OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [gdb-5.0/] [gdb/] [valprint.c] - Diff between revs 105 and 1765

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 105 Rev 1765
/* Print values for GDB, the GNU debugger.
/* Print values for GDB, the GNU debugger.
   Copyright 1986, 1988, 1989, 1991-1994, 1998, 2000
   Copyright 1986, 1988, 1989, 1991-1994, 1998, 2000
   Free Software Foundation, Inc.
   Free Software Foundation, Inc.
 
 
   This file is part of GDB.
   This file is part of GDB.
 
 
   This program is free software; you can redistribute it and/or modify
   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2 of the License, or
   the Free Software Foundation; either version 2 of the License, or
   (at your option) any later version.
   (at your option) any later version.
 
 
   This program is distributed in the hope that it will be useful,
   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.
   GNU General Public License for more details.
 
 
   You should have received a copy of the GNU General Public License
   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   along with this program; if not, write to the Free Software
   Foundation, Inc., 59 Temple Place - Suite 330,
   Foundation, Inc., 59 Temple Place - Suite 330,
   Boston, MA 02111-1307, USA.  */
   Boston, MA 02111-1307, USA.  */
 
 
#include "defs.h"
#include "defs.h"
#include "gdb_string.h"
#include "gdb_string.h"
#include "symtab.h"
#include "symtab.h"
#include "gdbtypes.h"
#include "gdbtypes.h"
#include "value.h"
#include "value.h"
#include "gdbcore.h"
#include "gdbcore.h"
#include "gdbcmd.h"
#include "gdbcmd.h"
#include "target.h"
#include "target.h"
#include "obstack.h"
#include "obstack.h"
#include "language.h"
#include "language.h"
#include "demangle.h"
#include "demangle.h"
#include "annotate.h"
#include "annotate.h"
#include "valprint.h"
#include "valprint.h"
 
 
#include <errno.h>
#include <errno.h>
 
 
/* Prototypes for local functions */
/* Prototypes for local functions */
 
 
static int partial_memory_read (CORE_ADDR memaddr, char *myaddr,
static int partial_memory_read (CORE_ADDR memaddr, char *myaddr,
                                int len, int *errnoptr);
                                int len, int *errnoptr);
 
 
static void print_hex_chars (struct ui_file *, unsigned char *,
static void print_hex_chars (struct ui_file *, unsigned char *,
                             unsigned int);
                             unsigned int);
 
 
static void show_print PARAMS ((char *, int));
static void show_print PARAMS ((char *, int));
 
 
static void set_print PARAMS ((char *, int));
static void set_print PARAMS ((char *, int));
 
 
static void set_radix PARAMS ((char *, int));
static void set_radix PARAMS ((char *, int));
 
 
static void show_radix PARAMS ((char *, int));
static void show_radix PARAMS ((char *, int));
 
 
static void set_input_radix PARAMS ((char *, int, struct cmd_list_element *));
static void set_input_radix PARAMS ((char *, int, struct cmd_list_element *));
 
 
static void set_input_radix_1 PARAMS ((int, unsigned));
static void set_input_radix_1 PARAMS ((int, unsigned));
 
 
static void set_output_radix PARAMS ((char *, int, struct cmd_list_element *));
static void set_output_radix PARAMS ((char *, int, struct cmd_list_element *));
 
 
static void set_output_radix_1 PARAMS ((int, unsigned));
static void set_output_radix_1 PARAMS ((int, unsigned));
 
 
void _initialize_valprint PARAMS ((void));
void _initialize_valprint PARAMS ((void));
 
 
/* Maximum number of chars to print for a string pointer value or vector
/* Maximum number of chars to print for a string pointer value or vector
   contents, or UINT_MAX for no limit.  Note that "set print elements 0"
   contents, or UINT_MAX for no limit.  Note that "set print elements 0"
   stores UINT_MAX in print_max, which displays in a show command as
   stores UINT_MAX in print_max, which displays in a show command as
   "unlimited". */
   "unlimited". */
 
 
unsigned int print_max;
unsigned int print_max;
#define PRINT_MAX_DEFAULT 200   /* Start print_max off at this value. */
#define PRINT_MAX_DEFAULT 200   /* Start print_max off at this value. */
 
 
/* Default input and output radixes, and output format letter.  */
/* Default input and output radixes, and output format letter.  */
 
 
unsigned input_radix = 10;
unsigned input_radix = 10;
unsigned output_radix = 10;
unsigned output_radix = 10;
int output_format = 0;
int output_format = 0;
 
 
/* Print repeat counts if there are more than this many repetitions of an
/* Print repeat counts if there are more than this many repetitions of an
   element in an array.  Referenced by the low level language dependent
   element in an array.  Referenced by the low level language dependent
   print routines. */
   print routines. */
 
 
unsigned int repeat_count_threshold = 10;
unsigned int repeat_count_threshold = 10;
 
 
/* If nonzero, stops printing of char arrays at first null. */
/* If nonzero, stops printing of char arrays at first null. */
 
 
int stop_print_at_null;
int stop_print_at_null;
 
 
/* Controls pretty printing of structures. */
/* Controls pretty printing of structures. */
 
 
int prettyprint_structs;
int prettyprint_structs;
 
 
/* Controls pretty printing of arrays.  */
/* Controls pretty printing of arrays.  */
 
 
int prettyprint_arrays;
int prettyprint_arrays;
 
 
/* If nonzero, causes unions inside structures or other unions to be
/* If nonzero, causes unions inside structures or other unions to be
   printed. */
   printed. */
 
 
int unionprint;                 /* Controls printing of nested unions.  */
int unionprint;                 /* Controls printing of nested unions.  */
 
 
/* If nonzero, causes machine addresses to be printed in certain contexts. */
/* If nonzero, causes machine addresses to be printed in certain contexts. */
 
 
int addressprint;               /* Controls printing of machine addresses */
int addressprint;               /* Controls printing of machine addresses */


 
 
/* Print data of type TYPE located at VALADDR (within GDB), which came from
/* Print data of type TYPE located at VALADDR (within GDB), which came from
   the inferior at address ADDRESS, onto stdio stream STREAM according to
   the inferior at address ADDRESS, onto stdio stream STREAM according to
   FORMAT (a letter, or 0 for natural format using TYPE).
   FORMAT (a letter, or 0 for natural format using TYPE).
 
 
   If DEREF_REF is nonzero, then dereference references, otherwise just print
   If DEREF_REF is nonzero, then dereference references, otherwise just print
   them like pointers.
   them like pointers.
 
 
   The PRETTY parameter controls prettyprinting.
   The PRETTY parameter controls prettyprinting.
 
 
   If the data are a string pointer, returns the number of string characters
   If the data are a string pointer, returns the number of string characters
   printed.
   printed.
 
 
   FIXME:  The data at VALADDR is in target byte order.  If gdb is ever
   FIXME:  The data at VALADDR is in target byte order.  If gdb is ever
   enhanced to be able to debug more than the single target it was compiled
   enhanced to be able to debug more than the single target it was compiled
   for (specific CPU type and thus specific target byte ordering), then
   for (specific CPU type and thus specific target byte ordering), then
   either the print routines are going to have to take this into account,
   either the print routines are going to have to take this into account,
   or the data is going to have to be passed into here already converted
   or the data is going to have to be passed into here already converted
   to the host byte ordering, whichever is more convenient. */
   to the host byte ordering, whichever is more convenient. */
 
 
 
 
int
int
val_print (type, valaddr, embedded_offset, address,
val_print (type, valaddr, embedded_offset, address,
           stream, format, deref_ref, recurse, pretty)
           stream, format, deref_ref, recurse, pretty)
     struct type *type;
     struct type *type;
     char *valaddr;
     char *valaddr;
     int embedded_offset;
     int embedded_offset;
     CORE_ADDR address;
     CORE_ADDR address;
     struct ui_file *stream;
     struct ui_file *stream;
     int format;
     int format;
     int deref_ref;
     int deref_ref;
     int recurse;
     int recurse;
     enum val_prettyprint pretty;
     enum val_prettyprint pretty;
{
{
  struct type *real_type = check_typedef (type);
  struct type *real_type = check_typedef (type);
  if (pretty == Val_pretty_default)
  if (pretty == Val_pretty_default)
    {
    {
      pretty = prettyprint_structs ? Val_prettyprint : Val_no_prettyprint;
      pretty = prettyprint_structs ? Val_prettyprint : Val_no_prettyprint;
    }
    }
 
 
  QUIT;
  QUIT;
 
 
  /* Ensure that the type is complete and not just a stub.  If the type is
  /* Ensure that the type is complete and not just a stub.  If the type is
     only a stub and we can't find and substitute its complete type, then
     only a stub and we can't find and substitute its complete type, then
     print appropriate string and return.  */
     print appropriate string and return.  */
 
 
  if (TYPE_FLAGS (real_type) & TYPE_FLAG_STUB)
  if (TYPE_FLAGS (real_type) & TYPE_FLAG_STUB)
    {
    {
      fprintf_filtered (stream, "<incomplete type>");
      fprintf_filtered (stream, "<incomplete type>");
      gdb_flush (stream);
      gdb_flush (stream);
      return (0);
      return (0);
    }
    }
 
 
  return (LA_VAL_PRINT (type, valaddr, embedded_offset, address,
  return (LA_VAL_PRINT (type, valaddr, embedded_offset, address,
                        stream, format, deref_ref, recurse, pretty));
                        stream, format, deref_ref, recurse, pretty));
}
}
 
 
/* Print the value VAL in C-ish syntax on stream STREAM.
/* Print the value VAL in C-ish syntax on stream STREAM.
   FORMAT is a format-letter, or 0 for print in natural format of data type.
   FORMAT is a format-letter, or 0 for print in natural format of data type.
   If the object printed is a string pointer, returns
   If the object printed is a string pointer, returns
   the number of string bytes printed.  */
   the number of string bytes printed.  */
 
 
int
int
value_print (val, stream, format, pretty)
value_print (val, stream, format, pretty)
     value_ptr val;
     value_ptr val;
     struct ui_file *stream;
     struct ui_file *stream;
     int format;
     int format;
     enum val_prettyprint pretty;
     enum val_prettyprint pretty;
{
{
  if (val == 0)
  if (val == 0)
    {
    {
      printf_filtered ("<address of value unknown>");
      printf_filtered ("<address of value unknown>");
      return 0;
      return 0;
    }
    }
  if (VALUE_OPTIMIZED_OUT (val))
  if (VALUE_OPTIMIZED_OUT (val))
    {
    {
      printf_filtered ("<value optimized out>");
      printf_filtered ("<value optimized out>");
      return 0;
      return 0;
    }
    }
  return LA_VALUE_PRINT (val, stream, format, pretty);
  return LA_VALUE_PRINT (val, stream, format, pretty);
}
}
 
 
/* Called by various <lang>_val_print routines to print
/* Called by various <lang>_val_print routines to print
   TYPE_CODE_INT's.  TYPE is the type.  VALADDR is the address of the
   TYPE_CODE_INT's.  TYPE is the type.  VALADDR is the address of the
   value.  STREAM is where to print the value.  */
   value.  STREAM is where to print the value.  */
 
 
void
void
val_print_type_code_int (type, valaddr, stream)
val_print_type_code_int (type, valaddr, stream)
     struct type *type;
     struct type *type;
     char *valaddr;
     char *valaddr;
     struct ui_file *stream;
     struct ui_file *stream;
{
{
  if (TYPE_LENGTH (type) > sizeof (LONGEST))
  if (TYPE_LENGTH (type) > sizeof (LONGEST))
    {
    {
      LONGEST val;
      LONGEST val;
 
 
      if (TYPE_UNSIGNED (type)
      if (TYPE_UNSIGNED (type)
          && extract_long_unsigned_integer (valaddr, TYPE_LENGTH (type),
          && extract_long_unsigned_integer (valaddr, TYPE_LENGTH (type),
                                            &val))
                                            &val))
        {
        {
          print_longest (stream, 'u', 0, val);
          print_longest (stream, 'u', 0, val);
        }
        }
      else
      else
        {
        {
          /* Signed, or we couldn't turn an unsigned value into a
          /* Signed, or we couldn't turn an unsigned value into a
             LONGEST.  For signed values, one could assume two's
             LONGEST.  For signed values, one could assume two's
             complement (a reasonable assumption, I think) and do
             complement (a reasonable assumption, I think) and do
             better than this.  */
             better than this.  */
          print_hex_chars (stream, (unsigned char *) valaddr,
          print_hex_chars (stream, (unsigned char *) valaddr,
                           TYPE_LENGTH (type));
                           TYPE_LENGTH (type));
        }
        }
    }
    }
  else
  else
    {
    {
#ifdef PRINT_TYPELESS_INTEGER
#ifdef PRINT_TYPELESS_INTEGER
      PRINT_TYPELESS_INTEGER (stream, type, unpack_long (type, valaddr));
      PRINT_TYPELESS_INTEGER (stream, type, unpack_long (type, valaddr));
#else
#else
      print_longest (stream, TYPE_UNSIGNED (type) ? 'u' : 'd', 0,
      print_longest (stream, TYPE_UNSIGNED (type) ? 'u' : 'd', 0,
                     unpack_long (type, valaddr));
                     unpack_long (type, valaddr));
#endif
#endif
    }
    }
}
}
 
 
/* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
/* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
   The raison d'etre of this function is to consolidate printing of
   The raison d'etre of this function is to consolidate printing of
   LONG_LONG's into this one function.  Some platforms have long longs but
   LONG_LONG's into this one function.  Some platforms have long longs but
   don't have a printf() that supports "ll" in the format string.  We handle
   don't have a printf() that supports "ll" in the format string.  We handle
   these by seeing if the number is representable as either a signed or
   these by seeing if the number is representable as either a signed or
   unsigned long, depending upon what format is desired, and if not we just
   unsigned long, depending upon what format is desired, and if not we just
   bail out and print the number in hex.
   bail out and print the number in hex.
 
