/*        *arg1p = arg1_tmp; */
          return v;
          return v;
        }
        }
    }
    }
  if (name_matched)
  if (name_matched)
    return (value_ptr) - 1;
    return (value_ptr) - 1;
  else
  else
    return NULL;
    return NULL;
}
}
 
 
/* Given *ARGP, a value of type (pointer to a)* structure/union,
/* Given *ARGP, a value of type (pointer to a)* structure/union,
   extract the component named NAME from the ultimate target structure/union
   extract the component named NAME from the ultimate target structure/union
   and return it as a value with its appropriate type.
   and return it as a value with its appropriate type.
   ERR is used in the error message if *ARGP's type is wrong.
   ERR is used in the error message if *ARGP's type is wrong.
 
 
   C++: ARGS is a list of argument types to aid in the selection of
   C++: ARGS is a list of argument types to aid in the selection of
   an appropriate method. Also, handle derived types.
   an appropriate method. Also, handle derived types.
 
 
   STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
   STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
   where the truthvalue of whether the function that was resolved was
   where the truthvalue of whether the function that was resolved was
   a static member function or not is stored.
   a static member function or not is stored.
 
 
   ERR is an error message to be printed in case the field is not found.  */
   ERR is an error message to be printed in case the field is not found.  */
 
 
value_ptr
value_ptr
value_struct_elt (argp, args, name, static_memfuncp, err)
value_struct_elt (argp, args, name, static_memfuncp, err)
     register value_ptr *argp, *args;
     register value_ptr *argp, *args;
     char *name;
     char *name;
     int *static_memfuncp;
     int *static_memfuncp;
     char *err;
     char *err;
{
{
  register struct type *t;
  register struct type *t;
  value_ptr v;
  value_ptr v;
 
 
  COERCE_ARRAY (*argp);
  COERCE_ARRAY (*argp);
 
 
  t = check_typedef (VALUE_TYPE (*argp));
  t = check_typedef (VALUE_TYPE (*argp));
 
 
  /* Follow pointers until we get to a non-pointer.  */
  /* Follow pointers until we get to a non-pointer.  */
 
 
  while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
  while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
    {
    {
      *argp = value_ind (*argp);
      *argp = value_ind (*argp);
      /* Don't coerce fn pointer to fn and then back again!  */
      /* Don't coerce fn pointer to fn and then back again!  */
      if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
      if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
        COERCE_ARRAY (*argp);
        COERCE_ARRAY (*argp);
      t = check_typedef (VALUE_TYPE (*argp));
      t = check_typedef (VALUE_TYPE (*argp));
    }
    }
 
 
  if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
  if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
    error ("not implemented: member type in value_struct_elt");
    error ("not implemented: member type in value_struct_elt");
 
 
  if (TYPE_CODE (t) != TYPE_CODE_STRUCT
  if (TYPE_CODE (t) != TYPE_CODE_STRUCT
      && TYPE_CODE (t) != TYPE_CODE_UNION)
      && TYPE_CODE (t) != TYPE_CODE_UNION)
    error ("Attempt to extract a component of a value that is not a %s.", err);
    error ("Attempt to extract a component of a value that is not a %s.", err);
 
 
  /* Assume it's not, unless we see that it is.  */
  /* Assume it's not, unless we see that it is.  */
  if (static_memfuncp)
  if (static_memfuncp)
    *static_memfuncp = 0;
    *static_memfuncp = 0;
 
 
  if (!args)
  if (!args)
    {
    {
      /* if there are no arguments ...do this...  */
      /* if there are no arguments ...do this...  */
 
 
      /* Try as a field first, because if we succeed, there
      /* Try as a field first, because if we succeed, there
         is less work to be done.  */
         is less work to be done.  */
      v = search_struct_field (name, *argp, 0, t, 0);
      v = search_struct_field (name, *argp, 0, t, 0);
      if (v)
      if (v)
        return v;
        return v;
 
 
      /* C++: If it was not found as a data field, then try to
      /* C++: If it was not found as a data field, then try to
         return it as a pointer to a method.  */
         return it as a pointer to a method.  */
 
 
      if (destructor_name_p (name, t))
      if (destructor_name_p (name, t))
        error ("Cannot get value of destructor");
        error ("Cannot get value of destructor");
 
 
      v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
      v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
 
 
      if (v == (value_ptr) - 1)
      if (v == (value_ptr) - 1)
        error ("Cannot take address of a method");
        error ("Cannot take address of a method");
      else if (v == 0)
      else if (v == 0)
        {
        {
          if (TYPE_NFN_FIELDS (t))
          if (TYPE_NFN_FIELDS (t))
            error ("There is no member or method named %s.", name);
            error ("There is no member or method named %s.", name);
          else
          else
            error ("There is no member named %s.", name);
            error ("There is no member named %s.", name);
        }
        }
      return v;
      return v;
    }
    }
 
 
  if (destructor_name_p (name, t))
  if (destructor_name_p (name, t))
    {
    {
      if (!args[1])
      if (!args[1])
        {
        {
          /* Destructors are a special case.  */
          /* Destructors are a special case.  */
          int m_index, f_index;
          int m_index, f_index;
 
 
          v = NULL;
          v = NULL;
          if (get_destructor_fn_field (t, &m_index, &f_index))
          if (get_destructor_fn_field (t, &m_index, &f_index))
            {
            {
              v = value_fn_field (NULL, TYPE_FN_FIELDLIST1 (t, m_index),
              v = value_fn_field (NULL, TYPE_FN_FIELDLIST1 (t, m_index),
                                  f_index, NULL, 0);
                                  f_index, NULL, 0);
            }
            }
          if (v == NULL)
          if (v == NULL)
            error ("could not find destructor function named %s.", name);
            error ("could not find destructor function named %s.", name);
          else
          else
            return v;
            return v;
        }
        }
      else
      else
        {
        {
          error ("destructor should not have any argument");
          error ("destructor should not have any argument");
        }
        }
    }
    }
  else
  else
    v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
    v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
 
 
  if (v == (value_ptr) - 1)
  if (v == (value_ptr) - 1)
    {
    {
      error ("Argument list of %s mismatch with component in the structure.", name);
      error ("Argument list of %s mismatch with component in the structure.", name);
    }
    }
  else if (v == 0)
  else if (v == 0)
    {
    {
      /* See if user tried to invoke data as function.  If so,
      /* See if user tried to invoke data as function.  If so,
         hand it back.  If it's not callable (i.e., a pointer to function),
         hand it back.  If it's not callable (i.e., a pointer to function),
         gdb should give an error.  */
         gdb should give an error.  */
      v = search_struct_field (name, *argp, 0, t, 0);
      v = search_struct_field (name, *argp, 0, t, 0);
    }
    }
 
 
  if (!v)
  if (!v)
    error ("Structure has no component named %s.", name);
    error ("Structure has no component named %s.", name);
  return v;
  return v;
}
}
 
 
/* Search through the methods of an object (and its bases)
/* Search through the methods of an object (and its bases)
 * to find a specified method. Return the pointer to the
 * to find a specified method. Return the pointer to the
 * fn_field list of overloaded instances.
 * fn_field list of overloaded instances.
 * Helper function for value_find_oload_list.
 * Helper function for value_find_oload_list.
 * ARGP is a pointer to a pointer to a value (the object)
 * ARGP is a pointer to a pointer to a value (the object)
 * METHOD is a string containing the method name
 * METHOD is a string containing the method name
 * OFFSET is the offset within the value
 * OFFSET is the offset within the value
 * STATIC_MEMFUNCP is set if the method is static
 * STATIC_MEMFUNCP is set if the method is static
 * TYPE is the assumed type of the object
 * TYPE is the assumed type of the object
 * NUM_FNS is the number of overloaded instances
 * NUM_FNS is the number of overloaded instances
 * BASETYPE is set to the actual type of the subobject where the method is found
 * BASETYPE is set to the actual type of the subobject where the method is found
 * BOFFSET is the offset of the base subobject where the method is found */
 * BOFFSET is the offset of the base subobject where the method is found */
 
 
static struct fn_field *
static struct fn_field *
find_method_list (argp, method, offset, static_memfuncp, type, num_fns, basetype, boffset)
find_method_list (argp, method, offset, static_memfuncp, type, num_fns, basetype, boffset)
     value_ptr *argp;
     value_ptr *argp;
     char *method;
     char *method;
     int offset;
     int offset;
     int *static_memfuncp;
     int *static_memfuncp;
     struct type *type;
     struct type *type;
     int *num_fns;
     int *num_fns;
     struct type **basetype;
     struct type **basetype;
     int *boffset;
     int *boffset;
{
{
  int i;
  int i;
  struct fn_field *f;
  struct fn_field *f;
  CHECK_TYPEDEF (type);
  CHECK_TYPEDEF (type);
 
 
  *num_fns = 0;
  *num_fns = 0;
 
 
  /* First check in object itself */
  /* First check in object itself */
  for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
  for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
    {
    {
      /* pai: FIXME What about operators and type conversions? */
      /* pai: FIXME What about operators and type conversions? */
      char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
      char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
      if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
      if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
        {
        {
          *num_fns = TYPE_FN_FIELDLIST_LENGTH (type, i);
          *num_fns = TYPE_FN_FIELDLIST_LENGTH (type, i);
          *basetype = type;
          *basetype = type;
          *boffset = offset;
          *boffset = offset;
          return TYPE_FN_FIELDLIST1 (type, i);
          return TYPE_FN_FIELDLIST1 (type, i);
        }
        }
    }
    }
 
