OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [gdb-5.3/] [bfd/] [elf32-arm.h] - Diff between revs 1181 and 1765

Only display areas with differences | Details | Blame | View Log

Rev 1181 Rev 1765
/* 32-bit ELF support for ARM
/* 32-bit ELF support for ARM
   Copyright 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
   Copyright 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
 
 
   This file is part of BFD, the Binary File Descriptor library.
   This file is part of BFD, the Binary File Descriptor library.
 
 
   This program is free software; you can redistribute it and/or modify
   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2 of the License, or
   the Free Software Foundation; either version 2 of the License, or
   (at your option) any later version.
   (at your option) any later version.
 
 
   This program is distributed in the hope that it will be useful,
   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.
   GNU General Public License for more details.
 
 
   You should have received a copy of the GNU General Public License
   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   along with this program; if not, write to the Free Software
   Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */
   Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */
 
 
typedef unsigned long int insn32;
typedef unsigned long int insn32;
typedef unsigned short int insn16;
typedef unsigned short int insn16;
 
 
static boolean elf32_arm_set_private_flags
static boolean elf32_arm_set_private_flags
  PARAMS ((bfd *, flagword));
  PARAMS ((bfd *, flagword));
static boolean elf32_arm_copy_private_bfd_data
static boolean elf32_arm_copy_private_bfd_data
  PARAMS ((bfd *, bfd *));
  PARAMS ((bfd *, bfd *));
static boolean elf32_arm_merge_private_bfd_data
static boolean elf32_arm_merge_private_bfd_data
  PARAMS ((bfd *, bfd *));
  PARAMS ((bfd *, bfd *));
static boolean elf32_arm_print_private_bfd_data
static boolean elf32_arm_print_private_bfd_data
  PARAMS ((bfd *, PTR));
  PARAMS ((bfd *, PTR));
static int elf32_arm_get_symbol_type
static int elf32_arm_get_symbol_type
  PARAMS (( Elf_Internal_Sym *, int));
  PARAMS (( Elf_Internal_Sym *, int));
static struct bfd_link_hash_table *elf32_arm_link_hash_table_create
static struct bfd_link_hash_table *elf32_arm_link_hash_table_create
  PARAMS ((bfd *));
  PARAMS ((bfd *));
static bfd_reloc_status_type elf32_arm_final_link_relocate
static bfd_reloc_status_type elf32_arm_final_link_relocate
  PARAMS ((reloc_howto_type *, bfd *, bfd *, asection *, bfd_byte *,
  PARAMS ((reloc_howto_type *, bfd *, bfd *, asection *, bfd_byte *,
           Elf_Internal_Rela *, bfd_vma, struct bfd_link_info *, asection *,
           Elf_Internal_Rela *, bfd_vma, struct bfd_link_info *, asection *,
           const char *, int, struct elf_link_hash_entry *));
           const char *, int, struct elf_link_hash_entry *));
static insn32 insert_thumb_branch
static insn32 insert_thumb_branch
  PARAMS ((insn32, int));
  PARAMS ((insn32, int));
static struct elf_link_hash_entry *find_thumb_glue
static struct elf_link_hash_entry *find_thumb_glue
  PARAMS ((struct bfd_link_info *, const char *, bfd *));
  PARAMS ((struct bfd_link_info *, const char *, bfd *));
static struct elf_link_hash_entry *find_arm_glue
static struct elf_link_hash_entry *find_arm_glue
  PARAMS ((struct bfd_link_info *, const char *, bfd *));
  PARAMS ((struct bfd_link_info *, const char *, bfd *));
static void elf32_arm_post_process_headers
static void elf32_arm_post_process_headers
  PARAMS ((bfd *, struct bfd_link_info *));
  PARAMS ((bfd *, struct bfd_link_info *));
static int elf32_arm_to_thumb_stub
static int elf32_arm_to_thumb_stub
  PARAMS ((struct bfd_link_info *, const char *, bfd *, bfd *, asection *,
  PARAMS ((struct bfd_link_info *, const char *, bfd *, bfd *, asection *,
           bfd_byte *, asection *, bfd_vma, bfd_signed_vma, bfd_vma));
           bfd_byte *, asection *, bfd_vma, bfd_signed_vma, bfd_vma));
static int elf32_thumb_to_arm_stub
static int elf32_thumb_to_arm_stub
  PARAMS ((struct bfd_link_info *, const char *, bfd *, bfd *, asection *,
  PARAMS ((struct bfd_link_info *, const char *, bfd *, bfd *, asection *,
           bfd_byte *, asection *, bfd_vma, bfd_signed_vma, bfd_vma));
           bfd_byte *, asection *, bfd_vma, bfd_signed_vma, bfd_vma));
static boolean elf32_arm_relocate_section
static boolean elf32_arm_relocate_section
  PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
  PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
           Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
           Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
static asection * elf32_arm_gc_mark_hook
static asection * elf32_arm_gc_mark_hook
  PARAMS ((asection *, struct bfd_link_info *, Elf_Internal_Rela *,
  PARAMS ((asection *, struct bfd_link_info *, Elf_Internal_Rela *,
           struct elf_link_hash_entry *, Elf_Internal_Sym *));
           struct elf_link_hash_entry *, Elf_Internal_Sym *));
static boolean elf32_arm_gc_sweep_hook
static boolean elf32_arm_gc_sweep_hook
  PARAMS ((bfd *, struct bfd_link_info *, asection *,
  PARAMS ((bfd *, struct bfd_link_info *, asection *,
           const Elf_Internal_Rela *));
           const Elf_Internal_Rela *));
static boolean elf32_arm_check_relocs
static boolean elf32_arm_check_relocs
  PARAMS ((bfd *, struct bfd_link_info *, asection *,
  PARAMS ((bfd *, struct bfd_link_info *, asection *,
           const Elf_Internal_Rela *));
           const Elf_Internal_Rela *));
static boolean elf32_arm_find_nearest_line
static boolean elf32_arm_find_nearest_line
  PARAMS ((bfd *, asection *, asymbol **, bfd_vma, const char **,
  PARAMS ((bfd *, asection *, asymbol **, bfd_vma, const char **,
           const char **, unsigned int *));
           const char **, unsigned int *));
static boolean elf32_arm_adjust_dynamic_symbol
static boolean elf32_arm_adjust_dynamic_symbol
  PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
  PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
static boolean elf32_arm_size_dynamic_sections
static boolean elf32_arm_size_dynamic_sections
  PARAMS ((bfd *, struct bfd_link_info *));
  PARAMS ((bfd *, struct bfd_link_info *));
static boolean elf32_arm_finish_dynamic_symbol
static boolean elf32_arm_finish_dynamic_symbol
  PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
  PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
           Elf_Internal_Sym *));
           Elf_Internal_Sym *));
static boolean elf32_arm_finish_dynamic_sections
static boolean elf32_arm_finish_dynamic_sections
  PARAMS ((bfd *, struct bfd_link_info *));
  PARAMS ((bfd *, struct bfd_link_info *));
static struct bfd_hash_entry * elf32_arm_link_hash_newfunc
static struct bfd_hash_entry * elf32_arm_link_hash_newfunc
  PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
  PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
#ifdef USE_REL
#ifdef USE_REL
static void arm_add_to_rel
static void arm_add_to_rel
  PARAMS ((bfd *, bfd_byte *, reloc_howto_type *, bfd_signed_vma));
  PARAMS ((bfd *, bfd_byte *, reloc_howto_type *, bfd_signed_vma));
#endif
#endif
static enum elf_reloc_type_class elf32_arm_reloc_type_class
static enum elf_reloc_type_class elf32_arm_reloc_type_class
  PARAMS ((const Elf_Internal_Rela *));
  PARAMS ((const Elf_Internal_Rela *));
 
 
#ifndef ELFARM_NABI_C_INCLUDED
#ifndef ELFARM_NABI_C_INCLUDED
static void record_arm_to_thumb_glue
static void record_arm_to_thumb_glue
  PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
  PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
static void record_thumb_to_arm_glue
static void record_thumb_to_arm_glue
  PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
  PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
boolean bfd_elf32_arm_allocate_interworking_sections
boolean bfd_elf32_arm_allocate_interworking_sections
  PARAMS ((struct bfd_link_info *));
  PARAMS ((struct bfd_link_info *));
boolean bfd_elf32_arm_get_bfd_for_interworking
boolean bfd_elf32_arm_get_bfd_for_interworking
  PARAMS ((bfd *, struct bfd_link_info *));
  PARAMS ((bfd *, struct bfd_link_info *));
boolean bfd_elf32_arm_process_before_allocation
boolean bfd_elf32_arm_process_before_allocation
  PARAMS ((bfd *, struct bfd_link_info *, int));
  PARAMS ((bfd *, struct bfd_link_info *, int));
#endif
#endif
 
 
 
 
#define INTERWORK_FLAG(abfd)   (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK)
#define INTERWORK_FLAG(abfd)   (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK)
 
 
/* The linker script knows the section names for placement.
/* The linker script knows the section names for placement.
   The entry_names are used to do simple name mangling on the stubs.
   The entry_names are used to do simple name mangling on the stubs.
   Given a function name, and its type, the stub can be found. The
   Given a function name, and its type, the stub can be found. The
   name can be changed. The only requirement is the %s be present.  */
   name can be changed. The only requirement is the %s be present.  */
#define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
#define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
#define THUMB2ARM_GLUE_ENTRY_NAME   "__%s_from_thumb"
#define THUMB2ARM_GLUE_ENTRY_NAME   "__%s_from_thumb"
 
 
#define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
#define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
#define ARM2THUMB_GLUE_ENTRY_NAME   "__%s_from_arm"
#define ARM2THUMB_GLUE_ENTRY_NAME   "__%s_from_arm"
 
 
/* The name of the dynamic interpreter.  This is put in the .interp
/* The name of the dynamic interpreter.  This is put in the .interp
   section.  */
   section.  */
#define ELF_DYNAMIC_INTERPRETER     "/usr/lib/ld.so.1"
#define ELF_DYNAMIC_INTERPRETER     "/usr/lib/ld.so.1"
 
 
/* The size in bytes of an entry in the procedure linkage table.  */
/* The size in bytes of an entry in the procedure linkage table.  */
#define PLT_ENTRY_SIZE 16
#define PLT_ENTRY_SIZE 16
 
 
/* The first entry in a procedure linkage table looks like
/* The first entry in a procedure linkage table looks like
   this.  It is set up so that any shared library function that is
   this.  It is set up so that any shared library function that is
   called before the relocation has been set up calls the dynamic
   called before the relocation has been set up calls the dynamic
   linker first.  */
   linker first.  */
static const bfd_vma elf32_arm_plt0_entry [PLT_ENTRY_SIZE / 4] =
static const bfd_vma elf32_arm_plt0_entry [PLT_ENTRY_SIZE / 4] =
  {
  {
    0xe52de004, /* str   lr, [sp, #-4]!     */
    0xe52de004, /* str   lr, [sp, #-4]!     */
    0xe59fe010, /* ldr   lr, [pc, #16]      */
    0xe59fe010, /* ldr   lr, [pc, #16]      */
    0xe08fe00e, /* add   lr, pc, lr         */
    0xe08fe00e, /* add   lr, pc, lr         */
    0xe5bef008  /* ldr   pc, [lr, #8]!      */
    0xe5bef008  /* ldr   pc, [lr, #8]!      */
  };
  };
 
 
/* Subsequent entries in a procedure linkage table look like
/* Subsequent entries in a procedure linkage table look like
   this.  */
   this.  */
static const bfd_vma elf32_arm_plt_entry [PLT_ENTRY_SIZE / 4] =
static const bfd_vma elf32_arm_plt_entry [PLT_ENTRY_SIZE / 4] =
 {
 {
   0xe59fc004,  /* ldr   ip, [pc, #4]       */
   0xe59fc004,  /* ldr   ip, [pc, #4]       */
   0xe08fc00c,  /* add   ip, pc, ip         */
   0xe08fc00c,  /* add   ip, pc, ip         */
   0xe59cf000,  /* ldr   pc, [ip]           */
   0xe59cf000,  /* ldr   pc, [ip]           */
   0x00000000   /* offset to symbol in got  */
   0x00000000   /* offset to symbol in got  */
 };
 };
 
 
/* The ARM linker needs to keep track of the number of relocs that it
/* The ARM linker needs to keep track of the number of relocs that it
   decides to copy in check_relocs for each symbol.  This is so that
   decides to copy in check_relocs for each symbol.  This is so that
   it can discard PC relative relocs if it doesn't need them when
   it can discard PC relative relocs if it doesn't need them when
   linking with -Bsymbolic.  We store the information in a field
   linking with -Bsymbolic.  We store the information in a field
   extending the regular ELF linker hash table.  */
   extending the regular ELF linker hash table.  */
 
 
/* This structure keeps track of the number of PC relative relocs we
/* This structure keeps track of the number of PC relative relocs we
   have copied for a given symbol.  */
   have copied for a given symbol.  */
struct elf32_arm_pcrel_relocs_copied
struct elf32_arm_pcrel_relocs_copied
  {
  {
    /* Next section.  */
    /* Next section.  */
    struct elf32_arm_pcrel_relocs_copied * next;
    struct elf32_arm_pcrel_relocs_copied * next;
    /* A section in dynobj.  */
    /* A section in dynobj.  */
    asection * section;
    asection * section;
    /* Number of relocs copied in this section.  */
    /* Number of relocs copied in this section.  */
    bfd_size_type count;
    bfd_size_type count;
  };
  };
 
 
/* Arm ELF linker hash entry.  */
/* Arm ELF linker hash entry.  */
struct elf32_arm_link_hash_entry
struct elf32_arm_link_hash_entry
  {
  {
    struct elf_link_hash_entry root;
    struct elf_link_hash_entry root;
 
 
    /* Number of PC relative relocs copied for this symbol.  */
    /* Number of PC relative relocs copied for this symbol.  */
    struct elf32_arm_pcrel_relocs_copied * pcrel_relocs_copied;
    struct elf32_arm_pcrel_relocs_copied * pcrel_relocs_copied;
  };
  };
 
 
/* Declare this now that the above structures are defined.  */
/* Declare this now that the above structures are defined.  */
static boolean elf32_arm_discard_copies
static boolean elf32_arm_discard_copies
  PARAMS ((struct elf32_arm_link_hash_entry *, PTR));
  PARAMS ((struct elf32_arm_link_hash_entry *, PTR));
 
 
/* Traverse an arm ELF linker hash table.  */
/* Traverse an arm ELF linker hash table.  */
#define elf32_arm_link_hash_traverse(table, func, info)                 \
#define elf32_arm_link_hash_traverse(table, func, info)                 \
  (elf_link_hash_traverse                                               \
  (elf_link_hash_traverse                                               \
   (&(table)->root,                                                     \
   (&(table)->root,                                                     \
    (boolean (*) PARAMS ((struct elf_link_hash_entry *, PTR))) (func),  \
    (boolean (*) PARAMS ((struct elf_link_hash_entry *, PTR))) (func),  \
    (info)))
    (info)))
 
 
/* Get the ARM elf linker hash table from a link_info structure.  */
/* Get the ARM elf linker hash table from a link_info structure.  */
#define elf32_arm_hash_table(info) \
#define elf32_arm_hash_table(info) \
  ((struct elf32_arm_link_hash_table *) ((info)->hash))
  ((struct elf32_arm_link_hash_table *) ((info)->hash))
 
 
/* ARM ELF linker hash table.  */
/* ARM ELF linker hash table.  */
struct elf32_arm_link_hash_table
struct elf32_arm_link_hash_table
  {
  {
    /* The main hash table.  */
    /* The main hash table.  */
    struct elf_link_hash_table root;
    struct elf_link_hash_table root;
 
 
    /* The size in bytes of the section containg the Thumb-to-ARM glue.  */
    /* The size in bytes of the section containg the Thumb-to-ARM glue.  */
    bfd_size_type thumb_glue_size;
    bfd_size_type thumb_glue_size;
 
 
    /* The size in bytes of the section containg the ARM-to-Thumb glue.  */
    /* The size in bytes of the section containg the ARM-to-Thumb glue.  */
    bfd_size_type arm_glue_size;
    bfd_size_type arm_glue_size;
 
 
    /* An arbitary input BFD chosen to hold the glue sections.  */
    /* An arbitary input BFD chosen to hold the glue sections.  */
    bfd * bfd_of_glue_owner;
    bfd * bfd_of_glue_owner;
 
 
    /* A boolean indicating whether knowledge of the ARM's pipeline
    /* A boolean indicating whether knowledge of the ARM's pipeline
       length should be applied by the linker.  */
       length should be applied by the linker.  */
    int no_pipeline_knowledge;
    int no_pipeline_knowledge;
  };
  };
 
 
/* Create an entry in an ARM ELF linker hash table.  */
/* Create an entry in an ARM ELF linker hash table.  */
 
 
static struct bfd_hash_entry *
static struct bfd_hash_entry *
elf32_arm_link_hash_newfunc (entry, table, string)
elf32_arm_link_hash_newfunc (entry, table, string)
     struct bfd_hash_entry * entry;
     struct bfd_hash_entry * entry;
     struct bfd_hash_table * table;
     struct bfd_hash_table * table;
     const char * string;
     const char * string;
{
{
  struct elf32_arm_link_hash_entry * ret =
  struct elf32_arm_link_hash_entry * ret =
    (struct elf32_arm_link_hash_entry *) entry;
    (struct elf32_arm_link_hash_entry *) entry;
 
 
  /* Allocate the structure if it has not already been allocated by a
  /* Allocate the structure if it has not already been allocated by a
     subclass.  */
     subclass.  */
  if (ret == (struct elf32_arm_link_hash_entry *) NULL)
  if (ret == (struct elf32_arm_link_hash_entry *) NULL)
    ret = ((struct elf32_arm_link_hash_entry *)
    ret = ((struct elf32_arm_link_hash_entry *)
           bfd_hash_allocate (table,
           bfd_hash_allocate (table,
                              sizeof (struct elf32_arm_link_hash_entry)));
                              sizeof (struct elf32_arm_link_hash_entry)));
  if (ret == (struct elf32_arm_link_hash_entry *) NULL)
  if (ret == (struct elf32_arm_link_hash_entry *) NULL)
    return (struct bfd_hash_entry *) ret;
    return (struct bfd_hash_entry *) ret;
 
 
  /* Call the allocation method of the superclass.  */
  /* Call the allocation method of the superclass.  */
  ret = ((struct elf32_arm_link_hash_entry *)
  ret = ((struct elf32_arm_link_hash_entry *)
         _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
         _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
                                     table, string));
                                     table, string));
  if (ret != (struct elf32_arm_link_hash_entry *) NULL)
  if (ret != (struct elf32_arm_link_hash_entry *) NULL)
    ret->pcrel_relocs_copied = NULL;
    ret->pcrel_relocs_copied = NULL;
 
 
  return (struct bfd_hash_entry *) ret;
  return (struct bfd_hash_entry *) ret;
}
}
 
 
/* Create an ARM elf linker hash table.  */
/* Create an ARM elf linker hash table.  */
 
 
static struct bfd_link_hash_table *
static struct bfd_link_hash_table *
elf32_arm_link_hash_table_create (abfd)
elf32_arm_link_hash_table_create (abfd)
     bfd *abfd;
     bfd *abfd;
{
{
  struct elf32_arm_link_hash_table *ret;
  struct elf32_arm_link_hash_table *ret;
  bfd_size_type amt = sizeof (struct elf32_arm_link_hash_table);
  bfd_size_type amt = sizeof (struct elf32_arm_link_hash_table);
 
 
  ret = (struct elf32_arm_link_hash_table *) bfd_malloc (amt);
  ret = (struct elf32_arm_link_hash_table *) bfd_malloc (amt);
  if (ret == (struct elf32_arm_link_hash_table *) NULL)
  if (ret == (struct elf32_arm_link_hash_table *) NULL)
    return NULL;
    return NULL;
 
 
  if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
  if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
                                      elf32_arm_link_hash_newfunc))
                                      elf32_arm_link_hash_newfunc))
    {
    {
      free (ret);
      free (ret);
      return NULL;
      return NULL;
    }
    }
 
 
  ret->thumb_glue_size = 0;
  ret->thumb_glue_size = 0;
  ret->arm_glue_size = 0;
  ret->arm_glue_size = 0;
  ret->bfd_of_glue_owner = NULL;
  ret->bfd_of_glue_owner = NULL;
  ret->no_pipeline_knowledge = 0;
  ret->no_pipeline_knowledge = 0;
 
 
  return &ret->root.root;
  return &ret->root.root;
}
}
 
 
/* Locate the Thumb encoded calling stub for NAME.  */
/* Locate the Thumb encoded calling stub for NAME.  */
 
 
static struct elf_link_hash_entry *
static struct elf_link_hash_entry *
find_thumb_glue (link_info, name, input_bfd)
find_thumb_glue (link_info, name, input_bfd)
     struct bfd_link_info *link_info;
     struct bfd_link_info *link_info;
     const char *name;
     const char *name;
     bfd *input_bfd;
     bfd *input_bfd;
{
{
  char *tmp_name;
  char *tmp_name;
  struct elf_link_hash_entry *hash;
  struct elf_link_hash_entry *hash;
  struct elf32_arm_link_hash_table *hash_table;
  struct elf32_arm_link_hash_table *hash_table;
 
 
  /* We need a pointer to the armelf specific hash table.  */
  /* We need a pointer to the armelf specific hash table.  */
  hash_table = elf32_arm_hash_table (link_info);
  hash_table = elf32_arm_hash_table (link_info);
 
 
  tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
  tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
                                  + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
                                  + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
 
 
  BFD_ASSERT (tmp_name);
  BFD_ASSERT (tmp_name);
 
 
  sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
  sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
 
 
  hash = elf_link_hash_lookup
  hash = elf_link_hash_lookup
    (&(hash_table)->root, tmp_name, false, false, true);
    (&(hash_table)->root, tmp_name, false, false, true);
 
 
  if (hash == NULL)
  if (hash == NULL)
    /* xgettext:c-format */
    /* xgettext:c-format */
    (*_bfd_error_handler) (_("%s: unable to find THUMB glue '%s' for `%s'"),
    (*_bfd_error_handler) (_("%s: unable to find THUMB glue '%s' for `%s'"),
                           bfd_archive_filename (input_bfd), tmp_name, name);
                           bfd_archive_filename (input_bfd), tmp_name, name);
 
 
  free (tmp_name);
  free (tmp_name);
 
 
  return hash;
  return hash;
}
}
 
 
/* Locate the ARM encoded calling stub for NAME.  */
/* Locate the ARM encoded calling stub for NAME.  */
 
 
static struct elf_link_hash_entry *
static struct elf_link_hash_entry *
find_arm_glue (link_info, name, input_bfd)
find_arm_glue (link_info, name, input_bfd)
     struct bfd_link_info *link_info;
     struct bfd_link_info *link_info;
     const char *name;
     const char *name;
     bfd *input_bfd;
     bfd *input_bfd;
{
{
  char *tmp_name;
  char *tmp_name;
  struct elf_link_hash_entry *myh;
  struct elf_link_hash_entry *myh;
  struct elf32_arm_link_hash_table *hash_table;
  struct elf32_arm_link_hash_table *hash_table;
 
 
  /* We need a pointer to the elfarm specific hash table.  */
  /* We need a pointer to the elfarm specific hash table.  */
  hash_table = elf32_arm_hash_table (link_info);
  hash_table = elf32_arm_hash_table (link_info);
 
 
  tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
  tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
                                  + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
                                  + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
 
 
  BFD_ASSERT (tmp_name);
  BFD_ASSERT (tmp_name);
 
 
  sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
  sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
 
 
  myh = elf_link_hash_lookup
  myh = elf_link_hash_lookup
    (&(hash_table)->root, tmp_name, false, false, true);
    (&(hash_table)->root, tmp_name, false, false, true);
 
 
  if (myh == NULL)
  if (myh == NULL)
    /* xgettext:c-format */
    /* xgettext:c-format */
    (*_bfd_error_handler) (_("%s: unable to find ARM glue '%s' for `%s'"),
    (*_bfd_error_handler) (_("%s: unable to find ARM glue '%s' for `%s'"),
                           bfd_archive_filename (input_bfd), tmp_name, name);
                           bfd_archive_filename (input_bfd), tmp_name, name);
 
 
  free (tmp_name);
  free (tmp_name);
 
 
  return myh;
  return myh;
}
}
 
 
/* ARM->Thumb glue:
/* ARM->Thumb glue:
 
 
   .arm
   .arm
   __func_from_arm:
   __func_from_arm:
   ldr r12, __func_addr
   ldr r12, __func_addr
   bx  r12
   bx  r12
   __func_addr:
   __func_addr:
   .word func    @ behave as if you saw a ARM_32 reloc.  */
   .word func    @ behave as if you saw a ARM_32 reloc.  */
 
 
#define ARM2THUMB_GLUE_SIZE 12
#define ARM2THUMB_GLUE_SIZE 12
static const insn32 a2t1_ldr_insn = 0xe59fc000;
static const insn32 a2t1_ldr_insn = 0xe59fc000;
static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
static const insn32 a2t3_func_addr_insn = 0x00000001;
static const insn32 a2t3_func_addr_insn = 0x00000001;
 