 
   The format chars b,h,w,g are from print_scalar_formatted().  If USE_LOCAL,
   The format chars b,h,w,g are from print_scalar_formatted().  If USE_LOCAL,
   format it according to the current language (this should be used for most
   format it according to the current language (this should be used for most
   integers which GDB prints, the exception is things like protocols where
   integers which GDB prints, the exception is things like protocols where
   the format of the integer is a protocol thing, not a user-visible thing).
   the format of the integer is a protocol thing, not a user-visible thing).
 */
 */
 
 
#if defined (CC_HAS_LONG_LONG) && !defined (PRINTF_HAS_LONG_LONG)
#if defined (CC_HAS_LONG_LONG) && !defined (PRINTF_HAS_LONG_LONG)
static void print_decimal (struct ui_file * stream, char *sign,
static void print_decimal (struct ui_file * stream, char *sign,
                           int use_local, ULONGEST val_ulong);
                           int use_local, ULONGEST val_ulong);
static void
static void
print_decimal (stream, sign, use_local, val_ulong)
print_decimal (stream, sign, use_local, val_ulong)
     struct ui_file *stream;
     struct ui_file *stream;
     char *sign;
     char *sign;
     int use_local;
     int use_local;
     ULONGEST val_ulong;
     ULONGEST val_ulong;
{
{
  unsigned long temp[3];
  unsigned long temp[3];
  int i = 0;
  int i = 0;
  do
  do
    {
    {
      temp[i] = val_ulong % (1000 * 1000 * 1000);
      temp[i] = val_ulong % (1000 * 1000 * 1000);
      val_ulong /= (1000 * 1000 * 1000);
      val_ulong /= (1000 * 1000 * 1000);
      i++;
      i++;
    }
    }
  while (val_ulong != 0 && i < (sizeof (temp) / sizeof (temp[0])));
  while (val_ulong != 0 && i < (sizeof (temp) / sizeof (temp[0])));
  switch (i)
  switch (i)
    {
    {
    case 1:
    case 1:
      fprintf_filtered (stream, "%s%lu",
      fprintf_filtered (stream, "%s%lu",
                        sign, temp[0]);
                        sign, temp[0]);
      break;
      break;
    case 2:
    case 2:
      fprintf_filtered (stream, "%s%lu%09lu",
      fprintf_filtered (stream, "%s%lu%09lu",
                        sign, temp[1], temp[0]);
                        sign, temp[1], temp[0]);
      break;
      break;
    case 3:
    case 3:
      fprintf_filtered (stream, "%s%lu%09lu%09lu",
      fprintf_filtered (stream, "%s%lu%09lu%09lu",
                        sign, temp[2], temp[1], temp[0]);
                        sign, temp[2], temp[1], temp[0]);
      break;
      break;
    default:
    default:
      abort ();
      abort ();
    }
    }
  return;
  return;
}
}
#endif
#endif
 
 
void
void
print_longest (stream, format, use_local, val_long)
print_longest (stream, format, use_local, val_long)
     struct ui_file *stream;
     struct ui_file *stream;
     int format;
     int format;
     int use_local;
     int use_local;
     LONGEST val_long;
     LONGEST val_long;
{
{
#if defined (CC_HAS_LONG_LONG) && !defined (PRINTF_HAS_LONG_LONG)
#if defined (CC_HAS_LONG_LONG) && !defined (PRINTF_HAS_LONG_LONG)
  if (sizeof (long) < sizeof (LONGEST))
  if (sizeof (long) < sizeof (LONGEST))
    {
    {
      switch (format)
      switch (format)
        {
        {
        case 'd':
        case 'd':
          {
          {
            /* Print a signed value, that doesn't fit in a long */
            /* Print a signed value, that doesn't fit in a long */
            if ((long) val_long != val_long)
            if ((long) val_long != val_long)
              {
              {
                if (val_long < 0)
                if (val_long < 0)
                  print_decimal (stream, "-", use_local, -val_long);
                  print_decimal (stream, "-", use_local, -val_long);
                else
                else
                  print_decimal (stream, "", use_local, val_long);
                  print_decimal (stream, "", use_local, val_long);
                return;
                return;
              }
              }
            break;
            break;
          }
          }
        case 'u':
        case 'u':
          {
          {
            /* Print an unsigned value, that doesn't fit in a long */
            /* Print an unsigned value, that doesn't fit in a long */
            if ((unsigned long) val_long != (ULONGEST) val_long)
            if ((unsigned long) val_long != (ULONGEST) val_long)
              {
              {
                print_decimal (stream, "", use_local, val_long);
                print_decimal (stream, "", use_local, val_long);
                return;
                return;
              }
              }
            break;
            break;
          }
          }
        case 'x':
        case 'x':
        case 'o':
        case 'o':
        case 'b':
        case 'b':
        case 'h':
        case 'h':
        case 'w':
        case 'w':
        case 'g':
        case 'g':
          /* Print as unsigned value, must fit completely in unsigned long */
          /* Print as unsigned value, must fit completely in unsigned long */
          {
          {
            unsigned long temp = val_long;
            unsigned long temp = val_long;
            if (temp != val_long)
            if (temp != val_long)
              {
              {
                /* Urk, can't represent value in long so print in hex.
                /* Urk, can't represent value in long so print in hex.
                   Do shift in two operations so that if sizeof (long)
                   Do shift in two operations so that if sizeof (long)
                   == sizeof (LONGEST) we can avoid warnings from
                   == sizeof (LONGEST) we can avoid warnings from
                   picky compilers about shifts >= the size of the
                   picky compilers about shifts >= the size of the
                   shiftee in bits */
                   shiftee in bits */
                unsigned long vbot = (unsigned long) val_long;
                unsigned long vbot = (unsigned long) val_long;
                LONGEST temp = (val_long >> (sizeof (long) * HOST_CHAR_BIT - 1));
                LONGEST temp = (val_long >> (sizeof (long) * HOST_CHAR_BIT - 1));
                unsigned long vtop = temp >> 1;
                unsigned long vtop = temp >> 1;
                fprintf_filtered (stream, "0x%lx%08lx", vtop, vbot);
                fprintf_filtered (stream, "0x%lx%08lx", vtop, vbot);
                return;
                return;
              }
              }
            break;
            break;
          }
          }
        }
        }
    }
    }
#endif
#endif
 
 
#if defined (CC_HAS_LONG_LONG) && defined (PRINTF_HAS_LONG_LONG)
#if defined (CC_HAS_LONG_LONG) && defined (PRINTF_HAS_LONG_LONG)
  switch (format)
  switch (format)
    {
    {
    case 'd':
    case 'd':
      fprintf_filtered (stream,
      fprintf_filtered (stream,
                        use_local ? local_decimal_format_custom ("ll")
                        use_local ? local_decimal_format_custom ("ll")
                        : "%lld",
                        : "%lld",
                        val_long);
                        val_long);
      break;
      break;
    case 'u':
    case 'u':
      fprintf_filtered (stream, "%llu", val_long);
      fprintf_filtered (stream, "%llu", val_long);
      break;
      break;
    case 'x':
    case 'x':
      fprintf_filtered (stream,
      fprintf_filtered (stream,
                        use_local ? local_hex_format_custom ("ll")
                        use_local ? local_hex_format_custom ("ll")
                        : "%llx",
                        : "%llx",
                        val_long);
                        val_long);
      break;
      break;
    case 'o':
    case 'o':
      fprintf_filtered (stream,
      fprintf_filtered (stream,
                        use_local ? local_octal_format_custom ("ll")
                        use_local ? local_octal_format_custom ("ll")
                        : "%llo",
                        : "%llo",
                        val_long);
                        val_long);
      break;
      break;
    case 'b':
    case 'b':
      fprintf_filtered (stream, local_hex_format_custom ("02ll"), val_long);
      fprintf_filtered (stream, local_hex_format_custom ("02ll"), val_long);
      break;
      break;
    case 'h':
    case 'h':
      fprintf_filtered (stream, local_hex_format_custom ("04ll"), val_long);
      fprintf_filtered (stream, local_hex_format_custom ("04ll"), val_long);
      break;
      break;
    case 'w':
    case 'w':
      fprintf_filtered (stream, local_hex_format_custom ("08ll"), val_long);
      fprintf_filtered (stream, local_hex_format_custom ("08ll"), val_long);
      break;
      break;
    case 'g':
    case 'g':
      fprintf_filtered (stream, local_hex_format_custom ("016ll"), val_long);
      fprintf_filtered (stream, local_hex_format_custom ("016ll"), val_long);
      break;
      break;
    default:
    default:
      abort ();
      abort ();
    }
    }
#else /* !CC_HAS_LONG_LONG || !PRINTF_HAS_LONG_LONG */
#else /* !CC_HAS_LONG_LONG || !PRINTF_HAS_LONG_LONG */
  /* In the following it is important to coerce (val_long) to a long. It does
  /* In the following it is important to coerce (val_long) to a long. It does
     nothing if !LONG_LONG, but it will chop off the top half (which we know
     nothing if !LONG_LONG, but it will chop off the top half (which we know
     we can ignore) if the host supports long longs.  */
     we can ignore) if the host supports long longs.  */
 
 
  switch (format)
  switch (format)
    {
    {
    case 'd':
    case 'd':
      fprintf_filtered (stream,
      fprintf_filtered (stream,
                        use_local ? local_decimal_format_custom ("l")
                        use_local ? local_decimal_format_custom ("l")
                        : "%ld",
                        : "%ld",
                        (long) val_long);
                        (long) val_long);
      break;
      break;
    case 'u':
    case 'u':
      fprintf_filtered (stream, "%lu", (unsigned long) val_long);
      fprintf_filtered (stream, "%lu", (unsigned long) val_long);
      break;
      break;
    case 'x':
    case 'x':
      fprintf_filtered (stream,
      fprintf_filtered (stream,
                        use_local ? local_hex_format_custom ("l")
                        use_local ? local_hex_format_custom ("l")
                        : "%lx",
                        : "%lx",
                        (unsigned long) val_long);
                        (unsigned long) val_long);
      break;
      break;
    case 'o':
    case 'o':
      fprintf_filtered (stream,
      fprintf_filtered (stream,
                        use_local ? local_octal_format_custom ("l")
                        use_local ? local_octal_format_custom ("l")
                        : "%lo",
                        : "%lo",
                        (unsigned long) val_long);
                        (unsigned long) val_long);
      break;
      break;
    case 'b':
    case 'b':
      fprintf_filtered (stream, local_hex_format_custom ("02l"),
      fprintf_filtered (stream, local_hex_format_custom ("02l"),
                        (unsigned long) val_long);
                        (unsigned long) val_long);
      break;
      break;
    case 'h':
    case 'h':
      fprintf_filtered (stream, local_hex_format_custom ("04l"),
      fprintf_filtered (stream, local_hex_format_custom ("04l"),
                        (unsigned long) val_long);
                        (unsigned long) val_long);
      break;
      break;
    case 'w':
    case 'w':
      fprintf_filtered (stream, local_hex_format_custom ("08l"),
      fprintf_filtered (stream, local_hex_format_custom ("08l"),
                        (unsigned long) val_long);
                        (unsigned long) val_long);
      break;
      break;
    case 'g':
    case 'g':
      fprintf_filtered (stream, local_hex_format_custom ("016l"),
      fprintf_filtered (stream, local_hex_format_custom ("016l"),
                        (unsigned long) val_long);
                        (unsigned long) val_long);
      break;
      break;
    default:
    default:
      abort ();
      abort ();
    }
    }
#endif /* CC_HAS_LONG_LONG || PRINTF_HAS_LONG_LONG */
#endif /* CC_HAS_LONG_LONG || PRINTF_HAS_LONG_LONG */
}
}
 