 
  /* Not found in object, check in base subobjects */
  /* Not found in object, check in base subobjects */
  for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
  for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
    {
    {
      int base_offset;
      int base_offset;
      if (BASETYPE_VIA_VIRTUAL (type, i))
      if (BASETYPE_VIA_VIRTUAL (type, i))
        {
        {
          if (TYPE_HAS_VTABLE (type))
          if (TYPE_HAS_VTABLE (type))
            {
            {
              /* HP aCC compiled type, search for virtual base offset
              /* HP aCC compiled type, search for virtual base offset
               * according to HP/Taligent runtime spec.  */
               * according to HP/Taligent runtime spec.  */
              int skip;
              int skip;
              find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
              find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
                                    VALUE_CONTENTS_ALL (*argp),
                                    VALUE_CONTENTS_ALL (*argp),
                                    offset + VALUE_EMBEDDED_OFFSET (*argp),
                                    offset + VALUE_EMBEDDED_OFFSET (*argp),
                                    &base_offset, &skip);
                                    &base_offset, &skip);
              if (skip >= 0)
              if (skip >= 0)
                error ("Virtual base class offset not found in vtable");
                error ("Virtual base class offset not found in vtable");
            }
            }
          else
          else
            {
            {
              /* probably g++ runtime model */
              /* probably g++ runtime model */
              base_offset = VALUE_OFFSET (*argp) + offset;
              base_offset = VALUE_OFFSET (*argp) + offset;
              base_offset =
              base_offset =
                baseclass_offset (type, i,
                baseclass_offset (type, i,
                                  VALUE_CONTENTS (*argp) + base_offset,
                                  VALUE_CONTENTS (*argp) + base_offset,
                                  VALUE_ADDRESS (*argp) + base_offset);
                                  VALUE_ADDRESS (*argp) + base_offset);
              if (base_offset == -1)
              if (base_offset == -1)
                error ("virtual baseclass botch");
                error ("virtual baseclass botch");
            }
            }
        }
        }
      else
      else
        /* non-virtual base, simply use bit position from debug info */
        /* non-virtual base, simply use bit position from debug info */
        {
        {
          base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
          base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
        }
        }
      f = find_method_list (argp, method, base_offset + offset,
      f = find_method_list (argp, method, base_offset + offset,
      static_memfuncp, TYPE_BASECLASS (type, i), num_fns, basetype, boffset);
      static_memfuncp, TYPE_BASECLASS (type, i), num_fns, basetype, boffset);
      if (f)
      if (f)
        return f;
        return f;
    }
    }
  return NULL;
  return NULL;
}
}
 
 
/* Return the list of overloaded methods of a specified name.
/* Return the list of overloaded methods of a specified name.
 * ARGP is a pointer to a pointer to a value (the object)
 * ARGP is a pointer to a pointer to a value (the object)
 * METHOD is the method name
 * METHOD is the method name
 * OFFSET is the offset within the value contents
 * OFFSET is the offset within the value contents
 * STATIC_MEMFUNCP is set if the method is static
 * STATIC_MEMFUNCP is set if the method is static
 * NUM_FNS is the number of overloaded instances
 * NUM_FNS is the number of overloaded instances
 * BASETYPE is set to the type of the base subobject that defines the method
 * BASETYPE is set to the type of the base subobject that defines the method
 * BOFFSET is the offset of the base subobject which defines the method */
 * BOFFSET is the offset of the base subobject which defines the method */
 
 
struct fn_field *
struct fn_field *
value_find_oload_method_list (argp, method, offset, static_memfuncp, num_fns, basetype, boffset)
value_find_oload_method_list (argp, method, offset, static_memfuncp, num_fns, basetype, boffset)
     value_ptr *argp;
     value_ptr *argp;
     char *method;
     char *method;
     int offset;
     int offset;
     int *static_memfuncp;
     int *static_memfuncp;
     int *num_fns;
     int *num_fns;
     struct type **basetype;
     struct type **basetype;
     int *boffset;
     int *boffset;
{
{
  struct type *t;
  struct type *t;
 
 
  t = check_typedef (VALUE_TYPE (*argp));
  t = check_typedef (VALUE_TYPE (*argp));
 
 
  /* code snarfed from value_struct_elt */
  /* code snarfed from value_struct_elt */
  while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
  while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
    {
    {
      *argp = value_ind (*argp);
      *argp = value_ind (*argp);
      /* Don't coerce fn pointer to fn and then back again!  */
      /* Don't coerce fn pointer to fn and then back again!  */
      if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
      if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
        COERCE_ARRAY (*argp);
        COERCE_ARRAY (*argp);
      t = check_typedef (VALUE_TYPE (*argp));
      t = check_typedef (VALUE_TYPE (*argp));
    }
    }
 
 
  if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
  if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
    error ("Not implemented: member type in value_find_oload_lis");
    error ("Not implemented: member type in value_find_oload_lis");
 
 
  if (TYPE_CODE (t) != TYPE_CODE_STRUCT
  if (TYPE_CODE (t) != TYPE_CODE_STRUCT
      && TYPE_CODE (t) != TYPE_CODE_UNION)
      && TYPE_CODE (t) != TYPE_CODE_UNION)
    error ("Attempt to extract a component of a value that is not a struct or union");
    error ("Attempt to extract a component of a value that is not a struct or union");
 
 
  /* Assume it's not static, unless we see that it is.  */
  /* Assume it's not static, unless we see that it is.  */
  if (static_memfuncp)
  if (static_memfuncp)
    *static_memfuncp = 0;
    *static_memfuncp = 0;
 
 
  return find_method_list (argp, method, 0, static_memfuncp, t, num_fns, basetype, boffset);
  return find_method_list (argp, method, 0, static_memfuncp, t, num_fns, basetype, boffset);
 
 
}
}
 
 
/* Given an array of argument types (ARGTYPES) (which includes an
/* Given an array of argument types (ARGTYPES) (which includes an
   entry for "this" in the case of C++ methods), the number of
   entry for "this" in the case of C++ methods), the number of
   arguments NARGS, the NAME of a function whether it's a method or
   arguments NARGS, the NAME of a function whether it's a method or
   not (METHOD), and the degree of laxness (LAX) in conforming to
   not (METHOD), and the degree of laxness (LAX) in conforming to
   overload resolution rules in ANSI C++, find the best function that
   overload resolution rules in ANSI C++, find the best function that
   matches on the argument types according to the overload resolution
   matches on the argument types according to the overload resolution
   rules.
   rules.
 
 
   In the case of class methods, the parameter OBJ is an object value
   In the case of class methods, the parameter OBJ is an object value
   in which to search for overloaded methods.
   in which to search for overloaded methods.
 
 
   In the case of non-method functions, the parameter FSYM is a symbol
   In the case of non-method functions, the parameter FSYM is a symbol
   corresponding to one of the overloaded functions.
   corresponding to one of the overloaded functions.
 
 
   Return value is an integer: 0 -> good match, 10 -> debugger applied
   Return value is an integer: 0 -> good match, 10 -> debugger applied
   non-standard coercions, 100 -> incompatible.
   non-standard coercions, 100 -> incompatible.
 
 
   If a method is being searched for, VALP will hold the value.
   If a method is being searched for, VALP will hold the value.
   If a non-method is being searched for, SYMP will hold the symbol for it.
   If a non-method is being searched for, SYMP will hold the symbol for it.
 
 
   If a method is being searched for, and it is a static method,
   If a method is being searched for, and it is a static method,
   then STATICP will point to a non-zero value.
   then STATICP will point to a non-zero value.
 
 
   Note: This function does *not* check the value of
   Note: This function does *not* check the value of
   overload_resolution.  Caller must check it to see whether overload
   overload_resolution.  Caller must check it to see whether overload
   resolution is permitted.
   resolution is permitted.
 */
 */
 
 
int
int
find_overload_match (arg_types, nargs, name, method, lax, obj, fsym, valp, symp, staticp)
find_overload_match (arg_types, nargs, name, method, lax, obj, fsym, valp, symp, staticp)
     struct type **arg_types;
     struct type **arg_types;
     int nargs;
     int nargs;
     char *name;
     char *name;
     int method;
     int method;
     int lax;
     int lax;
     value_ptr obj;
     value_ptr obj;
     struct symbol *fsym;
     struct symbol *fsym;
     value_ptr *valp;
     value_ptr *valp;
     struct symbol **symp;
     struct symbol **symp;
     int *staticp;
     int *staticp;
{
{
  int nparms;
  int nparms;
  struct type **parm_types;
  struct type **parm_types;
  int champ_nparms = 0;
  int champ_nparms = 0;
 
 
  short oload_champ = -1;       /* Index of best overloaded function */
  short oload_champ = -1;       /* Index of best overloaded function */
  short oload_ambiguous = 0;     /* Current ambiguity state for overload resolution */
  short oload_ambiguous = 0;     /* Current ambiguity state for overload resolution */
  /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs */
  /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs */
  short oload_ambig_champ = -1; /* 2nd contender for best match */
  short oload_ambig_champ = -1; /* 2nd contender for best match */
  short oload_non_standard = 0;  /* did we have to use non-standard conversions? */
  short oload_non_standard = 0;  /* did we have to use non-standard conversions? */
  short oload_incompatible = 0;  /* are args supplied incompatible with any function? */
  short oload_incompatible = 0;  /* are args supplied incompatible with any function? */
 
 
  struct badness_vector *bv;    /* A measure of how good an overloaded instance is */
  struct badness_vector *bv;    /* A measure of how good an overloaded instance is */
  struct badness_vector *oload_champ_bv = NULL;         /* The measure for the current best match */
  struct badness_vector *oload_champ_bv = NULL;         /* The measure for the current best match */
 
 
  value_ptr temp = obj;
  value_ptr temp = obj;
  struct fn_field *fns_ptr = NULL;      /* For methods, the list of overloaded methods */
  struct fn_field *fns_ptr = NULL;      /* For methods, the list of overloaded methods */
  struct symbol **oload_syms = NULL;    /* For non-methods, the list of overloaded function symbols */
  struct symbol **oload_syms = NULL;    /* For non-methods, the list of overloaded function symbols */
  int num_fns = 0;               /* Number of overloaded instances being considered */
  int num_fns = 0;               /* Number of overloaded instances being considered */
  struct type *basetype = NULL;
  struct type *basetype = NULL;
  int boffset;
  int boffset;
  register int jj;
  register int jj;
  register int ix;
  register int ix;
 
 
  char *obj_type_name = NULL;
  char *obj_type_name = NULL;
  char *func_name = NULL;
  char *func_name = NULL;
 