 
/* Thumb->ARM:                          Thumb->(non-interworking aware) ARM
/* Thumb->ARM:                          Thumb->(non-interworking aware) ARM
 
 
   .thumb                               .thumb
   .thumb                               .thumb
   .align 2                             .align 2
   .align 2                             .align 2
   __func_from_thumb:              __func_from_thumb:
   __func_from_thumb:              __func_from_thumb:
   bx pc                                push {r6, lr}
   bx pc                                push {r6, lr}
   nop                                  ldr  r6, __func_addr
   nop                                  ldr  r6, __func_addr
   .arm                                         mov  lr, pc
   .arm                                         mov  lr, pc
   __func_change_to_arm:                        bx   r6
   __func_change_to_arm:                        bx   r6
   b func                       .arm
   b func                       .arm
   __func_back_to_thumb:
   __func_back_to_thumb:
   ldmia r13! {r6, lr}
   ldmia r13! {r6, lr}
   bx    lr
   bx    lr
   __func_addr:
   __func_addr:
   .word        func  */
   .word        func  */
 
 
#define THUMB2ARM_GLUE_SIZE 8
#define THUMB2ARM_GLUE_SIZE 8
static const insn16 t2a1_bx_pc_insn = 0x4778;
static const insn16 t2a1_bx_pc_insn = 0x4778;
static const insn16 t2a2_noop_insn = 0x46c0;
static const insn16 t2a2_noop_insn = 0x46c0;
static const insn32 t2a3_b_insn = 0xea000000;
static const insn32 t2a3_b_insn = 0xea000000;
 
 
static const insn16 t2a1_push_insn = 0xb540;
static const insn16 t2a1_push_insn = 0xb540;
static const insn16 t2a2_ldr_insn = 0x4e03;
static const insn16 t2a2_ldr_insn = 0x4e03;
static const insn16 t2a3_mov_insn = 0x46fe;
static const insn16 t2a3_mov_insn = 0x46fe;
static const insn16 t2a4_bx_insn = 0x4730;
static const insn16 t2a4_bx_insn = 0x4730;
static const insn32 t2a5_pop_insn = 0xe8bd4040;
static const insn32 t2a5_pop_insn = 0xe8bd4040;
static const insn32 t2a6_bx_insn = 0xe12fff1e;
static const insn32 t2a6_bx_insn = 0xe12fff1e;
 
 
#ifndef ELFARM_NABI_C_INCLUDED
#ifndef ELFARM_NABI_C_INCLUDED
boolean
boolean
bfd_elf32_arm_allocate_interworking_sections (info)
bfd_elf32_arm_allocate_interworking_sections (info)
     struct bfd_link_info * info;
     struct bfd_link_info * info;
{
{
  asection * s;
  asection * s;
  bfd_byte * foo;
  bfd_byte * foo;
  struct elf32_arm_link_hash_table * globals;
  struct elf32_arm_link_hash_table * globals;
 
 
  globals = elf32_arm_hash_table (info);
  globals = elf32_arm_hash_table (info);
 
 
  BFD_ASSERT (globals != NULL);
  BFD_ASSERT (globals != NULL);
 
 
  if (globals->arm_glue_size != 0)
  if (globals->arm_glue_size != 0)
    {
    {
      BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
      BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
 
 
      s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
      s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
                                   ARM2THUMB_GLUE_SECTION_NAME);
                                   ARM2THUMB_GLUE_SECTION_NAME);
 
 
      BFD_ASSERT (s != NULL);
      BFD_ASSERT (s != NULL);
 
 
      foo = (bfd_byte *) bfd_alloc (globals->bfd_of_glue_owner,
      foo = (bfd_byte *) bfd_alloc (globals->bfd_of_glue_owner,
                                    globals->arm_glue_size);
                                    globals->arm_glue_size);
 
 
      s->_raw_size = s->_cooked_size = globals->arm_glue_size;
      s->_raw_size = s->_cooked_size = globals->arm_glue_size;
      s->contents = foo;
      s->contents = foo;
    }
    }
 
 
  if (globals->thumb_glue_size != 0)
  if (globals->thumb_glue_size != 0)
    {
    {
      BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
      BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
 
 
      s = bfd_get_section_by_name
      s = bfd_get_section_by_name
        (globals->bfd_of_glue_owner, THUMB2ARM_GLUE_SECTION_NAME);
        (globals->bfd_of_glue_owner, THUMB2ARM_GLUE_SECTION_NAME);
 
 
      BFD_ASSERT (s != NULL);
      BFD_ASSERT (s != NULL);
 
 
      foo = (bfd_byte *) bfd_alloc (globals->bfd_of_glue_owner,
      foo = (bfd_byte *) bfd_alloc (globals->bfd_of_glue_owner,
                                    globals->thumb_glue_size);
                                    globals->thumb_glue_size);
 
 
      s->_raw_size = s->_cooked_size = globals->thumb_glue_size;
      s->_raw_size = s->_cooked_size = globals->thumb_glue_size;
      s->contents = foo;
      s->contents = foo;
    }
    }
 
 
  return true;
  return true;
}
}
 
 
static void
static void
record_arm_to_thumb_glue (link_info, h)
record_arm_to_thumb_glue (link_info, h)
     struct bfd_link_info * link_info;
     struct bfd_link_info * link_info;
     struct elf_link_hash_entry * h;
     struct elf_link_hash_entry * h;
{
{
  const char * name = h->root.root.string;
  const char * name = h->root.root.string;
  asection * s;
  asection * s;
  char * tmp_name;
  char * tmp_name;
  struct elf_link_hash_entry * myh;
  struct elf_link_hash_entry * myh;
  struct elf32_arm_link_hash_table * globals;
  struct elf32_arm_link_hash_table * globals;
  bfd_vma val;
  bfd_vma val;
 
 
  globals = elf32_arm_hash_table (link_info);
  globals = elf32_arm_hash_table (link_info);
 
 
  BFD_ASSERT (globals != NULL);
  BFD_ASSERT (globals != NULL);
  BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
  BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
 
 
  s = bfd_get_section_by_name
  s = bfd_get_section_by_name
    (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
    (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
 
 
  BFD_ASSERT (s != NULL);
  BFD_ASSERT (s != NULL);
 
 
  tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
  tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
                                  + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
                                  + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
 
 
  BFD_ASSERT (tmp_name);
  BFD_ASSERT (tmp_name);
 
 
  sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
  sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
 
 
  myh = elf_link_hash_lookup
  myh = elf_link_hash_lookup
    (&(globals)->root, tmp_name, false, false, true);
    (&(globals)->root, tmp_name, false, false, true);
 
 
  if (myh != NULL)
  if (myh != NULL)
    {
    {
      /* We've already seen this guy.  */
      /* We've already seen this guy.  */
      free (tmp_name);
      free (tmp_name);
      return;
      return;
    }
    }
 
 
  /* The only trick here is using hash_table->arm_glue_size as the value. Even
  /* The only trick here is using hash_table->arm_glue_size as the value. Even
     though the section isn't allocated yet, this is where we will be putting
     though the section isn't allocated yet, this is where we will be putting
     it.  */
     it.  */
  val = globals->arm_glue_size + 1;
  val = globals->arm_glue_size + 1;
  _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
  _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
                                    tmp_name, BSF_GLOBAL, s, val,
                                    tmp_name, BSF_GLOBAL, s, val,
                                    NULL, true, false,
                                    NULL, true, false,
                                    (struct bfd_link_hash_entry **) &myh);
                                    (struct bfd_link_hash_entry **) &myh);
 
 
  free (tmp_name);
  free (tmp_name);
 
 
  globals->arm_glue_size += ARM2THUMB_GLUE_SIZE;
  globals->arm_glue_size += ARM2THUMB_GLUE_SIZE;
 
 
  return;
  return;
}
}
 
 
static void
static void
record_thumb_to_arm_glue (link_info, h)
record_thumb_to_arm_glue (link_info, h)
     struct bfd_link_info *link_info;
     struct bfd_link_info *link_info;
     struct elf_link_hash_entry *h;
     struct elf_link_hash_entry *h;
{
{
  const char *name = h->root.root.string;
  const char *name = h->root.root.string;
  asection *s;
  asection *s;
  char *tmp_name;
  char *tmp_name;
  struct elf_link_hash_entry *myh;
  struct elf_link_hash_entry *myh;
  struct elf32_arm_link_hash_table *hash_table;
  struct elf32_arm_link_hash_table *hash_table;
  char bind;
  char bind;
  bfd_vma val;
  bfd_vma val;
 
 
  hash_table = elf32_arm_hash_table (link_info);
  hash_table = elf32_arm_hash_table (link_info);
 
 
  BFD_ASSERT (hash_table != NULL);
  BFD_ASSERT (hash_table != NULL);
  BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
  BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
 
 
  s = bfd_get_section_by_name
  s = bfd_get_section_by_name
    (hash_table->bfd_of_glue_owner, THUMB2ARM_GLUE_SECTION_NAME);
    (hash_table->bfd_of_glue_owner, THUMB2ARM_GLUE_SECTION_NAME);
 
 
  BFD_ASSERT (s != NULL);
  BFD_ASSERT (s != NULL);
 
 
  tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
  tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
                                  + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
                                  + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
 
 
  BFD_ASSERT (tmp_name);
  BFD_ASSERT (tmp_name);
 
 
  sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
  sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
 
 
  myh = elf_link_hash_lookup
  myh = elf_link_hash_lookup
    (&(hash_table)->root, tmp_name, false, false, true);
    (&(hash_table)->root, tmp_name, false, false, true);
 
 
  if (myh != NULL)
  if (myh != NULL)
    {
    {
      /* We've already seen this guy.  */
      /* We've already seen this guy.  */
      free (tmp_name);
      free (tmp_name);
      return;
      return;
    }
    }
 
 
  val = hash_table->thumb_glue_size + 1;
  val = hash_table->thumb_glue_size + 1;
  _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
  _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
                                    tmp_name, BSF_GLOBAL, s, val,
                                    tmp_name, BSF_GLOBAL, s, val,
                                    NULL, true, false,
                                    NULL, true, false,
                                    (struct bfd_link_hash_entry **) &myh);
                                    (struct bfd_link_hash_entry **) &myh);
 
 
  /* If we mark it 'Thumb', the disassembler will do a better job.  */
  /* If we mark it 'Thumb', the disassembler will do a better job.  */
  bind = ELF_ST_BIND (myh->type);
  bind = ELF_ST_BIND (myh->type);
  myh->type = ELF_ST_INFO (bind, STT_ARM_TFUNC);
  myh->type = ELF_ST_INFO (bind, STT_ARM_TFUNC);
 
 
  free (tmp_name);
  free (tmp_name);
 
 
#define CHANGE_TO_ARM "__%s_change_to_arm"
#define CHANGE_TO_ARM "__%s_change_to_arm"
#define BACK_FROM_ARM "__%s_back_from_arm"
#define BACK_FROM_ARM "__%s_back_from_arm"
 
 
  /* Allocate another symbol to mark where we switch to Arm mode.  */
  /* Allocate another symbol to mark where we switch to Arm mode.  */
  tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
  tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
                                  + strlen (CHANGE_TO_ARM) + 1);
                                  + strlen (CHANGE_TO_ARM) + 1);
 
 
  BFD_ASSERT (tmp_name);
  BFD_ASSERT (tmp_name);
 
 
  sprintf (tmp_name, CHANGE_TO_ARM, name);
  sprintf (tmp_name, CHANGE_TO_ARM, name);
 
 
  myh = NULL;
  myh = NULL;
 
 
  val = hash_table->thumb_glue_size + 4,
  val = hash_table->thumb_glue_size + 4,
  _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
  _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
                                    tmp_name, BSF_LOCAL, s, val,
                                    tmp_name, BSF_LOCAL, s, val,
                                    NULL, true, false,
                                    NULL, true, false,
                                    (struct bfd_link_hash_entry **) &myh);
                                    (struct bfd_link_hash_entry **) &myh);
 
 
  free (tmp_name);
  free (tmp_name);
 
 
  hash_table->thumb_glue_size += THUMB2ARM_GLUE_SIZE;
  hash_table->thumb_glue_size += THUMB2ARM_GLUE_SIZE;
 
 
  return;
  return;
}
}
 
 
/* Add the glue sections to ABFD.  This function is called from the
/* Add the glue sections to ABFD.  This function is called from the
   linker scripts in ld/emultempl/{armelf}.em.  */
   linker scripts in ld/emultempl/{armelf}.em.  */
 
 
boolean
boolean
bfd_elf32_arm_add_glue_sections_to_bfd (abfd, info)
bfd_elf32_arm_add_glue_sections_to_bfd (abfd, info)
     bfd *abfd;
     bfd *abfd;
     struct bfd_link_info *info;
     struct bfd_link_info *info;
{
{
  flagword flags;
  flagword flags;
  asection *sec;
  asection *sec;
 
 
  /* If we are only performing a partial
  /* If we are only performing a partial
     link do not bother adding the glue.  */
     link do not bother adding the glue.  */
  if (info->relocateable)
  if (info->relocateable)
    return true;
    return true;
 
 
  sec = bfd_get_section_by_name (abfd, ARM2THUMB_GLUE_SECTION_NAME);
  sec = bfd_get_section_by_name (abfd, ARM2THUMB_GLUE_SECTION_NAME);
 
 
  if (sec == NULL)
  if (sec == NULL)
    {
    {
      /* Note: we do not include the flag SEC_LINKER_CREATED, as this
      /* Note: we do not include the flag SEC_LINKER_CREATED, as this
         will prevent elf_link_input_bfd() from processing the contents
         will prevent elf_link_input_bfd() from processing the contents
         of this section.  */
         of this section.  */
      flags = SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE | SEC_READONLY;
      flags = SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE | SEC_READONLY;
 
 
      sec = bfd_make_section (abfd, ARM2THUMB_GLUE_SECTION_NAME);
      sec = bfd_make_section (abfd, ARM2THUMB_GLUE_SECTION_NAME);
 
 
      if (sec == NULL
      if (sec == NULL
          || !bfd_set_section_flags (abfd, sec, flags)
          || !bfd_set_section_flags (abfd, sec, flags)
          || !bfd_set_section_alignment (abfd, sec, 2))
          || !bfd_set_section_alignment (abfd, sec, 2))
        return false;
        return false;
 
 
      /* Set the gc mark to prevent the section from being removed by garbage
      /* Set the gc mark to prevent the section from being removed by garbage
         collection, despite the fact that no relocs refer to this section.  */
         collection, despite the fact that no relocs refer to this section.  */
      sec->gc_mark = 1;
      sec->gc_mark = 1;
    }
    }
 
 
  sec = bfd_get_section_by_name (abfd, THUMB2ARM_GLUE_SECTION_NAME);
  sec = bfd_get_section_by_name (abfd, THUMB2ARM_GLUE_SECTION_NAME);
 
 
  if (sec == NULL)
  if (sec == NULL)
    {
    {
      flags = SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE | SEC_READONLY;
      flags = SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE | SEC_READONLY;
 
 
      sec = bfd_make_section (abfd, THUMB2ARM_GLUE_SECTION_NAME);
      sec = bfd_make_section (abfd, THUMB2ARM_GLUE_SECTION_NAME);
 
 
      if (sec == NULL
      if (sec == NULL
          || !bfd_set_section_flags (abfd, sec, flags)
          || !bfd_set_section_flags (abfd, sec, flags)
          || !bfd_set_section_alignment (abfd, sec, 2))
          || !bfd_set_section_alignment (abfd, sec, 2))
        return false;
        return false;
 
 
      sec->gc_mark = 1;
      sec->gc_mark = 1;
    }
    }
 
 
  return true;
  return true;
}
}
 
 
/* Select a BFD to be used to hold the sections used by the glue code.
/* Select a BFD to be used to hold the sections used by the glue code.
   This function is called from the linker scripts in ld/emultempl/
   This function is called from the linker scripts in ld/emultempl/
   {armelf/pe}.em  */
   {armelf/pe}.em  */
 
 
boolean
boolean
bfd_elf32_arm_get_bfd_for_interworking (abfd, info)
bfd_elf32_arm_get_bfd_for_interworking (abfd, info)
     bfd *abfd;
     bfd *abfd;
     struct bfd_link_info *info;
     struct bfd_link_info *info;
{
{
  struct elf32_arm_link_hash_table *globals;
  struct elf32_arm_link_hash_table *globals;
 
 
  /* If we are only performing a partial link
  /* If we are only performing a partial link
     do not bother getting a bfd to hold the glue.  */
     do not bother getting a bfd to hold the glue.  */
  if (info->relocateable)
  if (info->relocateable)
    return true;
    return true;
 
 
  globals = elf32_arm_hash_table (info);
  globals = elf32_arm_hash_table (info);
 
 
  BFD_ASSERT (globals != NULL);
  BFD_ASSERT (globals != NULL);
 
 
  if (globals->bfd_of_glue_owner != NULL)
  if (globals->bfd_of_glue_owner != NULL)
    return true;
    return true;
 
 
  /* Save the bfd for later use.  */
  /* Save the bfd for later use.  */
  globals->bfd_of_glue_owner = abfd;
  globals->bfd_of_glue_owner = abfd;
 
 
  return true;
  return true;
}
}
 
 
boolean
boolean
bfd_elf32_arm_process_before_allocation (abfd, link_info, no_pipeline_knowledge)
bfd_elf32_arm_process_before_allocation (abfd, link_info, no_pipeline_knowledge)
     bfd *abfd;
     bfd *abfd;
     struct bfd_link_info *link_info;
     struct bfd_link_info *link_info;
     int no_pipeline_knowledge;
     int no_pipeline_knowledge;
{
{
  Elf_Internal_Shdr *symtab_hdr;
  Elf_Internal_Shdr *symtab_hdr;
  Elf_Internal_Rela *internal_relocs = NULL;
  Elf_Internal_Rela *internal_relocs = NULL;
  Elf_Internal_Rela *irel, *irelend;
  Elf_Internal_Rela *irel, *irelend;
  bfd_byte *contents = NULL;
  bfd_byte *contents = NULL;
 
 
  asection *sec;
  asection *sec;
  struct elf32_arm_link_hash_table *globals;
  struct elf32_arm_link_hash_table *globals;
 
 
  /* If we are only performing a partial link do not bother
  /* If we are only performing a partial link do not bother
     to construct any glue.  */
     to construct any glue.  */
  if (link_info->relocateable)
  if (link_info->relocateable)
    return true;
    return true;
 
 
  /* Here we have a bfd that is to be included on the link.  We have a hook
  /* Here we have a bfd that is to be included on the link.  We have a hook
     to do reloc rummaging, before section sizes are nailed down.  */
     to do reloc rummaging, before section sizes are nailed down.  */
  globals = elf32_arm_hash_table (link_info);
  globals = elf32_arm_hash_table (link_info);
 
 
  BFD_ASSERT (globals != NULL);
  BFD_ASSERT (globals != NULL);
  BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
  BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
 
 
  globals->no_pipeline_knowledge = no_pipeline_knowledge;
  globals->no_pipeline_knowledge = no_pipeline_knowledge;
 
 
  /* Rummage around all the relocs and map the glue vectors.  */
  /* Rummage around all the relocs and map the glue vectors.  */
  sec = abfd->sections;
  sec = abfd->sections;
 
 
  if (sec == NULL)
  if (sec == NULL)
    return true;
    return true;
 
 
  for (; sec != NULL; sec = sec->next)
  for (; sec != NULL; sec = sec->next)
    {
    {
      if (sec->reloc_count == 0)
      if (sec->reloc_count == 0)
        continue;
        continue;
 
 
      symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
      symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
 
 
      /* Load the relocs.  */
      /* Load the relocs.  */
      internal_relocs
      internal_relocs
        = _bfd_elf32_link_read_relocs (abfd, sec, (PTR) NULL,
        = _bfd_elf32_link_read_relocs (abfd, sec, (PTR) NULL,
                                       (Elf_Internal_Rela *) NULL, false);
                                       (Elf_Internal_Rela *) NULL, false);
 
 
      if (internal_relocs == NULL)
      if (internal_relocs == NULL)
        goto error_return;
        goto error_return;
 
 
      irelend = internal_relocs + sec->reloc_count;
      irelend = internal_relocs + sec->reloc_count;
      for (irel = internal_relocs; irel < irelend; irel++)
      for (irel = internal_relocs; irel < irelend; irel++)
        {
        {
          long r_type;
          long r_type;
          unsigned long r_index;
          unsigned long r_index;
 
 
          struct elf_link_hash_entry *h;
          struct elf_link_hash_entry *h;
 
 
          r_type = ELF32_R_TYPE (irel->r_info);
          r_type = ELF32_R_TYPE (irel->r_info);
          r_index = ELF32_R_SYM (irel->r_info);
          r_index = ELF32_R_SYM (irel->r_info);
 
 
          /* These are the only relocation types we care about.  */
          /* These are the only relocation types we care about.  */
          if (   r_type != R_ARM_PC24
          if (   r_type != R_ARM_PC24
              && r_type != R_ARM_THM_PC22)
              && r_type != R_ARM_THM_PC22)
            continue;
            continue;
 
 
          /* Get the section contents if we haven't done so already.  */
          /* Get the section contents if we haven't done so already.  */
          if (contents == NULL)
          if (contents == NULL)
            {
            {
              /* Get cached copy if it exists.  */
              /* Get cached copy if it exists.  */
              if (elf_section_data (sec)->this_hdr.contents != NULL)
              if (elf_section_data (sec)->this_hdr.contents != NULL)
                contents = elf_section_data (sec)->this_hdr.contents;
                contents = elf_section_data (sec)->this_hdr.contents;
              else
              else
                {
                {
                  /* Go get them off disk.  */
                  /* Go get them off disk.  */
                  contents = (bfd_byte *) bfd_malloc (sec->_raw_size);
                  contents = (bfd_byte *) bfd_malloc (sec->_raw_size);
                  if (contents == NULL)
                  if (contents == NULL)
                    goto error_return;
                    goto error_return;
 
 
                  if (!bfd_get_section_contents (abfd, sec, contents,
                  if (!bfd_get_section_contents (abfd, sec, contents,
                                                 (file_ptr) 0, sec->_raw_size))
                                                 (file_ptr) 0, sec->_raw_size))
                    goto error_return;
                    goto error_return;
                }
                }
            }
            }
 
 
          /* If the relocation is not against a symbol it cannot concern us.  */
          /* If the relocation is not against a symbol it cannot concern us.  */
          h = NULL;
          h = NULL;
 
 
          /* We don't care about local symbols.  */
          /* We don't care about local symbols.  */
          if (r_index < symtab_hdr->sh_info)
          if (r_index < symtab_hdr->sh_info)
            continue;
            continue;
 
 
          /* This is an external symbol.  */
          /* This is an external symbol.  */
          r_index -= symtab_hdr->sh_info;
          r_index -= symtab_hdr->sh_info;
          h = (struct elf_link_hash_entry *)
          h = (struct elf_link_hash_entry *)
            elf_sym_hashes (abfd)[r_index];
            elf_sym_hashes (abfd)[r_index];
 
 
          /* If the relocation is against a static symbol it must be within
          /* If the relocation is against a static symbol it must be within
             the current section and so cannot be a cross ARM/Thumb relocation.  */
             the current section and so cannot be a cross ARM/Thumb relocation.  */
          if (h == NULL)
          if (h == NULL)
            continue;
            continue;
 
 
          switch (r_type)
          switch (r_type)
            {
            {
            case R_ARM_PC24:
            case R_ARM_PC24:
              /* This one is a call from arm code.  We need to look up
              /* This one is a call from arm code.  We need to look up
                 the target of the call.  If it is a thumb target, we
                 the target of the call.  If it is a thumb target, we
                 insert glue.  */
                 insert glue.  */
              if (ELF_ST_TYPE(h->type) == STT_ARM_TFUNC)
              if (ELF_ST_TYPE(h->type) == STT_ARM_TFUNC)
                record_arm_to_thumb_glue (link_info, h);
                record_arm_to_thumb_glue (link_info, h);
              break;
              break;
 
 
            case R_ARM_THM_PC22:
            case R_ARM_THM_PC22:
              /* This one is a call from thumb code.  We look
              /* This one is a call from thumb code.  We look
                 up the target of the call.  If it is not a thumb
                 up the target of the call.  If it is not a thumb
                 target, we insert glue.  */
                 target, we insert glue.  */
              if (ELF_ST_TYPE (h->type) != STT_ARM_TFUNC)
              if (ELF_ST_TYPE (h->type) != STT_ARM_TFUNC)
                record_thumb_to_arm_glue (link_info, h);
                record_thumb_to_arm_glue (link_info, h);
              break;
              break;
 
 
            default:
            default:
              break;
              break;
            }
            }
        }
        }
 
 
      if (contents != NULL
      if (contents != NULL
          && elf_section_data (sec)->this_hdr.contents != contents)
          && elf_section_data (sec)->this_hdr.contents != contents)
        free (contents);
        free (contents);
      contents = NULL;
      contents = NULL;
 
 
      if (internal_relocs != NULL
      if (internal_relocs != NULL
          && elf_section_data (sec)->relocs != internal_relocs)
          && elf_section_data (sec)->relocs != internal_relocs)
        free (internal_relocs);
        free (internal_relocs);
      internal_relocs = NULL;
      internal_relocs = NULL;
    }
    }
 
 
  return true;
  return true;
 
 
error_return:
error_return:
  if (contents != NULL
  if (contents != NULL
      && elf_section_data (sec)->this_hdr.contents != contents)
      && elf_section_data (sec)->this_hdr.contents != contents)
    free (contents);
    free (contents);
  if (internal_relocs != NULL
  if (internal_relocs != NULL
      && elf_section_data (sec)->relocs != internal_relocs)
      && elf_section_data (sec)->relocs != internal_relocs)
    free (internal_relocs);
    free (internal_relocs);
 
 
  return false;
  return false;
}
}
#endif
#endif
 
 
/* The thumb form of a long branch is a bit finicky, because the offset
/* The thumb form of a long branch is a bit finicky, because the offset
   encoding is split over two fields, each in it's own instruction. They
   encoding is split over two fields, each in it's own instruction. They
   can occur in any order. So given a thumb form of long branch, and an
   can occur in any order. So given a thumb form of long branch, and an
   offset, insert the offset into the thumb branch and return finished
   offset, insert the offset into the thumb branch and return finished
   instruction.
   instruction.
 