 
#if 0
#if 0
void
void
strcat_longest (format, use_local, val_long, buf, buflen)
strcat_longest (format, use_local, val_long, buf, buflen)
     int format;
     int format;
     int use_local;
     int use_local;
     LONGEST val_long;
     LONGEST val_long;
     char *buf;
     char *buf;
     int buflen;                /* ignored, for now */
     int buflen;                /* ignored, for now */
{
{
#if defined (CC_HAS_LONG_LONG) && !defined (PRINTF_HAS_LONG_LONG)
#if defined (CC_HAS_LONG_LONG) && !defined (PRINTF_HAS_LONG_LONG)
  long vtop, vbot;
  long vtop, vbot;
 
 
  vtop = val_long >> (sizeof (long) * HOST_CHAR_BIT);
  vtop = val_long >> (sizeof (long) * HOST_CHAR_BIT);
  vbot = (long) val_long;
  vbot = (long) val_long;
 
 
  if ((format == 'd' && (val_long < INT_MIN || val_long > INT_MAX))
  if ((format == 'd' && (val_long < INT_MIN || val_long > INT_MAX))
      || ((format == 'u' || format == 'x') && (unsigned long long) val_long > UINT_MAX))
      || ((format == 'u' || format == 'x') && (unsigned long long) val_long > UINT_MAX))
    {
    {
      sprintf (buf, "0x%lx%08lx", vtop, vbot);
      sprintf (buf, "0x%lx%08lx", vtop, vbot);
      return;
      return;
    }
    }
#endif
#endif
 
 
#ifdef PRINTF_HAS_LONG_LONG
#ifdef PRINTF_HAS_LONG_LONG
  switch (format)
  switch (format)
    {
    {
    case 'd':
    case 'd':
      sprintf (buf,
      sprintf (buf,
               (use_local ? local_decimal_format_custom ("ll") : "%lld"),
               (use_local ? local_decimal_format_custom ("ll") : "%lld"),
               val_long);
               val_long);
      break;
      break;
    case 'u':
    case 'u':
      sprintf (buf, "%llu", val_long);
      sprintf (buf, "%llu", val_long);
      break;
      break;
    case 'x':
    case 'x':
      sprintf (buf,
      sprintf (buf,
               (use_local ? local_hex_format_custom ("ll") : "%llx"),
               (use_local ? local_hex_format_custom ("ll") : "%llx"),
 
 
               val_long);
               val_long);
      break;
      break;
    case 'o':
    case 'o':
      sprintf (buf,
      sprintf (buf,
               (use_local ? local_octal_format_custom ("ll") : "%llo"),
               (use_local ? local_octal_format_custom ("ll") : "%llo"),
               val_long);
               val_long);
      break;
      break;
    case 'b':
    case 'b':
      sprintf (buf, local_hex_format_custom ("02ll"), val_long);
      sprintf (buf, local_hex_format_custom ("02ll"), val_long);
      break;
      break;
    case 'h':
    case 'h':
      sprintf (buf, local_hex_format_custom ("04ll"), val_long);
      sprintf (buf, local_hex_format_custom ("04ll"), val_long);
      break;
      break;
    case 'w':
    case 'w':
      sprintf (buf, local_hex_format_custom ("08ll"), val_long);
      sprintf (buf, local_hex_format_custom ("08ll"), val_long);
      break;
      break;
    case 'g':
    case 'g':
      sprintf (buf, local_hex_format_custom ("016ll"), val_long);
      sprintf (buf, local_hex_format_custom ("016ll"), val_long);
      break;
      break;
    default:
    default:
      abort ();
      abort ();
    }
    }
#else /* !PRINTF_HAS_LONG_LONG */
#else /* !PRINTF_HAS_LONG_LONG */
  /* In the following it is important to coerce (val_long) to a long. It does
  /* In the following it is important to coerce (val_long) to a long. It does
     nothing if !LONG_LONG, but it will chop off the top half (which we know
     nothing if !LONG_LONG, but it will chop off the top half (which we know
     we can ignore) if the host supports long longs.  */
     we can ignore) if the host supports long longs.  */
 
 
  switch (format)
  switch (format)
    {
    {
    case 'd':
    case 'd':
      sprintf (buf, (use_local ? local_decimal_format_custom ("l") : "%ld"),
      sprintf (buf, (use_local ? local_decimal_format_custom ("l") : "%ld"),
               ((long) val_long));
               ((long) val_long));
      break;
      break;
    case 'u':
    case 'u':
      sprintf (buf, "%lu", ((unsigned long) val_long));
      sprintf (buf, "%lu", ((unsigned long) val_long));
      break;
      break;
    case 'x':
    case 'x':
      sprintf (buf, (use_local ? local_hex_format_custom ("l") : "%lx"),
      sprintf (buf, (use_local ? local_hex_format_custom ("l") : "%lx"),
               ((long) val_long));
               ((long) val_long));
      break;
      break;
    case 'o':
    case 'o':
      sprintf (buf, (use_local ? local_octal_format_custom ("l") : "%lo"),
      sprintf (buf, (use_local ? local_octal_format_custom ("l") : "%lo"),
               ((long) val_long));
               ((long) val_long));
      break;
      break;
    case 'b':
    case 'b':
      sprintf (buf, local_hex_format_custom ("02l"),
      sprintf (buf, local_hex_format_custom ("02l"),
               ((long) val_long));
               ((long) val_long));
      break;
      break;
    case 'h':
    case 'h':
      sprintf (buf, local_hex_format_custom ("04l"),
      sprintf (buf, local_hex_format_custom ("04l"),
               ((long) val_long));
               ((long) val_long));
      break;
      break;
    case 'w':
    case 'w':
      sprintf (buf, local_hex_format_custom ("08l"),
      sprintf (buf, local_hex_format_custom ("08l"),
               ((long) val_long));
               ((long) val_long));
      break;
      break;
    case 'g':
    case 'g':
      sprintf (buf, local_hex_format_custom ("016l"),
      sprintf (buf, local_hex_format_custom ("016l"),
               ((long) val_long));
               ((long) val_long));
      break;
      break;
    default:
    default:
      abort ();
      abort ();
    }
    }
 
 
#endif /* !PRINTF_HAS_LONG_LONG */
#endif /* !PRINTF_HAS_LONG_LONG */
}
}
#endif
#endif
 
 
/* This used to be a macro, but I don't think it is called often enough
/* This used to be a macro, but I don't think it is called often enough
   to merit such treatment.  */
   to merit such treatment.  */
/* Convert a LONGEST to an int.  This is used in contexts (e.g. number of
/* Convert a LONGEST to an int.  This is used in contexts (e.g. number of
   arguments to a function, number in a value history, register number, etc.)
   arguments to a function, number in a value history, register number, etc.)
   where the value must not be larger than can fit in an int.  */
   where the value must not be larger than can fit in an int.  */
 
 
int
int
longest_to_int (arg)
longest_to_int (arg)
     LONGEST arg;
     LONGEST arg;
{
{
  /* Let the compiler do the work */
  /* Let the compiler do the work */
  int rtnval = (int) arg;
  int rtnval = (int) arg;
 
 
  /* Check for overflows or underflows */
  /* Check for overflows or underflows */
  if (sizeof (LONGEST) > sizeof (int))
  if (sizeof (LONGEST) > sizeof (int))
    {
    {
      if (rtnval != arg)
      if (rtnval != arg)
        {
        {
          error ("Value out of range.");
          error ("Value out of range.");
        }
        }
    }
    }
  return (rtnval);
  return (rtnval);
}
}
 
 
/* Print a floating point value of type TYPE, pointed to in GDB by VALADDR,
/* Print a floating point value of type TYPE, pointed to in GDB by VALADDR,
   on STREAM.  */
   on STREAM.  */
 
 
void
void
print_floating (valaddr, type, stream)
print_floating (valaddr, type, stream)
     char *valaddr;
     char *valaddr;
     struct type *type;
     struct type *type;
     struct ui_file *stream;
     struct ui_file *stream;
{
{
  DOUBLEST doub;
  DOUBLEST doub;
  int inv;
  int inv;
  unsigned len = TYPE_LENGTH (type);
  unsigned len = TYPE_LENGTH (type);
 
 
#if defined (IEEE_FLOAT)
#if defined (IEEE_FLOAT)
 
 
  /* Check for NaN's.  Note that this code does not depend on us being
  /* Check for NaN's.  Note that this code does not depend on us being
     on an IEEE conforming system.  It only depends on the target
     on an IEEE conforming system.  It only depends on the target
     machine using IEEE representation.  This means (a)
     machine using IEEE representation.  This means (a)
     cross-debugging works right, and (2) IEEE_FLOAT can (and should)
     cross-debugging works right, and (2) IEEE_FLOAT can (and should)
     be defined for systems like the 68881, which uses IEEE
     be defined for systems like the 68881, which uses IEEE
     representation, but is not IEEE conforming.  */
     representation, but is not IEEE conforming.  */
 
 
  {
  {
    unsigned long low, high;
    unsigned long low, high;
    /* Is the sign bit 0?  */
    /* Is the sign bit 0?  */
    int nonnegative;
    int nonnegative;
    /* Is it is a NaN (i.e. the exponent is all ones and
    /* Is it is a NaN (i.e. the exponent is all ones and
       the fraction is nonzero)?  */
       the fraction is nonzero)?  */
    int is_nan;
    int is_nan;
 
 
    /* For lint, initialize these two variables to suppress warning: */
    /* For lint, initialize these two variables to suppress warning: */
    low = high = nonnegative = 0;
    low = high = nonnegative = 0;
    if (len == 4)
    if (len == 4)
      {
      {
        /* It's single precision.  */
        /* It's single precision.  */
        /* Assume that floating point byte order is the same as
        /* Assume that floating point byte order is the same as
           integer byte order.  */
           integer byte order.  */
        low = extract_unsigned_integer (valaddr, 4);
        low = extract_unsigned_integer (valaddr, 4);
        nonnegative = ((low & 0x80000000) == 0);
        nonnegative = ((low & 0x80000000) == 0);
        is_nan = ((((low >> 23) & 0xFF) == 0xFF)
        is_nan = ((((low >> 23) & 0xFF) == 0xFF)
                  && 0 != (low & 0x7FFFFF));
                  && 0 != (low & 0x7FFFFF));
        low &= 0x7fffff;
        low &= 0x7fffff;
        high = 0;
        high = 0;
      }
      }
    else if (len == 8)
    else if (len == 8)
      {
      {
        /* It's double precision.  Get the high and low words.  */
        /* It's double precision.  Get the high and low words.  */
 