 
  /* Get the list of overloaded methods or functions */
  /* Get the list of overloaded methods or functions */
  if (method)
  if (method)
    {
    {
      int i;
      int i;
      int len;
      int len;
      struct type *domain;
      struct type *domain;
      obj_type_name = TYPE_NAME (VALUE_TYPE (obj));
      obj_type_name = TYPE_NAME (VALUE_TYPE (obj));
      /* Hack: evaluate_subexp_standard often passes in a pointer
      /* Hack: evaluate_subexp_standard often passes in a pointer
         value rather than the object itself, so try again */
         value rather than the object itself, so try again */
      if ((!obj_type_name || !*obj_type_name) &&
      if ((!obj_type_name || !*obj_type_name) &&
          (TYPE_CODE (VALUE_TYPE (obj)) == TYPE_CODE_PTR))
          (TYPE_CODE (VALUE_TYPE (obj)) == TYPE_CODE_PTR))
        obj_type_name = TYPE_NAME (TYPE_TARGET_TYPE (VALUE_TYPE (obj)));
        obj_type_name = TYPE_NAME (TYPE_TARGET_TYPE (VALUE_TYPE (obj)));
 
 
      fns_ptr = value_find_oload_method_list (&temp, name, 0,
      fns_ptr = value_find_oload_method_list (&temp, name, 0,
                                              staticp,
                                              staticp,
                                              &num_fns,
                                              &num_fns,
                                              &basetype, &boffset);
                                              &basetype, &boffset);
      if (!fns_ptr || !num_fns)
      if (!fns_ptr || !num_fns)
        error ("Couldn't find method %s%s%s",
        error ("Couldn't find method %s%s%s",
               obj_type_name,
               obj_type_name,
               (obj_type_name && *obj_type_name) ? "::" : "",
               (obj_type_name && *obj_type_name) ? "::" : "",
               name);
               name);
      domain = TYPE_DOMAIN_TYPE (fns_ptr[0].type);
      domain = TYPE_DOMAIN_TYPE (fns_ptr[0].type);
      len = TYPE_NFN_FIELDS (domain);
      len = TYPE_NFN_FIELDS (domain);
      /* NOTE: dan/2000-03-10: This stuff is for STABS, which won't
      /* NOTE: dan/2000-03-10: This stuff is for STABS, which won't
         give us the info we need directly in the types. We have to
         give us the info we need directly in the types. We have to
         use the method stub conversion to get it. Be aware that this
         use the method stub conversion to get it. Be aware that this
         is by no means perfect, and if you use STABS, please move to
         is by no means perfect, and if you use STABS, please move to
         DWARF-2, or something like it, because trying to improve
         DWARF-2, or something like it, because trying to improve
         overloading using STABS is really a waste of time. */
         overloading using STABS is really a waste of time. */
      for (i = 0; i < len; i++)
      for (i = 0; i < len; i++)
        {
        {
          int j;
          int j;
          struct fn_field *f = TYPE_FN_FIELDLIST1 (domain, i);
          struct fn_field *f = TYPE_FN_FIELDLIST1 (domain, i);
          int len2 = TYPE_FN_FIELDLIST_LENGTH (domain, i);
          int len2 = TYPE_FN_FIELDLIST_LENGTH (domain, i);
 
 
          for (j = 0; j < len2; j++)
          for (j = 0; j < len2; j++)
            {
            {
              if (TYPE_FN_FIELD_STUB (f, j) && (!strcmp_iw (TYPE_FN_FIELDLIST_NAME (domain,i),name)))
              if (TYPE_FN_FIELD_STUB (f, j) && (!strcmp_iw (TYPE_FN_FIELDLIST_NAME (domain,i),name)))
                check_stub_method (domain, i, j);
                check_stub_method (domain, i, j);
            }
            }
        }
        }
    }
    }
  else
  else
    {
    {
      int i = -1;
      int i = -1;
      func_name = cplus_demangle (SYMBOL_NAME (fsym), DMGL_NO_OPTS);
      func_name = cplus_demangle (SYMBOL_NAME (fsym), DMGL_NO_OPTS);
 
 
      /* If the name is NULL this must be a C-style function.
      /* If the name is NULL this must be a C-style function.
         Just return the same symbol. */
         Just return the same symbol. */
      if (!func_name)
      if (!func_name)
        {
        {
          *symp = fsym;
          *symp = fsym;
          return 0;
          return 0;
        }
        }
 
 
      oload_syms = make_symbol_overload_list (fsym);
      oload_syms = make_symbol_overload_list (fsym);
      while (oload_syms[++i])
      while (oload_syms[++i])
        num_fns++;
        num_fns++;
      if (!num_fns)
      if (!num_fns)
        error ("Couldn't find function %s", func_name);
        error ("Couldn't find function %s", func_name);
    }
    }
 
 
  oload_champ_bv = NULL;
  oload_champ_bv = NULL;
 
 
  /* Consider each candidate in turn */
  /* Consider each candidate in turn */
  for (ix = 0; ix < num_fns; ix++)
  for (ix = 0; ix < num_fns; ix++)
    {
    {
      if (method)
      if (method)
        {
        {
          /* For static member functions, we won't have a this pointer, but nothing
          /* For static member functions, we won't have a this pointer, but nothing
             else seems to handle them right now, so we just pretend ourselves */
             else seems to handle them right now, so we just pretend ourselves */
          nparms=0;
          nparms=0;
 
 
          if (TYPE_FN_FIELD_ARGS(fns_ptr,ix))
          if (TYPE_FN_FIELD_ARGS(fns_ptr,ix))
            {
            {
              while (TYPE_CODE(TYPE_FN_FIELD_ARGS(fns_ptr,ix)[nparms]) != TYPE_CODE_VOID)
              while (TYPE_CODE(TYPE_FN_FIELD_ARGS(fns_ptr,ix)[nparms]) != TYPE_CODE_VOID)
                nparms++;
                nparms++;
            }
            }
        }
        }
      else
      else
        {
        {
          /* If it's not a method, this is the proper place */
          /* If it's not a method, this is the proper place */
          nparms=TYPE_NFIELDS(SYMBOL_TYPE(oload_syms[ix]));
          nparms=TYPE_NFIELDS(SYMBOL_TYPE(oload_syms[ix]));
        }
        }
 
 
      /* Prepare array of parameter types */
      /* Prepare array of parameter types */
      parm_types = (struct type **) xmalloc (nparms * (sizeof (struct type *)));
      parm_types = (struct type **) xmalloc (nparms * (sizeof (struct type *)));
      for (jj = 0; jj < nparms; jj++)
      for (jj = 0; jj < nparms; jj++)
        parm_types[jj] = (method
        parm_types[jj] = (method
                          ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj])
                          ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj])
                          : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]), jj));
                          : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]), jj));
 
 
      /* Compare parameter types to supplied argument types */
      /* Compare parameter types to supplied argument types */
      bv = rank_function (parm_types, nparms, arg_types, nargs);
      bv = rank_function (parm_types, nparms, arg_types, nargs);
 
 
      if (!oload_champ_bv)
      if (!oload_champ_bv)
        {
        {
          oload_champ_bv = bv;
          oload_champ_bv = bv;
          oload_champ = 0;
          oload_champ = 0;
          champ_nparms = nparms;
          champ_nparms = nparms;
        }
        }
      else
      else
        /* See whether current candidate is better or worse than previous best */
        /* See whether current candidate is better or worse than previous best */
        switch (compare_badness (bv, oload_champ_bv))
        switch (compare_badness (bv, oload_champ_bv))
          {
          {
          case 0:
          case 0:
            oload_ambiguous = 1;        /* top two contenders are equally good */
            oload_ambiguous = 1;        /* top two contenders are equally good */
            oload_ambig_champ = ix;
            oload_ambig_champ = ix;
            break;
            break;
          case 1:
          case 1:
            oload_ambiguous = 2;        /* incomparable top contenders */
            oload_ambiguous = 2;        /* incomparable top contenders */
            oload_ambig_champ = ix;
            oload_ambig_champ = ix;
            break;
            break;
          case 2:
          case 2:
            oload_champ_bv = bv;        /* new champion, record details */
            oload_champ_bv = bv;        /* new champion, record details */
            oload_ambiguous = 0;
            oload_ambiguous = 0;
            oload_champ = ix;
            oload_champ = ix;
            oload_ambig_champ = -1;
            oload_ambig_champ = -1;
            champ_nparms = nparms;
            champ_nparms = nparms;
            break;
            break;
          case 3:
          case 3:
          default:
          default:
            break;
            break;
          }
          }
      free (parm_types);
      free (parm_types);
if (overload_debug)
if (overload_debug)
{
{
      if (method)
      if (method)
        fprintf_filtered (gdb_stderr,"Overloaded method instance %s, # of parms %d\n", fns_ptr[ix].physname, nparms);
        fprintf_filtered (gdb_stderr,"Overloaded method instance %s, # of parms %d\n", fns_ptr[ix].physname, nparms);
      else
      else
        fprintf_filtered (gdb_stderr,"Overloaded function instance %s # of parms %d\n", SYMBOL_DEMANGLED_NAME (oload_syms[ix]), nparms);
        fprintf_filtered (gdb_stderr,"Overloaded function instance %s # of parms %d\n", SYMBOL_DEMANGLED_NAME (oload_syms[ix]), nparms);
      for (jj = 0; jj < nargs; jj++)
      for (jj = 0; jj < nargs; jj++)
        fprintf_filtered (gdb_stderr,"...Badness @ %d : %d\n", jj, bv->rank[jj]);
        fprintf_filtered (gdb_stderr,"...Badness @ %d : %d\n", jj, bv->rank[jj]);
      fprintf_filtered (gdb_stderr,"Overload resolution champion is %d, ambiguous? %d\n", oload_champ, oload_ambiguous);
      fprintf_filtered (gdb_stderr,"Overload resolution champion is %d, ambiguous? %d\n", oload_champ, oload_ambiguous);
}
}
    }                           /* end loop over all candidates */
    }                           /* end loop over all candidates */
  /* NOTE: dan/2000-03-10: Seems to be a better idea to just pick one
  /* NOTE: dan/2000-03-10: Seems to be a better idea to just pick one
     if they have the exact same goodness. This is because there is no
     if they have the exact same goodness. This is because there is no
     way to differentiate based on return type, which we need to in
     way to differentiate based on return type, which we need to in
     cases like overloads of .begin() <It's both const and non-const> */
     cases like overloads of .begin() <It's both const and non-const> */
#if 0
#if 0
  if (oload_ambiguous)
  if (oload_ambiguous)
    {
    {
      if (method)
      if (method)
        error ("Cannot resolve overloaded method %s%s%s to unique instance; disambiguate by specifying function signature",
        error ("Cannot resolve overloaded method %s%s%s to unique instance; disambiguate by specifying function signature",
               obj_type_name,
               obj_type_name,
               (obj_type_name && *obj_type_name) ? "::" : "",
               (obj_type_name && *obj_type_name) ? "::" : "",
               name);
               name);
      else
      else
        error ("Cannot resolve overloaded function %s to unique instance; disambiguate by specifying function signature",
        error ("Cannot resolve overloaded function %s to unique instance; disambiguate by specifying function signature",
               func_name);
               func_name);
    }
    }
#endif
#endif
 