 
   It takes two thumb instructions to encode the target address. Each has
   It takes two thumb instructions to encode the target address. Each has
   11 bits to invest. The upper 11 bits are stored in one (identifed by
   11 bits to invest. The upper 11 bits are stored in one (identifed by
   H-0.. see below), the lower 11 bits are stored in the other (identified
   H-0.. see below), the lower 11 bits are stored in the other (identified
   by H-1).
   by H-1).
 
 
   Combine together and shifted left by 1 (it's a half word address) and
   Combine together and shifted left by 1 (it's a half word address) and
   there you have it.
   there you have it.
 
 
   Op: 1111 = F,
   Op: 1111 = F,
   H-0, upper address-0 = 000
   H-0, upper address-0 = 000
   Op: 1111 = F,
   Op: 1111 = F,
   H-1, lower address-0 = 800
   H-1, lower address-0 = 800
 
 
   They can be ordered either way, but the arm tools I've seen always put
   They can be ordered either way, but the arm tools I've seen always put
   the lower one first. It probably doesn't matter. krk@cygnus.com
   the lower one first. It probably doesn't matter. krk@cygnus.com
 
 
   XXX:  Actually the order does matter.  The second instruction (H-1)
   XXX:  Actually the order does matter.  The second instruction (H-1)
   moves the computed address into the PC, so it must be the second one
   moves the computed address into the PC, so it must be the second one
   in the sequence.  The problem, however is that whilst little endian code
   in the sequence.  The problem, however is that whilst little endian code
   stores the instructions in HI then LOW order, big endian code does the
   stores the instructions in HI then LOW order, big endian code does the
   reverse.  nickc@cygnus.com.  */
   reverse.  nickc@cygnus.com.  */
 
 
#define LOW_HI_ORDER      0xF800F000
#define LOW_HI_ORDER      0xF800F000
#define HI_LOW_ORDER      0xF000F800
#define HI_LOW_ORDER      0xF000F800
 
 
static insn32
static insn32
insert_thumb_branch (br_insn, rel_off)
insert_thumb_branch (br_insn, rel_off)
     insn32 br_insn;
     insn32 br_insn;
     int rel_off;
     int rel_off;
{
{
  unsigned int low_bits;
  unsigned int low_bits;
  unsigned int high_bits;
  unsigned int high_bits;
 
 
  BFD_ASSERT ((rel_off & 1) != 1);
  BFD_ASSERT ((rel_off & 1) != 1);
 
 
  rel_off >>= 1;                                /* Half word aligned address.  */
  rel_off >>= 1;                                /* Half word aligned address.  */
  low_bits = rel_off & 0x000007FF;              /* The bottom 11 bits.  */
  low_bits = rel_off & 0x000007FF;              /* The bottom 11 bits.  */
  high_bits = (rel_off >> 11) & 0x000007FF;     /* The top 11 bits.  */
  high_bits = (rel_off >> 11) & 0x000007FF;     /* The top 11 bits.  */
 
 
  if ((br_insn & LOW_HI_ORDER) == LOW_HI_ORDER)
  if ((br_insn & LOW_HI_ORDER) == LOW_HI_ORDER)
    br_insn = LOW_HI_ORDER | (low_bits << 16) | high_bits;
    br_insn = LOW_HI_ORDER | (low_bits << 16) | high_bits;
  else if ((br_insn & HI_LOW_ORDER) == HI_LOW_ORDER)
  else if ((br_insn & HI_LOW_ORDER) == HI_LOW_ORDER)
    br_insn = HI_LOW_ORDER | (high_bits << 16) | low_bits;
    br_insn = HI_LOW_ORDER | (high_bits << 16) | low_bits;
  else
  else
    /* FIXME: abort is probably not the right call. krk@cygnus.com  */
    /* FIXME: abort is probably not the right call. krk@cygnus.com  */
    abort ();                   /* error - not a valid branch instruction form.  */
    abort ();                   /* error - not a valid branch instruction form.  */
 
 
  return br_insn;
  return br_insn;
}
}
 
 
/* Thumb code calling an ARM function.  */
/* Thumb code calling an ARM function.  */
 
 
static int
static int
elf32_thumb_to_arm_stub (info, name, input_bfd, output_bfd, input_section,
elf32_thumb_to_arm_stub (info, name, input_bfd, output_bfd, input_section,
                         hit_data, sym_sec, offset, addend, val)
                         hit_data, sym_sec, offset, addend, val)
     struct bfd_link_info * info;
     struct bfd_link_info * info;
     const char *           name;
     const char *           name;
     bfd *                  input_bfd;
     bfd *                  input_bfd;
     bfd *                  output_bfd;
     bfd *                  output_bfd;
     asection *             input_section;
     asection *             input_section;
     bfd_byte *             hit_data;
     bfd_byte *             hit_data;
     asection *             sym_sec;
     asection *             sym_sec;
     bfd_vma                offset;
     bfd_vma                offset;
     bfd_signed_vma         addend;
     bfd_signed_vma         addend;
     bfd_vma                val;
     bfd_vma                val;
{
{
  asection * s = 0;
  asection * s = 0;
  bfd_vma my_offset;
  bfd_vma my_offset;
  unsigned long int tmp;
  unsigned long int tmp;
  long int ret_offset;
  long int ret_offset;
  struct elf_link_hash_entry * myh;
  struct elf_link_hash_entry * myh;
  struct elf32_arm_link_hash_table * globals;
  struct elf32_arm_link_hash_table * globals;
 
 
  myh = find_thumb_glue (info, name, input_bfd);
  myh = find_thumb_glue (info, name, input_bfd);
  if (myh == NULL)
  if (myh == NULL)
    return false;
    return false;
 
 
  globals = elf32_arm_hash_table (info);
  globals = elf32_arm_hash_table (info);
 
 
  BFD_ASSERT (globals != NULL);
  BFD_ASSERT (globals != NULL);
  BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
  BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
 
 
  my_offset = myh->root.u.def.value;
  my_offset = myh->root.u.def.value;
 
 
  s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
  s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
                               THUMB2ARM_GLUE_SECTION_NAME);
                               THUMB2ARM_GLUE_SECTION_NAME);
 
 
  BFD_ASSERT (s != NULL);
  BFD_ASSERT (s != NULL);
  BFD_ASSERT (s->contents != NULL);
  BFD_ASSERT (s->contents != NULL);
  BFD_ASSERT (s->output_section != NULL);
  BFD_ASSERT (s->output_section != NULL);
 
 
  if ((my_offset & 0x01) == 0x01)
  if ((my_offset & 0x01) == 0x01)
    {
    {
      if (sym_sec != NULL
      if (sym_sec != NULL
          && sym_sec->owner != NULL
          && sym_sec->owner != NULL
          && !INTERWORK_FLAG (sym_sec->owner))
          && !INTERWORK_FLAG (sym_sec->owner))
        {
        {
          (*_bfd_error_handler)
          (*_bfd_error_handler)
            (_("%s(%s): warning: interworking not enabled."),
            (_("%s(%s): warning: interworking not enabled."),
             bfd_archive_filename (sym_sec->owner), name);
             bfd_archive_filename (sym_sec->owner), name);
          (*_bfd_error_handler)
          (*_bfd_error_handler)
            (_("  first occurrence: %s: thumb call to arm"),
            (_("  first occurrence: %s: thumb call to arm"),
             bfd_archive_filename (input_bfd));
             bfd_archive_filename (input_bfd));
 
 
          return false;
          return false;
        }
        }
 
 
      --my_offset;
      --my_offset;
      myh->root.u.def.value = my_offset;
      myh->root.u.def.value = my_offset;
 
 
      bfd_put_16 (output_bfd, (bfd_vma) t2a1_bx_pc_insn,
      bfd_put_16 (output_bfd, (bfd_vma) t2a1_bx_pc_insn,
                  s->contents + my_offset);
                  s->contents + my_offset);
 
 
      bfd_put_16 (output_bfd, (bfd_vma) t2a2_noop_insn,
      bfd_put_16 (output_bfd, (bfd_vma) t2a2_noop_insn,
                  s->contents + my_offset + 2);
                  s->contents + my_offset + 2);
 
 
      ret_offset =
      ret_offset =
        /* Address of destination of the stub.  */
        /* Address of destination of the stub.  */
        ((bfd_signed_vma) val)
        ((bfd_signed_vma) val)
        - ((bfd_signed_vma)
        - ((bfd_signed_vma)
           /* Offset from the start of the current section to the start of the stubs.  */
           /* Offset from the start of the current section to the start of the stubs.  */
           (s->output_offset
           (s->output_offset
            /* Offset of the start of this stub from the start of the stubs.  */
            /* Offset of the start of this stub from the start of the stubs.  */
            + my_offset
            + my_offset
            /* Address of the start of the current section.  */
            /* Address of the start of the current section.  */
            + s->output_section->vma)
            + s->output_section->vma)
           /* The branch instruction is 4 bytes into the stub.  */
           /* The branch instruction is 4 bytes into the stub.  */
           + 4
           + 4
           /* ARM branches work from the pc of the instruction + 8.  */
           /* ARM branches work from the pc of the instruction + 8.  */
           + 8);
           + 8);
 
 
      bfd_put_32 (output_bfd,
      bfd_put_32 (output_bfd,
                  (bfd_vma) t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
                  (bfd_vma) t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
                  s->contents + my_offset + 4);
                  s->contents + my_offset + 4);
    }
    }
 
 
  BFD_ASSERT (my_offset <= globals->thumb_glue_size);
  BFD_ASSERT (my_offset <= globals->thumb_glue_size);
 
 
  /* Now go back and fix up the original BL insn to point
  /* Now go back and fix up the original BL insn to point
     to here.  */
     to here.  */
  ret_offset = (s->output_offset
  ret_offset = (s->output_offset
                + my_offset
                + my_offset
                - (input_section->output_offset
                - (input_section->output_offset
                   + offset + addend)
                   + offset + addend)
                - 8);
                - 8);
 
 
  tmp = bfd_get_32 (input_bfd, hit_data
  tmp = bfd_get_32 (input_bfd, hit_data
                    - input_section->vma);
                    - input_section->vma);
 
 
  bfd_put_32 (output_bfd,
  bfd_put_32 (output_bfd,
              (bfd_vma) insert_thumb_branch (tmp, ret_offset),
              (bfd_vma) insert_thumb_branch (tmp, ret_offset),
              hit_data - input_section->vma);
              hit_data - input_section->vma);
 
 
  return true;
  return true;
}
}
 
 
/* Arm code calling a Thumb function.  */
/* Arm code calling a Thumb function.  */
 
 
static int
static int
elf32_arm_to_thumb_stub (info, name, input_bfd, output_bfd, input_section,
elf32_arm_to_thumb_stub (info, name, input_bfd, output_bfd, input_section,
                         hit_data, sym_sec, offset, addend, val)
                         hit_data, sym_sec, offset, addend, val)
     struct bfd_link_info * info;
     struct bfd_link_info * info;
     const char *           name;
     const char *           name;
     bfd *                  input_bfd;
     bfd *                  input_bfd;
     bfd *                  output_bfd;
     bfd *                  output_bfd;
     asection *             input_section;
     asection *             input_section;
     bfd_byte *             hit_data;
     bfd_byte *             hit_data;
     asection *             sym_sec;
     asection *             sym_sec;
     bfd_vma                offset;
     bfd_vma                offset;
     bfd_signed_vma         addend;
     bfd_signed_vma         addend;
     bfd_vma                val;
     bfd_vma                val;
{
{
  unsigned long int tmp;
  unsigned long int tmp;
  bfd_vma my_offset;
  bfd_vma my_offset;
  asection * s;
  asection * s;
  long int ret_offset;
  long int ret_offset;
  struct elf_link_hash_entry * myh;
  struct elf_link_hash_entry * myh;
  struct elf32_arm_link_hash_table * globals;
  struct elf32_arm_link_hash_table * globals;
 
 
  myh = find_arm_glue (info, name, input_bfd);
  myh = find_arm_glue (info, name, input_bfd);
  if (myh == NULL)
  if (myh == NULL)
    return false;
    return false;
 
 
  globals = elf32_arm_hash_table (info);
  globals = elf32_arm_hash_table (info);
 
 
  BFD_ASSERT (globals != NULL);
  BFD_ASSERT (globals != NULL);
  BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
  BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
 
 
  my_offset = myh->root.u.def.value;
  my_offset = myh->root.u.def.value;
  s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
  s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
                               ARM2THUMB_GLUE_SECTION_NAME);
                               ARM2THUMB_GLUE_SECTION_NAME);
  BFD_ASSERT (s != NULL);
  BFD_ASSERT (s != NULL);
  BFD_ASSERT (s->contents != NULL);
  BFD_ASSERT (s->contents != NULL);
  BFD_ASSERT (s->output_section != NULL);
  BFD_ASSERT (s->output_section != NULL);
 
 
  if ((my_offset & 0x01) == 0x01)
  if ((my_offset & 0x01) == 0x01)
    {
    {
      if (sym_sec != NULL
      if (sym_sec != NULL
          && sym_sec->owner != NULL
          && sym_sec->owner != NULL
          && !INTERWORK_FLAG (sym_sec->owner))
          && !INTERWORK_FLAG (sym_sec->owner))
        {
        {
          (*_bfd_error_handler)
          (*_bfd_error_handler)
            (_("%s(%s): warning: interworking not enabled."),
            (_("%s(%s): warning: interworking not enabled."),
             bfd_archive_filename (sym_sec->owner), name);
             bfd_archive_filename (sym_sec->owner), name);
          (*_bfd_error_handler)
          (*_bfd_error_handler)
            (_("  first occurrence: %s: arm call to thumb"),
            (_("  first occurrence: %s: arm call to thumb"),
             bfd_archive_filename (input_bfd));
             bfd_archive_filename (input_bfd));
        }
        }
 
 
      --my_offset;
      --my_offset;
      myh->root.u.def.value = my_offset;
      myh->root.u.def.value = my_offset;
 
 
      bfd_put_32 (output_bfd, (bfd_vma) a2t1_ldr_insn,
      bfd_put_32 (output_bfd, (bfd_vma) a2t1_ldr_insn,
                  s->contents + my_offset);
                  s->contents + my_offset);
 
 
      bfd_put_32 (output_bfd, (bfd_vma) a2t2_bx_r12_insn,
      bfd_put_32 (output_bfd, (bfd_vma) a2t2_bx_r12_insn,
                  s->contents + my_offset + 4);
                  s->contents + my_offset + 4);
 
 
      /* It's a thumb address.  Add the low order bit.  */
      /* It's a thumb address.  Add the low order bit.  */
      bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
      bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
                  s->contents + my_offset + 8);
                  s->contents + my_offset + 8);
    }
    }
 
 
  BFD_ASSERT (my_offset <= globals->arm_glue_size);
  BFD_ASSERT (my_offset <= globals->arm_glue_size);
 
 
  tmp = bfd_get_32 (input_bfd, hit_data);
  tmp = bfd_get_32 (input_bfd, hit_data);
  tmp = tmp & 0xFF000000;
  tmp = tmp & 0xFF000000;
 
 
  /* Somehow these are both 4 too far, so subtract 8.  */
  /* Somehow these are both 4 too far, so subtract 8.  */
  ret_offset = (s->output_offset
  ret_offset = (s->output_offset
                + my_offset
                + my_offset
                + s->output_section->vma
                + s->output_section->vma
                - (input_section->output_offset
                - (input_section->output_offset
                   + input_section->output_section->vma
                   + input_section->output_section->vma
                   + offset + addend)
                   + offset + addend)
                - 8);
                - 8);
 
 
  tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
  tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
 
 
  bfd_put_32 (output_bfd, (bfd_vma) tmp, hit_data - input_section->vma);
  bfd_put_32 (output_bfd, (bfd_vma) tmp, hit_data - input_section->vma);
 
 
  return true;
  return true;
}
}
 
 
/* Perform a relocation as part of a final link.  */
/* Perform a relocation as part of a final link.  */
 
 
static bfd_reloc_status_type
static bfd_reloc_status_type
elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
                               input_section, contents, rel, value,
                               input_section, contents, rel, value,
                               info, sym_sec, sym_name, sym_flags, h)
                               info, sym_sec, sym_name, sym_flags, h)
     reloc_howto_type *     howto;
     reloc_howto_type *     howto;
     bfd *                  input_bfd;
     bfd *                  input_bfd;
     bfd *                  output_bfd;
     bfd *                  output_bfd;
     asection *             input_section;
     asection *             input_section;
     bfd_byte *             contents;
     bfd_byte *             contents;
     Elf_Internal_Rela *    rel;
     Elf_Internal_Rela *    rel;
     bfd_vma                value;
     bfd_vma                value;
     struct bfd_link_info * info;
     struct bfd_link_info * info;
     asection *             sym_sec;
     asection *             sym_sec;
     const char *           sym_name;
     const char *           sym_name;
     int                    sym_flags;
     int                    sym_flags;
     struct elf_link_hash_entry * h;
     struct elf_link_hash_entry * h;
{
{
  unsigned long                 r_type = howto->type;
  unsigned long                 r_type = howto->type;
  unsigned long                 r_symndx;
  unsigned long                 r_symndx;
  bfd_byte *                    hit_data = contents + rel->r_offset;
  bfd_byte *                    hit_data = contents + rel->r_offset;
  bfd *                         dynobj = NULL;
  bfd *                         dynobj = NULL;
  Elf_Internal_Shdr *           symtab_hdr;
  Elf_Internal_Shdr *           symtab_hdr;
  struct elf_link_hash_entry ** sym_hashes;
  struct elf_link_hash_entry ** sym_hashes;
  bfd_vma *                     local_got_offsets;
  bfd_vma *                     local_got_offsets;
  asection *                    sgot = NULL;
  asection *                    sgot = NULL;
  asection *                    splt = NULL;
  asection *                    splt = NULL;
  asection *                    sreloc = NULL;
  asection *                    sreloc = NULL;
  bfd_vma                       addend;
  bfd_vma                       addend;
  bfd_signed_vma                signed_addend;
  bfd_signed_vma                signed_addend;
  struct elf32_arm_link_hash_table * globals;
  struct elf32_arm_link_hash_table * globals;
 
 
  /* If the start address has been set, then set the EF_ARM_HASENTRY
  /* If the start address has been set, then set the EF_ARM_HASENTRY
     flag.  Setting this more than once is redundant, but the cost is
     flag.  Setting this more than once is redundant, but the cost is
     not too high, and it keeps the code simple.
     not too high, and it keeps the code simple.
 
 
     The test is done  here, rather than somewhere else, because the
     The test is done  here, rather than somewhere else, because the
     start address is only set just before the final link commences.
     start address is only set just before the final link commences.
 
 
     Note - if the user deliberately sets a start address of 0, the
     Note - if the user deliberately sets a start address of 0, the
     flag will not be set.  */
     flag will not be set.  */
  if (bfd_get_start_address (output_bfd) != 0)
  if (bfd_get_start_address (output_bfd) != 0)
    elf_elfheader (output_bfd)->e_flags |= EF_ARM_HASENTRY;
    elf_elfheader (output_bfd)->e_flags |= EF_ARM_HASENTRY;
 
 
  globals = elf32_arm_hash_table (info);
  globals = elf32_arm_hash_table (info);
 
 
  dynobj = elf_hash_table (info)->dynobj;
  dynobj = elf_hash_table (info)->dynobj;
  if (dynobj)
  if (dynobj)
    {
    {
      sgot = bfd_get_section_by_name (dynobj, ".got");
      sgot = bfd_get_section_by_name (dynobj, ".got");
      splt = bfd_get_section_by_name (dynobj, ".plt");
      splt = bfd_get_section_by_name (dynobj, ".plt");
    }
    }
  symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
  symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
  sym_hashes = elf_sym_hashes (input_bfd);
  sym_hashes = elf_sym_hashes (input_bfd);
  local_got_offsets = elf_local_got_offsets (input_bfd);
  local_got_offsets = elf_local_got_offsets (input_bfd);
  r_symndx = ELF32_R_SYM (rel->r_info);
  r_symndx = ELF32_R_SYM (rel->r_info);
 
 
#ifdef USE_REL
#ifdef USE_REL
  addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask;
  addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask;
 
 
  if (addend & ((howto->src_mask + 1) >> 1))
  if (addend & ((howto->src_mask + 1) >> 1))
    {
    {
      signed_addend = -1;
      signed_addend = -1;
      signed_addend &= ~ howto->src_mask;
      signed_addend &= ~ howto->src_mask;
      signed_addend |= addend;
      signed_addend |= addend;
    }
    }
  else
  else
    signed_addend = addend;
    signed_addend = addend;
#else
#else
  addend = signed_addend = rel->r_addend;
  addend = signed_addend = rel->r_addend;
#endif
#endif
 
 
  switch (r_type)
  switch (r_type)
    {
    {
    case R_ARM_NONE:
    case R_ARM_NONE:
      return bfd_reloc_ok;
      return bfd_reloc_ok;
 
 
    case R_ARM_PC24:
    case R_ARM_PC24:
    case R_ARM_ABS32:
    case R_ARM_ABS32:
    case R_ARM_REL32:
    case R_ARM_REL32:
#ifndef OLD_ARM_ABI
#ifndef OLD_ARM_ABI
    case R_ARM_XPC25:
    case R_ARM_XPC25:
#endif
#endif
      /* When generating a shared object, these relocations are copied
      /* When generating a shared object, these relocations are copied
         into the output file to be resolved at run time.  */
         into the output file to be resolved at run time.  */
      if (info->shared
      if (info->shared
          && r_symndx != 0
          && r_symndx != 0
          && (r_type != R_ARM_PC24
          && (r_type != R_ARM_PC24
              || (h != NULL
              || (h != NULL
                  && h->dynindx != -1
                  && h->dynindx != -1
                  && (! info->symbolic
                  && (! info->symbolic
                      || (h->elf_link_hash_flags
                      || (h->elf_link_hash_flags
                          & ELF_LINK_HASH_DEF_REGULAR) == 0))))
                          & ELF_LINK_HASH_DEF_REGULAR) == 0))))
        {
        {
          Elf_Internal_Rel outrel;
          Elf_Internal_Rel outrel;
          boolean skip, relocate;
          boolean skip, relocate;
 
 
          if (sreloc == NULL)
          if (sreloc == NULL)
            {
            {
              const char * name;
              const char * name;
 
 
              name = (bfd_elf_string_from_elf_section
              name = (bfd_elf_string_from_elf_section
                      (input_bfd,
                      (input_bfd,
                       elf_elfheader (input_bfd)->e_shstrndx,
                       elf_elfheader (input_bfd)->e_shstrndx,
                       elf_section_data (input_section)->rel_hdr.sh_name));
                       elf_section_data (input_section)->rel_hdr.sh_name));
              if (name == NULL)
              if (name == NULL)
                return bfd_reloc_notsupported;
                return bfd_reloc_notsupported;
 
