OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [gdb-5.0/] [gdb/] [z8k-tdep.c] - Diff between revs 105 and 1765

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 105 Rev 1765
/* Target-machine dependent code for Zilog Z8000, for GDB.
/* Target-machine dependent code for Zilog Z8000, for GDB.
   Copyright (C) 1992, 1993, 1994 Free Software Foundation, Inc.
   Copyright (C) 1992, 1993, 1994 Free Software Foundation, Inc.
 
 
   This file is part of GDB.
   This file is part of GDB.
 
 
   This program is free software; you can redistribute it and/or modify
   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2 of the License, or
   the Free Software Foundation; either version 2 of the License, or
   (at your option) any later version.
   (at your option) any later version.
 
 
   This program is distributed in the hope that it will be useful,
   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.
   GNU General Public License for more details.
 
 
   You should have received a copy of the GNU General Public License
   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   along with this program; if not, write to the Free Software
   Foundation, Inc., 59 Temple Place - Suite 330,
   Foundation, Inc., 59 Temple Place - Suite 330,
   Boston, MA 02111-1307, USA.  */
   Boston, MA 02111-1307, USA.  */
 
 
/*
/*
   Contributed by Steve Chamberlain
   Contributed by Steve Chamberlain
   sac@cygnus.com
   sac@cygnus.com
 */
 */
 
 
#include "defs.h"
#include "defs.h"
#include "frame.h"
#include "frame.h"
#include "obstack.h"
#include "obstack.h"
#include "symtab.h"
#include "symtab.h"
#include "gdbcmd.h"
#include "gdbcmd.h"
#include "gdbtypes.h"
#include "gdbtypes.h"
#include "dis-asm.h"
#include "dis-asm.h"
#include "gdbcore.h"
#include "gdbcore.h"
 
 
#include "value.h" /* For read_register() */
#include "value.h" /* For read_register() */
 
 
 
 
static int read_memory_pointer (CORE_ADDR x);
static int read_memory_pointer (CORE_ADDR x);
 
 
/* Return the saved PC from this frame.
/* Return the saved PC from this frame.
 
 
   If the frame has a memory copy of SRP_REGNUM, use that.  If not,
   If the frame has a memory copy of SRP_REGNUM, use that.  If not,
   just use the register SRP_REGNUM itself.  */
   just use the register SRP_REGNUM itself.  */
 
 
CORE_ADDR
CORE_ADDR
z8k_frame_saved_pc (frame)
z8k_frame_saved_pc (frame)
     struct frame_info *frame;
     struct frame_info *frame;
{
{
  return read_memory_pointer (frame->frame + (BIG ? 4 : 2));
  return read_memory_pointer (frame->frame + (BIG ? 4 : 2));
}
}
 
 
#define IS_PUSHL(x) (BIG ? ((x & 0xfff0) == 0x91e0):((x & 0xfff0) == 0x91F0))
#define IS_PUSHL(x) (BIG ? ((x & 0xfff0) == 0x91e0):((x & 0xfff0) == 0x91F0))
#define IS_PUSHW(x) (BIG ? ((x & 0xfff0) == 0x93e0):((x & 0xfff0)==0x93f0))
#define IS_PUSHW(x) (BIG ? ((x & 0xfff0) == 0x93e0):((x & 0xfff0)==0x93f0))
#define IS_MOVE_FP(x) (BIG ? x == 0xa1ea : x == 0xa1fa)
#define IS_MOVE_FP(x) (BIG ? x == 0xa1ea : x == 0xa1fa)
#define IS_MOV_SP_FP(x) (BIG ? x == 0x94ea : x == 0x0d76)
#define IS_MOV_SP_FP(x) (BIG ? x == 0x94ea : x == 0x0d76)
#define IS_SUB2_SP(x) (x==0x1b87)
#define IS_SUB2_SP(x) (x==0x1b87)
#define IS_MOVK_R5(x) (x==0x7905)
#define IS_MOVK_R5(x) (x==0x7905)
#define IS_SUB_SP(x) ((x & 0xffff) == 0x020f)
#define IS_SUB_SP(x) ((x & 0xffff) == 0x020f)
#define IS_PUSH_FP(x) (BIG ? (x == 0x93ea) : (x == 0x93fa))
#define IS_PUSH_FP(x) (BIG ? (x == 0x93ea) : (x == 0x93fa))
 