 
  /* Check how bad the best match is */
  /* Check how bad the best match is */
  for (ix = 1; ix <= nargs; ix++)
  for (ix = 1; ix <= nargs; ix++)
    {
    {
      switch (oload_champ_bv->rank[ix])
      switch (oload_champ_bv->rank[ix])
        {
        {
        case 10:
        case 10:
          oload_non_standard = 1;       /* non-standard type conversions needed */
          oload_non_standard = 1;       /* non-standard type conversions needed */
          break;
          break;
        case 100:
        case 100:
          oload_incompatible = 1;       /* truly mismatched types */
          oload_incompatible = 1;       /* truly mismatched types */
          break;
          break;
        }
        }
    }
    }
  if (oload_incompatible)
  if (oload_incompatible)
    {
    {
      if (method)
      if (method)
        error ("Cannot resolve method %s%s%s to any overloaded instance",
        error ("Cannot resolve method %s%s%s to any overloaded instance",
               obj_type_name,
               obj_type_name,
               (obj_type_name && *obj_type_name) ? "::" : "",
               (obj_type_name && *obj_type_name) ? "::" : "",
               name);
               name);
      else
      else
        error ("Cannot resolve function %s to any overloaded instance",
        error ("Cannot resolve function %s to any overloaded instance",
               func_name);
               func_name);
    }
    }
  else if (oload_non_standard)
  else if (oload_non_standard)
    {
    {
      if (method)
      if (method)
        warning ("Using non-standard conversion to match method %s%s%s to supplied arguments",
        warning ("Using non-standard conversion to match method %s%s%s to supplied arguments",
                 obj_type_name,
                 obj_type_name,
                 (obj_type_name && *obj_type_name) ? "::" : "",
                 (obj_type_name && *obj_type_name) ? "::" : "",
                 name);
                 name);
      else
      else
        warning ("Using non-standard conversion to match function %s to supplied arguments",
        warning ("Using non-standard conversion to match function %s to supplied arguments",
                 func_name);
                 func_name);
    }
    }
 
 
  if (method)
  if (method)
    {
    {
      if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, oload_champ))
      if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, oload_champ))
        *valp = value_virtual_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
        *valp = value_virtual_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
      else
      else
        *valp = value_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
        *valp = value_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
    }
    }
  else
  else
    {
    {
      *symp = oload_syms[oload_champ];
      *symp = oload_syms[oload_champ];
      free (func_name);
      free (func_name);
    }
    }
 
 
  return oload_incompatible ? 100 : (oload_non_standard ? 10 : 0);
  return oload_incompatible ? 100 : (oload_non_standard ? 10 : 0);
}
}
 
 
/* C++: return 1 is NAME is a legitimate name for the destructor
/* C++: return 1 is NAME is a legitimate name for the destructor
   of type TYPE.  If TYPE does not have a destructor, or
   of type TYPE.  If TYPE does not have a destructor, or
   if NAME is inappropriate for TYPE, an error is signaled.  */
   if NAME is inappropriate for TYPE, an error is signaled.  */
int
int
destructor_name_p (name, type)
destructor_name_p (name, type)
     const char *name;
     const char *name;
     const struct type *type;
     const struct type *type;
{
{
  /* destructors are a special case.  */
  /* destructors are a special case.  */
 
 
  if (name[0] == '~')
  if (name[0] == '~')
    {
    {
      char *dname = type_name_no_tag (type);
      char *dname = type_name_no_tag (type);
      char *cp = strchr (dname, '<');
      char *cp = strchr (dname, '<');
      unsigned int len;
      unsigned int len;
 
 
      /* Do not compare the template part for template classes.  */
      /* Do not compare the template part for template classes.  */
      if (cp == NULL)
      if (cp == NULL)
        len = strlen (dname);
        len = strlen (dname);
      else
      else
        len = cp - dname;
        len = cp - dname;
      if (strlen (name + 1) != len || !STREQN (dname, name + 1, len))
      if (strlen (name + 1) != len || !STREQN (dname, name + 1, len))
        error ("name of destructor must equal name of class");
        error ("name of destructor must equal name of class");
      else
      else
        return 1;
        return 1;
    }
    }
  return 0;
  return 0;
}
}
 
 
/* Helper function for check_field: Given TYPE, a structure/union,
/* Helper function for check_field: Given TYPE, a structure/union,
   return 1 if the component named NAME from the ultimate
   return 1 if the component named NAME from the ultimate
   target structure/union is defined, otherwise, return 0. */
   target structure/union is defined, otherwise, return 0. */
 
 
static int
static int
check_field_in (type, name)
check_field_in (type, name)
     register struct type *type;
     register struct type *type;
     const char *name;
     const char *name;
{
{
  register int i;
  register int i;
 
 
  for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
  for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
    {
    {
      char *t_field_name = TYPE_FIELD_NAME (type, i);
      char *t_field_name = TYPE_FIELD_NAME (type, i);
      if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
      if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
        return 1;
        return 1;
    }
    }
 
 
  /* C++: If it was not found as a data field, then try to
  /* C++: If it was not found as a data field, then try to
     return it as a pointer to a method.  */
     return it as a pointer to a method.  */
 
 
  /* Destructors are a special case.  */
  /* Destructors are a special case.  */
  if (destructor_name_p (name, type))
  if (destructor_name_p (name, type))
    {
    {
      int m_index, f_index;
      int m_index, f_index;
 
 
      return get_destructor_fn_field (type, &m_index, &f_index);
      return get_destructor_fn_field (type, &m_index, &f_index);
    }
    }
 
 
  for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
  for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
    {
    {
      if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
      if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
        return 1;
        return 1;
    }
    }
 
 
  for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
  for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
    if (check_field_in (TYPE_BASECLASS (type, i), name))
    if (check_field_in (TYPE_BASECLASS (type, i), name))
      return 1;
      return 1;
 
 
  return 0;
  return 0;
}
}
 
 
 
 
/* C++: Given ARG1, a value of type (pointer to a)* structure/union,
/* C++: Given ARG1, a value of type (pointer to a)* structure/union,
   return 1 if the component named NAME from the ultimate
   return 1 if the component named NAME from the ultimate
   target structure/union is defined, otherwise, return 0.  */
   target structure/union is defined, otherwise, return 0.  */
 
 
int
int
check_field (arg1, name)
check_field (arg1, name)
     register value_ptr arg1;
     register value_ptr arg1;
     const char *name;
     const char *name;
{
{
  register struct type *t;
  register struct type *t;
 
 
  COERCE_ARRAY (arg1);
  COERCE_ARRAY (arg1);
 
 
  t = VALUE_TYPE (arg1);
  t = VALUE_TYPE (arg1);
 
 
  /* Follow pointers until we get to a non-pointer.  */
  /* Follow pointers until we get to a non-pointer.  */
 
 
  for (;;)
  for (;;)
    {
    {
      CHECK_TYPEDEF (t);
      CHECK_TYPEDEF (t);
      if (TYPE_CODE (t) != TYPE_CODE_PTR && TYPE_CODE (t) != TYPE_CODE_REF)
      if (TYPE_CODE (t) != TYPE_CODE_PTR && TYPE_CODE (t) != TYPE_CODE_REF)
        break;
        break;
      t = TYPE_TARGET_TYPE (t);
      t = TYPE_TARGET_TYPE (t);
    }
    }
 
 
  if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
  if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
    error ("not implemented: member type in check_field");
    error ("not implemented: member type in check_field");
 
 
  if (TYPE_CODE (t) != TYPE_CODE_STRUCT
  if (TYPE_CODE (t) != TYPE_CODE_STRUCT
      && TYPE_CODE (t) != TYPE_CODE_UNION)
      && TYPE_CODE (t) != TYPE_CODE_UNION)
    error ("Internal error: `this' is not an aggregate");
    error ("Internal error: `this' is not an aggregate");
 
 
  return check_field_in (t, name);
  return check_field_in (t, name);
}
}
 
 
/* C++: Given an aggregate type CURTYPE, and a member name NAME,
/* C++: Given an aggregate type CURTYPE, and a member name NAME,
   return the address of this member as a "pointer to member"
   return the address of this member as a "pointer to member"
   type.  If INTYPE is non-null, then it will be the type
   type.  If INTYPE is non-null, then it will be the type
   of the member we are looking for.  This will help us resolve
   of the member we are looking for.  This will help us resolve
   "pointers to member functions".  This function is used
   "pointers to member functions".  This function is used
   to resolve user expressions of the form "DOMAIN::NAME".  */
   to resolve user expressions of the form "DOMAIN::NAME".  */
 
 
value_ptr
value_ptr
value_struct_elt_for_reference (domain, offset, curtype, name, intype)
value_struct_elt_for_reference (domain, offset, curtype, name, intype)
     struct type *domain, *curtype, *intype;
     struct type *domain, *curtype, *intype;
     int offset;
     int offset;
     char *name;
     char *name;
{
{
  register struct type *t = curtype;
  register struct type *t = curtype;
  register int i;
  register int i;
  value_ptr v;
  value_ptr v;
 
 
  if (TYPE_CODE (t) != TYPE_CODE_STRUCT
  if (TYPE_CODE (t) != TYPE_CODE_STRUCT
      && TYPE_CODE (t) != TYPE_CODE_UNION)
      && TYPE_CODE (t) != TYPE_CODE_UNION)
    error ("Internal error: non-aggregate type to value_struct_elt_for_reference");
    error ("Internal error: non-aggregate type to value_struct_elt_for_reference");
 
 
  for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
  for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
    {
    {
      char *t_field_name = TYPE_FIELD_NAME (t, i);
      char *t_field_name = TYPE_FIELD_NAME (t, i);
 
 
      if (t_field_name && STREQ (t_field_name, name))
      if (t_field_name && STREQ (t_field_name, name))
        {
        {
          if (TYPE_FIELD_STATIC (t, i))
          if (TYPE_FIELD_STATIC (t, i))
            {
            {
              v = value_static_field (t, i);
              v = value_static_field (t, i);
              if (v == NULL)
              if (v == NULL)
                error ("Internal error: could not find static variable %s",
                error ("Internal error: could not find static variable %s",
                       name);
                       name);
              return v;
              return v;
            }
            }
          if (TYPE_FIELD_PACKED (t, i))
          if (TYPE_FIELD_PACKED (t, i))
            error ("pointers to bitfield members not allowed");
            error ("pointers to bitfield members not allowed");
 
 
          return value_from_longest
          return value_from_longest
            (lookup_reference_type (lookup_member_type (TYPE_FIELD_TYPE (t, i),
            (lookup_reference_type (lookup_member_type (TYPE_FIELD_TYPE (t, i),
                                                        domain)),
                                                        domain)),
             offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
             offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
        }
        }
    }
    }
 
 
  /* C++: If it was not found as a data field, then try to
  /* C++: If it was not found as a data field, then try to
     return it as a pointer to a method.  */
     return it as a pointer to a method.  */
 
 
  /* Destructors are a special case.  */
  /* Destructors are a special case.  */
  if (destructor_name_p (name, t))
  if (destructor_name_p (name, t))
    {
    {
      error ("member pointers to destructors not implemented yet");
      error ("member pointers to destructors not implemented yet");
    }
    }
 