 
              BFD_ASSERT (strncmp (name, ".rel", 4) == 0
              BFD_ASSERT (strncmp (name, ".rel", 4) == 0
                          && strcmp (bfd_get_section_name (input_bfd,
                          && strcmp (bfd_get_section_name (input_bfd,
                                                           input_section),
                                                           input_section),
                                     name + 4) == 0);
                                     name + 4) == 0);
 
 
              sreloc = bfd_get_section_by_name (dynobj, name);
              sreloc = bfd_get_section_by_name (dynobj, name);
              BFD_ASSERT (sreloc != NULL);
              BFD_ASSERT (sreloc != NULL);
            }
            }
 
 
          skip = false;
          skip = false;
          relocate = false;
          relocate = false;
 
 
          outrel.r_offset =
          outrel.r_offset =
            _bfd_elf_section_offset (output_bfd, info, input_section,
            _bfd_elf_section_offset (output_bfd, info, input_section,
                                     rel->r_offset);
                                     rel->r_offset);
          if (outrel.r_offset == (bfd_vma) -1)
          if (outrel.r_offset == (bfd_vma) -1)
            skip = true;
            skip = true;
          else if (outrel.r_offset == (bfd_vma) -2)
          else if (outrel.r_offset == (bfd_vma) -2)
            skip = true, relocate = true;
            skip = true, relocate = true;
          outrel.r_offset += (input_section->output_section->vma
          outrel.r_offset += (input_section->output_section->vma
                              + input_section->output_offset);
                              + input_section->output_offset);
 
 
          if (skip)
          if (skip)
            memset (&outrel, 0, sizeof outrel);
            memset (&outrel, 0, sizeof outrel);
          else if (r_type == R_ARM_PC24)
          else if (r_type == R_ARM_PC24)
            {
            {
              BFD_ASSERT (h != NULL && h->dynindx != -1);
              BFD_ASSERT (h != NULL && h->dynindx != -1);
              if ((input_section->flags & SEC_ALLOC) == 0)
              if ((input_section->flags & SEC_ALLOC) == 0)
                relocate = true;
                relocate = true;
              outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_PC24);
              outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_PC24);
            }
            }
          else
          else
            {
            {
              if (h == NULL
              if (h == NULL
                  || ((info->symbolic || h->dynindx == -1)
                  || ((info->symbolic || h->dynindx == -1)
                      && (h->elf_link_hash_flags
                      && (h->elf_link_hash_flags
                          & ELF_LINK_HASH_DEF_REGULAR) != 0))
                          & ELF_LINK_HASH_DEF_REGULAR) != 0))
                {
                {
                  relocate = true;
                  relocate = true;
                  outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
                  outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
                }
                }
              else
              else
                {
                {
                  BFD_ASSERT (h->dynindx != -1);
                  BFD_ASSERT (h->dynindx != -1);
                  if ((input_section->flags & SEC_ALLOC) == 0)
                  if ((input_section->flags & SEC_ALLOC) == 0)
                    relocate = true;
                    relocate = true;
                  outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_ABS32);
                  outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_ABS32);
                }
                }
            }
            }
 
 
          bfd_elf32_swap_reloc_out (output_bfd, &outrel,
          bfd_elf32_swap_reloc_out (output_bfd, &outrel,
                                    (((Elf32_External_Rel *)
                                    (((Elf32_External_Rel *)
                                      sreloc->contents)
                                      sreloc->contents)
                                     + sreloc->reloc_count));
                                     + sreloc->reloc_count));
          ++sreloc->reloc_count;
          ++sreloc->reloc_count;
 
 
          /* If this reloc is against an external symbol, we do not want to
          /* If this reloc is against an external symbol, we do not want to
             fiddle with the addend.  Otherwise, we need to include the symbol
             fiddle with the addend.  Otherwise, we need to include the symbol
             value so that it becomes an addend for the dynamic reloc.  */
             value so that it becomes an addend for the dynamic reloc.  */
          if (! relocate)
          if (! relocate)
            return bfd_reloc_ok;
            return bfd_reloc_ok;
 
 
          return _bfd_final_link_relocate (howto, input_bfd, input_section,
          return _bfd_final_link_relocate (howto, input_bfd, input_section,
                                           contents, rel->r_offset, value,
                                           contents, rel->r_offset, value,
                                           (bfd_vma) 0);
                                           (bfd_vma) 0);
        }
        }
      else switch (r_type)
      else switch (r_type)
        {
        {
#ifndef OLD_ARM_ABI
#ifndef OLD_ARM_ABI
        case R_ARM_XPC25:         /* Arm BLX instruction.  */
        case R_ARM_XPC25:         /* Arm BLX instruction.  */
#endif
#endif
        case R_ARM_PC24:          /* Arm B/BL instruction */
        case R_ARM_PC24:          /* Arm B/BL instruction */
#ifndef OLD_ARM_ABI
#ifndef OLD_ARM_ABI
          if (r_type == R_ARM_XPC25)
          if (r_type == R_ARM_XPC25)
            {
            {
              /* Check for Arm calling Arm function.  */
              /* Check for Arm calling Arm function.  */
              /* FIXME: Should we translate the instruction into a BL
              /* FIXME: Should we translate the instruction into a BL
                 instruction instead ?  */
                 instruction instead ?  */
              if (sym_flags != STT_ARM_TFUNC)
              if (sym_flags != STT_ARM_TFUNC)
                (*_bfd_error_handler) (_("\
                (*_bfd_error_handler) (_("\
%s: Warning: Arm BLX instruction targets Arm function '%s'."),
%s: Warning: Arm BLX instruction targets Arm function '%s'."),
                                       bfd_archive_filename (input_bfd),
                                       bfd_archive_filename (input_bfd),
                                       h ? h->root.root.string : "(local)");
                                       h ? h->root.root.string : "(local)");
            }
            }
          else
          else
#endif
#endif
            {
            {
              /* Check for Arm calling Thumb function.  */
              /* Check for Arm calling Thumb function.  */
              if (sym_flags == STT_ARM_TFUNC)
              if (sym_flags == STT_ARM_TFUNC)
                {
                {
                  elf32_arm_to_thumb_stub (info, sym_name, input_bfd, output_bfd,
                  elf32_arm_to_thumb_stub (info, sym_name, input_bfd, output_bfd,
                                           input_section, hit_data, sym_sec, rel->r_offset,
                                           input_section, hit_data, sym_sec, rel->r_offset,
                                           signed_addend, value);
                                           signed_addend, value);
                  return bfd_reloc_ok;
                  return bfd_reloc_ok;
                }
                }
            }
            }
 
 
          if (   strcmp (bfd_get_target (input_bfd), "elf32-littlearm-oabi") == 0
          if (   strcmp (bfd_get_target (input_bfd), "elf32-littlearm-oabi") == 0
              || strcmp (bfd_get_target (input_bfd), "elf32-bigarm-oabi") == 0)
              || strcmp (bfd_get_target (input_bfd), "elf32-bigarm-oabi") == 0)
            {
            {
              /* The old way of doing things.  Trearing the addend as a
              /* The old way of doing things.  Trearing the addend as a
                 byte sized field and adding in the pipeline offset.  */
                 byte sized field and adding in the pipeline offset.  */
              value -= (input_section->output_section->vma
              value -= (input_section->output_section->vma
                        + input_section->output_offset);
                        + input_section->output_offset);
              value -= rel->r_offset;
              value -= rel->r_offset;
              value += addend;
              value += addend;
 
 
              if (! globals->no_pipeline_knowledge)
              if (! globals->no_pipeline_knowledge)
                value -= 8;
                value -= 8;
            }
            }
          else
          else
            {
            {
              /* The ARM ELF ABI says that this reloc is computed as: S - P + A
              /* The ARM ELF ABI says that this reloc is computed as: S - P + A
                 where:
                 where:
                  S is the address of the symbol in the relocation.
                  S is the address of the symbol in the relocation.
                  P is address of the instruction being relocated.
                  P is address of the instruction being relocated.
                  A is the addend (extracted from the instruction) in bytes.
                  A is the addend (extracted from the instruction) in bytes.
 
 
                 S is held in 'value'.
                 S is held in 'value'.
                 P is the base address of the section containing the instruction
                 P is the base address of the section containing the instruction
                   plus the offset of the reloc into that section, ie:
                   plus the offset of the reloc into that section, ie:
                     (input_section->output_section->vma +
                     (input_section->output_section->vma +
                      input_section->output_offset +
                      input_section->output_offset +
                      rel->r_offset).
                      rel->r_offset).
                 A is the addend, converted into bytes, ie:
                 A is the addend, converted into bytes, ie:
                     (signed_addend * 4)
                     (signed_addend * 4)
 
 
                 Note: None of these operations have knowledge of the pipeline
                 Note: None of these operations have knowledge of the pipeline
                 size of the processor, thus it is up to the assembler to encode
                 size of the processor, thus it is up to the assembler to encode
                 this information into the addend.  */
                 this information into the addend.  */
              value -= (input_section->output_section->vma
              value -= (input_section->output_section->vma
                        + input_section->output_offset);
                        + input_section->output_offset);
              value -= rel->r_offset;
              value -= rel->r_offset;
              value += (signed_addend << howto->size);
              value += (signed_addend << howto->size);
 
 
              /* Previous versions of this code also used to add in the pipeline
              /* Previous versions of this code also used to add in the pipeline
                 offset here.  This is wrong because the linker is not supposed
                 offset here.  This is wrong because the linker is not supposed
                 to know about such things, and one day it might change.  In order
                 to know about such things, and one day it might change.  In order
                 to support old binaries that need the old behaviour however, so
                 to support old binaries that need the old behaviour however, so
                 we attempt to detect which ABI was used to create the reloc.  */
                 we attempt to detect which ABI was used to create the reloc.  */
              if (! globals->no_pipeline_knowledge)
              if (! globals->no_pipeline_knowledge)
                {
                {
                  Elf_Internal_Ehdr * i_ehdrp; /* Elf file header, internal form */
                  Elf_Internal_Ehdr * i_ehdrp; /* Elf file header, internal form */
 
 
                  i_ehdrp = elf_elfheader (input_bfd);
                  i_ehdrp = elf_elfheader (input_bfd);
 
 
                  if (i_ehdrp->e_ident[EI_OSABI] == 0)
                  if (i_ehdrp->e_ident[EI_OSABI] == 0)
                    value -= 8;
                    value -= 8;
                }
                }
            }
            }
 
 
          signed_addend = value;
          signed_addend = value;
          signed_addend >>= howto->rightshift;
          signed_addend >>= howto->rightshift;
 
 
          /* It is not an error for an undefined weak reference to be
          /* It is not an error for an undefined weak reference to be
             out of range.  Any program that branches to such a symbol
             out of range.  Any program that branches to such a symbol
             is going to crash anyway, so there is no point worrying
             is going to crash anyway, so there is no point worrying
             about getting the destination exactly right.  */
             about getting the destination exactly right.  */
          if (! h || h->root.type != bfd_link_hash_undefweak)
          if (! h || h->root.type != bfd_link_hash_undefweak)
            {
            {
              /* Perform a signed range check.  */
              /* Perform a signed range check.  */
              if (   signed_addend >   ((bfd_signed_vma)  (howto->dst_mask >> 1))
              if (   signed_addend >   ((bfd_signed_vma)  (howto->dst_mask >> 1))
                  || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
                  || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
                return bfd_reloc_overflow;
                return bfd_reloc_overflow;
            }
            }
 
 
#ifndef OLD_ARM_ABI
#ifndef OLD_ARM_ABI
          /* If necessary set the H bit in the BLX instruction.  */
          /* If necessary set the H bit in the BLX instruction.  */
          if (r_type == R_ARM_XPC25 && ((value & 2) == 2))
          if (r_type == R_ARM_XPC25 && ((value & 2) == 2))
            value = (signed_addend & howto->dst_mask)
            value = (signed_addend & howto->dst_mask)
              | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask))
              | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask))
              | (1 << 24);
              | (1 << 24);
          else
          else
#endif
#endif
            value = (signed_addend & howto->dst_mask)
            value = (signed_addend & howto->dst_mask)
              | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
              | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
          break;
          break;
 
 
        case R_ARM_ABS32:
        case R_ARM_ABS32:
          value += addend;
          value += addend;
          if (sym_flags == STT_ARM_TFUNC)
          if (sym_flags == STT_ARM_TFUNC)
            value |= 1;
            value |= 1;
          break;
          break;
 
 
        case R_ARM_REL32:
        case R_ARM_REL32:
          value -= (input_section->output_section->vma
          value -= (input_section->output_section->vma
                    + input_section->output_offset + rel->r_offset);
                    + input_section->output_offset + rel->r_offset);
          value += addend;
          value += addend;
          break;
          break;
        }
        }
 
 
      bfd_put_32 (input_bfd, value, hit_data);
      bfd_put_32 (input_bfd, value, hit_data);
      return bfd_reloc_ok;
      return bfd_reloc_ok;
 
 
    case R_ARM_ABS8:
    case R_ARM_ABS8:
      value += addend;
      value += addend;
      if ((long) value > 0x7f || (long) value < -0x80)
      if ((long) value > 0x7f || (long) value < -0x80)
        return bfd_reloc_overflow;
        return bfd_reloc_overflow;
 
 
      bfd_put_8 (input_bfd, value, hit_data);
      bfd_put_8 (input_bfd, value, hit_data);
      return bfd_reloc_ok;
      return bfd_reloc_ok;
 
 
    case R_ARM_ABS16:
    case R_ARM_ABS16:
      value += addend;
      value += addend;
 
 
      if ((long) value > 0x7fff || (long) value < -0x8000)
      if ((long) value > 0x7fff || (long) value < -0x8000)
        return bfd_reloc_overflow;
        return bfd_reloc_overflow;
 
 
      bfd_put_16 (input_bfd, value, hit_data);
      bfd_put_16 (input_bfd, value, hit_data);
      return bfd_reloc_ok;
      return bfd_reloc_ok;
 
 
    case R_ARM_ABS12:
    case R_ARM_ABS12:
      /* Support ldr and str instruction for the arm */
      /* Support ldr and str instruction for the arm */
      /* Also thumb b (unconditional branch).  ??? Really?  */
      /* Also thumb b (unconditional branch).  ??? Really?  */
      value += addend;
      value += addend;
 
 
      if ((long) value > 0x7ff || (long) value < -0x800)
      if ((long) value > 0x7ff || (long) value < -0x800)
        return bfd_reloc_overflow;
        return bfd_reloc_overflow;
 
 
      value |= (bfd_get_32 (input_bfd, hit_data) & 0xfffff000);
      value |= (bfd_get_32 (input_bfd, hit_data) & 0xfffff000);
      bfd_put_32 (input_bfd, value, hit_data);
      bfd_put_32 (input_bfd, value, hit_data);
      return bfd_reloc_ok;
      return bfd_reloc_ok;
 
 
    case R_ARM_THM_ABS5:
    case R_ARM_THM_ABS5:
      /* Support ldr and str instructions for the thumb.  */
      /* Support ldr and str instructions for the thumb.  */
#ifdef USE_REL
#ifdef USE_REL
      /* Need to refetch addend.  */
      /* Need to refetch addend.  */
      addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
      addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
      /* ??? Need to determine shift amount from operand size.  */
      /* ??? Need to determine shift amount from operand size.  */
      addend >>= howto->rightshift;
      addend >>= howto->rightshift;
#endif
#endif
      value += addend;
      value += addend;
 
 
      /* ??? Isn't value unsigned?  */
      /* ??? Isn't value unsigned?  */
      if ((long) value > 0x1f || (long) value < -0x10)
      if ((long) value > 0x1f || (long) value < -0x10)
        return bfd_reloc_overflow;
        return bfd_reloc_overflow;
 
 
      /* ??? Value needs to be properly shifted into place first.  */
      /* ??? Value needs to be properly shifted into place first.  */
      value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
      value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
      bfd_put_16 (input_bfd, value, hit_data);
      bfd_put_16 (input_bfd, value, hit_data);
      return bfd_reloc_ok;
      return bfd_reloc_ok;
 
 
#ifndef OLD_ARM_ABI
#ifndef OLD_ARM_ABI
    case R_ARM_THM_XPC22:
    case R_ARM_THM_XPC22:
#endif
#endif
    case R_ARM_THM_PC22:
    case R_ARM_THM_PC22:
      /* Thumb BL (branch long instruction).  */
      /* Thumb BL (branch long instruction).  */
      {
      {
        bfd_vma        relocation;
        bfd_vma        relocation;
        boolean        overflow = false;
        boolean        overflow = false;
        bfd_vma        upper_insn = bfd_get_16 (input_bfd, hit_data);
        bfd_vma        upper_insn = bfd_get_16 (input_bfd, hit_data);
        bfd_vma        lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
        bfd_vma        lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
        bfd_signed_vma reloc_signed_max = ((1 << (howto->bitsize - 1)) - 1) >> howto->rightshift;
        bfd_signed_vma reloc_signed_max = ((1 << (howto->bitsize - 1)) - 1) >> howto->rightshift;
        bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
        bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
        bfd_vma        check;
        bfd_vma        check;
        bfd_signed_vma signed_check;
        bfd_signed_vma signed_check;
 
 
#ifdef USE_REL
#ifdef USE_REL
        /* Need to refetch the addend and squish the two 11 bit pieces
        /* Need to refetch the addend and squish the two 11 bit pieces
           together.  */
           together.  */
        {
        {
          bfd_vma upper = upper_insn & 0x7ff;
          bfd_vma upper = upper_insn & 0x7ff;
          bfd_vma lower = lower_insn & 0x7ff;
          bfd_vma lower = lower_insn & 0x7ff;
          upper = (upper ^ 0x400) - 0x400; /* Sign extend.  */
          upper = (upper ^ 0x400) - 0x400; /* Sign extend.  */
          addend = (upper << 12) | (lower << 1);
          addend = (upper << 12) | (lower << 1);
          signed_addend = addend;
          signed_addend = addend;
        }
        }
#endif
#endif
#ifndef OLD_ARM_ABI
#ifndef OLD_ARM_ABI
        if (r_type == R_ARM_THM_XPC22)
        if (r_type == R_ARM_THM_XPC22)
          {
          {
            /* Check for Thumb to Thumb call.  */
            /* Check for Thumb to Thumb call.  */
            /* FIXME: Should we translate the instruction into a BL
            /* FIXME: Should we translate the instruction into a BL
               instruction instead ?  */
               instruction instead ?  */
            if (sym_flags == STT_ARM_TFUNC)
            if (sym_flags == STT_ARM_TFUNC)
              (*_bfd_error_handler) (_("\
              (*_bfd_error_handler) (_("\
%s: Warning: Thumb BLX instruction targets thumb function '%s'."),
%s: Warning: Thumb BLX instruction targets thumb function '%s'."),
                                     bfd_archive_filename (input_bfd),
                                     bfd_archive_filename (input_bfd),
                                     h ? h->root.root.string : "(local)");
                                     h ? h->root.root.string : "(local)");
          }
          }
        else
        else
#endif
#endif
          {
          {
            /* If it is not a call to Thumb, assume call to Arm.
            /* If it is not a call to Thumb, assume call to Arm.
               If it is a call relative to a section name, then it is not a
               If it is a call relative to a section name, then it is not a
               function call at all, but rather a long jump.  */
               function call at all, but rather a long jump.  */
            if (sym_flags != STT_ARM_TFUNC && sym_flags != STT_SECTION)
            if (sym_flags != STT_ARM_TFUNC && sym_flags != STT_SECTION)
              {
              {
                if (elf32_thumb_to_arm_stub
                if (elf32_thumb_to_arm_stub
                    (info, sym_name, input_bfd, output_bfd, input_section,
                    (info, sym_name, input_bfd, output_bfd, input_section,
                     hit_data, sym_sec, rel->r_offset, signed_addend, value))
                     hit_data, sym_sec, rel->r_offset, signed_addend, value))
                  return bfd_reloc_ok;
                  return bfd_reloc_ok;
                else
                else
                  return bfd_reloc_dangerous;
                  return bfd_reloc_dangerous;
              }
              }
          }
          }
 
 
        relocation = value + signed_addend;
        relocation = value + signed_addend;
 
 
        relocation -= (input_section->output_section->vma
        relocation -= (input_section->output_section->vma
                       + input_section->output_offset
                       + input_section->output_offset
                       + rel->r_offset);
                       + rel->r_offset);
 
 
        if (! globals->no_pipeline_knowledge)
        if (! globals->no_pipeline_knowledge)
          {
          {
            Elf_Internal_Ehdr * i_ehdrp; /* Elf file header, internal form.  */
            Elf_Internal_Ehdr * i_ehdrp; /* Elf file header, internal form.  */
 
 
            i_ehdrp = elf_elfheader (input_bfd);
            i_ehdrp = elf_elfheader (input_bfd);
 
 
            /* Previous versions of this code also used to add in the pipline
            /* Previous versions of this code also used to add in the pipline
               offset here.  This is wrong because the linker is not supposed
               offset here.  This is wrong because the linker is not supposed
               to know about such things, and one day it might change.  In order
               to know about such things, and one day it might change.  In order
               to support old binaries that need the old behaviour however, so
               to support old binaries that need the old behaviour however, so
               we attempt to detect which ABI was used to create the reloc.  */
               we attempt to detect which ABI was used to create the reloc.  */
            if (   strcmp (bfd_get_target (input_bfd), "elf32-littlearm-oabi") == 0
            if (   strcmp (bfd_get_target (input_bfd), "elf32-littlearm-oabi") == 0
                || strcmp (bfd_get_target (input_bfd), "elf32-bigarm-oabi") == 0
                || strcmp (bfd_get_target (input_bfd), "elf32-bigarm-oabi") == 0
                || i_ehdrp->e_ident[EI_OSABI] == 0)
                || i_ehdrp->e_ident[EI_OSABI] == 0)
              relocation += 4;
              relocation += 4;
          }
          }
 
 
        check = relocation >> howto->rightshift;
        check = relocation >> howto->rightshift;
 
 
        /* If this is a signed value, the rightshift just dropped
        /* If this is a signed value, the rightshift just dropped
           leading 1 bits (assuming twos complement).  */
           leading 1 bits (assuming twos complement).  */
        if ((bfd_signed_vma) relocation >= 0)
        if ((bfd_signed_vma) relocation >= 0)
          signed_check = check;
          signed_check = check;
        else
        else
          signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
          signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
 
 
        /* Assumes two's complement.  */
        /* Assumes two's complement.  */
        if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
        if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
          overflow = true;
          overflow = true;
 
 
#ifndef OLD_ARM_ABI
#ifndef OLD_ARM_ABI
        if (r_type == R_ARM_THM_XPC22
        if (r_type == R_ARM_THM_XPC22
            && ((lower_insn & 0x1800) == 0x0800))
            && ((lower_insn & 0x1800) == 0x0800))
          /* For a BLX instruction, make sure that the relocation is rounded up
          /* For a BLX instruction, make sure that the relocation is rounded up
             to a word boundary.  This follows the semantics of the instruction
             to a word boundary.  This follows the semantics of the instruction
             which specifies that bit 1 of the target address will come from bit
             which specifies that bit 1 of the target address will come from bit
             1 of the base address.  */
             1 of the base address.  */
          relocation = (relocation + 2) & ~ 3;
          relocation = (relocation + 2) & ~ 3;
#endif
#endif
        /* Put RELOCATION back into the insn.  */
        /* Put RELOCATION back into the insn.  */
        upper_insn = (upper_insn & ~(bfd_vma) 0x7ff) | ((relocation >> 12) & 0x7ff);
        upper_insn = (upper_insn & ~(bfd_vma) 0x7ff) | ((relocation >> 12) & 0x7ff);
        lower_insn = (lower_insn & ~(bfd_vma) 0x7ff) | ((relocation >> 1) & 0x7ff);
        lower_insn = (lower_insn & ~(bfd_vma) 0x7ff) | ((relocation >> 1) & 0x7ff);
 
 
        /* Put the relocated value back in the object file:  */
        /* Put the relocated value back in the object file:  */
        bfd_put_16 (input_bfd, upper_insn, hit_data);
        bfd_put_16 (input_bfd, upper_insn, hit_data);
        bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
        bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
 
 
        return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
        return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
      }
      }
      break;
      break;
 
 
    case R_ARM_THM_PC11:
    case R_ARM_THM_PC11:
      /* Thumb B (branch) instruction).  */
      /* Thumb B (branch) instruction).  */
      {
      {
        bfd_vma        relocation;
        bfd_vma        relocation;
        bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
        bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
        bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
        bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
        bfd_vma        check;
        bfd_vma        check;
        bfd_signed_vma signed_check;
        bfd_signed_vma signed_check;
 
 
#ifdef USE_REL
#ifdef USE_REL
        /* Need to refetch addend.  */
        /* Need to refetch addend.  */
        addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
        addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
        /* ??? Need to determine shift amount from operand size.  */
        /* ??? Need to determine shift amount from operand size.  */
        addend >>= howto->rightshift;
        addend >>= howto->rightshift;
#endif
#endif
        relocation = value + addend;
        relocation = value + addend;
 
 
        relocation -= (input_section->output_section->vma
        relocation -= (input_section->output_section->vma
                       + input_section->output_offset
                       + input_section->output_offset
                       + rel->r_offset);
                       + rel->r_offset);
 
 
        check = relocation >> howto->rightshift;
        check = relocation >> howto->rightshift;
 
 
        /* If this is a signed value, the rightshift just
        /* If this is a signed value, the rightshift just
           dropped leading 1 bits (assuming twos complement).  */
           dropped leading 1 bits (assuming twos complement).  */
        if ((bfd_signed_vma) relocation >= 0)
        if ((bfd_signed_vma) relocation >= 0)
          signed_check = check;
          signed_check = check;
        else
        else
          signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
          signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
 
 
        relocation |= (bfd_get_16 (input_bfd, hit_data) & (~ howto->dst_mask));
        relocation |= (bfd_get_16 (input_bfd, hit_data) & (~ howto->dst_mask));
 
 
        bfd_put_16 (input_bfd, relocation, hit_data);
        bfd_put_16 (input_bfd, relocation, hit_data);
 