 
/* work out how much local space is on the stack and
/* work out how much local space is on the stack and
   return the pc pointing to the first push */
   return the pc pointing to the first push */
 
 
static CORE_ADDR
static CORE_ADDR
skip_adjust (pc, size)
skip_adjust (pc, size)
     CORE_ADDR pc;
     CORE_ADDR pc;
     int *size;
     int *size;
{
{
  *size = 0;
  *size = 0;
 
 
  if (IS_PUSH_FP (read_memory_short (pc))
  if (IS_PUSH_FP (read_memory_short (pc))
      && IS_MOV_SP_FP (read_memory_short (pc + 2)))
      && IS_MOV_SP_FP (read_memory_short (pc + 2)))
    {
    {
      /* This is a function with an explict frame pointer */
      /* This is a function with an explict frame pointer */
      pc += 4;
      pc += 4;
      *size += 2;               /* remember the frame pointer */
      *size += 2;               /* remember the frame pointer */
    }
    }
 
 
  /* remember any stack adjustment */
  /* remember any stack adjustment */
  if (IS_SUB_SP (read_memory_short (pc)))
  if (IS_SUB_SP (read_memory_short (pc)))
    {
    {
      *size += read_memory_short (pc + 2);
      *size += read_memory_short (pc + 2);
      pc += 4;
      pc += 4;
    }
    }
  return pc;
  return pc;
}
}
 
 
static CORE_ADDR examine_frame PARAMS ((CORE_ADDR, CORE_ADDR * regs, CORE_ADDR));
static CORE_ADDR examine_frame PARAMS ((CORE_ADDR, CORE_ADDR * regs, CORE_ADDR));
static CORE_ADDR
static CORE_ADDR
examine_frame (pc, regs, sp)
examine_frame (pc, regs, sp)
     CORE_ADDR pc;
     CORE_ADDR pc;
     CORE_ADDR *regs;
     CORE_ADDR *regs;
     CORE_ADDR sp;
     CORE_ADDR sp;
{
{
  int w = read_memory_short (pc);
  int w = read_memory_short (pc);
  int offset = 0;
  int offset = 0;
  int regno;
  int regno;
 
 
  for (regno = 0; regno < NUM_REGS; regno++)
  for (regno = 0; regno < NUM_REGS; regno++)
    regs[regno] = 0;
    regs[regno] = 0;
 
 
  while (IS_PUSHW (w) || IS_PUSHL (w))
  while (IS_PUSHW (w) || IS_PUSHL (w))
    {
    {
      /* work out which register is being pushed to where */
      /* work out which register is being pushed to where */
      if (IS_PUSHL (w))
      if (IS_PUSHL (w))
        {
        {
          regs[w & 0xf] = offset;
          regs[w & 0xf] = offset;
          regs[(w & 0xf) + 1] = offset + 2;
          regs[(w & 0xf) + 1] = offset + 2;
          offset += 4;
          offset += 4;
        }
        }
      else
      else
        {
        {
          regs[w & 0xf] = offset;
          regs[w & 0xf] = offset;
          offset += 2;
          offset += 2;
        }
        }
      pc += 2;
      pc += 2;
      w = read_memory_short (pc);
      w = read_memory_short (pc);
    }
    }
 
 
  if (IS_MOVE_FP (w))
  if (IS_MOVE_FP (w))
    {
    {
      /* We know the fp */
      /* We know the fp */
 
 
    }
    }
  else if (IS_SUB_SP (w))
  else if (IS_SUB_SP (w))
    {
    {
      /* Subtracting a value from the sp, so were in a function
      /* Subtracting a value from the sp, so were in a function
         which needs stack space for locals, but has no fp.  We fake up
         which needs stack space for locals, but has no fp.  We fake up
         the values as if we had an fp */
         the values as if we had an fp */
      regs[FP_REGNUM] = sp;
      regs[FP_REGNUM] = sp;
    }
    }
  else
  else
    {
    {
      /* This one didn't have an fp, we'll fake it up */
      /* This one didn't have an fp, we'll fake it up */
      regs[SP_REGNUM] = sp;
      regs[SP_REGNUM] = sp;
    }
    }
  /* stack pointer contains address of next frame */
  /* stack pointer contains address of next frame */
  /*  regs[fp_regnum()] = fp; */
  /*  regs[fp_regnum()] = fp; */
  regs[SP_REGNUM] = sp;
  regs[SP_REGNUM] = sp;
  return pc;
  return pc;
}
}
 