 
  /* Perform all necessary dereferencing.  */
  /* Perform all necessary dereferencing.  */
  while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
  while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
    intype = TYPE_TARGET_TYPE (intype);
    intype = TYPE_TARGET_TYPE (intype);
 
 
  for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
  for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
    {
    {
      char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
      char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
      char dem_opname[64];
      char dem_opname[64];
 
 
      if (strncmp (t_field_name, "__", 2) == 0 ||
      if (strncmp (t_field_name, "__", 2) == 0 ||
          strncmp (t_field_name, "op", 2) == 0 ||
          strncmp (t_field_name, "op", 2) == 0 ||
          strncmp (t_field_name, "type", 4) == 0)
          strncmp (t_field_name, "type", 4) == 0)
        {
        {
          if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
          if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
            t_field_name = dem_opname;
            t_field_name = dem_opname;
          else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
          else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
            t_field_name = dem_opname;
            t_field_name = dem_opname;
        }
        }
      if (t_field_name && STREQ (t_field_name, name))
      if (t_field_name && STREQ (t_field_name, name))
        {
        {
          int j = TYPE_FN_FIELDLIST_LENGTH (t, i);
          int j = TYPE_FN_FIELDLIST_LENGTH (t, i);
          struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
          struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
 
 
          if (intype == 0 && j > 1)
          if (intype == 0 && j > 1)
            error ("non-unique member `%s' requires type instantiation", name);
            error ("non-unique member `%s' requires type instantiation", name);
          if (intype)
          if (intype)
            {
            {
              while (j--)
              while (j--)
                if (TYPE_FN_FIELD_TYPE (f, j) == intype)
                if (TYPE_FN_FIELD_TYPE (f, j) == intype)
                  break;
                  break;
              if (j < 0)
              if (j < 0)
                error ("no member function matches that type instantiation");
                error ("no member function matches that type instantiation");
            }
            }
          else
          else
            j = 0;
            j = 0;
 
 
          if (TYPE_FN_FIELD_STUB (f, j))
          if (TYPE_FN_FIELD_STUB (f, j))
            check_stub_method (t, i, j);
            check_stub_method (t, i, j);
          if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
          if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
            {
            {
              return value_from_longest
              return value_from_longest
                (lookup_reference_type
                (lookup_reference_type
                 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
                 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
                                      domain)),
                                      domain)),
                 (LONGEST) METHOD_PTR_FROM_VOFFSET (TYPE_FN_FIELD_VOFFSET (f, j)));
                 (LONGEST) METHOD_PTR_FROM_VOFFSET (TYPE_FN_FIELD_VOFFSET (f, j)));
            }
            }
          else
          else
            {
            {
              struct symbol *s = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
              struct symbol *s = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
                                                0, VAR_NAMESPACE, 0, NULL);
                                                0, VAR_NAMESPACE, 0, NULL);
              if (s == NULL)
              if (s == NULL)
                {
                {
                  v = 0;
                  v = 0;
                }
                }
              else
              else
                {
                {
                  v = read_var_value (s, 0);
                  v = read_var_value (s, 0);
#if 0
#if 0
                  VALUE_TYPE (v) = lookup_reference_type
                  VALUE_TYPE (v) = lookup_reference_type
                    (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
                    (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
                                         domain));
                                         domain));
#endif
#endif
                }
                }
              return v;
              return v;
            }
            }
        }
        }
    }
    }
  for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
  for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
    {
    {
      value_ptr v;
      value_ptr v;
      int base_offset;
      int base_offset;
 
 
      if (BASETYPE_VIA_VIRTUAL (t, i))
      if (BASETYPE_VIA_VIRTUAL (t, i))
        base_offset = 0;
        base_offset = 0;
      else
      else
        base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
        base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
      v = value_struct_elt_for_reference (domain,
      v = value_struct_elt_for_reference (domain,
                                          offset + base_offset,
                                          offset + base_offset,
                                          TYPE_BASECLASS (t, i),
                                          TYPE_BASECLASS (t, i),
                                          name,
                                          name,
                                          intype);
                                          intype);
      if (v)
      if (v)
        return v;
        return v;
    }
    }
  return 0;
  return 0;
}
}
 
 
 
 
/* Find the real run-time type of a value using RTTI.
/* Find the real run-time type of a value using RTTI.
 * V is a pointer to the value.
 * V is a pointer to the value.
 * A pointer to the struct type entry of the run-time type
 * A pointer to the struct type entry of the run-time type
 * is returneed.
 * is returneed.
 * FULL is a flag that is set only if the value V includes
 * FULL is a flag that is set only if the value V includes
 * the entire contents of an object of the RTTI type.
 * the entire contents of an object of the RTTI type.
 * TOP is the offset to the top of the enclosing object of
 * TOP is the offset to the top of the enclosing object of
 * the real run-time type.  This offset may be for the embedded
 * the real run-time type.  This offset may be for the embedded
 * object, or for the enclosing object of V.
 * object, or for the enclosing object of V.
 * USING_ENC is the flag that distinguishes the two cases.
 * USING_ENC is the flag that distinguishes the two cases.
 * If it is 1, then the offset is for the enclosing object,
 * If it is 1, then the offset is for the enclosing object,
 * otherwise for the embedded object.
 * otherwise for the embedded object.
 *
 *
 */
 */
 
 
struct type *
struct type *
value_rtti_type (v, full, top, using_enc)
value_rtti_type (v, full, top, using_enc)
     value_ptr v;
     value_ptr v;
     int *full;
     int *full;
     int *top;
     int *top;
     int *using_enc;
     int *using_enc;
{
{
  struct type *known_type;
  struct type *known_type;
  struct type *rtti_type;
  struct type *rtti_type;
  CORE_ADDR coreptr;
  CORE_ADDR coreptr;
  value_ptr vp;
  value_ptr vp;
  int using_enclosing = 0;
  int using_enclosing = 0;
  long top_offset = 0;
  long top_offset = 0;
  char rtti_type_name[256];
  char rtti_type_name[256];
 
 
  if (full)
  if (full)
    *full = 0;
    *full = 0;
  if (top)
  if (top)
    *top = -1;
    *top = -1;
  if (using_enc)
  if (using_enc)
    *using_enc = 0;
    *using_enc = 0;
 
 
  /* Get declared type */
  /* Get declared type */
  known_type = VALUE_TYPE (v);
  known_type = VALUE_TYPE (v);
  CHECK_TYPEDEF (known_type);
  CHECK_TYPEDEF (known_type);
  /* RTTI works only or class objects */
  /* RTTI works only or class objects */
  if (TYPE_CODE (known_type) != TYPE_CODE_CLASS)
  if (TYPE_CODE (known_type) != TYPE_CODE_CLASS)
    return NULL;
    return NULL;
  if (TYPE_HAS_VTABLE(known_type))
  if (TYPE_HAS_VTABLE(known_type))
    {
    {
      /* If neither the declared type nor the enclosing type of the
      /* If neither the declared type nor the enclosing type of the
       * value structure has a HP ANSI C++ style virtual table,
       * value structure has a HP ANSI C++ style virtual table,
       * we can't do anything. */
       * we can't do anything. */
      if (!TYPE_HAS_VTABLE (known_type))
      if (!TYPE_HAS_VTABLE (known_type))
        {
        {
          known_type = VALUE_ENCLOSING_TYPE (v);
          known_type = VALUE_ENCLOSING_TYPE (v);
          CHECK_TYPEDEF (known_type);
          CHECK_TYPEDEF (known_type);
          if ((TYPE_CODE (known_type) != TYPE_CODE_CLASS) ||
          if ((TYPE_CODE (known_type) != TYPE_CODE_CLASS) ||
              !TYPE_HAS_VTABLE (known_type))
              !TYPE_HAS_VTABLE (known_type))
            return NULL;                /* No RTTI, or not HP-compiled types */
            return NULL;                /* No RTTI, or not HP-compiled types */
          CHECK_TYPEDEF (known_type);
          CHECK_TYPEDEF (known_type);
          using_enclosing = 1;
          using_enclosing = 1;
        }
        }
 
 
      if (using_enclosing && using_enc)
      if (using_enclosing && using_enc)
        *using_enc = 1;
        *using_enc = 1;
 
 
      /* First get the virtual table address */
      /* First get the virtual table address */
      coreptr = *(CORE_ADDR *) ((VALUE_CONTENTS_ALL (v))
      coreptr = *(CORE_ADDR *) ((VALUE_CONTENTS_ALL (v))
                                + VALUE_OFFSET (v)
                                + VALUE_OFFSET (v)
                                + (using_enclosing ? 0 : VALUE_EMBEDDED_OFFSET (v)));
                                + (using_enclosing ? 0 : VALUE_EMBEDDED_OFFSET (v)));
      if (coreptr == 0)
      if (coreptr == 0)
        return NULL;            /* return silently -- maybe called on gdb-generated value */
        return NULL;            /* return silently -- maybe called on gdb-generated value */
 
 
      /* Fetch the top offset of the object */
      /* Fetch the top offset of the object */
      /* FIXME possible 32x64 problem with pointer size & arithmetic */
      /* FIXME possible 32x64 problem with pointer size & arithmetic */
      vp = value_at (builtin_type_int,
      vp = value_at (builtin_type_int,
                     coreptr + 4 * HP_ACC_TOP_OFFSET_OFFSET,
                     coreptr + 4 * HP_ACC_TOP_OFFSET_OFFSET,
                     VALUE_BFD_SECTION (v));
                     VALUE_BFD_SECTION (v));
      top_offset = value_as_long (vp);
      top_offset = value_as_long (vp);
      if (top)
      if (top)
        *top = top_offset;
        *top = top_offset;
 