 
        /* Assumes two's complement.  */
        /* Assumes two's complement.  */
        if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
        if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
          return bfd_reloc_overflow;
          return bfd_reloc_overflow;
 
 
        return bfd_reloc_ok;
        return bfd_reloc_ok;
      }
      }
 
 
    case R_ARM_GNU_VTINHERIT:
    case R_ARM_GNU_VTINHERIT:
    case R_ARM_GNU_VTENTRY:
    case R_ARM_GNU_VTENTRY:
      return bfd_reloc_ok;
      return bfd_reloc_ok;
 
 
    case R_ARM_COPY:
    case R_ARM_COPY:
      return bfd_reloc_notsupported;
      return bfd_reloc_notsupported;
 
 
    case R_ARM_GLOB_DAT:
    case R_ARM_GLOB_DAT:
      return bfd_reloc_notsupported;
      return bfd_reloc_notsupported;
 
 
    case R_ARM_JUMP_SLOT:
    case R_ARM_JUMP_SLOT:
      return bfd_reloc_notsupported;
      return bfd_reloc_notsupported;
 
 
    case R_ARM_RELATIVE:
    case R_ARM_RELATIVE:
      return bfd_reloc_notsupported;
      return bfd_reloc_notsupported;
 
 
    case R_ARM_GOTOFF:
    case R_ARM_GOTOFF:
      /* Relocation is relative to the start of the
      /* Relocation is relative to the start of the
         global offset table.  */
         global offset table.  */
 
 
      BFD_ASSERT (sgot != NULL);
      BFD_ASSERT (sgot != NULL);
      if (sgot == NULL)
      if (sgot == NULL)
        return bfd_reloc_notsupported;
        return bfd_reloc_notsupported;
 
 
      /* If we are addressing a Thumb function, we need to adjust the
      /* If we are addressing a Thumb function, we need to adjust the
         address by one, so that attempts to call the function pointer will
         address by one, so that attempts to call the function pointer will
         correctly interpret it as Thumb code.  */
         correctly interpret it as Thumb code.  */
      if (sym_flags == STT_ARM_TFUNC)
      if (sym_flags == STT_ARM_TFUNC)
        value += 1;
        value += 1;
 
 
      /* Note that sgot->output_offset is not involved in this
      /* Note that sgot->output_offset is not involved in this
         calculation.  We always want the start of .got.  If we
         calculation.  We always want the start of .got.  If we
         define _GLOBAL_OFFSET_TABLE in a different way, as is
         define _GLOBAL_OFFSET_TABLE in a different way, as is
         permitted by the ABI, we might have to change this
         permitted by the ABI, we might have to change this
         calculation.  */
         calculation.  */
      value -= sgot->output_section->vma;
      value -= sgot->output_section->vma;
      return _bfd_final_link_relocate (howto, input_bfd, input_section,
      return _bfd_final_link_relocate (howto, input_bfd, input_section,
                                       contents, rel->r_offset, value,
                                       contents, rel->r_offset, value,
                                       (bfd_vma) 0);
                                       (bfd_vma) 0);
 
 
    case R_ARM_GOTPC:
    case R_ARM_GOTPC:
      /* Use global offset table as symbol value.  */
      /* Use global offset table as symbol value.  */
      BFD_ASSERT (sgot != NULL);
      BFD_ASSERT (sgot != NULL);
 
 
      if (sgot == NULL)
      if (sgot == NULL)
        return bfd_reloc_notsupported;
        return bfd_reloc_notsupported;
 
 
      value = sgot->output_section->vma;
      value = sgot->output_section->vma;
      return _bfd_final_link_relocate (howto, input_bfd, input_section,
      return _bfd_final_link_relocate (howto, input_bfd, input_section,
                                       contents, rel->r_offset, value,
                                       contents, rel->r_offset, value,
                                       (bfd_vma) 0);
                                       (bfd_vma) 0);
 
 
    case R_ARM_GOT32:
    case R_ARM_GOT32:
      /* Relocation is to the entry for this symbol in the
      /* Relocation is to the entry for this symbol in the
         global offset table.  */
         global offset table.  */
      if (sgot == NULL)
      if (sgot == NULL)
        return bfd_reloc_notsupported;
        return bfd_reloc_notsupported;
 
 
      if (h != NULL)
      if (h != NULL)
        {
        {
          bfd_vma off;
          bfd_vma off;
 
 
          off = h->got.offset;
          off = h->got.offset;
          BFD_ASSERT (off != (bfd_vma) -1);
          BFD_ASSERT (off != (bfd_vma) -1);
 
 
          if (!elf_hash_table (info)->dynamic_sections_created ||
          if (!elf_hash_table (info)->dynamic_sections_created ||
              (info->shared && (info->symbolic || h->dynindx == -1)
              (info->shared && (info->symbolic || h->dynindx == -1)
               && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
               && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
            {
            {
              /* This is actually a static link, or it is a -Bsymbolic link
              /* This is actually a static link, or it is a -Bsymbolic link
                 and the symbol is defined locally.  We must initialize this
                 and the symbol is defined locally.  We must initialize this
                 entry in the global offset table.  Since the offset must
                 entry in the global offset table.  Since the offset must
                 always be a multiple of 4, we use the least significant bit
                 always be a multiple of 4, we use the least significant bit
                 to record whether we have initialized it already.
                 to record whether we have initialized it already.
 
 
                 When doing a dynamic link, we create a .rel.got relocation
                 When doing a dynamic link, we create a .rel.got relocation
                 entry to initialize the value.  This is done in the
                 entry to initialize the value.  This is done in the
                 finish_dynamic_symbol routine.  */
                 finish_dynamic_symbol routine.  */
              if ((off & 1) != 0)
              if ((off & 1) != 0)
                off &= ~1;
                off &= ~1;
              else
              else
                {
                {
                  /* If we are addressing a Thumb function, we need to
                  /* If we are addressing a Thumb function, we need to
                     adjust the address by one, so that attempts to
                     adjust the address by one, so that attempts to
                     call the function pointer will correctly
                     call the function pointer will correctly
                     interpret it as Thumb code.  */
                     interpret it as Thumb code.  */
                  if (sym_flags == STT_ARM_TFUNC)
                  if (sym_flags == STT_ARM_TFUNC)
                    value |= 1;
                    value |= 1;
 
 
                  bfd_put_32 (output_bfd, value, sgot->contents + off);
                  bfd_put_32 (output_bfd, value, sgot->contents + off);
                  h->got.offset |= 1;
                  h->got.offset |= 1;
                }
                }
            }
            }
 
 
          value = sgot->output_offset + off;
          value = sgot->output_offset + off;
        }
        }
      else
      else
        {
        {
          bfd_vma off;
          bfd_vma off;
 
 
          BFD_ASSERT (local_got_offsets != NULL &&
          BFD_ASSERT (local_got_offsets != NULL &&
                      local_got_offsets[r_symndx] != (bfd_vma) -1);
                      local_got_offsets[r_symndx] != (bfd_vma) -1);
 
 
          off = local_got_offsets[r_symndx];
          off = local_got_offsets[r_symndx];
 
 
          /* The offset must always be a multiple of 4.  We use the
          /* The offset must always be a multiple of 4.  We use the
             least significant bit to record whether we have already
             least significant bit to record whether we have already
             generated the necessary reloc.  */
             generated the necessary reloc.  */
          if ((off & 1) != 0)
          if ((off & 1) != 0)
            off &= ~1;
            off &= ~1;
          else
          else
            {
            {
              bfd_put_32 (output_bfd, value, sgot->contents + off);
              bfd_put_32 (output_bfd, value, sgot->contents + off);
 
 
              if (info->shared)
              if (info->shared)
                {
                {
                  asection * srelgot;
                  asection * srelgot;
                  Elf_Internal_Rel outrel;
                  Elf_Internal_Rel outrel;
 
 
                  srelgot = bfd_get_section_by_name (dynobj, ".rel.got");
                  srelgot = bfd_get_section_by_name (dynobj, ".rel.got");
                  BFD_ASSERT (srelgot != NULL);
                  BFD_ASSERT (srelgot != NULL);
 
 
                  outrel.r_offset = (sgot->output_section->vma
                  outrel.r_offset = (sgot->output_section->vma
                                     + sgot->output_offset
                                     + sgot->output_offset
                                     + off);
                                     + off);
                  outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
                  outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
                  bfd_elf32_swap_reloc_out (output_bfd, &outrel,
                  bfd_elf32_swap_reloc_out (output_bfd, &outrel,
                                            (((Elf32_External_Rel *)
                                            (((Elf32_External_Rel *)
                                              srelgot->contents)
                                              srelgot->contents)
                                             + srelgot->reloc_count));
                                             + srelgot->reloc_count));
                  ++srelgot->reloc_count;
                  ++srelgot->reloc_count;
                }
                }
 
 
              local_got_offsets[r_symndx] |= 1;
              local_got_offsets[r_symndx] |= 1;
            }
            }
 
 
          value = sgot->output_offset + off;
          value = sgot->output_offset + off;
        }
        }
 
 
      return _bfd_final_link_relocate (howto, input_bfd, input_section,
      return _bfd_final_link_relocate (howto, input_bfd, input_section,
                                       contents, rel->r_offset, value,
                                       contents, rel->r_offset, value,
                                       (bfd_vma) 0);
                                       (bfd_vma) 0);
 
 
    case R_ARM_PLT32:
    case R_ARM_PLT32:
      /* Relocation is to the entry for this symbol in the
      /* Relocation is to the entry for this symbol in the
         procedure linkage table.  */
         procedure linkage table.  */
 
 
      /* Resolve a PLT32 reloc against a local symbol directly,
      /* Resolve a PLT32 reloc against a local symbol directly,
         without using the procedure linkage table.  */
         without using the procedure linkage table.  */
      if (h == NULL)
      if (h == NULL)
        return _bfd_final_link_relocate (howto, input_bfd, input_section,
        return _bfd_final_link_relocate (howto, input_bfd, input_section,
                                 contents, rel->r_offset, value,
                                 contents, rel->r_offset, value,
                                 (bfd_vma) 0);
                                 (bfd_vma) 0);
 
 
      if (h->plt.offset == (bfd_vma) -1)
      if (h->plt.offset == (bfd_vma) -1)
        /* We didn't make a PLT entry for this symbol.  This
        /* We didn't make a PLT entry for this symbol.  This
           happens when statically linking PIC code, or when
           happens when statically linking PIC code, or when
           using -Bsymbolic.  */
           using -Bsymbolic.  */
        return _bfd_final_link_relocate (howto, input_bfd, input_section,
        return _bfd_final_link_relocate (howto, input_bfd, input_section,
                                         contents, rel->r_offset, value,
                                         contents, rel->r_offset, value,
                                         (bfd_vma) 0);
                                         (bfd_vma) 0);
 
 
      BFD_ASSERT(splt != NULL);
      BFD_ASSERT(splt != NULL);
      if (splt == NULL)
      if (splt == NULL)
        return bfd_reloc_notsupported;
        return bfd_reloc_notsupported;
 
 
      value = (splt->output_section->vma
      value = (splt->output_section->vma
               + splt->output_offset
               + splt->output_offset
               + h->plt.offset);
               + h->plt.offset);
      return _bfd_final_link_relocate (howto, input_bfd, input_section,
      return _bfd_final_link_relocate (howto, input_bfd, input_section,
                               contents, rel->r_offset, value,
                               contents, rel->r_offset, value,
                               (bfd_vma) 0);
                               (bfd_vma) 0);
 
 
    case R_ARM_SBREL32:
    case R_ARM_SBREL32:
      return bfd_reloc_notsupported;
      return bfd_reloc_notsupported;
 
 
    case R_ARM_AMP_VCALL9:
    case R_ARM_AMP_VCALL9:
      return bfd_reloc_notsupported;
      return bfd_reloc_notsupported;
 
 
    case R_ARM_RSBREL32:
    case R_ARM_RSBREL32:
      return bfd_reloc_notsupported;
      return bfd_reloc_notsupported;
 
 
    case R_ARM_THM_RPC22:
    case R_ARM_THM_RPC22:
      return bfd_reloc_notsupported;
      return bfd_reloc_notsupported;
 
 
    case R_ARM_RREL32:
    case R_ARM_RREL32:
      return bfd_reloc_notsupported;
      return bfd_reloc_notsupported;
 
 
    case R_ARM_RABS32:
    case R_ARM_RABS32:
      return bfd_reloc_notsupported;
      return bfd_reloc_notsupported;
 
 
    case R_ARM_RPC24:
    case R_ARM_RPC24:
      return bfd_reloc_notsupported;
      return bfd_reloc_notsupported;
 
 
    case R_ARM_RBASE:
    case R_ARM_RBASE:
      return bfd_reloc_notsupported;
      return bfd_reloc_notsupported;
 
 
    default:
    default:
      return bfd_reloc_notsupported;
      return bfd_reloc_notsupported;
    }
    }
}
}
 
 
#ifdef USE_REL
#ifdef USE_REL
/* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS.  */
/* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS.  */
static void
static void
arm_add_to_rel (abfd, address, howto, increment)
arm_add_to_rel (abfd, address, howto, increment)
     bfd *              abfd;
     bfd *              abfd;
     bfd_byte *         address;
     bfd_byte *         address;
     reloc_howto_type * howto;
     reloc_howto_type * howto;
     bfd_signed_vma     increment;
     bfd_signed_vma     increment;
{
{
  bfd_signed_vma addend;
  bfd_signed_vma addend;
 
 
  if (howto->type == R_ARM_THM_PC22)
  if (howto->type == R_ARM_THM_PC22)
    {
    {
      int upper_insn, lower_insn;
      int upper_insn, lower_insn;
      int upper, lower;
      int upper, lower;
 
 
      upper_insn = bfd_get_16 (abfd, address);
      upper_insn = bfd_get_16 (abfd, address);
      lower_insn = bfd_get_16 (abfd, address + 2);
      lower_insn = bfd_get_16 (abfd, address + 2);
      upper = upper_insn & 0x7ff;
      upper = upper_insn & 0x7ff;
      lower = lower_insn & 0x7ff;
      lower = lower_insn & 0x7ff;
 
 
      addend = (upper << 12) | (lower << 1);
      addend = (upper << 12) | (lower << 1);
      addend += increment;
      addend += increment;
      addend >>= 1;
      addend >>= 1;
 
 
      upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff);
      upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff);
      lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff);
      lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff);
 
 
      bfd_put_16 (abfd, (bfd_vma) upper_insn, address);
      bfd_put_16 (abfd, (bfd_vma) upper_insn, address);
      bfd_put_16 (abfd, (bfd_vma) lower_insn, address + 2);
      bfd_put_16 (abfd, (bfd_vma) lower_insn, address + 2);
    }
    }
  else
  else
    {
    {
      bfd_vma        contents;
      bfd_vma        contents;
 
 
      contents = bfd_get_32 (abfd, address);
      contents = bfd_get_32 (abfd, address);
 
 
      /* Get the (signed) value from the instruction.  */
      /* Get the (signed) value from the instruction.  */
      addend = contents & howto->src_mask;
      addend = contents & howto->src_mask;
      if (addend & ((howto->src_mask + 1) >> 1))
      if (addend & ((howto->src_mask + 1) >> 1))
        {
        {
          bfd_signed_vma mask;
          bfd_signed_vma mask;
 
 
          mask = -1;
          mask = -1;
          mask &= ~ howto->src_mask;
          mask &= ~ howto->src_mask;
          addend |= mask;
          addend |= mask;
        }
        }
 
 
      /* Add in the increment, (which is a byte value).  */
      /* Add in the increment, (which is a byte value).  */
      switch (howto->type)
      switch (howto->type)
        {
        {
        default:
        default:
          addend += increment;
          addend += increment;
          break;
          break;
 
 
        case R_ARM_PC24:
        case R_ARM_PC24:
          addend <<= howto->size;
          addend <<= howto->size;
          addend += increment;
          addend += increment;
 
 
          /* Should we check for overflow here ?  */
          /* Should we check for overflow here ?  */
 
 
          /* Drop any undesired bits.  */
          /* Drop any undesired bits.  */
          addend >>= howto->rightshift;
          addend >>= howto->rightshift;
          break;
          break;
        }
        }
 
 
      contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
      contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
 
 
      bfd_put_32 (abfd, contents, address);
      bfd_put_32 (abfd, contents, address);
    }
    }
}
}
#endif /* USE_REL */
#endif /* USE_REL */
 
 
/* Relocate an ARM ELF section.  */
/* Relocate an ARM ELF section.  */
static boolean
static boolean
elf32_arm_relocate_section (output_bfd, info, input_bfd, input_section,
elf32_arm_relocate_section (output_bfd, info, input_bfd, input_section,
                            contents, relocs, local_syms, local_sections)
                            contents, relocs, local_syms, local_sections)
     bfd *                  output_bfd;
     bfd *                  output_bfd;
     struct bfd_link_info * info;
     struct bfd_link_info * info;
     bfd *                  input_bfd;
     bfd *                  input_bfd;
     asection *             input_section;
     asection *             input_section;
     bfd_byte *             contents;
     bfd_byte *             contents;
     Elf_Internal_Rela *    relocs;
     Elf_Internal_Rela *    relocs;
     Elf_Internal_Sym *     local_syms;
     Elf_Internal_Sym *     local_syms;
     asection **            local_sections;
     asection **            local_sections;
{
{
  Elf_Internal_Shdr *           symtab_hdr;
  Elf_Internal_Shdr *           symtab_hdr;
  struct elf_link_hash_entry ** sym_hashes;
  struct elf_link_hash_entry ** sym_hashes;
  Elf_Internal_Rela *           rel;
  Elf_Internal_Rela *           rel;
  Elf_Internal_Rela *           relend;
  Elf_Internal_Rela *           relend;
  const char *                  name;
  const char *                  name;
 
 
#ifndef USE_REL
#ifndef USE_REL
  if (info->relocateable)
  if (info->relocateable)
    return true;
    return true;
#endif
#endif
 
 
  symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
  symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
  sym_hashes = elf_sym_hashes (input_bfd);
  sym_hashes = elf_sym_hashes (input_bfd);
 
 
  rel = relocs;
  rel = relocs;
  relend = relocs + input_section->reloc_count;
  relend = relocs + input_section->reloc_count;
  for (; rel < relend; rel++)
  for (; rel < relend; rel++)
    {
    {
      int                          r_type;
      int                          r_type;
      reloc_howto_type *           howto;
      reloc_howto_type *           howto;
      unsigned long                r_symndx;
      unsigned long                r_symndx;
      Elf_Internal_Sym *           sym;
      Elf_Internal_Sym *           sym;
      asection *                   sec;
      asection *                   sec;
      struct elf_link_hash_entry * h;
      struct elf_link_hash_entry * h;
      bfd_vma                      relocation;
      bfd_vma                      relocation;
      bfd_reloc_status_type        r;
      bfd_reloc_status_type        r;
      arelent                      bfd_reloc;
      arelent                      bfd_reloc;
 
 
      r_symndx = ELF32_R_SYM (rel->r_info);
      r_symndx = ELF32_R_SYM (rel->r_info);
      r_type   = ELF32_R_TYPE (rel->r_info);
      r_type   = ELF32_R_TYPE (rel->r_info);
 
 
      if (   r_type == R_ARM_GNU_VTENTRY
      if (   r_type == R_ARM_GNU_VTENTRY
          || r_type == R_ARM_GNU_VTINHERIT)
          || r_type == R_ARM_GNU_VTINHERIT)
        continue;
        continue;
 
 
#ifdef USE_REL
#ifdef USE_REL
      elf32_arm_info_to_howto (input_bfd, & bfd_reloc,
      elf32_arm_info_to_howto (input_bfd, & bfd_reloc,
                               (Elf_Internal_Rel *) rel);
                               (Elf_Internal_Rel *) rel);
#else
#else
      elf32_arm_info_to_howto (input_bfd, & bfd_reloc, rel);
      elf32_arm_info_to_howto (input_bfd, & bfd_reloc, rel);
#endif
#endif
      howto = bfd_reloc.howto;
      howto = bfd_reloc.howto;
 
 
#ifdef USE_REL
#ifdef USE_REL
      if (info->relocateable)
      if (info->relocateable)
        {
        {
          /* This is a relocateable link.  We don't have to change
          /* This is a relocateable link.  We don't have to change
             anything, unless the reloc is against a section symbol,
             anything, unless the reloc is against a section symbol,
             in which case we have to adjust according to where the
             in which case we have to adjust according to where the
             section symbol winds up in the output section.  */
             section symbol winds up in the output section.  */
          if (r_symndx < symtab_hdr->sh_info)
          if (r_symndx < symtab_hdr->sh_info)
            {
            {
              sym = local_syms + r_symndx;
              sym = local_syms + r_symndx;
              if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
              if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
                {
                {
                  sec = local_sections[r_symndx];
                  sec = local_sections[r_symndx];
                  arm_add_to_rel (input_bfd, contents + rel->r_offset,
                  arm_add_to_rel (input_bfd, contents + rel->r_offset,
                                  howto,
                                  howto,
                                  (bfd_signed_vma) (sec->output_offset
                                  (bfd_signed_vma) (sec->output_offset
                                                    + sym->st_value));
                                                    + sym->st_value));
                }
                }
            }
            }
 
 
          continue;
          continue;
        }
        }
#endif
#endif
 
 
      /* This is a final link.  */
      /* This is a final link.  */
      h = NULL;
      h = NULL;
      sym = NULL;
      sym = NULL;
      sec = NULL;
      sec = NULL;
 
 
      if (r_symndx < symtab_hdr->sh_info)
      if (r_symndx < symtab_hdr->sh_info)
        {
        {
          sym = local_syms + r_symndx;
          sym = local_syms + r_symndx;
          sec = local_sections[r_symndx];
          sec = local_sections[r_symndx];
#ifdef USE_REL
#ifdef USE_REL
          relocation = (sec->output_section->vma
          relocation = (sec->output_section->vma
                        + sec->output_offset
                        + sec->output_offset
                        + sym->st_value);
                        + sym->st_value);
          if ((sec->flags & SEC_MERGE)
          if ((sec->flags & SEC_MERGE)
                   && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
                   && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
            {
            {
              asection *msec;
              asection *msec;
              bfd_vma addend, value;
              bfd_vma addend, value;
 
 
              if (howto->rightshift)
              if (howto->rightshift)
                {
                {
                  (*_bfd_error_handler)
                  (*_bfd_error_handler)
                    (_("%s(%s+0x%lx): %s relocation against SEC_MERGE section"),
                    (_("%s(%s+0x%lx): %s relocation against SEC_MERGE section"),
                     bfd_archive_filename (input_bfd),
                     bfd_archive_filename (input_bfd),
                     bfd_get_section_name (input_bfd, input_section),
                     bfd_get_section_name (input_bfd, input_section),
                     (long) rel->r_offset, howto->name);
                     (long) rel->r_offset, howto->name);
                  return false;
                  return false;
                }
                }
 
 
              value = bfd_get_32 (input_bfd, contents + rel->r_offset);
              value = bfd_get_32 (input_bfd, contents + rel->r_offset);
 
 
              /* Get the (signed) value from the instruction.  */
              /* Get the (signed) value from the instruction.  */
              addend = value & howto->src_mask;
              addend = value & howto->src_mask;
              if (addend & ((howto->src_mask + 1) >> 1))
              if (addend & ((howto->src_mask + 1) >> 1))
                {
                {
                  bfd_signed_vma mask;
                  bfd_signed_vma mask;
 
 
                  mask = -1;
                  mask = -1;
                  mask &= ~ howto->src_mask;
                  mask &= ~ howto->src_mask;
                  addend |= mask;
                  addend |= mask;
                }
                }
              msec = sec;
              msec = sec;
              addend =
              addend =
                _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend)
                _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend)
                - relocation;
                - relocation;
              addend += msec->output_section->vma + msec->output_offset;
              addend += msec->output_section->vma + msec->output_offset;
              value = (value & ~ howto->dst_mask) | (addend & howto->dst_mask);
              value = (value & ~ howto->dst_mask) | (addend & howto->dst_mask);
              bfd_put_32 (input_bfd, value, contents + rel->r_offset);
              bfd_put_32 (input_bfd, value, contents + rel->r_offset);
            }
            }
#else
#else
          relocation = _bfd_elf_rela_local_sym (output_bfd, sym, sec, rel);
          relocation = _bfd_elf_rela_local_sym (output_bfd, sym, sec, rel);
#endif
#endif
        }
        }
      else
      else
        {
        {
          h = sym_hashes[r_symndx - symtab_hdr->sh_info];
          h = sym_hashes[r_symndx - symtab_hdr->sh_info];
 
 
          while (   h->root.type == bfd_link_hash_indirect
          while (   h->root.type == bfd_link_hash_indirect
                 || h->root.type == bfd_link_hash_warning)
                 || h->root.type == bfd_link_hash_warning)
            h = (struct elf_link_hash_entry *) h->root.u.i.link;
            h = (struct elf_link_hash_entry *) h->root.u.i.link;
 
 
          if (   h->root.type == bfd_link_hash_defined
          if (   h->root.type == bfd_link_hash_defined
              || h->root.type == bfd_link_hash_defweak)
              || h->root.type == bfd_link_hash_defweak)
            {
            {
              int relocation_needed = 1;
              int relocation_needed = 1;
 
 
              sec = h->root.u.def.section;
              sec = h->root.u.def.section;
 