 
        /* Assume that floating point byte order is the same as
        /* Assume that floating point byte order is the same as
           integer byte order.  */
           integer byte order.  */
        if (TARGET_BYTE_ORDER == BIG_ENDIAN)
        if (TARGET_BYTE_ORDER == BIG_ENDIAN)
          {
          {
            low = extract_unsigned_integer (valaddr + 4, 4);
            low = extract_unsigned_integer (valaddr + 4, 4);
            high = extract_unsigned_integer (valaddr, 4);
            high = extract_unsigned_integer (valaddr, 4);
          }
          }
        else
        else
          {
          {
            low = extract_unsigned_integer (valaddr, 4);
            low = extract_unsigned_integer (valaddr, 4);
            high = extract_unsigned_integer (valaddr + 4, 4);
            high = extract_unsigned_integer (valaddr + 4, 4);
          }
          }
        nonnegative = ((high & 0x80000000) == 0);
        nonnegative = ((high & 0x80000000) == 0);
        is_nan = (((high >> 20) & 0x7ff) == 0x7ff
        is_nan = (((high >> 20) & 0x7ff) == 0x7ff
                  && !((((high & 0xfffff) == 0)) && (low == 0)));
                  && !((((high & 0xfffff) == 0)) && (low == 0)));
        high &= 0xfffff;
        high &= 0xfffff;
      }
      }
    else
    else
      {
      {
#ifdef TARGET_ANALYZE_FLOATING
#ifdef TARGET_ANALYZE_FLOATING
        TARGET_ANALYZE_FLOATING;
        TARGET_ANALYZE_FLOATING;
#else
#else
        /* Extended.  We can't detect extended NaNs for this target.
        /* Extended.  We can't detect extended NaNs for this target.
           Also note that currently extendeds get nuked to double in
           Also note that currently extendeds get nuked to double in
           REGISTER_CONVERTIBLE.  */
           REGISTER_CONVERTIBLE.  */
        is_nan = 0;
        is_nan = 0;
#endif 
#endif 
      }
      }
 
 
    if (is_nan)
    if (is_nan)
      {
      {
        /* The meaning of the sign and fraction is not defined by IEEE.
        /* The meaning of the sign and fraction is not defined by IEEE.
           But the user might know what they mean.  For example, they
           But the user might know what they mean.  For example, they
           (in an implementation-defined manner) distinguish between
           (in an implementation-defined manner) distinguish between
           signaling and quiet NaN's.  */
           signaling and quiet NaN's.  */
        if (high)
        if (high)
          fprintf_filtered (stream, "-NaN(0x%lx%.8lx)" + !!nonnegative,
          fprintf_filtered (stream, "-NaN(0x%lx%.8lx)" + !!nonnegative,
                            high, low);
                            high, low);
        else
        else
          fprintf_filtered (stream, "-NaN(0x%lx)" + nonnegative, low);
          fprintf_filtered (stream, "-NaN(0x%lx)" + nonnegative, low);
        return;
        return;
      }
      }
  }
  }
#endif /* IEEE_FLOAT.  */
#endif /* IEEE_FLOAT.  */
 
 
  doub = unpack_double (type, valaddr, &inv);
  doub = unpack_double (type, valaddr, &inv);
  if (inv)
  if (inv)
    {
    {
      fprintf_filtered (stream, "<invalid float value>");
      fprintf_filtered (stream, "<invalid float value>");
      return;
      return;
    }
    }
 
 
  if (len < sizeof (double))
  if (len < sizeof (double))
      fprintf_filtered (stream, "%.9g", (double) doub);
      fprintf_filtered (stream, "%.9g", (double) doub);
  else if (len == sizeof (double))
  else if (len == sizeof (double))
      fprintf_filtered (stream, "%.17g", (double) doub);
      fprintf_filtered (stream, "%.17g", (double) doub);
  else
  else
#ifdef PRINTF_HAS_LONG_DOUBLE
#ifdef PRINTF_HAS_LONG_DOUBLE
    fprintf_filtered (stream, "%.35Lg", doub);
    fprintf_filtered (stream, "%.35Lg", doub);
#else
#else
    /* This at least wins with values that are representable as doubles */
    /* This at least wins with values that are representable as doubles */
    fprintf_filtered (stream, "%.17g", (double) doub);
    fprintf_filtered (stream, "%.17g", (double) doub);
#endif
#endif
}
}
 
 
void
void
print_binary_chars (stream, valaddr, len)
print_binary_chars (stream, valaddr, len)
     struct ui_file *stream;
     struct ui_file *stream;
     unsigned char *valaddr;
     unsigned char *valaddr;
     unsigned len;
     unsigned len;
{
{
 
 
#define BITS_IN_BYTES 8
#define BITS_IN_BYTES 8
 
 
  unsigned char *p;
  unsigned char *p;
  unsigned int i;
  unsigned int i;
  int b;
  int b;
 
 
  /* Declared "int" so it will be signed.
  /* Declared "int" so it will be signed.
   * This ensures that right shift will shift in zeros.
   * This ensures that right shift will shift in zeros.
   */
   */
  const int mask = 0x080;
  const int mask = 0x080;
 
 
  /* FIXME: We should be not printing leading zeroes in most cases.  */
  /* FIXME: We should be not printing leading zeroes in most cases.  */
 
 
  fprintf_filtered (stream, local_binary_format_prefix ());
  fprintf_filtered (stream, local_binary_format_prefix ());
  if (TARGET_BYTE_ORDER == BIG_ENDIAN)
  if (TARGET_BYTE_ORDER == BIG_ENDIAN)
    {
    {
      for (p = valaddr;
      for (p = valaddr;
           p < valaddr + len;
           p < valaddr + len;
           p++)
           p++)
        {
        {
          /* Every byte has 8 binary characters; peel off
          /* Every byte has 8 binary characters; peel off
           * and print from the MSB end.
           * and print from the MSB end.
           */
           */
          for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
          for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
            {
            {
              if (*p & (mask >> i))
              if (*p & (mask >> i))
                b = 1;
                b = 1;
              else
              else
                b = 0;
                b = 0;
 
 
              fprintf_filtered (stream, "%1d", b);
              fprintf_filtered (stream, "%1d", b);
            }
            }
        }
        }
    }
    }
  else
  else
    {
    {
      for (p = valaddr + len - 1;
      for (p = valaddr + len - 1;
           p >= valaddr;
           p >= valaddr;
           p--)
           p--)
        {
        {
          for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
          for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
            {
            {
              if (*p & (mask >> i))
              if (*p & (mask >> i))
                b = 1;
                b = 1;
              else
              else
                b = 0;
                b = 0;
 
 
              fprintf_filtered (stream, "%1d", b);
              fprintf_filtered (stream, "%1d", b);
            }
            }
        }
        }
    }
    }
  fprintf_filtered (stream, local_binary_format_suffix ());
  fprintf_filtered (stream, local_binary_format_suffix ());
}
}
 
 
/* VALADDR points to an integer of LEN bytes.
/* VALADDR points to an integer of LEN bytes.
 * Print it in octal on stream or format it in buf.
 * Print it in octal on stream or format it in buf.
 */
 */
void
void
print_octal_chars (stream, valaddr, len)
print_octal_chars (stream, valaddr, len)
     struct ui_file *stream;
     struct ui_file *stream;
     unsigned char *valaddr;
     unsigned char *valaddr;
     unsigned len;
     unsigned len;
{
{
  unsigned char *p;
  unsigned char *p;
  unsigned char octa1, octa2, octa3, carry;
  unsigned char octa1, octa2, octa3, carry;
  int cycle;
  int cycle;
 
 
  /* FIXME: We should be not printing leading zeroes in most cases.  */
  /* FIXME: We should be not printing leading zeroes in most cases.  */
 
 
 
 
  /* Octal is 3 bits, which doesn't fit.  Yuk.  So we have to track
  /* Octal is 3 bits, which doesn't fit.  Yuk.  So we have to track
   * the extra bits, which cycle every three bytes:
   * the extra bits, which cycle every three bytes:
   *
   *
   * Byte side:       0            1             2          3
   * Byte side:       0            1             2          3
   *                         |             |            |            |
   *                         |             |            |            |
   * bit number   123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 |
   * bit number   123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 |
   *
   *
   * Octal side:   0   1   carry  3   4  carry ...
   * Octal side:   0   1   carry  3   4  carry ...
   *
   *
   * Cycle number:    0             1            2
   * Cycle number:    0             1            2
   *
   *
   * But of course we are printing from the high side, so we have to
   * But of course we are printing from the high side, so we have to
   * figure out where in the cycle we are so that we end up with no
   * figure out where in the cycle we are so that we end up with no
   * left over bits at the end.
   * left over bits at the end.
   */
   */
#define BITS_IN_OCTAL 3
#define BITS_IN_OCTAL 3
#define HIGH_ZERO     0340
#define HIGH_ZERO     0340
#define LOW_ZERO      0016
#define LOW_ZERO      0016
#define CARRY_ZERO    0003
#define CARRY_ZERO    0003
#define HIGH_ONE      0200
#define HIGH_ONE      0200
#define MID_ONE       0160
#define MID_ONE       0160
#define LOW_ONE       0016
#define LOW_ONE       0016
#define CARRY_ONE     0001
#define CARRY_ONE     0001
#define HIGH_TWO      0300
#define HIGH_TWO      0300
#define MID_TWO       0070
#define MID_TWO       0070
#define LOW_TWO       0007
#define LOW_TWO       0007
 
 
  /* For 32 we start in cycle 2, with two bits and one bit carry;
  /* For 32 we start in cycle 2, with two bits and one bit carry;
   * for 64 in cycle in cycle 1, with one bit and a two bit carry.
   * for 64 in cycle in cycle 1, with one bit and a two bit carry.
   */
   */
  cycle = (len * BITS_IN_BYTES) % BITS_IN_OCTAL;
  cycle = (len * BITS_IN_BYTES) % BITS_IN_OCTAL;
  carry = 0;
  carry = 0;
 
 
  fprintf_filtered (stream, local_octal_format_prefix ());
  fprintf_filtered (stream, local_octal_format_prefix ());
  if (TARGET_BYTE_ORDER == BIG_ENDIAN)
  if (TARGET_BYTE_ORDER == BIG_ENDIAN)
    {
    {
      for (p = valaddr;
      for (p = valaddr;
           p < valaddr + len;
           p < valaddr + len;
           p++)
           p++)
        {
        {
          switch (cycle)
          switch (cycle)
            {
            {
            case 0:
            case 0:
              /* No carry in, carry out two bits.
              /* No carry in, carry out two bits.
               */
               */
              octa1 = (HIGH_ZERO & *p) >> 5;
              octa1 = (HIGH_ZERO & *p) >> 5;
              octa2 = (LOW_ZERO & *p) >> 2;
              octa2 = (LOW_ZERO & *p) >> 2;
              carry = (CARRY_ZERO & *p);
              carry = (CARRY_ZERO & *p);
              fprintf_filtered (stream, "%o", octa1);
              fprintf_filtered (stream, "%o", octa1);
              fprintf_filtered (stream, "%o", octa2);
              fprintf_filtered (stream, "%o", octa2);
              break;
              break;
 
 
            case 1:
            case 1:
              /* Carry in two bits, carry out one bit.
              /* Carry in two bits, carry out one bit.
               */
               */
              octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
              octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
              octa2 = (MID_ONE & *p) >> 4;
              octa2 = (MID_ONE & *p) >> 4;
              octa3 = (LOW_ONE & *p) >> 1;
              octa3 = (LOW_ONE & *p) >> 1;
              carry = (CARRY_ONE & *p);
              carry = (CARRY_ONE & *p);
              fprintf_filtered (stream, "%o", octa1);
              fprintf_filtered (stream, "%o", octa1);
              fprintf_filtered (stream, "%o", octa2);
              fprintf_filtered (stream, "%o", octa2);
              fprintf_filtered (stream, "%o", octa3);
              fprintf_filtered (stream, "%o", octa3);
              break;
              break;
 
 
            case 2:
            case 2:
              /* Carry in one bit, no carry out.
              /* Carry in one bit, no carry out.
               */
               */
              octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
              octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
              octa2 = (MID_TWO & *p) >> 3;
              octa2 = (MID_TWO & *p) >> 3;
              octa3 = (LOW_TWO & *p);
              octa3 = (LOW_TWO & *p);
              carry = 0;
              carry = 0;
              fprintf_filtered (stream, "%o", octa1);
              fprintf_filtered (stream, "%o", octa1);
              fprintf_filtered (stream, "%o", octa2);
              fprintf_filtered (stream, "%o", octa2);
              fprintf_filtered (stream, "%o", octa3);
              fprintf_filtered (stream, "%o", octa3);
              break;
              break;
 
 
            default:
            default:
              error ("Internal error in octal conversion;");
              error ("Internal error in octal conversion;");
            }
            }
 