 
      /* Fetch the typeinfo pointer */
      /* Fetch the typeinfo pointer */
      /* FIXME possible 32x64 problem with pointer size & arithmetic */
      /* FIXME possible 32x64 problem with pointer size & arithmetic */
      vp = value_at (builtin_type_int, coreptr + 4 * HP_ACC_TYPEINFO_OFFSET, VALUE_BFD_SECTION (v));
      vp = value_at (builtin_type_int, coreptr + 4 * HP_ACC_TYPEINFO_OFFSET, VALUE_BFD_SECTION (v));
      /* Indirect through the typeinfo pointer and retrieve the pointer
      /* Indirect through the typeinfo pointer and retrieve the pointer
       * to the string name */
       * to the string name */
      coreptr = *(CORE_ADDR *) (VALUE_CONTENTS (vp));
      coreptr = *(CORE_ADDR *) (VALUE_CONTENTS (vp));
      if (!coreptr)
      if (!coreptr)
        error ("Retrieved null typeinfo pointer in trying to determine run-time type");
        error ("Retrieved null typeinfo pointer in trying to determine run-time type");
      vp = value_at (builtin_type_int, coreptr + 4, VALUE_BFD_SECTION (v));             /* 4 -> offset of name field */
      vp = value_at (builtin_type_int, coreptr + 4, VALUE_BFD_SECTION (v));             /* 4 -> offset of name field */
      /* FIXME possible 32x64 problem */
      /* FIXME possible 32x64 problem */
 
 
      coreptr = *(CORE_ADDR *) (VALUE_CONTENTS (vp));
      coreptr = *(CORE_ADDR *) (VALUE_CONTENTS (vp));
 
 
      read_memory_string (coreptr, rtti_type_name, 256);
      read_memory_string (coreptr, rtti_type_name, 256);
 
 
      if (strlen (rtti_type_name) == 0)
      if (strlen (rtti_type_name) == 0)
        error ("Retrieved null type name from typeinfo");
        error ("Retrieved null type name from typeinfo");
 
 
      /* search for type */
      /* search for type */
      rtti_type = lookup_typename (rtti_type_name, (struct block *) 0, 1);
      rtti_type = lookup_typename (rtti_type_name, (struct block *) 0, 1);
 
 
      if (!rtti_type)
      if (!rtti_type)
        error ("Could not find run-time type: invalid type name %s in typeinfo??", rtti_type_name);
        error ("Could not find run-time type: invalid type name %s in typeinfo??", rtti_type_name);
      CHECK_TYPEDEF (rtti_type);
      CHECK_TYPEDEF (rtti_type);
#if 0
#if 0
      printf ("RTTI type name %s, tag %s, full? %d\n", TYPE_NAME (rtti_type), TYPE_TAG_NAME (rtti_type), full ? *full : -1);
      printf ("RTTI type name %s, tag %s, full? %d\n", TYPE_NAME (rtti_type), TYPE_TAG_NAME (rtti_type), full ? *full : -1);
#endif
#endif
      /* Check whether we have the entire object */
      /* Check whether we have the entire object */
      if (full                  /* Non-null pointer passed */
      if (full                  /* Non-null pointer passed */
          &&
          &&
          /* Either we checked on the whole object in hand and found the
          /* Either we checked on the whole object in hand and found the
             top offset to be zero */
             top offset to be zero */
          (((top_offset == 0) &&
          (((top_offset == 0) &&
            using_enclosing &&
            using_enclosing &&
            TYPE_LENGTH (known_type) == TYPE_LENGTH (rtti_type))
            TYPE_LENGTH (known_type) == TYPE_LENGTH (rtti_type))
           ||
           ||
           /* Or we checked on the embedded object and top offset was the
           /* Or we checked on the embedded object and top offset was the
              same as the embedded offset */
              same as the embedded offset */
           ((top_offset == VALUE_EMBEDDED_OFFSET (v)) &&
           ((top_offset == VALUE_EMBEDDED_OFFSET (v)) &&
            !using_enclosing &&
            !using_enclosing &&
            TYPE_LENGTH (VALUE_ENCLOSING_TYPE (v)) == TYPE_LENGTH (rtti_type))))
            TYPE_LENGTH (VALUE_ENCLOSING_TYPE (v)) == TYPE_LENGTH (rtti_type))))
 
 
        *full = 1;
        *full = 1;
    }
    }
  else
  else
    /*
    /*
      Right now this is G++ RTTI. Plan on this changing in the
      Right now this is G++ RTTI. Plan on this changing in the
      future as i get around to setting the vtables properly for G++
      future as i get around to setting the vtables properly for G++
      compiled stuff. Also, i'll be using the type info functions,
      compiled stuff. Also, i'll be using the type info functions,
      which are always right. Deal with it until then.
      which are always right. Deal with it until then.
    */
    */
    {
    {
      CORE_ADDR vtbl;
      CORE_ADDR vtbl;
      struct minimal_symbol *minsym;
      struct minimal_symbol *minsym;
      struct symbol *sym;
      struct symbol *sym;
      char *demangled_name;
      char *demangled_name;
      struct type *btype;
      struct type *btype;
      /* If the type has no vptr fieldno, try to get it filled in */
      /* If the type has no vptr fieldno, try to get it filled in */
      if (TYPE_VPTR_FIELDNO(known_type) < 0)
      if (TYPE_VPTR_FIELDNO(known_type) < 0)
        fill_in_vptr_fieldno(known_type);
        fill_in_vptr_fieldno(known_type);
 
 
      /* If we still can't find one, give up */
      /* If we still can't find one, give up */
      if (TYPE_VPTR_FIELDNO(known_type) < 0)
      if (TYPE_VPTR_FIELDNO(known_type) < 0)
        return NULL;
        return NULL;
 
 
      /* Make sure our basetype and known type match, otherwise, cast
      /* Make sure our basetype and known type match, otherwise, cast
         so we can get at the vtable properly.
         so we can get at the vtable properly.
      */
      */
      btype = TYPE_VPTR_BASETYPE (known_type);
      btype = TYPE_VPTR_BASETYPE (known_type);
      CHECK_TYPEDEF (btype);
      CHECK_TYPEDEF (btype);
      if (btype != known_type )
      if (btype != known_type )
        {
        {
          v = value_cast (btype, v);
          v = value_cast (btype, v);
          if (using_enc)
          if (using_enc)
            *using_enc=1;
            *using_enc=1;
        }
        }
      /*
      /*
        We can't use value_ind here, because it would want to use RTTI, and
        We can't use value_ind here, because it would want to use RTTI, and
        we'd waste a bunch of time figuring out we already know the type.
        we'd waste a bunch of time figuring out we already know the type.
        Besides, we don't care about the type, just the actual pointer
        Besides, we don't care about the type, just the actual pointer
      */
      */
      if (VALUE_ADDRESS (value_field (v, TYPE_VPTR_FIELDNO (known_type))) == 0)
      if (VALUE_ADDRESS (value_field (v, TYPE_VPTR_FIELDNO (known_type))) == 0)
        return NULL;
        return NULL;
 
 
      /*
      /*
         If we are enclosed by something that isn't us, adjust the
         If we are enclosed by something that isn't us, adjust the
         address properly and set using_enclosing.
         address properly and set using_enclosing.
      */
      */
      if (VALUE_ENCLOSING_TYPE(v) != VALUE_TYPE(v))
      if (VALUE_ENCLOSING_TYPE(v) != VALUE_TYPE(v))
        {
        {
          value_ptr tempval;
          value_ptr tempval;
          tempval=value_field(v,TYPE_VPTR_FIELDNO(known_type));
          tempval=value_field(v,TYPE_VPTR_FIELDNO(known_type));
          VALUE_ADDRESS(tempval)+=(TYPE_BASECLASS_BITPOS(known_type,TYPE_VPTR_FIELDNO(known_type))/8);
          VALUE_ADDRESS(tempval)+=(TYPE_BASECLASS_BITPOS(known_type,TYPE_VPTR_FIELDNO(known_type))/8);
          vtbl=value_as_pointer(tempval);
          vtbl=value_as_pointer(tempval);
          using_enclosing=1;
          using_enclosing=1;
        }
        }
      else
      else
        {
        {
          vtbl=value_as_pointer(value_field(v,TYPE_VPTR_FIELDNO(known_type)));
          vtbl=value_as_pointer(value_field(v,TYPE_VPTR_FIELDNO(known_type)));
          using_enclosing=0;
          using_enclosing=0;
        }
        }
 
 
      /* Try to find a symbol that is the vtable */
      /* Try to find a symbol that is the vtable */
      minsym=lookup_minimal_symbol_by_pc(vtbl);
      minsym=lookup_minimal_symbol_by_pc(vtbl);
      if (minsym==NULL || (demangled_name=SYMBOL_NAME(minsym))==NULL || !VTBL_PREFIX_P(demangled_name))
      if (minsym==NULL || (demangled_name=SYMBOL_NAME(minsym))==NULL || !VTBL_PREFIX_P(demangled_name))
        return NULL;
        return NULL;
 
 
      /* If we just skip the prefix, we get screwed by namespaces */
      /* If we just skip the prefix, we get screwed by namespaces */
      demangled_name=cplus_demangle(demangled_name,DMGL_PARAMS|DMGL_ANSI);
      demangled_name=cplus_demangle(demangled_name,DMGL_PARAMS|DMGL_ANSI);
      *(strchr(demangled_name,' '))=0;
      *(strchr(demangled_name,' '))=0;
 
 
      /* Lookup the type for the name */
      /* Lookup the type for the name */
      rtti_type=lookup_typename(demangled_name, (struct block *)0,1);
      rtti_type=lookup_typename(demangled_name, (struct block *)0,1);
 
 
      if (rtti_type==NULL)
      if (rtti_type==NULL)
        return NULL;
        return NULL;
 
 
      if (TYPE_N_BASECLASSES(rtti_type) > 1 &&  full && (*full) != 1)
      if (TYPE_N_BASECLASSES(rtti_type) > 1 &&  full && (*full) != 1)
        {
        {
          if (top)
          if (top)
            *top=TYPE_BASECLASS_BITPOS(rtti_type,TYPE_VPTR_FIELDNO(rtti_type))/8;
            *top=TYPE_BASECLASS_BITPOS(rtti_type,TYPE_VPTR_FIELDNO(rtti_type))/8;
          if (top && ((*top) >0))
          if (top && ((*top) >0))
            {
            {
              if (TYPE_LENGTH(rtti_type) > TYPE_LENGTH(known_type))
              if (TYPE_LENGTH(rtti_type) > TYPE_LENGTH(known_type))
                {
                {
                  if (full)
                  if (full)
                    *full=0;
                    *full=0;
                }
                }
              else
              else
                {
                {
                  if (full)
                  if (full)
                    *full=1;
                    *full=1;
                }
                }
            }
            }
        }
        }
      else
      else
        {
        {
          if (full)
          if (full)
            *full=1;
            *full=1;
        }
        }
      if (using_enc)
      if (using_enc)
        *using_enc=using_enclosing;
        *using_enc=using_enclosing;
    }
    }
  return rtti_type;
  return rtti_type;
}
}
 
 
/* Given a pointer value V, find the real (RTTI) type
/* Given a pointer value V, find the real (RTTI) type
   of the object it points to.
   of the object it points to.
   Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
   Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
   and refer to the values computed for the object pointed to. */
   and refer to the values computed for the object pointed to. */
 
 
struct type *
struct type *
value_rtti_target_type (v, full, top, using_enc)
value_rtti_target_type (v, full, top, using_enc)
     value_ptr v;
     value_ptr v;
     int *full;
     int *full;
     int *top;
     int *top;
     int *using_enc;
     int *using_enc;
{
{
  value_ptr target;
  value_ptr target;
 
 
  target = value_ind (v);
  target = value_ind (v);
 
 
  return value_rtti_type (target, full, top, using_enc);
  return value_rtti_type (target, full, top, using_enc);
}
}
 