 
CORE_ADDR
CORE_ADDR
z8k_skip_prologue (start_pc)
z8k_skip_prologue (start_pc)
     CORE_ADDR start_pc;
     CORE_ADDR start_pc;
{
{
  CORE_ADDR dummy[NUM_REGS];
  CORE_ADDR dummy[NUM_REGS];
 
 
  return examine_frame (start_pc, dummy, 0);
  return examine_frame (start_pc, dummy, 0);
}
}
 
 
CORE_ADDR
CORE_ADDR
z8k_addr_bits_remove (addr)
z8k_addr_bits_remove (addr)
     CORE_ADDR addr;
     CORE_ADDR addr;
{
{
  return (addr & PTR_MASK);
  return (addr & PTR_MASK);
}
}
 
 
static int
static int
read_memory_pointer (CORE_ADDR x)
read_memory_pointer (CORE_ADDR x)
{
{
  return read_memory_integer (ADDR_BITS_REMOVE (x), BIG ? 4 : 2);
  return read_memory_integer (ADDR_BITS_REMOVE (x), BIG ? 4 : 2);
}
}
 
 
CORE_ADDR
CORE_ADDR
z8k_frame_chain (thisframe)
z8k_frame_chain (thisframe)
     struct frame_info *thisframe;
     struct frame_info *thisframe;
{
{
  if (thisframe->prev == 0)
  if (thisframe->prev == 0)
    {
    {
      /* This is the top of the stack, let's get the sp for real */
      /* This is the top of the stack, let's get the sp for real */
    }
    }
  if (!inside_entry_file (thisframe->pc))
  if (!inside_entry_file (thisframe->pc))
    {
    {
      return read_memory_pointer (thisframe->frame);
      return read_memory_pointer (thisframe->frame);
    }
    }
  return 0;
  return 0;
}
}
 
 
void
void
init_frame_pc ()
init_frame_pc ()
{
{
  abort ();
  abort ();
}
}
 
 
/* Put here the code to store, into a struct frame_saved_regs,
/* Put here the code to store, into a struct frame_saved_regs,
   the addresses of the saved registers of frame described by FRAME_INFO.
   the addresses of the saved registers of frame described by FRAME_INFO.
   This includes special registers such as pc and fp saved in special
   This includes special registers such as pc and fp saved in special
   ways in the stack frame.  sp is even more special:
   ways in the stack frame.  sp is even more special:
   the address we return for it IS the sp for the next frame.  */
   the address we return for it IS the sp for the next frame.  */
 
 
void
void
z8k_frame_init_saved_regs (frame_info)
z8k_frame_init_saved_regs (frame_info)
     struct frame_info *frame_info;
     struct frame_info *frame_info;
{
{
  CORE_ADDR pc;
  CORE_ADDR pc;
  int w;
  int w;
 
 
  frame_saved_regs_zalloc (frame_info);
  frame_saved_regs_zalloc (frame_info);
  pc = get_pc_function_start (frame_info->pc);
  pc = get_pc_function_start (frame_info->pc);
 
 
  /* wander down the instruction stream */
  /* wander down the instruction stream */
  examine_frame (pc, frame_info->saved_regs, frame_info->frame);
  examine_frame (pc, frame_info->saved_regs, frame_info->frame);
 
 
}
}
 
 
void
void
z8k_push_dummy_frame ()
z8k_push_dummy_frame ()
{
{
  abort ();
  abort ();
}
}
 
 
int
int
gdb_print_insn_z8k (memaddr, info)
gdb_print_insn_z8k (memaddr, info)
     bfd_vma memaddr;
     bfd_vma memaddr;
     disassemble_info *info;
     disassemble_info *info;
{
{
  if (BIG)
  if (BIG)
    return print_insn_z8001 (memaddr, info);
    return print_insn_z8001 (memaddr, info);
  else
  else
    return print_insn_z8002 (memaddr, info);
    return print_insn_z8002 (memaddr, info);
}
}
 