 
          cycle++;
          cycle++;
          cycle = cycle % BITS_IN_OCTAL;
          cycle = cycle % BITS_IN_OCTAL;
        }
        }
    }
    }
  else
  else
    {
    {
      for (p = valaddr + len - 1;
      for (p = valaddr + len - 1;
           p >= valaddr;
           p >= valaddr;
           p--)
           p--)
        {
        {
          switch (cycle)
          switch (cycle)
            {
            {
            case 0:
            case 0:
              /* Carry out, no carry in */
              /* Carry out, no carry in */
              octa1 = (HIGH_ZERO & *p) >> 5;
              octa1 = (HIGH_ZERO & *p) >> 5;
              octa2 = (LOW_ZERO & *p) >> 2;
              octa2 = (LOW_ZERO & *p) >> 2;
              carry = (CARRY_ZERO & *p);
              carry = (CARRY_ZERO & *p);
              fprintf_filtered (stream, "%o", octa1);
              fprintf_filtered (stream, "%o", octa1);
              fprintf_filtered (stream, "%o", octa2);
              fprintf_filtered (stream, "%o", octa2);
              break;
              break;
 
 
            case 1:
            case 1:
              /* Carry in, carry out */
              /* Carry in, carry out */
              octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
              octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
              octa2 = (MID_ONE & *p) >> 4;
              octa2 = (MID_ONE & *p) >> 4;
              octa3 = (LOW_ONE & *p) >> 1;
              octa3 = (LOW_ONE & *p) >> 1;
              carry = (CARRY_ONE & *p);
              carry = (CARRY_ONE & *p);
              fprintf_filtered (stream, "%o", octa1);
              fprintf_filtered (stream, "%o", octa1);
              fprintf_filtered (stream, "%o", octa2);
              fprintf_filtered (stream, "%o", octa2);
              fprintf_filtered (stream, "%o", octa3);
              fprintf_filtered (stream, "%o", octa3);
              break;
              break;
 
 
            case 2:
            case 2:
              /* Carry in, no carry out */
              /* Carry in, no carry out */
              octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
              octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
              octa2 = (MID_TWO & *p) >> 3;
              octa2 = (MID_TWO & *p) >> 3;
              octa3 = (LOW_TWO & *p);
              octa3 = (LOW_TWO & *p);
              carry = 0;
              carry = 0;
              fprintf_filtered (stream, "%o", octa1);
              fprintf_filtered (stream, "%o", octa1);
              fprintf_filtered (stream, "%o", octa2);
              fprintf_filtered (stream, "%o", octa2);
              fprintf_filtered (stream, "%o", octa3);
              fprintf_filtered (stream, "%o", octa3);
              break;
              break;
 
 
            default:
            default:
              error ("Internal error in octal conversion;");
              error ("Internal error in octal conversion;");
            }
            }
 
 
          cycle++;
          cycle++;
          cycle = cycle % BITS_IN_OCTAL;
          cycle = cycle % BITS_IN_OCTAL;
        }
        }
    }
    }
 
 
  fprintf_filtered (stream, local_octal_format_suffix ());
  fprintf_filtered (stream, local_octal_format_suffix ());
}
}
 
 
/* VALADDR points to an integer of LEN bytes.
/* VALADDR points to an integer of LEN bytes.
 * Print it in decimal on stream or format it in buf.
 * Print it in decimal on stream or format it in buf.
 */
 */
void
void
print_decimal_chars (stream, valaddr, len)
print_decimal_chars (stream, valaddr, len)
     struct ui_file *stream;
     struct ui_file *stream;
     unsigned char *valaddr;
     unsigned char *valaddr;
     unsigned len;
     unsigned len;
{
{
#define TEN             10
#define TEN             10
#define TWO_TO_FOURTH   16
#define TWO_TO_FOURTH   16
#define CARRY_OUT(  x ) ((x) / TEN)     /* extend char to int */
#define CARRY_OUT(  x ) ((x) / TEN)     /* extend char to int */
#define CARRY_LEFT( x ) ((x) % TEN)
#define CARRY_LEFT( x ) ((x) % TEN)
#define SHIFT( x )      ((x) << 4)
#define SHIFT( x )      ((x) << 4)
#define START_P \
#define START_P \
        ((TARGET_BYTE_ORDER == BIG_ENDIAN) ? valaddr : valaddr + len - 1)
        ((TARGET_BYTE_ORDER == BIG_ENDIAN) ? valaddr : valaddr + len - 1)
#define NOT_END_P \
#define NOT_END_P \
        ((TARGET_BYTE_ORDER == BIG_ENDIAN) ? (p < valaddr + len) : (p >= valaddr))
        ((TARGET_BYTE_ORDER == BIG_ENDIAN) ? (p < valaddr + len) : (p >= valaddr))
#define NEXT_P \
#define NEXT_P \
        ((TARGET_BYTE_ORDER == BIG_ENDIAN) ? p++ : p-- )
        ((TARGET_BYTE_ORDER == BIG_ENDIAN) ? p++ : p-- )
#define LOW_NIBBLE(  x ) ( (x) & 0x00F)
#define LOW_NIBBLE(  x ) ( (x) & 0x00F)
#define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4)
#define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4)
 
 
  unsigned char *p;
  unsigned char *p;
  unsigned char *digits;
  unsigned char *digits;
  int carry;
  int carry;
  int decimal_len;
  int decimal_len;
  int i, j, decimal_digits;
  int i, j, decimal_digits;
  int dummy;
  int dummy;
  int flip;
  int flip;
 
 
  /* Base-ten number is less than twice as many digits
  /* Base-ten number is less than twice as many digits
   * as the base 16 number, which is 2 digits per byte.
   * as the base 16 number, which is 2 digits per byte.
   */
   */
  decimal_len = len * 2 * 2;
  decimal_len = len * 2 * 2;
  digits = (unsigned char *) malloc (decimal_len);
  digits = (unsigned char *) malloc (decimal_len);
  if (digits == NULL)
  if (digits == NULL)
    error ("Can't allocate memory for conversion to decimal.");
    error ("Can't allocate memory for conversion to decimal.");
 
 
  for (i = 0; i < decimal_len; i++)
  for (i = 0; i < decimal_len; i++)
    {
    {
      digits[i] = 0;
      digits[i] = 0;
    }
    }
 
 
  fprintf_filtered (stream, local_decimal_format_prefix ());
  fprintf_filtered (stream, local_decimal_format_prefix ());
 
 
  /* Ok, we have an unknown number of bytes of data to be printed in
  /* Ok, we have an unknown number of bytes of data to be printed in
   * decimal.
   * decimal.
   *
   *
   * Given a hex number (in nibbles) as XYZ, we start by taking X and
   * Given a hex number (in nibbles) as XYZ, we start by taking X and
   * decemalizing it as "x1 x2" in two decimal nibbles.  Then we multiply
   * decemalizing it as "x1 x2" in two decimal nibbles.  Then we multiply
   * the nibbles by 16, add Y and re-decimalize.  Repeat with Z.
   * the nibbles by 16, add Y and re-decimalize.  Repeat with Z.
   *
   *
   * The trick is that "digits" holds a base-10 number, but sometimes
   * The trick is that "digits" holds a base-10 number, but sometimes
   * the individual digits are > 10.
   * the individual digits are > 10.
   *
   *
   * Outer loop is per nibble (hex digit) of input, from MSD end to
   * Outer loop is per nibble (hex digit) of input, from MSD end to
   * LSD end.
   * LSD end.
   */
   */
  decimal_digits = 0;            /* Number of decimal digits so far */
  decimal_digits = 0;            /* Number of decimal digits so far */
  p = START_P;
  p = START_P;
  flip = 0;
  flip = 0;
  while (NOT_END_P)
  while (NOT_END_P)
    {
    {
      /*
      /*
       * Multiply current base-ten number by 16 in place.
       * Multiply current base-ten number by 16 in place.
       * Each digit was between 0 and 9, now is between
       * Each digit was between 0 and 9, now is between
       * 0 and 144.
       * 0 and 144.
       */
       */
      for (j = 0; j < decimal_digits; j++)
      for (j = 0; j < decimal_digits; j++)
        {
        {
          digits[j] = SHIFT (digits[j]);
          digits[j] = SHIFT (digits[j]);
        }
        }
 
 
      /* Take the next nibble off the input and add it to what
      /* Take the next nibble off the input and add it to what
       * we've got in the LSB position.  Bottom 'digit' is now
       * we've got in the LSB position.  Bottom 'digit' is now
       * between 0 and 159.
       * between 0 and 159.
       *
       *
       * "flip" is used to run this loop twice for each byte.
       * "flip" is used to run this loop twice for each byte.
       */
       */
      if (flip == 0)
      if (flip == 0)
        {
        {
          /* Take top nibble.
          /* Take top nibble.
           */
           */
          digits[0] += HIGH_NIBBLE (*p);
          digits[0] += HIGH_NIBBLE (*p);
          flip = 1;
          flip = 1;
        }
        }
      else
      else
        {
        {
          /* Take low nibble and bump our pointer "p".
          /* Take low nibble and bump our pointer "p".
           */
           */
          digits[0] += LOW_NIBBLE (*p);
          digits[0] += LOW_NIBBLE (*p);
          NEXT_P;
          NEXT_P;
          flip = 0;
          flip = 0;
        }
        }
 
 
      /* Re-decimalize.  We have to do this often enough
      /* Re-decimalize.  We have to do this often enough
       * that we don't overflow, but once per nibble is
       * that we don't overflow, but once per nibble is
       * overkill.  Easier this way, though.  Note that the
       * overkill.  Easier this way, though.  Note that the
       * carry is often larger than 10 (e.g. max initial
       * carry is often larger than 10 (e.g. max initial
       * carry out of lowest nibble is 15, could bubble all
       * carry out of lowest nibble is 15, could bubble all
       * the way up greater than 10).  So we have to do
       * the way up greater than 10).  So we have to do
       * the carrying beyond the last current digit.
       * the carrying beyond the last current digit.
       */
       */
      carry = 0;
      carry = 0;
      for (j = 0; j < decimal_len - 1; j++)
      for (j = 0; j < decimal_len - 1; j++)
        {
        {
          digits[j] += carry;
          digits[j] += carry;
 
 
          /* "/" won't handle an unsigned char with
          /* "/" won't handle an unsigned char with
           * a value that if signed would be negative.
           * a value that if signed would be negative.
           * So extend to longword int via "dummy".
           * So extend to longword int via "dummy".
           */
           */
          dummy = digits[j];
          dummy = digits[j];
          carry = CARRY_OUT (dummy);
          carry = CARRY_OUT (dummy);
          digits[j] = CARRY_LEFT (dummy);
          digits[j] = CARRY_LEFT (dummy);
 
 
          if (j >= decimal_digits && carry == 0)
          if (j >= decimal_digits && carry == 0)
            {
            {
              /*
              /*
               * All higher digits are 0 and we
               * All higher digits are 0 and we
               * no longer have a carry.
               * no longer have a carry.
               *
               *
               * Note: "j" is 0-based, "decimal_digits" is
               * Note: "j" is 0-based, "decimal_digits" is
               *       1-based.
               *       1-based.
               */
               */
              decimal_digits = j + 1;
              decimal_digits = j + 1;
              break;
              break;
            }
            }
        }
        }
    }
    }
 
 
  /* Ok, now "digits" is the decimal representation, with
  /* Ok, now "digits" is the decimal representation, with
   * the "decimal_digits" actual digits.  Print!
   * the "decimal_digits" actual digits.  Print!
   */
   */
  for (i = decimal_digits - 1; i >= 0; i--)
  for (i = decimal_digits - 1; i >= 0; i--)
    {
    {
      fprintf_filtered (stream, "%1d", digits[i]);
      fprintf_filtered (stream, "%1d", digits[i]);
    }
    }
  free (digits);
  free (digits);
 
 
  fprintf_filtered (stream, local_decimal_format_suffix ());
  fprintf_filtered (stream, local_decimal_format_suffix ());
}
}
 
 
/* VALADDR points to an integer of LEN bytes.  Print it in hex on stream.  */
/* VALADDR points to an integer of LEN bytes.  Print it in hex on stream.  */
 
 
static void
static void
print_hex_chars (stream, valaddr, len)
print_hex_chars (stream, valaddr, len)
     struct ui_file *stream;
     struct ui_file *stream;
     unsigned char *valaddr;
     unsigned char *valaddr;
     unsigned len;
     unsigned len;
{
{
  unsigned char *p;
  unsigned char *p;
 
 
  /* FIXME: We should be not printing leading zeroes in most cases.  */
  /* FIXME: We should be not printing leading zeroes in most cases.  */
 
 
  fprintf_filtered (stream, local_hex_format_prefix ());
  fprintf_filtered (stream, local_hex_format_prefix ());
  if (TARGET_BYTE_ORDER == BIG_ENDIAN)
  if (TARGET_BYTE_ORDER == BIG_ENDIAN)
    {
    {
      for (p = valaddr;
      for (p = valaddr;
           p < valaddr + len;
           p < valaddr + len;
           p++)
           p++)
        {
        {
          fprintf_filtered (stream, "%02x", *p);
          fprintf_filtered (stream, "%02x", *p);
        }
        }
    }
    }
  else
  else
    {
    {
      for (p = valaddr + len - 1;
      for (p = valaddr + len - 1;
           p >= valaddr;
           p >= valaddr;
           p--)
           p--)
        {
        {
          fprintf_filtered (stream, "%02x", *p);
          fprintf_filtered (stream, "%02x", *p);
        }
        }
    }
    }
  fprintf_filtered (stream, local_hex_format_suffix ());
  fprintf_filtered (stream, local_hex_format_suffix ());
}
}
 
 
/*  Called by various <lang>_val_print routines to print elements of an
/*  Called by various <lang>_val_print routines to print elements of an
   array in the form "<elem1>, <elem2>, <elem3>, ...".
   array in the form "<elem1>, <elem2>, <elem3>, ...".
 