 
              /* In these cases, we don't need the relocation value.
              /* In these cases, we don't need the relocation value.
                 We check specially because in some obscure cases
                 We check specially because in some obscure cases
                 sec->output_section will be NULL.  */
                 sec->output_section will be NULL.  */
              switch (r_type)
              switch (r_type)
                {
                {
                case R_ARM_PC24:
                case R_ARM_PC24:
                case R_ARM_ABS32:
                case R_ARM_ABS32:
                case R_ARM_THM_PC22:
                case R_ARM_THM_PC22:
                  if (info->shared
                  if (info->shared
                      && (
                      && (
                  (!info->symbolic && h->dynindx != -1)
                  (!info->symbolic && h->dynindx != -1)
                          || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
                          || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
                          )
                          )
                      && ((input_section->flags & SEC_ALLOC) != 0
                      && ((input_section->flags & SEC_ALLOC) != 0
                          /* DWARF will emit R_ARM_ABS32 relocations in its
                          /* DWARF will emit R_ARM_ABS32 relocations in its
                             sections against symbols defined externally
                             sections against symbols defined externally
                             in shared libraries.  We can't do anything
                             in shared libraries.  We can't do anything
                             with them here.  */
                             with them here.  */
                          || ((input_section->flags & SEC_DEBUGGING) != 0
                          || ((input_section->flags & SEC_DEBUGGING) != 0
                              && (h->elf_link_hash_flags
                              && (h->elf_link_hash_flags
                                  & ELF_LINK_HASH_DEF_DYNAMIC) != 0))
                                  & ELF_LINK_HASH_DEF_DYNAMIC) != 0))
                      )
                      )
                    relocation_needed = 0;
                    relocation_needed = 0;
                  break;
                  break;
 
 
                case R_ARM_GOTPC:
                case R_ARM_GOTPC:
                  relocation_needed = 0;
                  relocation_needed = 0;
                  break;
                  break;
 
 
                case R_ARM_GOT32:
                case R_ARM_GOT32:
                  if (elf_hash_table(info)->dynamic_sections_created
                  if (elf_hash_table(info)->dynamic_sections_created
                      && (!info->shared
                      && (!info->shared
                          || (!info->symbolic && h->dynindx != -1)
                          || (!info->symbolic && h->dynindx != -1)
                          || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
                          || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
                          )
                          )
                      )
                      )
                    relocation_needed = 0;
                    relocation_needed = 0;
                  break;
                  break;
 
 
                case R_ARM_PLT32:
                case R_ARM_PLT32:
                  if (h->plt.offset != (bfd_vma)-1)
                  if (h->plt.offset != (bfd_vma)-1)
                    relocation_needed = 0;
                    relocation_needed = 0;
                  break;
                  break;
 
 
                default:
                default:
                  if (sec->output_section == NULL)
                  if (sec->output_section == NULL)
                    {
                    {
                      (*_bfd_error_handler)
                      (*_bfd_error_handler)
                        (_("%s: warning: unresolvable relocation %d against symbol `%s' from %s section"),
                        (_("%s: warning: unresolvable relocation %d against symbol `%s' from %s section"),
                         bfd_archive_filename (input_bfd),
                         bfd_archive_filename (input_bfd),
                         r_type,
                         r_type,
                         h->root.root.string,
                         h->root.root.string,
                         bfd_get_section_name (input_bfd, input_section));
                         bfd_get_section_name (input_bfd, input_section));
                      relocation_needed = 0;
                      relocation_needed = 0;
                    }
                    }
                }
                }
 
 
              if (relocation_needed)
              if (relocation_needed)
                relocation = h->root.u.def.value
                relocation = h->root.u.def.value
                  + sec->output_section->vma
                  + sec->output_section->vma
                  + sec->output_offset;
                  + sec->output_offset;
              else
              else
                relocation = 0;
                relocation = 0;
            }
            }
          else if (h->root.type == bfd_link_hash_undefweak)
          else if (h->root.type == bfd_link_hash_undefweak)
            relocation = 0;
            relocation = 0;
          else if (info->shared && !info->symbolic
          else if (info->shared && !info->symbolic
                   && !info->no_undefined
                   && !info->no_undefined
                   && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
                   && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
            relocation = 0;
            relocation = 0;
          else
          else
            {
            {
              if (!((*info->callbacks->undefined_symbol)
              if (!((*info->callbacks->undefined_symbol)
                    (info, h->root.root.string, input_bfd,
                    (info, h->root.root.string, input_bfd,
                     input_section, rel->r_offset,
                     input_section, rel->r_offset,
                     (!info->shared || info->no_undefined
                     (!info->shared || info->no_undefined
                      || ELF_ST_VISIBILITY (h->other)))))
                      || ELF_ST_VISIBILITY (h->other)))))
                return false;
                return false;
              relocation = 0;
              relocation = 0;
            }
            }
        }
        }
 
 
      if (h != NULL)
      if (h != NULL)
        name = h->root.root.string;
        name = h->root.root.string;
      else
      else
        {
        {
          name = (bfd_elf_string_from_elf_section
          name = (bfd_elf_string_from_elf_section
                  (input_bfd, symtab_hdr->sh_link, sym->st_name));
                  (input_bfd, symtab_hdr->sh_link, sym->st_name));
          if (name == NULL || *name == '\0')
          if (name == NULL || *name == '\0')
            name = bfd_section_name (input_bfd, sec);
            name = bfd_section_name (input_bfd, sec);
        }
        }
 
 
      r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
      r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
                                         input_section, contents, rel,
                                         input_section, contents, rel,
                                         relocation, info, sec, name,
                                         relocation, info, sec, name,
                                         (h ? ELF_ST_TYPE (h->type) :
                                         (h ? ELF_ST_TYPE (h->type) :
                                          ELF_ST_TYPE (sym->st_info)), h);
                                          ELF_ST_TYPE (sym->st_info)), h);
 
 
      if (r != bfd_reloc_ok)
      if (r != bfd_reloc_ok)
        {
        {
          const char * msg = (const char *) 0;
          const char * msg = (const char *) 0;
 
 
          switch (r)
          switch (r)
            {
            {
            case bfd_reloc_overflow:
            case bfd_reloc_overflow:
              /* If the overflowing reloc was to an undefined symbol,
              /* If the overflowing reloc was to an undefined symbol,
                 we have already printed one error message and there
                 we have already printed one error message and there
                 is no point complaining again.  */
                 is no point complaining again.  */
              if ((! h ||
              if ((! h ||
                   h->root.type != bfd_link_hash_undefined)
                   h->root.type != bfd_link_hash_undefined)
                  && (!((*info->callbacks->reloc_overflow)
                  && (!((*info->callbacks->reloc_overflow)
                        (info, name, howto->name, (bfd_vma) 0,
                        (info, name, howto->name, (bfd_vma) 0,
                         input_bfd, input_section, rel->r_offset))))
                         input_bfd, input_section, rel->r_offset))))
                  return false;
                  return false;
              break;
              break;
 
 
            case bfd_reloc_undefined:
            case bfd_reloc_undefined:
              if (!((*info->callbacks->undefined_symbol)
              if (!((*info->callbacks->undefined_symbol)
                    (info, name, input_bfd, input_section,
                    (info, name, input_bfd, input_section,
                     rel->r_offset, true)))
                     rel->r_offset, true)))
                return false;
                return false;
              break;
              break;
 
 
            case bfd_reloc_outofrange:
            case bfd_reloc_outofrange:
              msg = _("internal error: out of range error");
              msg = _("internal error: out of range error");
              goto common_error;
              goto common_error;
 
 
            case bfd_reloc_notsupported:
            case bfd_reloc_notsupported:
              msg = _("internal error: unsupported relocation error");
              msg = _("internal error: unsupported relocation error");
              goto common_error;
              goto common_error;
 
 
            case bfd_reloc_dangerous:
            case bfd_reloc_dangerous:
              msg = _("internal error: dangerous error");
              msg = _("internal error: dangerous error");
              goto common_error;
              goto common_error;
 
 
            default:
            default:
              msg = _("internal error: unknown error");
              msg = _("internal error: unknown error");
              /* fall through */
              /* fall through */
 
 
            common_error:
            common_error:
              if (!((*info->callbacks->warning)
              if (!((*info->callbacks->warning)
                    (info, msg, name, input_bfd, input_section,
                    (info, msg, name, input_bfd, input_section,
                     rel->r_offset)))
                     rel->r_offset)))
                return false;
                return false;
              break;
              break;
            }
            }
        }
        }
    }
    }
 
 
  return true;
  return true;
}
}
 
 
/* Function to keep ARM specific flags in the ELF header.  */
/* Function to keep ARM specific flags in the ELF header.  */
static boolean
static boolean
elf32_arm_set_private_flags (abfd, flags)
elf32_arm_set_private_flags (abfd, flags)
     bfd *abfd;
     bfd *abfd;
     flagword flags;
     flagword flags;
{
{
  if (elf_flags_init (abfd)
  if (elf_flags_init (abfd)
      && elf_elfheader (abfd)->e_flags != flags)
      && elf_elfheader (abfd)->e_flags != flags)
    {
    {
      if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
      if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
        {
        {
          if (flags & EF_ARM_INTERWORK)
          if (flags & EF_ARM_INTERWORK)
            (*_bfd_error_handler) (_("\
            (*_bfd_error_handler) (_("\
Warning: Not setting interworking flag of %s since it has already been specified as non-interworking"),
Warning: Not setting interworking flag of %s since it has already been specified as non-interworking"),
                                   bfd_archive_filename (abfd));
                                   bfd_archive_filename (abfd));
          else
          else
            _bfd_error_handler (_("\
            _bfd_error_handler (_("\
Warning: Clearing the interworking flag of %s due to outside request"),
Warning: Clearing the interworking flag of %s due to outside request"),
                                bfd_archive_filename (abfd));
                                bfd_archive_filename (abfd));
        }
        }
    }
    }
  else
  else
    {
    {
      elf_elfheader (abfd)->e_flags = flags;
      elf_elfheader (abfd)->e_flags = flags;
      elf_flags_init (abfd) = true;
      elf_flags_init (abfd) = true;
    }
    }
 
 
  return true;
  return true;
}
}
 
 
/* Copy backend specific data from one object module to another.  */
/* Copy backend specific data from one object module to another.  */
 
 
static boolean
static boolean
elf32_arm_copy_private_bfd_data (ibfd, obfd)
elf32_arm_copy_private_bfd_data (ibfd, obfd)
     bfd *ibfd;
     bfd *ibfd;
     bfd *obfd;
     bfd *obfd;
{
{
  flagword in_flags;
  flagword in_flags;
  flagword out_flags;
  flagword out_flags;
 
 
  if (   bfd_get_flavour (ibfd) != bfd_target_elf_flavour
  if (   bfd_get_flavour (ibfd) != bfd_target_elf_flavour
      || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
      || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
    return true;
    return true;
 
 
  in_flags  = elf_elfheader (ibfd)->e_flags;
  in_flags  = elf_elfheader (ibfd)->e_flags;
  out_flags = elf_elfheader (obfd)->e_flags;
  out_flags = elf_elfheader (obfd)->e_flags;
 
 
  if (elf_flags_init (obfd)
  if (elf_flags_init (obfd)
      && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
      && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
      && in_flags != out_flags)
      && in_flags != out_flags)
    {
    {
      /* Cannot mix APCS26 and APCS32 code.  */
      /* Cannot mix APCS26 and APCS32 code.  */
      if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
      if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
        return false;
        return false;
 
 
      /* Cannot mix float APCS and non-float APCS code.  */
      /* Cannot mix float APCS and non-float APCS code.  */
      if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
      if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
        return false;
        return false;
 
 
      /* If the src and dest have different interworking flags
      /* If the src and dest have different interworking flags
         then turn off the interworking bit.  */
         then turn off the interworking bit.  */
      if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
      if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
        {
        {
          if (out_flags & EF_ARM_INTERWORK)
          if (out_flags & EF_ARM_INTERWORK)
            _bfd_error_handler (_("\
            _bfd_error_handler (_("\
Warning: Clearing the interworking flag of %s because non-interworking code in %s has been linked with it"),
Warning: Clearing the interworking flag of %s because non-interworking code in %s has been linked with it"),
                                bfd_get_filename (obfd),
                                bfd_get_filename (obfd),
                                bfd_archive_filename (ibfd));
                                bfd_archive_filename (ibfd));
 
 
          in_flags &= ~EF_ARM_INTERWORK;
          in_flags &= ~EF_ARM_INTERWORK;
        }
        }
 
 
      /* Likewise for PIC, though don't warn for this case.  */
      /* Likewise for PIC, though don't warn for this case.  */
      if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC))
      if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC))
        in_flags &= ~EF_ARM_PIC;
        in_flags &= ~EF_ARM_PIC;
    }
    }
 
 
  elf_elfheader (obfd)->e_flags = in_flags;
  elf_elfheader (obfd)->e_flags = in_flags;
  elf_flags_init (obfd) = true;
  elf_flags_init (obfd) = true;
 
 
  return true;
  return true;
}
}
 
 
/* Merge backend specific data from an object file to the output
/* Merge backend specific data from an object file to the output
   object file when linking.  */
   object file when linking.  */
 
 
static boolean
static boolean
elf32_arm_merge_private_bfd_data (ibfd, obfd)
elf32_arm_merge_private_bfd_data (ibfd, obfd)
     bfd * ibfd;
     bfd * ibfd;
     bfd * obfd;
     bfd * obfd;
{
{
  flagword out_flags;
  flagword out_flags;
  flagword in_flags;
  flagword in_flags;
  boolean flags_compatible = true;
  boolean flags_compatible = true;
  boolean null_input_bfd = true;
  boolean null_input_bfd = true;
  asection *sec;
  asection *sec;
 
 
  /* Check if we have the same endianess.  */
  /* Check if we have the same endianess.  */
  if (! _bfd_generic_verify_endian_match (ibfd, obfd))
  if (! _bfd_generic_verify_endian_match (ibfd, obfd))
    return false;
    return false;
 
 
  if (   bfd_get_flavour (ibfd) != bfd_target_elf_flavour
  if (   bfd_get_flavour (ibfd) != bfd_target_elf_flavour
      || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
      || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
    return true;
    return true;
 
 
  /* The input BFD must have had its flags initialised.  */
  /* The input BFD must have had its flags initialised.  */
  /* The following seems bogus to me -- The flags are initialized in
  /* The following seems bogus to me -- The flags are initialized in
     the assembler but I don't think an elf_flags_init field is
     the assembler but I don't think an elf_flags_init field is
     written into the object.  */
     written into the object.  */
  /* BFD_ASSERT (elf_flags_init (ibfd)); */
  /* BFD_ASSERT (elf_flags_init (ibfd)); */
 
 
  in_flags  = elf_elfheader (ibfd)->e_flags;
  in_flags  = elf_elfheader (ibfd)->e_flags;
  out_flags = elf_elfheader (obfd)->e_flags;
  out_flags = elf_elfheader (obfd)->e_flags;
 
 
  if (!elf_flags_init (obfd))
  if (!elf_flags_init (obfd))
    {
    {
      /* If the input is the default architecture and had the default
      /* If the input is the default architecture and had the default
         flags then do not bother setting the flags for the output
         flags then do not bother setting the flags for the output
         architecture, instead allow future merges to do this.  If no
         architecture, instead allow future merges to do this.  If no
         future merges ever set these flags then they will retain their
         future merges ever set these flags then they will retain their
         uninitialised values, which surprise surprise, correspond
         uninitialised values, which surprise surprise, correspond
         to the default values.  */
         to the default values.  */
      if (bfd_get_arch_info (ibfd)->the_default
      if (bfd_get_arch_info (ibfd)->the_default
          && elf_elfheader (ibfd)->e_flags == 0)
          && elf_elfheader (ibfd)->e_flags == 0)
        return true;
        return true;
 
 
      elf_flags_init (obfd) = true;
      elf_flags_init (obfd) = true;
      elf_elfheader (obfd)->e_flags = in_flags;
      elf_elfheader (obfd)->e_flags = in_flags;
 
 
      if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
      if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
          && bfd_get_arch_info (obfd)->the_default)
          && bfd_get_arch_info (obfd)->the_default)
        return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
        return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
 
 
      return true;
      return true;
    }
    }
 
 
  /* Identical flags must be compatible.  */
  /* Identical flags must be compatible.  */
  if (in_flags == out_flags)
  if (in_flags == out_flags)
    return true;
    return true;
 
 
  /* Check to see if the input BFD actually contains any sections.
  /* Check to see if the input BFD actually contains any sections.
     If not, its flags may not have been initialised either, but it cannot
     If not, its flags may not have been initialised either, but it cannot
     actually cause any incompatibility.  */
     actually cause any incompatibility.  */
  for (sec = ibfd->sections; sec != NULL; sec = sec->next)
  for (sec = ibfd->sections; sec != NULL; sec = sec->next)
    {
    {
      /* Ignore synthetic glue sections.  */
      /* Ignore synthetic glue sections.  */
      if (strcmp (sec->name, ".glue_7")
      if (strcmp (sec->name, ".glue_7")
          && strcmp (sec->name, ".glue_7t"))
          && strcmp (sec->name, ".glue_7t"))
        {
        {
          null_input_bfd = false;
          null_input_bfd = false;
          break;
          break;
        }
        }
    }
    }
  if (null_input_bfd)
  if (null_input_bfd)
    return true;
    return true;
 
 
  /* Complain about various flag mismatches.  */
  /* Complain about various flag mismatches.  */
  if (EF_ARM_EABI_VERSION (in_flags) != EF_ARM_EABI_VERSION (out_flags))
  if (EF_ARM_EABI_VERSION (in_flags) != EF_ARM_EABI_VERSION (out_flags))
    {
    {
      _bfd_error_handler (_("\
      _bfd_error_handler (_("\
ERROR: %s is compiled for EABI version %d, whereas %s is compiled for version %d"),
ERROR: %s is compiled for EABI version %d, whereas %s is compiled for version %d"),
                          bfd_archive_filename (ibfd),
                          bfd_archive_filename (ibfd),
                          (in_flags & EF_ARM_EABIMASK) >> 24,
                          (in_flags & EF_ARM_EABIMASK) >> 24,
                          bfd_get_filename (obfd),
                          bfd_get_filename (obfd),
                          (out_flags & EF_ARM_EABIMASK) >> 24);
                          (out_flags & EF_ARM_EABIMASK) >> 24);
      return false;
      return false;
    }
    }
 
 
  /* Not sure what needs to be checked for EABI versions >= 1.  */
  /* Not sure what needs to be checked for EABI versions >= 1.  */
  if (EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN)
  if (EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN)
    {
    {
      if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
      if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
        {
        {
          _bfd_error_handler (_("\
          _bfd_error_handler (_("\
ERROR: %s is compiled for APCS-%d, whereas target %s uses APCS-%d"),
ERROR: %s is compiled for APCS-%d, whereas target %s uses APCS-%d"),
                              bfd_archive_filename (ibfd),
                              bfd_archive_filename (ibfd),
                              in_flags & EF_ARM_APCS_26 ? 26 : 32,
                              in_flags & EF_ARM_APCS_26 ? 26 : 32,
                              bfd_get_filename (obfd),
                              bfd_get_filename (obfd),
                              out_flags & EF_ARM_APCS_26 ? 26 : 32);
                              out_flags & EF_ARM_APCS_26 ? 26 : 32);
          flags_compatible = false;
          flags_compatible = false;
        }
        }
 
 
      if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
      if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
        {
        {
          if (in_flags & EF_ARM_APCS_FLOAT)
          if (in_flags & EF_ARM_APCS_FLOAT)
            _bfd_error_handler (_("\
            _bfd_error_handler (_("\
ERROR: %s passes floats in float registers, whereas %s passes them in integer registers"),
ERROR: %s passes floats in float registers, whereas %s passes them in integer registers"),
                                bfd_archive_filename (ibfd),
                                bfd_archive_filename (ibfd),
                                bfd_get_filename (obfd));
                                bfd_get_filename (obfd));
          else
          else
            _bfd_error_handler (_("\
            _bfd_error_handler (_("\
ERROR: %s passes floats in integer registers, whereas %s passes them in float registers"),
ERROR: %s passes floats in integer registers, whereas %s passes them in float registers"),
                                bfd_archive_filename (ibfd),
                                bfd_archive_filename (ibfd),
                                bfd_get_filename (obfd));
                                bfd_get_filename (obfd));
 
 
          flags_compatible = false;
          flags_compatible = false;
        }
        }
 
 
      if ((in_flags & EF_ARM_VFP_FLOAT) != (out_flags & EF_ARM_VFP_FLOAT))
      if ((in_flags & EF_ARM_VFP_FLOAT) != (out_flags & EF_ARM_VFP_FLOAT))
        {
        {
          if (in_flags & EF_ARM_VFP_FLOAT)
          if (in_flags & EF_ARM_VFP_FLOAT)
            _bfd_error_handler (_("\
            _bfd_error_handler (_("\
ERROR: %s uses VFP instructions, whereas %s uses FPA instructions"),
ERROR: %s uses VFP instructions, whereas %s uses FPA instructions"),
                                bfd_archive_filename (ibfd),
                                bfd_archive_filename (ibfd),
                                bfd_get_filename (obfd));
                                bfd_get_filename (obfd));
          else
          else
            _bfd_error_handler (_("\
            _bfd_error_handler (_("\
ERROR: %s uses FPA instructions, whereas %s uses VFP instructions"),
ERROR: %s uses FPA instructions, whereas %s uses VFP instructions"),
                                bfd_archive_filename (ibfd),
                                bfd_archive_filename (ibfd),
                                bfd_get_filename (obfd));
                                bfd_get_filename (obfd));
 
 
          flags_compatible = false;
          flags_compatible = false;
        }
        }
 
 
#ifdef EF_ARM_SOFT_FLOAT
#ifdef EF_ARM_SOFT_FLOAT
      if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT))
      if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT))
        {
        {
          /* We can allow interworking between code that is VFP format
          /* We can allow interworking between code that is VFP format
             layout, and uses either soft float or integer regs for
             layout, and uses either soft float or integer regs for
             passing floating point arguments and results.  We already
             passing floating point arguments and results.  We already
             know that the APCS_FLOAT flags match; similarly for VFP
             know that the APCS_FLOAT flags match; similarly for VFP
             flags.  */
             flags.  */
          if ((in_flags & EF_ARM_APCS_FLOAT) != 0
          if ((in_flags & EF_ARM_APCS_FLOAT) != 0
              || (in_flags & EF_ARM_VFP_FLOAT) == 0)
              || (in_flags & EF_ARM_VFP_FLOAT) == 0)
            {
            {
              if (in_flags & EF_ARM_SOFT_FLOAT)
              if (in_flags & EF_ARM_SOFT_FLOAT)
                _bfd_error_handler (_("\
                _bfd_error_handler (_("\
ERROR: %s uses software FP, whereas %s uses hardware FP"),
ERROR: %s uses software FP, whereas %s uses hardware FP"),
                                    bfd_archive_filename (ibfd),
                                    bfd_archive_filename (ibfd),
                                    bfd_get_filename (obfd));
                                    bfd_get_filename (obfd));
              else
              else
                _bfd_error_handler (_("\
                _bfd_error_handler (_("\
ERROR: %s uses hardware FP, whereas %s uses software FP"),
ERROR: %s uses hardware FP, whereas %s uses software FP"),
                                    bfd_archive_filename (ibfd),
                                    bfd_archive_filename (ibfd),
                                    bfd_get_filename (obfd));
                                    bfd_get_filename (obfd));
 
 
              flags_compatible = false;
              flags_compatible = false;
            }
            }
        }
        }
#endif
#endif
 
 
      /* Interworking mismatch is only a warning.  */
      /* Interworking mismatch is only a warning.  */
      if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
      if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
        {
        {
          if (in_flags & EF_ARM_INTERWORK)
          if (in_flags & EF_ARM_INTERWORK)
            {
            {
              _bfd_error_handler (_("\
              _bfd_error_handler (_("\
Warning: %s supports interworking, whereas %s does not"),
Warning: %s supports interworking, whereas %s does not"),
                                  bfd_archive_filename (ibfd),
                                  bfd_archive_filename (ibfd),
                                  bfd_get_filename (obfd));
                                  bfd_get_filename (obfd));
            }
            }
          else
          else
            {
            {
              _bfd_error_handler (_("\
              _bfd_error_handler (_("\
Warning: %s does not support interworking, whereas %s does"),
Warning: %s does not support interworking, whereas %s does"),
                                  bfd_archive_filename (ibfd),
                                  bfd_archive_filename (ibfd),
                                  bfd_get_filename (obfd));
                                  bfd_get_filename (obfd));
            }
            }
        }
        }
    }
    }
 
 
  return flags_compatible;
  return flags_compatible;
}
}
 
 
/* Display the flags field.  */
/* Display the flags field.  */
 
 
static boolean
static boolean
elf32_arm_print_private_bfd_data (abfd, ptr)
elf32_arm_print_private_bfd_data (abfd, ptr)
     bfd *abfd;
     bfd *abfd;
     PTR ptr;
     PTR ptr;
{
{
  FILE * file = (FILE *) ptr;
  FILE * file = (FILE *) ptr;
  unsigned long flags;
  unsigned long flags;
 