 
/* Given a value pointed to by ARGP, check its real run-time type, and
/* Given a value pointed to by ARGP, check its real run-time type, and
   if that is different from the enclosing type, create a new value
   if that is different from the enclosing type, create a new value
   using the real run-time type as the enclosing type (and of the same
   using the real run-time type as the enclosing type (and of the same
   type as ARGP) and return it, with the embedded offset adjusted to
   type as ARGP) and return it, with the embedded offset adjusted to
   be the correct offset to the enclosed object
   be the correct offset to the enclosed object
   RTYPE is the type, and XFULL, XTOP, and XUSING_ENC are the other
   RTYPE is the type, and XFULL, XTOP, and XUSING_ENC are the other
   parameters, computed by value_rtti_type(). If these are available,
   parameters, computed by value_rtti_type(). If these are available,
   they can be supplied and a second call to value_rtti_type() is avoided.
   they can be supplied and a second call to value_rtti_type() is avoided.
   (Pass RTYPE == NULL if they're not available */
   (Pass RTYPE == NULL if they're not available */
 
 
value_ptr
value_ptr
value_full_object (argp, rtype, xfull, xtop, xusing_enc)
value_full_object (argp, rtype, xfull, xtop, xusing_enc)
     value_ptr argp;
     value_ptr argp;
     struct type *rtype;
     struct type *rtype;
     int xfull;
     int xfull;
     int xtop;
     int xtop;
     int xusing_enc;
     int xusing_enc;
 
 
{
{
  struct type *real_type;
  struct type *real_type;
  int full = 0;
  int full = 0;
  int top = -1;
  int top = -1;
  int using_enc = 0;
  int using_enc = 0;
  value_ptr new_val;
  value_ptr new_val;
 
 
  if (rtype)
  if (rtype)
    {
    {
      real_type = rtype;
      real_type = rtype;
      full = xfull;
      full = xfull;
      top = xtop;
      top = xtop;
      using_enc = xusing_enc;
      using_enc = xusing_enc;
    }
    }
  else
  else
    real_type = value_rtti_type (argp, &full, &top, &using_enc);
    real_type = value_rtti_type (argp, &full, &top, &using_enc);
 
 
  /* If no RTTI data, or if object is already complete, do nothing */
  /* If no RTTI data, or if object is already complete, do nothing */
  if (!real_type || real_type == VALUE_ENCLOSING_TYPE (argp))
  if (!real_type || real_type == VALUE_ENCLOSING_TYPE (argp))
    return argp;
    return argp;
 
 
  /* If we have the full object, but for some reason the enclosing
  /* If we have the full object, but for some reason the enclosing
     type is wrong, set it *//* pai: FIXME -- sounds iffy */
     type is wrong, set it *//* pai: FIXME -- sounds iffy */
  if (full)
  if (full)
    {
    {
      VALUE_ENCLOSING_TYPE (argp) = real_type;
      VALUE_ENCLOSING_TYPE (argp) = real_type;
      return argp;
      return argp;
    }
    }
 
 
  /* Check if object is in memory */
  /* Check if object is in memory */
  if (VALUE_LVAL (argp) != lval_memory)
  if (VALUE_LVAL (argp) != lval_memory)
    {
    {
      warning ("Couldn't retrieve complete object of RTTI type %s; object may be in register(s).", TYPE_NAME (real_type));
      warning ("Couldn't retrieve complete object of RTTI type %s; object may be in register(s).", TYPE_NAME (real_type));
 
 
      return argp;
      return argp;
    }
    }
 
 
  /* All other cases -- retrieve the complete object */
  /* All other cases -- retrieve the complete object */
  /* Go back by the computed top_offset from the beginning of the object,
  /* Go back by the computed top_offset from the beginning of the object,
     adjusting for the embedded offset of argp if that's what value_rtti_type
     adjusting for the embedded offset of argp if that's what value_rtti_type
     used for its computation. */
     used for its computation. */
  new_val = value_at_lazy (real_type, VALUE_ADDRESS (argp) - top +
  new_val = value_at_lazy (real_type, VALUE_ADDRESS (argp) - top +
                           (using_enc ? 0 : VALUE_EMBEDDED_OFFSET (argp)),
                           (using_enc ? 0 : VALUE_EMBEDDED_OFFSET (argp)),
                           VALUE_BFD_SECTION (argp));
                           VALUE_BFD_SECTION (argp));
  VALUE_TYPE (new_val) = VALUE_TYPE (argp);
  VALUE_TYPE (new_val) = VALUE_TYPE (argp);
  VALUE_EMBEDDED_OFFSET (new_val) = using_enc ? top + VALUE_EMBEDDED_OFFSET (argp) : top;
  VALUE_EMBEDDED_OFFSET (new_val) = using_enc ? top + VALUE_EMBEDDED_OFFSET (argp) : top;
  return new_val;
  return new_val;
}
}
 
 
 
 
 
 
 
 
/* C++: return the value of the class instance variable, if one exists.
/* C++: return the value of the class instance variable, if one exists.
   Flag COMPLAIN signals an error if the request is made in an
   Flag COMPLAIN signals an error if the request is made in an
   inappropriate context.  */
   inappropriate context.  */
 
 
value_ptr
value_ptr
value_of_this (complain)
value_of_this (complain)
     int complain;
     int complain;
{
{
  struct symbol *func, *sym;
  struct symbol *func, *sym;
  struct block *b;
  struct block *b;
  int i;
  int i;
  static const char funny_this[] = "this";
  static const char funny_this[] = "this";
  value_ptr this;
  value_ptr this;
 
 
  if (selected_frame == 0)
  if (selected_frame == 0)
    {
    {
      if (complain)
      if (complain)
        error ("no frame selected");
        error ("no frame selected");
      else
      else
        return 0;
        return 0;
    }
    }
 
 
  func = get_frame_function (selected_frame);
  func = get_frame_function (selected_frame);
  if (!func)
  if (!func)
    {
    {
      if (complain)
      if (complain)
        error ("no `this' in nameless context");
        error ("no `this' in nameless context");
      else
      else
        return 0;
        return 0;
    }
    }
 
 
  b = SYMBOL_BLOCK_VALUE (func);
  b = SYMBOL_BLOCK_VALUE (func);
  i = BLOCK_NSYMS (b);
  i = BLOCK_NSYMS (b);
  if (i <= 0)
  if (i <= 0)
    {
    {
      if (complain)
      if (complain)
        error ("no args, no `this'");
        error ("no args, no `this'");
      else
      else
        return 0;
        return 0;
    }
    }
 
 
  /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
  /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
     symbol instead of the LOC_ARG one (if both exist).  */
     symbol instead of the LOC_ARG one (if both exist).  */
  sym = lookup_block_symbol (b, funny_this, VAR_NAMESPACE);
  sym = lookup_block_symbol (b, funny_this, VAR_NAMESPACE);
  if (sym == NULL)
  if (sym == NULL)
    {
    {
      if (complain)
      if (complain)
        error ("current stack frame not in method");
        error ("current stack frame not in method");
      else
      else
        return NULL;
        return NULL;
    }
    }
 
 
  this = read_var_value (sym, selected_frame);
  this = read_var_value (sym, selected_frame);
  if (this == 0 && complain)
  if (this == 0 && complain)
    error ("`this' argument at unknown address");
    error ("`this' argument at unknown address");
  return this;
  return this;
}
}
 
 
/* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH elements
/* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH elements
   long, starting at LOWBOUND.  The result has the same lower bound as
   long, starting at LOWBOUND.  The result has the same lower bound as
   the original ARRAY.  */
   the original ARRAY.  */
 