 
/* Fetch the instruction at ADDR, returning 0 if ADDR is beyond LIM or
/* Fetch the instruction at ADDR, returning 0 if ADDR is beyond LIM or
   is not the address of a valid instruction, the address of the next
   is not the address of a valid instruction, the address of the next
   instruction beyond ADDR otherwise.  *PWORD1 receives the first word
   instruction beyond ADDR otherwise.  *PWORD1 receives the first word
   of the instruction. */
   of the instruction. */
 
 
CORE_ADDR
CORE_ADDR
NEXT_PROLOGUE_INSN (addr, lim, pword1)
NEXT_PROLOGUE_INSN (addr, lim, pword1)
     CORE_ADDR addr;
     CORE_ADDR addr;
     CORE_ADDR lim;
     CORE_ADDR lim;
     short *pword1;
     short *pword1;
{
{
  char buf[2];
  char buf[2];
  if (addr < lim + 8)
  if (addr < lim + 8)
    {
    {
      read_memory (addr, buf, 2);
      read_memory (addr, buf, 2);
      *pword1 = extract_signed_integer (buf, 2);
      *pword1 = extract_signed_integer (buf, 2);
 
 
      return addr + 2;
      return addr + 2;
    }
    }
  return 0;
  return 0;
}
}
 
 
#if 0
#if 0
/* Put here the code to store, into a struct frame_saved_regs,
/* Put here the code to store, into a struct frame_saved_regs,
   the addresses of the saved registers of frame described by FRAME_INFO.
   the addresses of the saved registers of frame described by FRAME_INFO.
   This includes special registers such as pc and fp saved in special
   This includes special registers such as pc and fp saved in special
   ways in the stack frame.  sp is even more special:
   ways in the stack frame.  sp is even more special:
   the address we return for it IS the sp for the next frame.
   the address we return for it IS the sp for the next frame.
 
 
   We cache the result of doing this in the frame_cache_obstack, since
   We cache the result of doing this in the frame_cache_obstack, since
   it is fairly expensive.  */
   it is fairly expensive.  */
 
 
void
void
frame_find_saved_regs (fip, fsrp)
frame_find_saved_regs (fip, fsrp)
     struct frame_info *fip;
     struct frame_info *fip;
     struct frame_saved_regs *fsrp;
     struct frame_saved_regs *fsrp;
{
{
  int locals;
  int locals;
  CORE_ADDR pc;
  CORE_ADDR pc;
  CORE_ADDR adr;
  CORE_ADDR adr;
  int i;
  int i;
 
 
  memset (fsrp, 0, sizeof *fsrp);
  memset (fsrp, 0, sizeof *fsrp);
 
 
  pc = skip_adjust (get_pc_function_start (fip->pc), &locals);
  pc = skip_adjust (get_pc_function_start (fip->pc), &locals);
 
 
  {
  {
    adr = FRAME_FP (fip) - locals;
    adr = FRAME_FP (fip) - locals;
    for (i = 0; i < 8; i++)
    for (i = 0; i < 8; i++)
      {
      {
        int word = read_memory_short (pc);
        int word = read_memory_short (pc);
 
 
        pc += 2;
        pc += 2;
        if (IS_PUSHL (word))
        if (IS_PUSHL (word))
          {
          {
            fsrp->regs[word & 0xf] = adr;
            fsrp->regs[word & 0xf] = adr;
            fsrp->regs[(word & 0xf) + 1] = adr - 2;
            fsrp->regs[(word & 0xf) + 1] = adr - 2;
            adr -= 4;
            adr -= 4;
          }
          }
        else if (IS_PUSHW (word))
        else if (IS_PUSHW (word))
          {
          {
            fsrp->regs[word & 0xf] = adr;
            fsrp->regs[word & 0xf] = adr;
            adr -= 2;
            adr -= 2;
          }
          }
        else
        else
          break;
          break;
      }
      }
 
 
  }
  }
 
 
  fsrp->regs[PC_REGNUM] = fip->frame + 4;
  fsrp->regs[PC_REGNUM] = fip->frame + 4;
  fsrp->regs[FP_REGNUM] = fip->frame;
  fsrp->regs[FP_REGNUM] = fip->frame;
 