 
   (FIXME?)  Assumes array element separator is a comma, which is correct
   (FIXME?)  Assumes array element separator is a comma, which is correct
   for all languages currently handled.
   for all languages currently handled.
   (FIXME?)  Some languages have a notation for repeated array elements,
   (FIXME?)  Some languages have a notation for repeated array elements,
   perhaps we should try to use that notation when appropriate.
   perhaps we should try to use that notation when appropriate.
 */
 */
 
 
void
void
val_print_array_elements (type, valaddr, address, stream, format, deref_ref,
val_print_array_elements (type, valaddr, address, stream, format, deref_ref,
                          recurse, pretty, i)
                          recurse, pretty, i)
     struct type *type;
     struct type *type;
     char *valaddr;
     char *valaddr;
     CORE_ADDR address;
     CORE_ADDR address;
     struct ui_file *stream;
     struct ui_file *stream;
     int format;
     int format;
     int deref_ref;
     int deref_ref;
     int recurse;
     int recurse;
     enum val_prettyprint pretty;
     enum val_prettyprint pretty;
     unsigned int i;
     unsigned int i;
{
{
  unsigned int things_printed = 0;
  unsigned int things_printed = 0;
  unsigned len;
  unsigned len;
  struct type *elttype;
  struct type *elttype;
  unsigned eltlen;
  unsigned eltlen;
  /* Position of the array element we are examining to see
  /* Position of the array element we are examining to see
     whether it is repeated.  */
     whether it is repeated.  */
  unsigned int rep1;
  unsigned int rep1;
  /* Number of repetitions we have detected so far.  */
  /* Number of repetitions we have detected so far.  */
  unsigned int reps;
  unsigned int reps;
 
 
  elttype = TYPE_TARGET_TYPE (type);
  elttype = TYPE_TARGET_TYPE (type);
  eltlen = TYPE_LENGTH (check_typedef (elttype));
  eltlen = TYPE_LENGTH (check_typedef (elttype));
  len = TYPE_LENGTH (type) / eltlen;
  len = TYPE_LENGTH (type) / eltlen;
 
 
  annotate_array_section_begin (i, elttype);
  annotate_array_section_begin (i, elttype);
 
 
  for (; i < len && things_printed < print_max; i++)
  for (; i < len && things_printed < print_max; i++)
    {
    {
      if (i != 0)
      if (i != 0)
        {
        {
          if (prettyprint_arrays)
          if (prettyprint_arrays)
            {
            {
              fprintf_filtered (stream, ",\n");
              fprintf_filtered (stream, ",\n");
              print_spaces_filtered (2 + 2 * recurse, stream);
              print_spaces_filtered (2 + 2 * recurse, stream);
            }
            }
          else
          else
            {
            {
              fprintf_filtered (stream, ", ");
              fprintf_filtered (stream, ", ");
            }
            }
        }
        }
      wrap_here (n_spaces (2 + 2 * recurse));
      wrap_here (n_spaces (2 + 2 * recurse));
 
 
      rep1 = i + 1;
      rep1 = i + 1;
      reps = 1;
      reps = 1;
      while ((rep1 < len) &&
      while ((rep1 < len) &&
             !memcmp (valaddr + i * eltlen, valaddr + rep1 * eltlen, eltlen))
             !memcmp (valaddr + i * eltlen, valaddr + rep1 * eltlen, eltlen))
        {
        {
          ++reps;
          ++reps;
          ++rep1;
          ++rep1;
        }
        }
 
 
      if (reps > repeat_count_threshold)
      if (reps > repeat_count_threshold)
        {
        {
          val_print (elttype, valaddr + i * eltlen, 0, 0, stream, format,
          val_print (elttype, valaddr + i * eltlen, 0, 0, stream, format,
                     deref_ref, recurse + 1, pretty);
                     deref_ref, recurse + 1, pretty);
          annotate_elt_rep (reps);
          annotate_elt_rep (reps);
          fprintf_filtered (stream, " <repeats %u times>", reps);
          fprintf_filtered (stream, " <repeats %u times>", reps);
          annotate_elt_rep_end ();
          annotate_elt_rep_end ();
 
 
          i = rep1 - 1;
          i = rep1 - 1;
          things_printed += repeat_count_threshold;
          things_printed += repeat_count_threshold;
        }
        }
      else
      else
        {
        {
          val_print (elttype, valaddr + i * eltlen, 0, 0, stream, format,
          val_print (elttype, valaddr + i * eltlen, 0, 0, stream, format,
                     deref_ref, recurse + 1, pretty);
                     deref_ref, recurse + 1, pretty);
          annotate_elt ();
          annotate_elt ();
          things_printed++;
          things_printed++;
        }
        }
    }
    }
  annotate_array_section_end ();
  annotate_array_section_end ();
  if (i < len)
  if (i < len)
    {
    {
      fprintf_filtered (stream, "...");
      fprintf_filtered (stream, "...");
    }
    }
}
}
 
 
/* Read LEN bytes of target memory at address MEMADDR, placing the
/* Read LEN bytes of target memory at address MEMADDR, placing the
   results in GDB's memory at MYADDR.  Returns a count of the bytes
   results in GDB's memory at MYADDR.  Returns a count of the bytes
   actually read, and optionally an errno value in the location
   actually read, and optionally an errno value in the location
   pointed to by ERRNOPTR if ERRNOPTR is non-null. */
   pointed to by ERRNOPTR if ERRNOPTR is non-null. */
 
 
/* FIXME: cagney/1999-10-14: Only used by val_print_string.  Can this
/* FIXME: cagney/1999-10-14: Only used by val_print_string.  Can this
   function be eliminated.  */
   function be eliminated.  */
 
 
static int
static int
partial_memory_read (CORE_ADDR memaddr, char *myaddr, int len, int *errnoptr)
partial_memory_read (CORE_ADDR memaddr, char *myaddr, int len, int *errnoptr)
{
{
  int nread;                    /* Number of bytes actually read. */
  int nread;                    /* Number of bytes actually read. */
  int errcode;                  /* Error from last read. */
  int errcode;                  /* Error from last read. */
 
 
  /* First try a complete read. */
  /* First try a complete read. */
  errcode = target_read_memory (memaddr, myaddr, len);
  errcode = target_read_memory (memaddr, myaddr, len);
  if (errcode == 0)
  if (errcode == 0)
    {
    {
      /* Got it all. */
      /* Got it all. */
      nread = len;
      nread = len;
    }
    }
  else
  else
    {
    {
      /* Loop, reading one byte at a time until we get as much as we can. */
      /* Loop, reading one byte at a time until we get as much as we can. */
      for (errcode = 0, nread = 0; len > 0 && errcode == 0; nread++, len--)
      for (errcode = 0, nread = 0; len > 0 && errcode == 0; nread++, len--)
        {
        {
          errcode = target_read_memory (memaddr++, myaddr++, 1);
          errcode = target_read_memory (memaddr++, myaddr++, 1);
        }
        }
      /* If an error, the last read was unsuccessful, so adjust count. */
      /* If an error, the last read was unsuccessful, so adjust count. */
      if (errcode != 0)
      if (errcode != 0)
        {
        {
          nread--;
          nread--;
        }
        }
    }
    }
  if (errnoptr != NULL)
  if (errnoptr != NULL)
    {
    {
      *errnoptr = errcode;
      *errnoptr = errcode;
    }
    }
  return (nread);
  return (nread);
}
}
 
 
/*  Print a string from the inferior, starting at ADDR and printing up to LEN
/*  Print a string from the inferior, starting at ADDR and printing up to LEN
   characters, of WIDTH bytes a piece, to STREAM.  If LEN is -1, printing
   characters, of WIDTH bytes a piece, to STREAM.  If LEN is -1, printing
   stops at the first null byte, otherwise printing proceeds (including null
   stops at the first null byte, otherwise printing proceeds (including null
   bytes) until either print_max or LEN characters have been printed,
   bytes) until either print_max or LEN characters have been printed,
   whichever is smaller. */
   whichever is smaller. */
 
 
/* FIXME: Use target_read_string.  */
/* FIXME: Use target_read_string.  */
 
 
int
int
val_print_string (addr, len, width, stream)
val_print_string (addr, len, width, stream)
     CORE_ADDR addr;
     CORE_ADDR addr;
     int len;
     int len;
     int width;
     int width;
     struct ui_file *stream;
     struct ui_file *stream;
{
{
  int force_ellipsis = 0;        /* Force ellipsis to be printed if nonzero. */
  int force_ellipsis = 0;        /* Force ellipsis to be printed if nonzero. */
  int errcode;                  /* Errno returned from bad reads. */
  int errcode;                  /* Errno returned from bad reads. */
  unsigned int fetchlimit;      /* Maximum number of chars to print. */
  unsigned int fetchlimit;      /* Maximum number of chars to print. */
  unsigned int nfetch;          /* Chars to fetch / chars fetched. */
  unsigned int nfetch;          /* Chars to fetch / chars fetched. */
  unsigned int chunksize;       /* Size of each fetch, in chars. */
  unsigned int chunksize;       /* Size of each fetch, in chars. */
  char *buffer = NULL;          /* Dynamically growable fetch buffer. */
  char *buffer = NULL;          /* Dynamically growable fetch buffer. */
  char *bufptr;                 /* Pointer to next available byte in buffer. */
  char *bufptr;                 /* Pointer to next available byte in buffer. */
  char *limit;                  /* First location past end of fetch buffer. */
  char *limit;                  /* First location past end of fetch buffer. */
  struct cleanup *old_chain = NULL;     /* Top of the old cleanup chain. */
  struct cleanup *old_chain = NULL;     /* Top of the old cleanup chain. */
  int found_nul;                /* Non-zero if we found the nul char */
  int found_nul;                /* Non-zero if we found the nul char */
 
 
  /* First we need to figure out the limit on the number of characters we are
  /* First we need to figure out the limit on the number of characters we are
     going to attempt to fetch and print.  This is actually pretty simple.  If
     going to attempt to fetch and print.  This is actually pretty simple.  If
     LEN >= zero, then the limit is the minimum of LEN and print_max.  If
     LEN >= zero, then the limit is the minimum of LEN and print_max.  If
     LEN is -1, then the limit is print_max.  This is true regardless of
     LEN is -1, then the limit is print_max.  This is true regardless of
     whether print_max is zero, UINT_MAX (unlimited), or something in between,
     whether print_max is zero, UINT_MAX (unlimited), or something in between,
     because finding the null byte (or available memory) is what actually
     because finding the null byte (or available memory) is what actually
     limits the fetch. */
     limits the fetch. */
 
 
  fetchlimit = (len == -1 ? print_max : min (len, print_max));
  fetchlimit = (len == -1 ? print_max : min (len, print_max));
 