 
  BFD_ASSERT (abfd != NULL && ptr != NULL);
  BFD_ASSERT (abfd != NULL && ptr != NULL);
 
 
  /* Print normal ELF private data.  */
  /* Print normal ELF private data.  */
  _bfd_elf_print_private_bfd_data (abfd, ptr);
  _bfd_elf_print_private_bfd_data (abfd, ptr);
 
 
  flags = elf_elfheader (abfd)->e_flags;
  flags = elf_elfheader (abfd)->e_flags;
  /* Ignore init flag - it may not be set, despite the flags field
  /* Ignore init flag - it may not be set, despite the flags field
     containing valid data.  */
     containing valid data.  */
 
 
  /* xgettext:c-format */
  /* xgettext:c-format */
  fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
  fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
 
 
  switch (EF_ARM_EABI_VERSION (flags))
  switch (EF_ARM_EABI_VERSION (flags))
    {
    {
    case EF_ARM_EABI_UNKNOWN:
    case EF_ARM_EABI_UNKNOWN:
      /* The following flag bits are GNU extenstions and not part of the
      /* The following flag bits are GNU extenstions and not part of the
         official ARM ELF extended ABI.  Hence they are only decoded if
         official ARM ELF extended ABI.  Hence they are only decoded if
         the EABI version is not set.  */
         the EABI version is not set.  */
      if (flags & EF_ARM_INTERWORK)
      if (flags & EF_ARM_INTERWORK)
        fprintf (file, _(" [interworking enabled]"));
        fprintf (file, _(" [interworking enabled]"));
 
 
      if (flags & EF_ARM_APCS_26)
      if (flags & EF_ARM_APCS_26)
        fprintf (file, " [APCS-26]");
        fprintf (file, " [APCS-26]");
      else
      else
        fprintf (file, " [APCS-32]");
        fprintf (file, " [APCS-32]");
 
 
      if (flags & EF_ARM_VFP_FLOAT)
      if (flags & EF_ARM_VFP_FLOAT)
        fprintf (file, _(" [VFP float format]"));
        fprintf (file, _(" [VFP float format]"));
      else
      else
        fprintf (file, _(" [FPA float format]"));
        fprintf (file, _(" [FPA float format]"));
 
 
      if (flags & EF_ARM_APCS_FLOAT)
      if (flags & EF_ARM_APCS_FLOAT)
        fprintf (file, _(" [floats passed in float registers]"));
        fprintf (file, _(" [floats passed in float registers]"));
 
 
      if (flags & EF_ARM_PIC)
      if (flags & EF_ARM_PIC)
        fprintf (file, _(" [position independent]"));
        fprintf (file, _(" [position independent]"));
 
 
      if (flags & EF_ARM_NEW_ABI)
      if (flags & EF_ARM_NEW_ABI)
        fprintf (file, _(" [new ABI]"));
        fprintf (file, _(" [new ABI]"));
 
 
      if (flags & EF_ARM_OLD_ABI)
      if (flags & EF_ARM_OLD_ABI)
        fprintf (file, _(" [old ABI]"));
        fprintf (file, _(" [old ABI]"));
 
 
      if (flags & EF_ARM_SOFT_FLOAT)
      if (flags & EF_ARM_SOFT_FLOAT)
        fprintf (file, _(" [software FP]"));
        fprintf (file, _(" [software FP]"));
 
 
      flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT
      flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT
                 | EF_ARM_PIC | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI
                 | EF_ARM_PIC | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI
                 | EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT);
                 | EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT);
      break;
      break;
 
 
    case EF_ARM_EABI_VER1:
    case EF_ARM_EABI_VER1:
      fprintf (file, _(" [Version1 EABI]"));
      fprintf (file, _(" [Version1 EABI]"));
 
 
      if (flags & EF_ARM_SYMSARESORTED)
      if (flags & EF_ARM_SYMSARESORTED)
        fprintf (file, _(" [sorted symbol table]"));
        fprintf (file, _(" [sorted symbol table]"));
      else
      else
        fprintf (file, _(" [unsorted symbol table]"));
        fprintf (file, _(" [unsorted symbol table]"));
 
 
      flags &= ~ EF_ARM_SYMSARESORTED;
      flags &= ~ EF_ARM_SYMSARESORTED;
      break;
      break;
 
 
    case EF_ARM_EABI_VER2:
    case EF_ARM_EABI_VER2:
      fprintf (file, _(" [Version2 EABI]"));
      fprintf (file, _(" [Version2 EABI]"));
 
 
      if (flags & EF_ARM_SYMSARESORTED)
      if (flags & EF_ARM_SYMSARESORTED)
        fprintf (file, _(" [sorted symbol table]"));
        fprintf (file, _(" [sorted symbol table]"));
      else
      else
        fprintf (file, _(" [unsorted symbol table]"));
        fprintf (file, _(" [unsorted symbol table]"));
 
 
      if (flags & EF_ARM_DYNSYMSUSESEGIDX)
      if (flags & EF_ARM_DYNSYMSUSESEGIDX)
        fprintf (file, _(" [dynamic symbols use segment index]"));
        fprintf (file, _(" [dynamic symbols use segment index]"));
 
 
      if (flags & EF_ARM_MAPSYMSFIRST)
      if (flags & EF_ARM_MAPSYMSFIRST)
        fprintf (file, _(" [mapping symbols precede others]"));
        fprintf (file, _(" [mapping symbols precede others]"));
 
 
      flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX
      flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX
                 | EF_ARM_MAPSYMSFIRST);
                 | EF_ARM_MAPSYMSFIRST);
      break;
      break;
 
 
    default:
    default:
      fprintf (file, _(" <EABI version unrecognised>"));
      fprintf (file, _(" <EABI version unrecognised>"));
      break;
      break;
    }
    }
 
 
  flags &= ~ EF_ARM_EABIMASK;
  flags &= ~ EF_ARM_EABIMASK;
 
 
  if (flags & EF_ARM_RELEXEC)
  if (flags & EF_ARM_RELEXEC)
    fprintf (file, _(" [relocatable executable]"));
    fprintf (file, _(" [relocatable executable]"));
 
 
  if (flags & EF_ARM_HASENTRY)
  if (flags & EF_ARM_HASENTRY)
    fprintf (file, _(" [has entry point]"));
    fprintf (file, _(" [has entry point]"));
 
 
  flags &= ~ (EF_ARM_RELEXEC | EF_ARM_HASENTRY);
  flags &= ~ (EF_ARM_RELEXEC | EF_ARM_HASENTRY);
 
 
  if (flags)
  if (flags)
    fprintf (file, _("<Unrecognised flag bits set>"));
    fprintf (file, _("<Unrecognised flag bits set>"));
 
 
  fputc ('\n', file);
  fputc ('\n', file);
 
 
  return true;
  return true;
}
}
 
 
static int
static int
elf32_arm_get_symbol_type (elf_sym, type)
elf32_arm_get_symbol_type (elf_sym, type)
     Elf_Internal_Sym * elf_sym;
     Elf_Internal_Sym * elf_sym;
     int type;
     int type;
{
{
  switch (ELF_ST_TYPE (elf_sym->st_info))
  switch (ELF_ST_TYPE (elf_sym->st_info))
    {
    {
    case STT_ARM_TFUNC:
    case STT_ARM_TFUNC:
      return ELF_ST_TYPE (elf_sym->st_info);
      return ELF_ST_TYPE (elf_sym->st_info);
 
 
    case STT_ARM_16BIT:
    case STT_ARM_16BIT:
      /* If the symbol is not an object, return the STT_ARM_16BIT flag.
      /* If the symbol is not an object, return the STT_ARM_16BIT flag.
         This allows us to distinguish between data used by Thumb instructions
         This allows us to distinguish between data used by Thumb instructions
         and non-data (which is probably code) inside Thumb regions of an
         and non-data (which is probably code) inside Thumb regions of an
         executable.  */
         executable.  */
      if (type != STT_OBJECT)
      if (type != STT_OBJECT)
        return ELF_ST_TYPE (elf_sym->st_info);
        return ELF_ST_TYPE (elf_sym->st_info);
      break;
      break;
 
 
    default:
    default:
      break;
      break;
    }
    }
 
 
  return type;
  return type;
}
}
 
 
static asection *
static asection *
elf32_arm_gc_mark_hook (sec, info, rel, h, sym)
elf32_arm_gc_mark_hook (sec, info, rel, h, sym)
       asection *sec;
       asection *sec;
       struct bfd_link_info *info ATTRIBUTE_UNUSED;
       struct bfd_link_info *info ATTRIBUTE_UNUSED;
       Elf_Internal_Rela *rel;
       Elf_Internal_Rela *rel;
       struct elf_link_hash_entry *h;
       struct elf_link_hash_entry *h;
       Elf_Internal_Sym *sym;
       Elf_Internal_Sym *sym;
{
{
  if (h != NULL)
  if (h != NULL)
    {
    {
      switch (ELF32_R_TYPE (rel->r_info))
      switch (ELF32_R_TYPE (rel->r_info))
      {
      {
      case R_ARM_GNU_VTINHERIT:
      case R_ARM_GNU_VTINHERIT:
      case R_ARM_GNU_VTENTRY:
      case R_ARM_GNU_VTENTRY:
        break;
        break;
 
 
      default:
      default:
        switch (h->root.type)
        switch (h->root.type)
          {
          {
          case bfd_link_hash_defined:
          case bfd_link_hash_defined:
          case bfd_link_hash_defweak:
          case bfd_link_hash_defweak:
            return h->root.u.def.section;
            return h->root.u.def.section;
 
 
          case bfd_link_hash_common:
          case bfd_link_hash_common:
            return h->root.u.c.p->section;
            return h->root.u.c.p->section;
 
 
          default:
          default:
            break;
            break;
          }
          }
       }
       }
     }
     }
   else
   else
     return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
     return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
 
 
  return NULL;
  return NULL;
}
}
 
 
/* Update the got entry reference counts for the section being removed.  */
/* Update the got entry reference counts for the section being removed.  */
 
 
static boolean
static boolean
elf32_arm_gc_sweep_hook (abfd, info, sec, relocs)
elf32_arm_gc_sweep_hook (abfd, info, sec, relocs)
     bfd *abfd ATTRIBUTE_UNUSED;
     bfd *abfd ATTRIBUTE_UNUSED;
     struct bfd_link_info *info ATTRIBUTE_UNUSED;
     struct bfd_link_info *info ATTRIBUTE_UNUSED;
     asection *sec ATTRIBUTE_UNUSED;
     asection *sec ATTRIBUTE_UNUSED;
     const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED;
     const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED;
{
{
  /* We don't support garbage collection of GOT and PLT relocs yet.  */
  /* We don't support garbage collection of GOT and PLT relocs yet.  */
  return true;
  return true;
}
}
 
 
/* Look through the relocs for a section during the first phase.  */
/* Look through the relocs for a section during the first phase.  */
 
 
static boolean
static boolean
elf32_arm_check_relocs (abfd, info, sec, relocs)
elf32_arm_check_relocs (abfd, info, sec, relocs)
     bfd *                      abfd;
     bfd *                      abfd;
     struct bfd_link_info *     info;
     struct bfd_link_info *     info;
     asection *                 sec;
     asection *                 sec;
     const Elf_Internal_Rela *  relocs;
     const Elf_Internal_Rela *  relocs;
{
{
  Elf_Internal_Shdr *           symtab_hdr;
  Elf_Internal_Shdr *           symtab_hdr;
  struct elf_link_hash_entry ** sym_hashes;
  struct elf_link_hash_entry ** sym_hashes;
  struct elf_link_hash_entry ** sym_hashes_end;
  struct elf_link_hash_entry ** sym_hashes_end;
  const Elf_Internal_Rela *     rel;
  const Elf_Internal_Rela *     rel;
  const Elf_Internal_Rela *     rel_end;
  const Elf_Internal_Rela *     rel_end;
  bfd *                         dynobj;
  bfd *                         dynobj;
  asection * sgot, *srelgot, *sreloc;
  asection * sgot, *srelgot, *sreloc;
  bfd_vma * local_got_offsets;
  bfd_vma * local_got_offsets;
 
 
  if (info->relocateable)
  if (info->relocateable)
    return true;
    return true;
 
 
  sgot = srelgot = sreloc = NULL;
  sgot = srelgot = sreloc = NULL;
 
 
  dynobj = elf_hash_table (info)->dynobj;
  dynobj = elf_hash_table (info)->dynobj;
  local_got_offsets = elf_local_got_offsets (abfd);
  local_got_offsets = elf_local_got_offsets (abfd);
 
 
  symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
  symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
  sym_hashes = elf_sym_hashes (abfd);
  sym_hashes = elf_sym_hashes (abfd);
  sym_hashes_end = sym_hashes
  sym_hashes_end = sym_hashes
    + symtab_hdr->sh_size / sizeof (Elf32_External_Sym);
    + symtab_hdr->sh_size / sizeof (Elf32_External_Sym);
 
 
  if (!elf_bad_symtab (abfd))
  if (!elf_bad_symtab (abfd))
    sym_hashes_end -= symtab_hdr->sh_info;
    sym_hashes_end -= symtab_hdr->sh_info;
 
 
  rel_end = relocs + sec->reloc_count;
  rel_end = relocs + sec->reloc_count;
  for (rel = relocs; rel < rel_end; rel++)
  for (rel = relocs; rel < rel_end; rel++)
    {
    {
      struct elf_link_hash_entry *h;
      struct elf_link_hash_entry *h;
      unsigned long r_symndx;
      unsigned long r_symndx;
 
 
      r_symndx = ELF32_R_SYM (rel->r_info);
      r_symndx = ELF32_R_SYM (rel->r_info);
      if (r_symndx < symtab_hdr->sh_info)
      if (r_symndx < symtab_hdr->sh_info)
        h = NULL;
        h = NULL;
      else
      else
        h = sym_hashes[r_symndx - symtab_hdr->sh_info];
        h = sym_hashes[r_symndx - symtab_hdr->sh_info];
 
 
      /* Some relocs require a global offset table.  */
      /* Some relocs require a global offset table.  */
      if (dynobj == NULL)
      if (dynobj == NULL)
        {
        {
          switch (ELF32_R_TYPE (rel->r_info))
          switch (ELF32_R_TYPE (rel->r_info))
            {
            {
            case R_ARM_GOT32:
            case R_ARM_GOT32:
            case R_ARM_GOTOFF:
            case R_ARM_GOTOFF:
            case R_ARM_GOTPC:
            case R_ARM_GOTPC:
              elf_hash_table (info)->dynobj = dynobj = abfd;
              elf_hash_table (info)->dynobj = dynobj = abfd;
              if (! _bfd_elf_create_got_section (dynobj, info))
              if (! _bfd_elf_create_got_section (dynobj, info))
                return false;
                return false;
              break;
              break;
 
 
            default:
            default:
              break;
              break;
            }
            }
        }
        }
 
 
      switch (ELF32_R_TYPE (rel->r_info))
      switch (ELF32_R_TYPE (rel->r_info))
        {
        {
          case R_ARM_GOT32:
          case R_ARM_GOT32:
            /* This symbol requires a global offset table entry.  */
            /* This symbol requires a global offset table entry.  */
            if (sgot == NULL)
            if (sgot == NULL)
              {
              {
                sgot = bfd_get_section_by_name (dynobj, ".got");
                sgot = bfd_get_section_by_name (dynobj, ".got");
                BFD_ASSERT (sgot != NULL);
                BFD_ASSERT (sgot != NULL);
              }
              }
 
 
            /* Get the got relocation section if necessary.  */
            /* Get the got relocation section if necessary.  */
            if (srelgot == NULL
            if (srelgot == NULL
                && (h != NULL || info->shared))
                && (h != NULL || info->shared))
              {
              {
                srelgot = bfd_get_section_by_name (dynobj, ".rel.got");
                srelgot = bfd_get_section_by_name (dynobj, ".rel.got");
 
 
                /* If no got relocation section, make one and initialize.  */
                /* If no got relocation section, make one and initialize.  */
                if (srelgot == NULL)
                if (srelgot == NULL)
                  {
                  {
                    srelgot = bfd_make_section (dynobj, ".rel.got");
                    srelgot = bfd_make_section (dynobj, ".rel.got");
                    if (srelgot == NULL
                    if (srelgot == NULL
                        || ! bfd_set_section_flags (dynobj, srelgot,
                        || ! bfd_set_section_flags (dynobj, srelgot,
                                                    (SEC_ALLOC
                                                    (SEC_ALLOC
                                                     | SEC_LOAD
                                                     | SEC_LOAD
                                                     | SEC_HAS_CONTENTS
                                                     | SEC_HAS_CONTENTS
                                                     | SEC_IN_MEMORY
                                                     | SEC_IN_MEMORY
                                                     | SEC_LINKER_CREATED
                                                     | SEC_LINKER_CREATED
                                                     | SEC_READONLY))
                                                     | SEC_READONLY))
                        || ! bfd_set_section_alignment (dynobj, srelgot, 2))
                        || ! bfd_set_section_alignment (dynobj, srelgot, 2))
                      return false;
                      return false;
                  }
                  }
              }
              }
 
 
            if (h != NULL)
            if (h != NULL)
              {
              {
                if (h->got.offset != (bfd_vma) -1)
                if (h->got.offset != (bfd_vma) -1)
                  /* We have already allocated space in the .got.  */
                  /* We have already allocated space in the .got.  */
                  break;
                  break;
 
 
                h->got.offset = sgot->_raw_size;
                h->got.offset = sgot->_raw_size;
 
 
                /* Make sure this symbol is output as a dynamic symbol.  */
                /* Make sure this symbol is output as a dynamic symbol.  */
                if (h->dynindx == -1)
                if (h->dynindx == -1)
                  if (! bfd_elf32_link_record_dynamic_symbol (info, h))
                  if (! bfd_elf32_link_record_dynamic_symbol (info, h))
                    return false;
                    return false;
 
 
                srelgot->_raw_size += sizeof (Elf32_External_Rel);
                srelgot->_raw_size += sizeof (Elf32_External_Rel);
              }
              }
            else
            else
              {
              {
                /* This is a global offset table entry for a local
                /* This is a global offset table entry for a local
                   symbol.  */
                   symbol.  */
                if (local_got_offsets == NULL)
                if (local_got_offsets == NULL)
                  {
                  {
                    bfd_size_type size;
                    bfd_size_type size;
                    unsigned int i;
                    unsigned int i;
 
 
                    size = symtab_hdr->sh_info;
                    size = symtab_hdr->sh_info;
                    size *= sizeof (bfd_vma);
                    size *= sizeof (bfd_vma);
                    local_got_offsets = (bfd_vma *) bfd_alloc (abfd, size);
                    local_got_offsets = (bfd_vma *) bfd_alloc (abfd, size);
                    if (local_got_offsets == NULL)
                    if (local_got_offsets == NULL)
                      return false;
                      return false;
                    elf_local_got_offsets (abfd) = local_got_offsets;
                    elf_local_got_offsets (abfd) = local_got_offsets;
                    for (i = 0; i < symtab_hdr->sh_info; i++)
                    for (i = 0; i < symtab_hdr->sh_info; i++)
                      local_got_offsets[i] = (bfd_vma) -1;
                      local_got_offsets[i] = (bfd_vma) -1;
                  }
                  }
 
 
                if (local_got_offsets[r_symndx] != (bfd_vma) -1)
                if (local_got_offsets[r_symndx] != (bfd_vma) -1)
                  /* We have already allocated space in the .got.  */
                  /* We have already allocated space in the .got.  */
                  break;
                  break;
 
 
                local_got_offsets[r_symndx] = sgot->_raw_size;
                local_got_offsets[r_symndx] = sgot->_raw_size;
 
 
                if (info->shared)
                if (info->shared)
                  /* If we are generating a shared object, we need to
                  /* If we are generating a shared object, we need to
                     output a R_ARM_RELATIVE reloc so that the dynamic
                     output a R_ARM_RELATIVE reloc so that the dynamic
                     linker can adjust this GOT entry.  */
                     linker can adjust this GOT entry.  */
                  srelgot->_raw_size += sizeof (Elf32_External_Rel);
                  srelgot->_raw_size += sizeof (Elf32_External_Rel);
              }
              }
 
 
            sgot->_raw_size += 4;
            sgot->_raw_size += 4;
            break;
            break;
 
 
          case R_ARM_PLT32:
          case R_ARM_PLT32:
            /* This symbol requires a procedure linkage table entry.  We
            /* This symbol requires a procedure linkage table entry.  We
               actually build the entry in adjust_dynamic_symbol,
               actually build the entry in adjust_dynamic_symbol,
               because this might be a case of linking PIC code which is
               because this might be a case of linking PIC code which is
               never referenced by a dynamic object, in which case we
               never referenced by a dynamic object, in which case we
               don't need to generate a procedure linkage table entry
               don't need to generate a procedure linkage table entry
               after all.  */
               after all.  */
 
 
            /* If this is a local symbol, we resolve it directly without
            /* If this is a local symbol, we resolve it directly without
               creating a procedure linkage table entry.  */
               creating a procedure linkage table entry.  */
            if (h == NULL)
            if (h == NULL)
              continue;
              continue;
 
 
            h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
            h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
            break;
            break;
 
 
          case R_ARM_ABS32:
          case R_ARM_ABS32:
          case R_ARM_REL32:
          case R_ARM_REL32:
          case R_ARM_PC24:
          case R_ARM_PC24:
            /* If we are creating a shared library, and this is a reloc
            /* If we are creating a shared library, and this is a reloc
               against a global symbol, or a non PC relative reloc
               against a global symbol, or a non PC relative reloc
               against a local symbol, then we need to copy the reloc
               against a local symbol, then we need to copy the reloc
               into the shared library.  However, if we are linking with
               into the shared library.  However, if we are linking with
               -Bsymbolic, we do not need to copy a reloc against a
               -Bsymbolic, we do not need to copy a reloc against a
               global symbol which is defined in an object we are
               global symbol which is defined in an object we are
               including in the link (i.e., DEF_REGULAR is set).  At
               including in the link (i.e., DEF_REGULAR is set).  At
               this point we have not seen all the input files, so it is
               this point we have not seen all the input files, so it is
               possible that DEF_REGULAR is not set now but will be set
               possible that DEF_REGULAR is not set now but will be set
               later (it is never cleared).  We account for that
               later (it is never cleared).  We account for that
               possibility below by storing information in the
               possibility below by storing information in the
               pcrel_relocs_copied field of the hash table entry.  */
               pcrel_relocs_copied field of the hash table entry.  */
            if (info->shared
            if (info->shared
              && (ELF32_R_TYPE (rel->r_info) != R_ARM_PC24
              && (ELF32_R_TYPE (rel->r_info) != R_ARM_PC24
                || (h != NULL
                || (h != NULL
                  && (! info->symbolic
                  && (! info->symbolic
                    || (h->elf_link_hash_flags
                    || (h->elf_link_hash_flags
                      & ELF_LINK_HASH_DEF_REGULAR) == 0))))
                      & ELF_LINK_HASH_DEF_REGULAR) == 0))))
              {
              {
                /* When creating a shared object, we must copy these
                /* When creating a shared object, we must copy these
                   reloc types into the output file.  We create a reloc
                   reloc types into the output file.  We create a reloc
                   section in dynobj and make room for this reloc.  */
                   section in dynobj and make room for this reloc.  */
                if (sreloc == NULL)
                if (sreloc == NULL)
                  {
                  {
                    const char * name;
                    const char * name;
 
 
                    name = (bfd_elf_string_from_elf_section
                    name = (bfd_elf_string_from_elf_section
                            (abfd,
                            (abfd,
                             elf_elfheader (abfd)->e_shstrndx,
                             elf_elfheader (abfd)->e_shstrndx,
                             elf_section_data (sec)->rel_hdr.sh_name));
                             elf_section_data (sec)->rel_hdr.sh_name));
                    if (name == NULL)
                    if (name == NULL)
                      return false;
                      return false;
 
 
                    BFD_ASSERT (strncmp (name, ".rel", 4) == 0
                    BFD_ASSERT (strncmp (name, ".rel", 4) == 0
                                && strcmp (bfd_get_section_name (abfd, sec),
                                && strcmp (bfd_get_section_name (abfd, sec),
                                           name + 4) == 0);
                                           name + 4) == 0);
 
 
                    sreloc = bfd_get_section_by_name (dynobj, name);
                    sreloc = bfd_get_section_by_name (dynobj, name);
                    if (sreloc == NULL)
                    if (sreloc == NULL)
                      {
                      {
                        flagword flags;
                        flagword flags;
 