 
}
}
#endif
#endif
 
 
int
int
z8k_saved_pc_after_call (struct frame_info *frame)
z8k_saved_pc_after_call (struct frame_info *frame)
{
{
  return ADDR_BITS_REMOVE
  return ADDR_BITS_REMOVE
    (read_memory_integer (read_register (SP_REGNUM), PTR_SIZE));
    (read_memory_integer (read_register (SP_REGNUM), PTR_SIZE));
}
}
 
 
 
 
void
void
extract_return_value (type, regbuf, valbuf)
extract_return_value (type, regbuf, valbuf)
     struct type *type;
     struct type *type;
     char *regbuf;
     char *regbuf;
     char *valbuf;
     char *valbuf;
{
{
  int b;
  int b;
  int len = TYPE_LENGTH (type);
  int len = TYPE_LENGTH (type);
 
 
  for (b = 0; b < len; b += 2)
  for (b = 0; b < len; b += 2)
    {
    {
      int todo = len - b;
      int todo = len - b;
 
 
      if (todo > 2)
      if (todo > 2)
        todo = 2;
        todo = 2;
      memcpy (valbuf + b, regbuf + b, todo);
      memcpy (valbuf + b, regbuf + b, todo);
    }
    }
}
}
 
 
void
void
write_return_value (type, valbuf)
write_return_value (type, valbuf)
     struct type *type;
     struct type *type;
     char *valbuf;
     char *valbuf;
{
{
  int reg;
  int reg;
  int len;
  int len;
 
 
  for (len = 0; len < TYPE_LENGTH (type); len += 2)
  for (len = 0; len < TYPE_LENGTH (type); len += 2)
    write_register_bytes (REGISTER_BYTE (len / 2 + 2), valbuf + len, 2);
    write_register_bytes (REGISTER_BYTE (len / 2 + 2), valbuf + len, 2);
}
}
 
 
void
void
store_struct_return (addr, sp)
store_struct_return (addr, sp)
     CORE_ADDR addr;
     CORE_ADDR addr;
     CORE_ADDR sp;
     CORE_ADDR sp;
{
{
  write_register (2, addr);
  write_register (2, addr);
}
}
 
 
 
 
void
void
z8k_print_register_hook (regno)
z8k_print_register_hook (regno)
     int regno;
     int regno;
{
{
  if ((regno & 1) == 0 && regno < 16)
  if ((regno & 1) == 0 && regno < 16)
    {
    {
      unsigned short l[2];
      unsigned short l[2];
 
 
      read_relative_register_raw_bytes (regno, (char *) (l + 0));
      read_relative_register_raw_bytes (regno, (char *) (l + 0));
      read_relative_register_raw_bytes (regno + 1, (char *) (l + 1));
      read_relative_register_raw_bytes (regno + 1, (char *) (l + 1));
      printf_unfiltered ("\t");
      printf_unfiltered ("\t");
      printf_unfiltered ("%04x%04x", l[0], l[1]);
      printf_unfiltered ("%04x%04x", l[0], l[1]);
    }
    }
 
 
  if ((regno & 3) == 0 && regno < 16)
  if ((regno & 3) == 0 && regno < 16)
    {
    {
      unsigned short l[4];
      unsigned short l[4];
 
 
      read_relative_register_raw_bytes (regno, (char *) (l + 0));
      read_relative_register_raw_bytes (regno, (char *) (l + 0));
      read_relative_register_raw_bytes (regno + 1, (char *) (l + 1));
      read_relative_register_raw_bytes (regno + 1, (char *) (l + 1));
      read_relative_register_raw_bytes (regno + 2, (char *) (l + 2));
      read_relative_register_raw_bytes (regno + 2, (char *) (l + 2));
      read_relative_register_raw_bytes (regno + 3, (char *) (l + 3));
      read_relative_register_raw_bytes (regno + 3, (char *) (l + 3));
 
 
      printf_unfiltered ("\t");
      printf_unfiltered ("\t");
      printf_unfiltered ("%04x%04x%04x%04x", l[0], l[1], l[2], l[3]);
      printf_unfiltered ("%04x%04x%04x%04x", l[0], l[1], l[2], l[3]);
    }
    }
  if (regno == 15)
  if (regno == 15)
    {
    {
      unsigned short rval;
      unsigned short rval;
      int i;
      int i;
 
 
      read_relative_register_raw_bytes (regno, (char *) (&rval));
      read_relative_register_raw_bytes (regno, (char *) (&rval));
 
 
      printf_unfiltered ("\n");
      printf_unfiltered ("\n");
      for (i = 0; i < 10; i += 2)
      for (i = 0; i < 10; i += 2)
        {
        {
          printf_unfiltered ("(sp+%d=%04x)", i,
          printf_unfiltered ("(sp+%d=%04x)", i,
                             (unsigned int)read_memory_short (rval + i));
                             (unsigned int)read_memory_short (rval + i));
        }
        }
    }
    }
 