 
  /* Now decide how large of chunks to try to read in one operation.  This
  /* Now decide how large of chunks to try to read in one operation.  This
     is also pretty simple.  If LEN >= zero, then we want fetchlimit chars,
     is also pretty simple.  If LEN >= zero, then we want fetchlimit chars,
     so we might as well read them all in one operation.  If LEN is -1, we
     so we might as well read them all in one operation.  If LEN is -1, we
     are looking for a null terminator to end the fetching, so we might as
     are looking for a null terminator to end the fetching, so we might as
     well read in blocks that are large enough to be efficient, but not so
     well read in blocks that are large enough to be efficient, but not so
     large as to be slow if fetchlimit happens to be large.  So we choose the
     large as to be slow if fetchlimit happens to be large.  So we choose the
     minimum of 8 and fetchlimit.  We used to use 200 instead of 8 but
     minimum of 8 and fetchlimit.  We used to use 200 instead of 8 but
     200 is way too big for remote debugging over a serial line.  */
     200 is way too big for remote debugging over a serial line.  */
 
 
  chunksize = (len == -1 ? min (8, fetchlimit) : fetchlimit);
  chunksize = (len == -1 ? min (8, fetchlimit) : fetchlimit);
 
 
  /* Loop until we either have all the characters to print, or we encounter
  /* Loop until we either have all the characters to print, or we encounter
     some error, such as bumping into the end of the address space. */
     some error, such as bumping into the end of the address space. */
 
 
  found_nul = 0;
  found_nul = 0;
  old_chain = make_cleanup (null_cleanup, 0);
  old_chain = make_cleanup (null_cleanup, 0);
 
 
  if (len > 0)
  if (len > 0)
    {
    {
      buffer = (char *) xmalloc (len * width);
      buffer = (char *) xmalloc (len * width);
      bufptr = buffer;
      bufptr = buffer;
      old_chain = make_cleanup (free, buffer);
      old_chain = make_cleanup (free, buffer);
 
 
      nfetch = partial_memory_read (addr, bufptr, len * width, &errcode)
      nfetch = partial_memory_read (addr, bufptr, len * width, &errcode)
        / width;
        / width;
      addr += nfetch * width;
      addr += nfetch * width;
      bufptr += nfetch * width;
      bufptr += nfetch * width;
    }
    }
  else if (len == -1)
  else if (len == -1)
    {
    {
      unsigned long bufsize = 0;
      unsigned long bufsize = 0;
      do
      do
        {
        {
          QUIT;
          QUIT;
          nfetch = min (chunksize, fetchlimit - bufsize);
          nfetch = min (chunksize, fetchlimit - bufsize);
 
 
          if (buffer == NULL)
          if (buffer == NULL)
            buffer = (char *) xmalloc (nfetch * width);
            buffer = (char *) xmalloc (nfetch * width);
          else
          else
            {
            {
              discard_cleanups (old_chain);
              discard_cleanups (old_chain);
              buffer = (char *) xrealloc (buffer, (nfetch + bufsize) * width);
              buffer = (char *) xrealloc (buffer, (nfetch + bufsize) * width);
            }
            }
 
 
          old_chain = make_cleanup (free, buffer);
          old_chain = make_cleanup (free, buffer);
          bufptr = buffer + bufsize * width;
          bufptr = buffer + bufsize * width;
          bufsize += nfetch;
          bufsize += nfetch;
 
 
          /* Read as much as we can. */
          /* Read as much as we can. */
          nfetch = partial_memory_read (addr, bufptr, nfetch * width, &errcode)
          nfetch = partial_memory_read (addr, bufptr, nfetch * width, &errcode)
            / width;
            / width;
 
 
          /* Scan this chunk for the null byte that terminates the string
          /* Scan this chunk for the null byte that terminates the string
             to print.  If found, we don't need to fetch any more.  Note
             to print.  If found, we don't need to fetch any more.  Note
             that bufptr is explicitly left pointing at the next character
             that bufptr is explicitly left pointing at the next character
             after the null byte, or at the next character after the end of
             after the null byte, or at the next character after the end of
             the buffer. */
             the buffer. */
 
 
          limit = bufptr + nfetch * width;
          limit = bufptr + nfetch * width;
          while (bufptr < limit)
          while (bufptr < limit)
            {
            {
              unsigned long c;
              unsigned long c;
 
 
              c = extract_unsigned_integer (bufptr, width);
              c = extract_unsigned_integer (bufptr, width);
              addr += width;
              addr += width;
              bufptr += width;
              bufptr += width;
              if (c == 0)
              if (c == 0)
                {
                {
                  /* We don't care about any error which happened after
                  /* We don't care about any error which happened after
                     the NULL terminator.  */
                     the NULL terminator.  */
                  errcode = 0;
                  errcode = 0;
                  found_nul = 1;
                  found_nul = 1;
                  break;
                  break;
                }
                }
            }
            }
        }
        }
      while (errcode == 0        /* no error */
      while (errcode == 0        /* no error */
             && bufptr - buffer < fetchlimit * width    /* no overrun */
             && bufptr - buffer < fetchlimit * width    /* no overrun */
             && !found_nul);    /* haven't found nul yet */
             && !found_nul);    /* haven't found nul yet */
    }
    }
  else
  else
    {                           /* length of string is really 0! */
    {                           /* length of string is really 0! */
      buffer = bufptr = NULL;
      buffer = bufptr = NULL;
      errcode = 0;
      errcode = 0;
    }
    }
 
 
  /* bufptr and addr now point immediately beyond the last byte which we
  /* bufptr and addr now point immediately beyond the last byte which we
     consider part of the string (including a '\0' which ends the string).  */
     consider part of the string (including a '\0' which ends the string).  */
 
 
  /* We now have either successfully filled the buffer to fetchlimit, or
  /* We now have either successfully filled the buffer to fetchlimit, or
     terminated early due to an error or finding a null char when LEN is -1. */
     terminated early due to an error or finding a null char when LEN is -1. */
 
 
  if (len == -1 && !found_nul)
  if (len == -1 && !found_nul)
    {
    {
      char *peekbuf;
      char *peekbuf;
 
 
      /* We didn't find a null terminator we were looking for.  Attempt
      /* We didn't find a null terminator we were looking for.  Attempt
         to peek at the next character.  If not successful, or it is not
         to peek at the next character.  If not successful, or it is not
         a null byte, then force ellipsis to be printed.  */
         a null byte, then force ellipsis to be printed.  */
 
 
      peekbuf = (char *) alloca (width);
      peekbuf = (char *) alloca (width);
 
 
      if (target_read_memory (addr, peekbuf, width) == 0
      if (target_read_memory (addr, peekbuf, width) == 0
          && extract_unsigned_integer (peekbuf, width) != 0)
          && extract_unsigned_integer (peekbuf, width) != 0)
        force_ellipsis = 1;
        force_ellipsis = 1;
    }
    }
  else if ((len >= 0 && errcode != 0) || (len > (bufptr - buffer) / width))
  else if ((len >= 0 && errcode != 0) || (len > (bufptr - buffer) / width))
    {
    {
      /* Getting an error when we have a requested length, or fetching less
      /* Getting an error when we have a requested length, or fetching less
         than the number of characters actually requested, always make us
         than the number of characters actually requested, always make us
         print ellipsis. */
         print ellipsis. */
      force_ellipsis = 1;
      force_ellipsis = 1;
    }
    }
 
 
  QUIT;
  QUIT;
 
 
  /* If we get an error before fetching anything, don't print a string.
  /* If we get an error before fetching anything, don't print a string.
     But if we fetch something and then get an error, print the string
     But if we fetch something and then get an error, print the string
     and then the error message.  */
     and then the error message.  */
  if (errcode == 0 || bufptr > buffer)
  if (errcode == 0 || bufptr > buffer)
    {
    {
      if (addressprint)
      if (addressprint)
        {
        {
          fputs_filtered (" ", stream);
          fputs_filtered (" ", stream);
        }
        }
      LA_PRINT_STRING (stream, buffer, (bufptr - buffer) / width, width, force_ellipsis);
      LA_PRINT_STRING (stream, buffer, (bufptr - buffer) / width, width, force_ellipsis);
    }
    }
 
 
  if (errcode != 0)
  if (errcode != 0)
    {
    {
      if (errcode == EIO)
      if (errcode == EIO)
        {
        {
          fprintf_filtered (stream, " <Address ");
          fprintf_filtered (stream, " <Address ");
          print_address_numeric (addr, 1, stream);
          print_address_numeric (addr, 1, stream);
          fprintf_filtered (stream, " out of bounds>");
          fprintf_filtered (stream, " out of bounds>");
        }
        }
      else
      else
        {
        {
          fprintf_filtered (stream, " <Error reading address ");
          fprintf_filtered (stream, " <Error reading address ");
          print_address_numeric (addr, 1, stream);
          print_address_numeric (addr, 1, stream);
          fprintf_filtered (stream, ": %s>", safe_strerror (errcode));
          fprintf_filtered (stream, ": %s>", safe_strerror (errcode));
        }
        }
    }
    }
  gdb_flush (stream);
  gdb_flush (stream);
  do_cleanups (old_chain);
  do_cleanups (old_chain);
  return ((bufptr - buffer) / width);
  return ((bufptr - buffer) / width);
}
}


 
 
/* Validate an input or output radix setting, and make sure the user
/* Validate an input or output radix setting, and make sure the user
   knows what they really did here.  Radix setting is confusing, e.g.
   knows what they really did here.  Radix setting is confusing, e.g.
   setting the input radix to "10" never changes it!  */
   setting the input radix to "10" never changes it!  */
 
 
/* ARGSUSED */
/* ARGSUSED */
static void
static void
set_input_radix (args, from_tty, c)
set_input_radix (args, from_tty, c)
     char *args;
     char *args;
     int from_tty;
     int from_tty;
     struct cmd_list_element *c;
     struct cmd_list_element *c;
{
{
  set_input_radix_1 (from_tty, *(unsigned *) c->var);
  set_input_radix_1 (from_tty, *(unsigned *) c->var);
}
}
 
 
/* ARGSUSED */
/* ARGSUSED */
static void
static void
set_input_radix_1 (from_tty, radix)
set_input_radix_1 (from_tty, radix)
     int from_tty;
     int from_tty;
     unsigned radix;
     unsigned radix;
{
{
  /* We don't currently disallow any input radix except 0 or 1, which don't
  /* We don't currently disallow any input radix except 0 or 1, which don't
     make any mathematical sense.  In theory, we can deal with any input
     make any mathematical sense.  In theory, we can deal with any input
     radix greater than 1, even if we don't have unique digits for every
     radix greater than 1, even if we don't have unique digits for every
     value from 0 to radix-1, but in practice we lose on large radix values.
     value from 0 to radix-1, but in practice we lose on large radix values.
     We should either fix the lossage or restrict the radix range more.
     We should either fix the lossage or restrict the radix range more.
     (FIXME). */
     (FIXME). */
 
 
  if (radix < 2)
  if (radix < 2)
    {
    {
      error ("Nonsense input radix ``decimal %u''; input radix unchanged.",
      error ("Nonsense input radix ``decimal %u''; input radix unchanged.",
             radix);
             radix);
    }
    }
  input_radix = radix;
  input_radix = radix;
  if (from_tty)
  if (from_tty)
    {
    {
      printf_filtered ("Input radix now set to decimal %u, hex %x, octal %o.\n",
      printf_filtered ("Input radix now set to decimal %u, hex %x, octal %o.\n",
                       radix, radix, radix);
                       radix, radix, radix);
    }
    }
}
}
 
 
/* ARGSUSED */
/* ARGSUSED */
static void
static void
set_output_radix (args, from_tty, c)
set_output_radix (args, from_tty, c)
     char *args;
     char *args;
     int from_tty;
     int from_tty;
     struct cmd_list_element *c;
     struct cmd_list_element *c;
{
{
  set_output_radix_1 (from_tty, *(unsigned *) c->var);
  set_output_radix_1 (from_tty, *(unsigned *) c->var);
}
}
 
 
static void
static void
set_output_radix_1 (from_tty, radix)
set_output_radix_1 (from_tty, radix)
     int from_tty;
     int from_tty;
     unsigned radix;
     unsigned radix;
{
{
  /* Validate the radix and disallow ones that we aren't prepared to
  /* Validate the radix and disallow ones that we aren't prepared to
     handle correctly, leaving the radix unchanged. */
     handle correctly, leaving the radix unchanged. */
  switch (radix)
  switch (radix)
    {
    {
    case 16:
    case 16:
      output_format = 'x';      /* hex */
      output_format = 'x';      /* hex */
      break;
      break;
    case 10:
    case 10:
      output_format = 0; /* decimal */
      output_format = 0; /* decimal */
      break;
      break;
    case 8:
    case 8:
      output_format = 'o';      /* octal */
      output_format = 'o';      /* octal */
      break;
      break;
    default:
    default:
      error ("Unsupported output radix ``decimal %u''; output radix unchanged.",
      error ("Unsupported output radix ``decimal %u''; output radix unchanged.",
             radix);
             radix);
    }
    }
  output_radix = radix;
  output_radix = radix;
  if (from_tty)
  if (from_tty)
    {
    {
      printf_filtered ("Output radix now set to decimal %u, hex %x, octal %o.\n",
      printf_filtered ("Output radix now set to decimal %u, hex %x, octal %o.\n",
                       radix, radix, radix);
                       radix, radix, radix);
    }
    }
}
}
 
 
/* Set both the input and output radix at once.  Try to set the output radix
/* Set both the input and output radix at once.  Try to set the output radix
   first, since it has the most restrictive range.  An radix that is valid as
   first, since it has the most restrictive range.  An radix that is valid as
   an output radix is also valid as an input radix.
   an output radix is also valid as an input radix.
 