 
value_ptr
value_ptr
value_slice (array, lowbound, length)
value_slice (array, lowbound, length)
     value_ptr array;
     value_ptr array;
     int lowbound, length;
     int lowbound, length;
{
{
  struct type *slice_range_type, *slice_type, *range_type;
  struct type *slice_range_type, *slice_type, *range_type;
  LONGEST lowerbound, upperbound, offset;
  LONGEST lowerbound, upperbound, offset;
  value_ptr slice;
  value_ptr slice;
  struct type *array_type;
  struct type *array_type;
  array_type = check_typedef (VALUE_TYPE (array));
  array_type = check_typedef (VALUE_TYPE (array));
  COERCE_VARYING_ARRAY (array, array_type);
  COERCE_VARYING_ARRAY (array, array_type);
  if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
  if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
      && TYPE_CODE (array_type) != TYPE_CODE_STRING
      && TYPE_CODE (array_type) != TYPE_CODE_STRING
      && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING)
      && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING)
    error ("cannot take slice of non-array");
    error ("cannot take slice of non-array");
  range_type = TYPE_INDEX_TYPE (array_type);
  range_type = TYPE_INDEX_TYPE (array_type);
  if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
  if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
    error ("slice from bad array or bitstring");
    error ("slice from bad array or bitstring");
  if (lowbound < lowerbound || length < 0
  if (lowbound < lowerbound || length < 0
      || lowbound + length - 1 > upperbound
      || lowbound + length - 1 > upperbound
  /* Chill allows zero-length strings but not arrays. */
  /* Chill allows zero-length strings but not arrays. */
      || (current_language->la_language == language_chill
      || (current_language->la_language == language_chill
          && length == 0 && TYPE_CODE (array_type) == TYPE_CODE_ARRAY))
          && length == 0 && TYPE_CODE (array_type) == TYPE_CODE_ARRAY))
    error ("slice out of range");
    error ("slice out of range");
  /* FIXME-type-allocation: need a way to free this type when we are
  /* FIXME-type-allocation: need a way to free this type when we are
     done with it.  */
     done with it.  */
  slice_range_type = create_range_type ((struct type *) NULL,
  slice_range_type = create_range_type ((struct type *) NULL,
                                        TYPE_TARGET_TYPE (range_type),
                                        TYPE_TARGET_TYPE (range_type),
                                        lowbound, lowbound + length - 1);
                                        lowbound, lowbound + length - 1);
  if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING)
  if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING)
    {
    {
      int i;
      int i;
      slice_type = create_set_type ((struct type *) NULL, slice_range_type);
      slice_type = create_set_type ((struct type *) NULL, slice_range_type);
      TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING;
      TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING;
      slice = value_zero (slice_type, not_lval);
      slice = value_zero (slice_type, not_lval);
      for (i = 0; i < length; i++)
      for (i = 0; i < length; i++)
        {
        {
          int element = value_bit_index (array_type,
          int element = value_bit_index (array_type,
                                         VALUE_CONTENTS (array),
                                         VALUE_CONTENTS (array),
                                         lowbound + i);
                                         lowbound + i);
          if (element < 0)
          if (element < 0)
            error ("internal error accessing bitstring");
            error ("internal error accessing bitstring");
          else if (element > 0)
          else if (element > 0)
            {
            {
              int j = i % TARGET_CHAR_BIT;
              int j = i % TARGET_CHAR_BIT;
              if (BITS_BIG_ENDIAN)
              if (BITS_BIG_ENDIAN)
                j = TARGET_CHAR_BIT - 1 - j;
                j = TARGET_CHAR_BIT - 1 - j;
              VALUE_CONTENTS_RAW (slice)[i / TARGET_CHAR_BIT] |= (1 << j);
              VALUE_CONTENTS_RAW (slice)[i / TARGET_CHAR_BIT] |= (1 << j);
            }
            }
        }
        }
      /* We should set the address, bitssize, and bitspos, so the clice
      /* We should set the address, bitssize, and bitspos, so the clice
         can be used on the LHS, but that may require extensions to
         can be used on the LHS, but that may require extensions to
         value_assign.  For now, just leave as a non_lval.  FIXME.  */
         value_assign.  For now, just leave as a non_lval.  FIXME.  */
    }
    }
  else
  else
    {
    {
      struct type *element_type = TYPE_TARGET_TYPE (array_type);
      struct type *element_type = TYPE_TARGET_TYPE (array_type);
      offset
      offset
        = (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
        = (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
      slice_type = create_array_type ((struct type *) NULL, element_type,
      slice_type = create_array_type ((struct type *) NULL, element_type,
                                      slice_range_type);
                                      slice_range_type);
      TYPE_CODE (slice_type) = TYPE_CODE (array_type);
      TYPE_CODE (slice_type) = TYPE_CODE (array_type);
      slice = allocate_value (slice_type);
      slice = allocate_value (slice_type);
      if (VALUE_LAZY (array))
      if (VALUE_LAZY (array))
        VALUE_LAZY (slice) = 1;
        VALUE_LAZY (slice) = 1;
      else
      else
        memcpy (VALUE_CONTENTS (slice), VALUE_CONTENTS (array) + offset,
        memcpy (VALUE_CONTENTS (slice), VALUE_CONTENTS (array) + offset,
                TYPE_LENGTH (slice_type));
                TYPE_LENGTH (slice_type));
      if (VALUE_LVAL (array) == lval_internalvar)
      if (VALUE_LVAL (array) == lval_internalvar)
        VALUE_LVAL (slice) = lval_internalvar_component;
        VALUE_LVAL (slice) = lval_internalvar_component;
      else
      else
        VALUE_LVAL (slice) = VALUE_LVAL (array);
        VALUE_LVAL (slice) = VALUE_LVAL (array);
      VALUE_ADDRESS (slice) = VALUE_ADDRESS (array);
      VALUE_ADDRESS (slice) = VALUE_ADDRESS (array);
      VALUE_OFFSET (slice) = VALUE_OFFSET (array) + offset;
      VALUE_OFFSET (slice) = VALUE_OFFSET (array) + offset;
    }
    }
  return slice;
  return slice;
}
}
 
 
/* Assuming chill_varying_type (VARRAY) is true, return an equivalent
/* Assuming chill_varying_type (VARRAY) is true, return an equivalent
   value as a fixed-length array. */
   value as a fixed-length array. */
 
 
value_ptr
value_ptr
varying_to_slice (varray)
varying_to_slice (varray)
     value_ptr varray;
     value_ptr varray;
{
{
  struct type *vtype = check_typedef (VALUE_TYPE (varray));
  struct type *vtype = check_typedef (VALUE_TYPE (varray));
  LONGEST length = unpack_long (TYPE_FIELD_TYPE (vtype, 0),
  LONGEST length = unpack_long (TYPE_FIELD_TYPE (vtype, 0),
                                VALUE_CONTENTS (varray)
                                VALUE_CONTENTS (varray)
                                + TYPE_FIELD_BITPOS (vtype, 0) / 8);
                                + TYPE_FIELD_BITPOS (vtype, 0) / 8);
  return value_slice (value_primitive_field (varray, 0, 1, vtype), 0, length);
  return value_slice (value_primitive_field (varray, 0, 1, vtype), 0, length);
}
}
 
 
/* Create a value for a FORTRAN complex number.  Currently most of
/* Create a value for a FORTRAN complex number.  Currently most of
   the time values are coerced to COMPLEX*16 (i.e. a complex number
   the time values are coerced to COMPLEX*16 (i.e. a complex number
   composed of 2 doubles.  This really should be a smarter routine
   composed of 2 doubles.  This really should be a smarter routine
   that figures out precision inteligently as opposed to assuming
   that figures out precision inteligently as opposed to assuming
   doubles. FIXME: fmb */
   doubles. FIXME: fmb */
 
 
value_ptr
value_ptr
value_literal_complex (arg1, arg2, type)
value_literal_complex (arg1, arg2, type)
     value_ptr arg1;
     value_ptr arg1;
     value_ptr arg2;
     value_ptr arg2;
     struct type *type;
     struct type *type;
{
{
  register value_ptr val;
  register value_ptr val;
  struct type *real_type = TYPE_TARGET_TYPE (type);
  struct type *real_type = TYPE_TARGET_TYPE (type);
 
 
  val = allocate_value (type);
  val = allocate_value (type);
  arg1 = value_cast (real_type, arg1);
  arg1 = value_cast (real_type, arg1);
  arg2 = value_cast (real_type, arg2);
  arg2 = value_cast (real_type, arg2);
 
 
  memcpy (VALUE_CONTENTS_RAW (val),
  memcpy (VALUE_CONTENTS_RAW (val),
          VALUE_CONTENTS (arg1), TYPE_LENGTH (real_type));
          VALUE_CONTENTS (arg1), TYPE_LENGTH (real_type));
  memcpy (VALUE_CONTENTS_RAW (val) + TYPE_LENGTH (real_type),
  memcpy (VALUE_CONTENTS_RAW (val) + TYPE_LENGTH (real_type),
          VALUE_CONTENTS (arg2), TYPE_LENGTH (real_type));
          VALUE_CONTENTS (arg2), TYPE_LENGTH (real_type));
  return val;
  return val;
}
}
 
 
/* Cast a value into the appropriate complex data type. */
/* Cast a value into the appropriate complex data type. */
 
 
static value_ptr
static value_ptr
cast_into_complex (type, val)
cast_into_complex (type, val)
     struct type *type;
     struct type *type;
     register value_ptr val;
     register value_ptr val;
{
{
  struct type *real_type = TYPE_TARGET_TYPE (type);
  struct type *real_type = TYPE_TARGET_TYPE (type);
  if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_COMPLEX)
  if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_COMPLEX)
    {
    {
      struct type *val_real_type = TYPE_TARGET_TYPE (VALUE_TYPE (val));
      struct type *val_real_type = TYPE_TARGET_TYPE (VALUE_TYPE (val));
      value_ptr re_val = allocate_value (val_real_type);
      value_ptr re_val = allocate_value (val_real_type);
      value_ptr im_val = allocate_value (val_real_type);
      value_ptr im_val = allocate_value (val_real_type);
 
 
      memcpy (VALUE_CONTENTS_RAW (re_val),
      memcpy (VALUE_CONTENTS_RAW (re_val),
              VALUE_CONTENTS (val), TYPE_LENGTH (val_real_type));
              VALUE_CONTENTS (val), TYPE_LENGTH (val_real_type));
      memcpy (VALUE_CONTENTS_RAW (im_val),
      memcpy (VALUE_CONTENTS_RAW (im_val),
              VALUE_CONTENTS (val) + TYPE_LENGTH (val_real_type),
              VALUE_CONTENTS (val) + TYPE_LENGTH (val_real_type),
              TYPE_LENGTH (val_real_type));
              TYPE_LENGTH (val_real_type));
 
 
      return value_literal_complex (re_val, im_val, type);
      return value_literal_complex (re_val, im_val, type);
    }
    }
  else if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT
  else if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT
           || TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_INT)
           || TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_INT)
    return value_literal_complex (val, value_zero (real_type, not_lval), type);
    return value_literal_complex (val, value_zero (real_type, not_lval), type);
  else
  else
    error ("cannot cast non-number to complex");
    error ("cannot cast non-number to complex");
}
}
 
 
void
void
_initialize_valops ()
_initialize_valops ()
{
{
#if 0
#if 0
  add_show_from_set
  add_show_from_set
    (add_set_cmd ("abandon", class_support, var_boolean, (char *) &auto_abandon,
    (add_set_cmd ("abandon", class_support, var_boolean, (char *) &auto_abandon,
                  "Set automatic abandonment of expressions upon failure.",
                  "Set automatic abandonment of expressions upon failure.",
                  &setlist),
                  &setlist),
     &showlist);
     &showlist);
#endif
#endif
 
 
  add_show_from_set
  add_show_from_set
    (add_set_cmd ("overload-resolution", class_support, var_boolean, (char *) &overload_resolution,
    (add_set_cmd ("overload-resolution", class_support, var_boolean, (char *) &overload_resolution,
                  "Set overload resolution in evaluating C++ functions.",
                  "Set overload resolution in evaluating C++ functions.",
                  &setlist),
                  &setlist),
     &showlist);
     &showlist);
  overload_resolution = 1;
  overload_resolution = 1;
 
 
  add_show_from_set (
  add_show_from_set (
  add_set_cmd ("unwindonsignal", no_class, var_boolean,
  add_set_cmd ("unwindonsignal", no_class, var_boolean,
               (char *) &unwind_on_signal_p,
               (char *) &unwind_on_signal_p,
"Set unwinding of stack if a signal is received while in a call dummy.\n\
"Set unwinding of stack if a signal is received while in a call dummy.\n\
The unwindonsignal lets the user determine what gdb should do if a signal\n\
The unwindonsignal lets the user determine what gdb should do if a signal\n\
is received while in a function called from gdb (call dummy).  If set, gdb\n\
is received while in a function called from gdb (call dummy).  If set, gdb\n\
unwinds the stack and restore the context to what as it was before the call.\n\
unwinds the stack and restore the context to what as it was before the call.\n\
The default is to stop in the frame where the signal was received.", &setlist),
The default is to stop in the frame where the signal was received.", &setlist),
                     &showlist);
                     &showlist);
}
}
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.