 
}
}
 
 
void
void
z8k_pop_frame ()
z8k_pop_frame ()
{
{
}
}
 
 
struct cmd_list_element *setmemorylist;
struct cmd_list_element *setmemorylist;
 
 
void
void
z8k_set_pointer_size (newsize)
z8k_set_pointer_size (newsize)
     int newsize;
     int newsize;
{
{
  static int oldsize = 0;
  static int oldsize = 0;
 
 
  if (oldsize != newsize)
  if (oldsize != newsize)
    {
    {
      printf_unfiltered ("pointer size set to %d bits\n", newsize);
      printf_unfiltered ("pointer size set to %d bits\n", newsize);
      oldsize = newsize;
      oldsize = newsize;
      if (newsize == 32)
      if (newsize == 32)
        {
        {
          BIG = 1;
          BIG = 1;
        }
        }
      else
      else
        {
        {
          BIG = 0;
          BIG = 0;
        }
        }
      /* FIXME: This code should be using the GDBARCH framework to
      /* FIXME: This code should be using the GDBARCH framework to
         handle changed type sizes.  If this problem is ever fixed
         handle changed type sizes.  If this problem is ever fixed
         (the direct reference to _initialize_gdbtypes() below
         (the direct reference to _initialize_gdbtypes() below
         eliminated) then Makefile.in should be updated so that
         eliminated) then Makefile.in should be updated so that
         z8k-tdep.c is again compiled with -Werror. */
         z8k-tdep.c is again compiled with -Werror. */
      _initialize_gdbtypes ();
      _initialize_gdbtypes ();
    }
    }
}
}
 
 
static void
static void
segmented_command (args, from_tty)
segmented_command (args, from_tty)
     char *args;
     char *args;
     int from_tty;
     int from_tty;
{
{
  z8k_set_pointer_size (32);
  z8k_set_pointer_size (32);
}
}
 
 
static void
static void
unsegmented_command (args, from_tty)
unsegmented_command (args, from_tty)
     char *args;
     char *args;
     int from_tty;
     int from_tty;
{
{
  z8k_set_pointer_size (16);
  z8k_set_pointer_size (16);
}
}
 
 
static void
static void
set_memory (args, from_tty)
set_memory (args, from_tty)
     char *args;
     char *args;
     int from_tty;
     int from_tty;
{
{
  printf_unfiltered ("\"set memory\" must be followed by the name of a memory subcommand.\n");
  printf_unfiltered ("\"set memory\" must be followed by the name of a memory subcommand.\n");
  help_list (setmemorylist, "set memory ", -1, gdb_stdout);
  help_list (setmemorylist, "set memory ", -1, gdb_stdout);
}
}
 
 
void
void
_initialize_z8ktdep ()
_initialize_z8ktdep ()
{
{
  tm_print_insn = gdb_print_insn_z8k;
  tm_print_insn = gdb_print_insn_z8k;
 
 
  add_prefix_cmd ("memory", no_class, set_memory,
  add_prefix_cmd ("memory", no_class, set_memory,
                  "set the memory model", &setmemorylist, "set memory ", 0,
                  "set the memory model", &setmemorylist, "set memory ", 0,
                  &setlist);
                  &setlist);
  add_cmd ("segmented", class_support, segmented_command,
  add_cmd ("segmented", class_support, segmented_command,
           "Set segmented memory model.", &setmemorylist);
           "Set segmented memory model.", &setmemorylist);
  add_cmd ("unsegmented", class_support, unsegmented_command,
  add_cmd ("unsegmented", class_support, unsegmented_command,
           "Set unsegmented memory model.", &setmemorylist);
           "Set unsegmented memory model.", &setmemorylist);
 
 
}
}
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.