 
   It may be useful to have an unusual input radix.  If the user wishes to
   It may be useful to have an unusual input radix.  If the user wishes to
   set an input radix that is not valid as an output radix, he needs to use
   set an input radix that is not valid as an output radix, he needs to use
   the 'set input-radix' command. */
   the 'set input-radix' command. */
 
 
static void
static void
set_radix (arg, from_tty)
set_radix (arg, from_tty)
     char *arg;
     char *arg;
     int from_tty;
     int from_tty;
{
{
  unsigned radix;
  unsigned radix;
 
 
  radix = (arg == NULL) ? 10 : parse_and_eval_address (arg);
  radix = (arg == NULL) ? 10 : parse_and_eval_address (arg);
  set_output_radix_1 (0, radix);
  set_output_radix_1 (0, radix);
  set_input_radix_1 (0, radix);
  set_input_radix_1 (0, radix);
  if (from_tty)
  if (from_tty)
    {
    {
      printf_filtered ("Input and output radices now set to decimal %u, hex %x, octal %o.\n",
      printf_filtered ("Input and output radices now set to decimal %u, hex %x, octal %o.\n",
                       radix, radix, radix);
                       radix, radix, radix);
    }
    }
}
}
 
 
/* Show both the input and output radices. */
/* Show both the input and output radices. */
 
 
/*ARGSUSED */
/*ARGSUSED */
static void
static void
show_radix (arg, from_tty)
show_radix (arg, from_tty)
     char *arg;
     char *arg;
     int from_tty;
     int from_tty;
{
{
  if (from_tty)
  if (from_tty)
    {
    {
      if (input_radix == output_radix)
      if (input_radix == output_radix)
        {
        {
          printf_filtered ("Input and output radices set to decimal %u, hex %x, octal %o.\n",
          printf_filtered ("Input and output radices set to decimal %u, hex %x, octal %o.\n",
                           input_radix, input_radix, input_radix);
                           input_radix, input_radix, input_radix);
        }
        }
      else
      else
        {
        {
          printf_filtered ("Input radix set to decimal %u, hex %x, octal %o.\n",
          printf_filtered ("Input radix set to decimal %u, hex %x, octal %o.\n",
                           input_radix, input_radix, input_radix);
                           input_radix, input_radix, input_radix);
          printf_filtered ("Output radix set to decimal %u, hex %x, octal %o.\n",
          printf_filtered ("Output radix set to decimal %u, hex %x, octal %o.\n",
                           output_radix, output_radix, output_radix);
                           output_radix, output_radix, output_radix);
        }
        }
    }
    }
}
}


 
 
/*ARGSUSED */
/*ARGSUSED */
static void
static void
set_print (arg, from_tty)
set_print (arg, from_tty)
     char *arg;
     char *arg;
     int from_tty;
     int from_tty;
{
{
  printf_unfiltered (
  printf_unfiltered (
     "\"set print\" must be followed by the name of a print subcommand.\n");
     "\"set print\" must be followed by the name of a print subcommand.\n");
  help_list (setprintlist, "set print ", -1, gdb_stdout);
  help_list (setprintlist, "set print ", -1, gdb_stdout);
}
}
 
 
/*ARGSUSED */
/*ARGSUSED */
static void
static void
show_print (args, from_tty)
show_print (args, from_tty)
     char *args;
     char *args;
     int from_tty;
     int from_tty;
{
{
  cmd_show_list (showprintlist, from_tty, "");
  cmd_show_list (showprintlist, from_tty, "");
}
}


void
void
_initialize_valprint ()
_initialize_valprint ()
{
{
  struct cmd_list_element *c;
  struct cmd_list_element *c;
 
 
  add_prefix_cmd ("print", no_class, set_print,
  add_prefix_cmd ("print", no_class, set_print,
                  "Generic command for setting how things print.",
                  "Generic command for setting how things print.",
                  &setprintlist, "set print ", 0, &setlist);
                  &setprintlist, "set print ", 0, &setlist);
  add_alias_cmd ("p", "print", no_class, 1, &setlist);
  add_alias_cmd ("p", "print", no_class, 1, &setlist);
  /* prefer set print to set prompt */
  /* prefer set print to set prompt */
  add_alias_cmd ("pr", "print", no_class, 1, &setlist);
  add_alias_cmd ("pr", "print", no_class, 1, &setlist);
 
 
  add_prefix_cmd ("print", no_class, show_print,
  add_prefix_cmd ("print", no_class, show_print,
                  "Generic command for showing print settings.",
                  "Generic command for showing print settings.",
                  &showprintlist, "show print ", 0, &showlist);
                  &showprintlist, "show print ", 0, &showlist);
  add_alias_cmd ("p", "print", no_class, 1, &showlist);
  add_alias_cmd ("p", "print", no_class, 1, &showlist);
  add_alias_cmd ("pr", "print", no_class, 1, &showlist);
  add_alias_cmd ("pr", "print", no_class, 1, &showlist);
 
 
  add_show_from_set
  add_show_from_set
    (add_set_cmd ("elements", no_class, var_uinteger, (char *) &print_max,
    (add_set_cmd ("elements", no_class, var_uinteger, (char *) &print_max,
                  "Set limit on string chars or array elements to print.\n\
                  "Set limit on string chars or array elements to print.\n\
\"set print elements 0\" causes there to be no limit.",
\"set print elements 0\" causes there to be no limit.",
                  &setprintlist),
                  &setprintlist),
     &showprintlist);
     &showprintlist);
 
 
  add_show_from_set
  add_show_from_set
    (add_set_cmd ("null-stop", no_class, var_boolean,
    (add_set_cmd ("null-stop", no_class, var_boolean,
                  (char *) &stop_print_at_null,
                  (char *) &stop_print_at_null,
                  "Set printing of char arrays to stop at first null char.",
                  "Set printing of char arrays to stop at first null char.",
                  &setprintlist),
                  &setprintlist),
     &showprintlist);
     &showprintlist);
 
 
  add_show_from_set
  add_show_from_set
    (add_set_cmd ("repeats", no_class, var_uinteger,
    (add_set_cmd ("repeats", no_class, var_uinteger,
                  (char *) &repeat_count_threshold,
                  (char *) &repeat_count_threshold,
                  "Set threshold for repeated print elements.\n\
                  "Set threshold for repeated print elements.\n\
\"set print repeats 0\" causes all elements to be individually printed.",
\"set print repeats 0\" causes all elements to be individually printed.",
                  &setprintlist),
                  &setprintlist),
     &showprintlist);
     &showprintlist);
 
 
  add_show_from_set
  add_show_from_set
    (add_set_cmd ("pretty", class_support, var_boolean,
    (add_set_cmd ("pretty", class_support, var_boolean,
                  (char *) &prettyprint_structs,
                  (char *) &prettyprint_structs,
                  "Set prettyprinting of structures.",
                  "Set prettyprinting of structures.",
                  &setprintlist),
                  &setprintlist),
     &showprintlist);
     &showprintlist);
 
 
  add_show_from_set
  add_show_from_set
    (add_set_cmd ("union", class_support, var_boolean, (char *) &unionprint,
    (add_set_cmd ("union", class_support, var_boolean, (char *) &unionprint,
                  "Set printing of unions interior to structures.",
                  "Set printing of unions interior to structures.",
                  &setprintlist),
                  &setprintlist),
     &showprintlist);
     &showprintlist);
 
 
  add_show_from_set
  add_show_from_set
    (add_set_cmd ("array", class_support, var_boolean,
    (add_set_cmd ("array", class_support, var_boolean,
                  (char *) &prettyprint_arrays,
                  (char *) &prettyprint_arrays,
                  "Set prettyprinting of arrays.",
                  "Set prettyprinting of arrays.",
                  &setprintlist),
                  &setprintlist),
     &showprintlist);
     &showprintlist);
 
 
  add_show_from_set
  add_show_from_set
    (add_set_cmd ("address", class_support, var_boolean, (char *) &addressprint,
    (add_set_cmd ("address", class_support, var_boolean, (char *) &addressprint,
                  "Set printing of addresses.",
                  "Set printing of addresses.",
                  &setprintlist),
                  &setprintlist),
     &showprintlist);
     &showprintlist);
 
 
  c = add_set_cmd ("input-radix", class_support, var_uinteger,
  c = add_set_cmd ("input-radix", class_support, var_uinteger,
                   (char *) &input_radix,
                   (char *) &input_radix,
                   "Set default input radix for entering numbers.",
                   "Set default input radix for entering numbers.",
                   &setlist);
                   &setlist);
  add_show_from_set (c, &showlist);
  add_show_from_set (c, &showlist);
  c->function.sfunc = set_input_radix;
  c->function.sfunc = set_input_radix;
 
 
  c = add_set_cmd ("output-radix", class_support, var_uinteger,
  c = add_set_cmd ("output-radix", class_support, var_uinteger,
                   (char *) &output_radix,
                   (char *) &output_radix,
                   "Set default output radix for printing of values.",
                   "Set default output radix for printing of values.",
                   &setlist);
                   &setlist);
  add_show_from_set (c, &showlist);
  add_show_from_set (c, &showlist);
  c->function.sfunc = set_output_radix;
  c->function.sfunc = set_output_radix;
 
 
  /* The "set radix" and "show radix" commands are special in that they are
  /* The "set radix" and "show radix" commands are special in that they are
     like normal set and show commands but allow two normally independent
     like normal set and show commands but allow two normally independent
     variables to be either set or shown with a single command.  So the
     variables to be either set or shown with a single command.  So the
     usual add_set_cmd() and add_show_from_set() commands aren't really
     usual add_set_cmd() and add_show_from_set() commands aren't really
     appropriate. */
     appropriate. */
  add_cmd ("radix", class_support, set_radix,
  add_cmd ("radix", class_support, set_radix,
           "Set default input and output number radices.\n\
           "Set default input and output number radices.\n\
Use 'set input-radix' or 'set output-radix' to independently set each.\n\
Use 'set input-radix' or 'set output-radix' to independently set each.\n\
Without an argument, sets both radices back to the default value of 10.",
Without an argument, sets both radices back to the default value of 10.",
           &setlist);
           &setlist);
  add_cmd ("radix", class_support, show_radix,
  add_cmd ("radix", class_support, show_radix,
           "Show the default input and output number radices.\n\
           "Show the default input and output number radices.\n\
Use 'show input-radix' or 'show output-radix' to independently show each.",
Use 'show input-radix' or 'show output-radix' to independently show each.",
           &showlist);
           &showlist);
 
 
  /* Give people the defaults which they are used to.  */
  /* Give people the defaults which they are used to.  */
  prettyprint_structs = 0;
  prettyprint_structs = 0;
  prettyprint_arrays = 0;
  prettyprint_arrays = 0;
  unionprint = 1;
  unionprint = 1;
  addressprint = 1;
  addressprint = 1;
  print_max = PRINT_MAX_DEFAULT;
  print_max = PRINT_MAX_DEFAULT;
}
}
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.