 
                        sreloc = bfd_make_section (dynobj, name);
                        sreloc = bfd_make_section (dynobj, name);
                        flags = (SEC_HAS_CONTENTS | SEC_READONLY
                        flags = (SEC_HAS_CONTENTS | SEC_READONLY
                                 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
                                 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
                        if ((sec->flags & SEC_ALLOC) != 0)
                        if ((sec->flags & SEC_ALLOC) != 0)
                          flags |= SEC_ALLOC | SEC_LOAD;
                          flags |= SEC_ALLOC | SEC_LOAD;
                        if (sreloc == NULL
                        if (sreloc == NULL
                            || ! bfd_set_section_flags (dynobj, sreloc, flags)
                            || ! bfd_set_section_flags (dynobj, sreloc, flags)
                            || ! bfd_set_section_alignment (dynobj, sreloc, 2))
                            || ! bfd_set_section_alignment (dynobj, sreloc, 2))
                          return false;
                          return false;
                      }
                      }
                  if (sec->flags & SEC_READONLY)
                  if (sec->flags & SEC_READONLY)
                    info->flags |= DF_TEXTREL;
                    info->flags |= DF_TEXTREL;
                  }
                  }
 
 
                sreloc->_raw_size += sizeof (Elf32_External_Rel);
                sreloc->_raw_size += sizeof (Elf32_External_Rel);
                /* If we are linking with -Bsymbolic, and this is a
                /* If we are linking with -Bsymbolic, and this is a
                   global symbol, we count the number of PC relative
                   global symbol, we count the number of PC relative
                   relocations we have entered for this symbol, so that
                   relocations we have entered for this symbol, so that
                   we can discard them again if the symbol is later
                   we can discard them again if the symbol is later
                   defined by a regular object.  Note that this function
                   defined by a regular object.  Note that this function
                   is only called if we are using an elf_i386 linker
                   is only called if we are using an elf_i386 linker
                   hash table, which means that h is really a pointer to
                   hash table, which means that h is really a pointer to
                   an elf_i386_link_hash_entry.  */
                   an elf_i386_link_hash_entry.  */
                if (h != NULL && info->symbolic
                if (h != NULL && info->symbolic
                    && ELF32_R_TYPE (rel->r_info) == R_ARM_PC24)
                    && ELF32_R_TYPE (rel->r_info) == R_ARM_PC24)
                  {
                  {
                    struct elf32_arm_link_hash_entry * eh;
                    struct elf32_arm_link_hash_entry * eh;
                    struct elf32_arm_pcrel_relocs_copied * p;
                    struct elf32_arm_pcrel_relocs_copied * p;
 
 
                    eh = (struct elf32_arm_link_hash_entry *) h;
                    eh = (struct elf32_arm_link_hash_entry *) h;
 
 
                    for (p = eh->pcrel_relocs_copied; p != NULL; p = p->next)
                    for (p = eh->pcrel_relocs_copied; p != NULL; p = p->next)
                      if (p->section == sreloc)
                      if (p->section == sreloc)
                        break;
                        break;
 
 
                    if (p == NULL)
                    if (p == NULL)
                      {
                      {
                        p = ((struct elf32_arm_pcrel_relocs_copied *)
                        p = ((struct elf32_arm_pcrel_relocs_copied *)
                             bfd_alloc (dynobj, (bfd_size_type) sizeof * p));
                             bfd_alloc (dynobj, (bfd_size_type) sizeof * p));
                        if (p == NULL)
                        if (p == NULL)
                          return false;
                          return false;
                        p->next = eh->pcrel_relocs_copied;
                        p->next = eh->pcrel_relocs_copied;
                        eh->pcrel_relocs_copied = p;
                        eh->pcrel_relocs_copied = p;
                        p->section = sreloc;
                        p->section = sreloc;
                        p->count = 0;
                        p->count = 0;
                      }
                      }
 
 
                    ++p->count;
                    ++p->count;
                  }
                  }
              }
              }
            break;
            break;
 
 
        /* This relocation describes the C++ object vtable hierarchy.
        /* This relocation describes the C++ object vtable hierarchy.
           Reconstruct it for later use during GC.  */
           Reconstruct it for later use during GC.  */
        case R_ARM_GNU_VTINHERIT:
        case R_ARM_GNU_VTINHERIT:
          if (!_bfd_elf32_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
          if (!_bfd_elf32_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
            return false;
            return false;
          break;
          break;
 
 
        /* This relocation describes which C++ vtable entries are actually
        /* This relocation describes which C++ vtable entries are actually
           used.  Record for later use during GC.  */
           used.  Record for later use during GC.  */
        case R_ARM_GNU_VTENTRY:
        case R_ARM_GNU_VTENTRY:
          if (!_bfd_elf32_gc_record_vtentry (abfd, sec, h, rel->r_offset))
          if (!_bfd_elf32_gc_record_vtentry (abfd, sec, h, rel->r_offset))
            return false;
            return false;
          break;
          break;
        }
        }
    }
    }
 
 
  return true;
  return true;
}
}
 
 
/* Find the nearest line to a particular section and offset, for error
/* Find the nearest line to a particular section and offset, for error
   reporting.   This code is a duplicate of the code in elf.c, except
   reporting.   This code is a duplicate of the code in elf.c, except
   that it also accepts STT_ARM_TFUNC as a symbol that names a function.  */
   that it also accepts STT_ARM_TFUNC as a symbol that names a function.  */
 
 
static boolean
static boolean
elf32_arm_find_nearest_line
elf32_arm_find_nearest_line
  (abfd, section, symbols, offset, filename_ptr, functionname_ptr, line_ptr)
  (abfd, section, symbols, offset, filename_ptr, functionname_ptr, line_ptr)
     bfd *          abfd;
     bfd *          abfd;
     asection *     section;
     asection *     section;
     asymbol **     symbols;
     asymbol **     symbols;
     bfd_vma        offset;
     bfd_vma        offset;
     const char **  filename_ptr;
     const char **  filename_ptr;
     const char **  functionname_ptr;
     const char **  functionname_ptr;
     unsigned int * line_ptr;
     unsigned int * line_ptr;
{
{
  boolean      found;
  boolean      found;
  const char * filename;
  const char * filename;
  asymbol *    func;
  asymbol *    func;
  bfd_vma      low_func;
  bfd_vma      low_func;
  asymbol **   p;
  asymbol **   p;
 
 
  if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
  if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
                                     filename_ptr, functionname_ptr,
                                     filename_ptr, functionname_ptr,
                                     line_ptr, 0,
                                     line_ptr, 0,
                                     &elf_tdata (abfd)->dwarf2_find_line_info))
                                     &elf_tdata (abfd)->dwarf2_find_line_info))
    return true;
    return true;
 
 
  if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
  if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
                                             &found, filename_ptr,
                                             &found, filename_ptr,
                                             functionname_ptr, line_ptr,
                                             functionname_ptr, line_ptr,
                                             &elf_tdata (abfd)->line_info))
                                             &elf_tdata (abfd)->line_info))
    return false;
    return false;
 
 
  if (found)
  if (found)
    return true;
    return true;
 
 
  if (symbols == NULL)
  if (symbols == NULL)
    return false;
    return false;
 
 
  filename = NULL;
  filename = NULL;
  func = NULL;
  func = NULL;
  low_func = 0;
  low_func = 0;
 
 
  for (p = symbols; *p != NULL; p++)
  for (p = symbols; *p != NULL; p++)
    {
    {
      elf_symbol_type *q;
      elf_symbol_type *q;
 
 
      q = (elf_symbol_type *) *p;
      q = (elf_symbol_type *) *p;
 
 
      if (bfd_get_section (&q->symbol) != section)
      if (bfd_get_section (&q->symbol) != section)
        continue;
        continue;
 
 
      switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
      switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
        {
        {
        default:
        default:
          break;
          break;
        case STT_FILE:
        case STT_FILE:
          filename = bfd_asymbol_name (&q->symbol);
          filename = bfd_asymbol_name (&q->symbol);
          break;
          break;
        case STT_NOTYPE:
        case STT_NOTYPE:
        case STT_FUNC:
        case STT_FUNC:
        case STT_ARM_TFUNC:
        case STT_ARM_TFUNC:
          if (q->symbol.section == section
          if (q->symbol.section == section
              && q->symbol.value >= low_func
              && q->symbol.value >= low_func
              && q->symbol.value <= offset)
              && q->symbol.value <= offset)
            {
            {
              func = (asymbol *) q;
              func = (asymbol *) q;
              low_func = q->symbol.value;
              low_func = q->symbol.value;
            }
            }
          break;
          break;
        }
        }
    }
    }
 
 
  if (func == NULL)
  if (func == NULL)
    return false;
    return false;
 
 
  *filename_ptr = filename;
  *filename_ptr = filename;
  *functionname_ptr = bfd_asymbol_name (func);
  *functionname_ptr = bfd_asymbol_name (func);
  *line_ptr = 0;
  *line_ptr = 0;
 
 
  return true;
  return true;
}
}
 
 
/* Adjust a symbol defined by a dynamic object and referenced by a
/* Adjust a symbol defined by a dynamic object and referenced by a
   regular object.  The current definition is in some section of the
   regular object.  The current definition is in some section of the
   dynamic object, but we're not including those sections.  We have to
   dynamic object, but we're not including those sections.  We have to
   change the definition to something the rest of the link can
   change the definition to something the rest of the link can
   understand.  */
   understand.  */
 
 
static boolean
static boolean
elf32_arm_adjust_dynamic_symbol (info, h)
elf32_arm_adjust_dynamic_symbol (info, h)
     struct bfd_link_info * info;
     struct bfd_link_info * info;
     struct elf_link_hash_entry * h;
     struct elf_link_hash_entry * h;
{
{
  bfd * dynobj;
  bfd * dynobj;
  asection * s;
  asection * s;
  unsigned int power_of_two;
  unsigned int power_of_two;
 
 
  dynobj = elf_hash_table (info)->dynobj;
  dynobj = elf_hash_table (info)->dynobj;
 
 
  /* Make sure we know what is going on here.  */
  /* Make sure we know what is going on here.  */
  BFD_ASSERT (dynobj != NULL
  BFD_ASSERT (dynobj != NULL
              && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
              && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
                  || h->weakdef != NULL
                  || h->weakdef != NULL
                  || ((h->elf_link_hash_flags
                  || ((h->elf_link_hash_flags
                       & ELF_LINK_HASH_DEF_DYNAMIC) != 0
                       & ELF_LINK_HASH_DEF_DYNAMIC) != 0
                      && (h->elf_link_hash_flags
                      && (h->elf_link_hash_flags
                          & ELF_LINK_HASH_REF_REGULAR) != 0
                          & ELF_LINK_HASH_REF_REGULAR) != 0
                      && (h->elf_link_hash_flags
                      && (h->elf_link_hash_flags
                          & ELF_LINK_HASH_DEF_REGULAR) == 0)));
                          & ELF_LINK_HASH_DEF_REGULAR) == 0)));
 
 
  /* If this is a function, put it in the procedure linkage table.  We
  /* If this is a function, put it in the procedure linkage table.  We
     will fill in the contents of the procedure linkage table later,
     will fill in the contents of the procedure linkage table later,
     when we know the address of the .got section.  */
     when we know the address of the .got section.  */
  if (h->type == STT_FUNC
  if (h->type == STT_FUNC
      || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
      || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
    {
    {
      if (! info->shared
      if (! info->shared
          && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
          && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
          && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) == 0)
          && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) == 0)
        {
        {
          /* This case can occur if we saw a PLT32 reloc in an input
          /* This case can occur if we saw a PLT32 reloc in an input
             file, but the symbol was never referred to by a dynamic
             file, but the symbol was never referred to by a dynamic
             object.  In such a case, we don't actually need to build
             object.  In such a case, we don't actually need to build
             a procedure linkage table, and we can just do a PC32
             a procedure linkage table, and we can just do a PC32
             reloc instead.  */
             reloc instead.  */
          BFD_ASSERT ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0);
          BFD_ASSERT ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0);
          return true;
          return true;
        }
        }
 
 
      /* Make sure this symbol is output as a dynamic symbol.  */
      /* Make sure this symbol is output as a dynamic symbol.  */
      if (h->dynindx == -1)
      if (h->dynindx == -1)
        {
        {
          if (! bfd_elf32_link_record_dynamic_symbol (info, h))
          if (! bfd_elf32_link_record_dynamic_symbol (info, h))
            return false;
            return false;
        }
        }
 
 
      s = bfd_get_section_by_name (dynobj, ".plt");
      s = bfd_get_section_by_name (dynobj, ".plt");
      BFD_ASSERT (s != NULL);
      BFD_ASSERT (s != NULL);
 
 
      /* If this is the first .plt entry, make room for the special
      /* If this is the first .plt entry, make room for the special
         first entry.  */
         first entry.  */
      if (s->_raw_size == 0)
      if (s->_raw_size == 0)
        s->_raw_size += PLT_ENTRY_SIZE;
        s->_raw_size += PLT_ENTRY_SIZE;
 
 
      /* If this symbol is not defined in a regular file, and we are
      /* If this symbol is not defined in a regular file, and we are
         not generating a shared library, then set the symbol to this
         not generating a shared library, then set the symbol to this
         location in the .plt.  This is required to make function
         location in the .plt.  This is required to make function
         pointers compare as equal between the normal executable and
         pointers compare as equal between the normal executable and
         the shared library.  */
         the shared library.  */
      if (! info->shared
      if (! info->shared
          && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
          && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
        {
        {
          h->root.u.def.section = s;
          h->root.u.def.section = s;
          h->root.u.def.value = s->_raw_size;
          h->root.u.def.value = s->_raw_size;
        }
        }
 
 
      h->plt.offset = s->_raw_size;
      h->plt.offset = s->_raw_size;
 
 
      /* Make room for this entry.  */
      /* Make room for this entry.  */
      s->_raw_size += PLT_ENTRY_SIZE;
      s->_raw_size += PLT_ENTRY_SIZE;
 
 
      /* We also need to make an entry in the .got.plt section, which
      /* We also need to make an entry in the .got.plt section, which
         will be placed in the .got section by the linker script.  */
         will be placed in the .got section by the linker script.  */
      s = bfd_get_section_by_name (dynobj, ".got.plt");
      s = bfd_get_section_by_name (dynobj, ".got.plt");
      BFD_ASSERT (s != NULL);
      BFD_ASSERT (s != NULL);
      s->_raw_size += 4;
      s->_raw_size += 4;
 
 
      /* We also need to make an entry in the .rel.plt section.  */
      /* We also need to make an entry in the .rel.plt section.  */
 
 
      s = bfd_get_section_by_name (dynobj, ".rel.plt");
      s = bfd_get_section_by_name (dynobj, ".rel.plt");
      BFD_ASSERT (s != NULL);
      BFD_ASSERT (s != NULL);
      s->_raw_size += sizeof (Elf32_External_Rel);
      s->_raw_size += sizeof (Elf32_External_Rel);
 
 
      return true;
      return true;
    }
    }
 
 
  /* If this is a weak symbol, and there is a real definition, the
  /* If this is a weak symbol, and there is a real definition, the
     processor independent code will have arranged for us to see the
     processor independent code will have arranged for us to see the
     real definition first, and we can just use the same value.  */
     real definition first, and we can just use the same value.  */
  if (h->weakdef != NULL)
  if (h->weakdef != NULL)
    {
    {
      BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
      BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
                  || h->weakdef->root.type == bfd_link_hash_defweak);
                  || h->weakdef->root.type == bfd_link_hash_defweak);
      h->root.u.def.section = h->weakdef->root.u.def.section;
      h->root.u.def.section = h->weakdef->root.u.def.section;
      h->root.u.def.value = h->weakdef->root.u.def.value;
      h->root.u.def.value = h->weakdef->root.u.def.value;
      return true;
      return true;
    }
    }
 
 
  /* This is a reference to a symbol defined by a dynamic object which
  /* This is a reference to a symbol defined by a dynamic object which
     is not a function.  */
     is not a function.  */
 
 
  /* If we are creating a shared library, we must presume that the
  /* If we are creating a shared library, we must presume that the
     only references to the symbol are via the global offset table.
     only references to the symbol are via the global offset table.
     For such cases we need not do anything here; the relocations will
     For such cases we need not do anything here; the relocations will
     be handled correctly by relocate_section.  */
     be handled correctly by relocate_section.  */
  if (info->shared)
  if (info->shared)
    return true;
    return true;
 
 
  /* We must allocate the symbol in our .dynbss section, which will
  /* We must allocate the symbol in our .dynbss section, which will
     become part of the .bss section of the executable.  There will be
     become part of the .bss section of the executable.  There will be
     an entry for this symbol in the .dynsym section.  The dynamic
     an entry for this symbol in the .dynsym section.  The dynamic
     object will contain position independent code, so all references
     object will contain position independent code, so all references
     from the dynamic object to this symbol will go through the global
     from the dynamic object to this symbol will go through the global
     offset table.  The dynamic linker will use the .dynsym entry to
     offset table.  The dynamic linker will use the .dynsym entry to
     determine the address it must put in the global offset table, so
     determine the address it must put in the global offset table, so
     both the dynamic object and the regular object will refer to the
     both the dynamic object and the regular object will refer to the
     same memory location for the variable.  */
     same memory location for the variable.  */
  s = bfd_get_section_by_name (dynobj, ".dynbss");
  s = bfd_get_section_by_name (dynobj, ".dynbss");
  BFD_ASSERT (s != NULL);
  BFD_ASSERT (s != NULL);
 
 
  /* We must generate a R_ARM_COPY reloc to tell the dynamic linker to
  /* We must generate a R_ARM_COPY reloc to tell the dynamic linker to
     copy the initial value out of the dynamic object and into the
     copy the initial value out of the dynamic object and into the
     runtime process image.  We need to remember the offset into the
     runtime process image.  We need to remember the offset into the
     .rel.bss section we are going to use.  */
     .rel.bss section we are going to use.  */
  if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
  if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
    {
    {
      asection *srel;
      asection *srel;
 
 
      srel = bfd_get_section_by_name (dynobj, ".rel.bss");
      srel = bfd_get_section_by_name (dynobj, ".rel.bss");
      BFD_ASSERT (srel != NULL);
      BFD_ASSERT (srel != NULL);
      srel->_raw_size += sizeof (Elf32_External_Rel);
      srel->_raw_size += sizeof (Elf32_External_Rel);
      h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
      h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
    }
    }
 
 
  /* We need to figure out the alignment required for this symbol.  I
  /* We need to figure out the alignment required for this symbol.  I
     have no idea how ELF linkers handle this.  */
     have no idea how ELF linkers handle this.  */
  power_of_two = bfd_log2 (h->size);
  power_of_two = bfd_log2 (h->size);
  if (power_of_two > 3)
  if (power_of_two > 3)
    power_of_two = 3;
    power_of_two = 3;
 
 
  /* Apply the required alignment.  */
  /* Apply the required alignment.  */
  s->_raw_size = BFD_ALIGN (s->_raw_size,
  s->_raw_size = BFD_ALIGN (s->_raw_size,
                            (bfd_size_type) (1 << power_of_two));
                            (bfd_size_type) (1 << power_of_two));
  if (power_of_two > bfd_get_section_alignment (dynobj, s))
  if (power_of_two > bfd_get_section_alignment (dynobj, s))
    {
    {
      if (! bfd_set_section_alignment (dynobj, s, power_of_two))
      if (! bfd_set_section_alignment (dynobj, s, power_of_two))
        return false;
        return false;
    }
    }
 
 
  /* Define the symbol as being at this point in the section.  */
  /* Define the symbol as being at this point in the section.  */
  h->root.u.def.section = s;
  h->root.u.def.section = s;
  h->root.u.def.value = s->_raw_size;
  h->root.u.def.value = s->_raw_size;
 
 
  /* Increment the section size to make room for the symbol.  */
  /* Increment the section size to make room for the symbol.  */
  s->_raw_size += h->size;
  s->_raw_size += h->size;
 
 
  return true;
  return true;
}
}
 
 
/* Set the sizes of the dynamic sections.  */
/* Set the sizes of the dynamic sections.  */
 
 
static boolean
static boolean
elf32_arm_size_dynamic_sections (output_bfd, info)
elf32_arm_size_dynamic_sections (output_bfd, info)
     bfd * output_bfd ATTRIBUTE_UNUSED;
     bfd * output_bfd ATTRIBUTE_UNUSED;
     struct bfd_link_info * info;
     struct bfd_link_info * info;
{
{
  bfd * dynobj;
  bfd * dynobj;
  asection * s;
  asection * s;
  boolean plt;
  boolean plt;
  boolean relocs;
  boolean relocs;
 
 
  dynobj = elf_hash_table (info)->dynobj;
  dynobj = elf_hash_table (info)->dynobj;
  BFD_ASSERT (dynobj != NULL);
  BFD_ASSERT (dynobj != NULL);
 
 
  if (elf_hash_table (info)->dynamic_sections_created)
  if (elf_hash_table (info)->dynamic_sections_created)
    {
    {
      /* Set the contents of the .interp section to the interpreter.  */
      /* Set the contents of the .interp section to the interpreter.  */
      if (! info->shared)
      if (! info->shared)
        {
        {
          s = bfd_get_section_by_name (dynobj, ".interp");
          s = bfd_get_section_by_name (dynobj, ".interp");
          BFD_ASSERT (s != NULL);
          BFD_ASSERT (s != NULL);
          s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
          s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
          s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
          s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
        }
        }
    }
    }
  else
  else
    {
    {
      /* We may have created entries in the .rel.got section.
      /* We may have created entries in the .rel.got section.
         However, if we are not creating the dynamic sections, we will
         However, if we are not creating the dynamic sections, we will
         not actually use these entries.  Reset the size of .rel.got,
         not actually use these entries.  Reset the size of .rel.got,
         which will cause it to get stripped from the output file
         which will cause it to get stripped from the output file
         below.  */
         below.  */
      s = bfd_get_section_by_name (dynobj, ".rel.got");
      s = bfd_get_section_by_name (dynobj, ".rel.got");
      if (s != NULL)
      if (s != NULL)
        s->_raw_size = 0;
        s->_raw_size = 0;
    }
    }
 
 
  /* If this is a -Bsymbolic shared link, then we need to discard all
  /* If this is a -Bsymbolic shared link, then we need to discard all
     PC relative relocs against symbols defined in a regular object.
     PC relative relocs against symbols defined in a regular object.
     We allocated space for them in the check_relocs routine, but we
     We allocated space for them in the check_relocs routine, but we
     will not fill them in in the relocate_section routine.  */
     will not fill them in in the relocate_section routine.  */
  if (info->shared && info->symbolic)
  if (info->shared && info->symbolic)
    elf32_arm_link_hash_traverse (elf32_arm_hash_table (info),
    elf32_arm_link_hash_traverse (elf32_arm_hash_table (info),
                                  elf32_arm_discard_copies,
                                  elf32_arm_discard_copies,
                                  (PTR) NULL);
                                  (PTR) NULL);
 
 
  /* The check_relocs and adjust_dynamic_symbol entry points have
  /* The check_relocs and adjust_dynamic_symbol entry points have
     determined the sizes of the various dynamic sections.  Allocate
     determined the sizes of the various dynamic sections.  Allocate
     memory for them.  */
     memory for them.  */
  plt = false;
  plt = false;
  relocs = false;
  relocs = false;
  for (s = dynobj->sections; s != NULL; s = s->next)
  for (s = dynobj->sections; s != NULL; s = s->next)
    {
    {
      const char * name;
      const char * name;
      boolean strip;
      boolean strip;
 
 
      if ((s->flags & SEC_LINKER_CREATED) == 0)
      if ((s->flags & SEC_LINKER_CREATED) == 0)
        continue;
        continue;
 
 
      /* It's OK to base decisions on the section name, because none
      /* It's OK to base decisions on the section name, because none
         of the dynobj section names depend upon the input files.  */
         of the dynobj section names depend upon the input files.  */
      name = bfd_get_section_name (dynobj, s);
      name = bfd_get_section_name (dynobj, s);
 
 
      strip = false;
      strip = false;
 
 
      if (strcmp (name, ".plt") == 0)
      if (strcmp (name, ".plt") == 0)
        {
        {
          if (s->_raw_size == 0)
          if (s->_raw_size == 0)
            {
            {
              /* Strip this section if we don't need it; see the
              /* Strip this section if we don't need it; see the
                 comment below.  */
                 comment below.  */
              strip = true;
              strip = true;
            }
            }
          else
          else
            {
            {
              /* Remember whether there is a PLT.  */
              /* Remember whether there is a PLT.  */
              plt = true;
              plt = true;
            }
            }
        }
        }
      else if (strncmp (name, ".rel", 4) == 0)
      else if (strncmp (name, ".rel", 4) == 0)
        {
        {
          if (s->_raw_size == 0)
          if (s->_raw_size == 0)
            {
            {
              /* If we don't need this section, strip it from the
              /* If we don't need this section, strip it from the
                 output file.  This is mostly to handle .rel.bss and
                 output file.  This is mostly to handle .rel.bss and
                 .rel.plt.  We must create both sections in
                 .rel.plt.  We must create both sections in
                 create_dynamic_sections, because they must be created
                 create_dynamic_sections, because they must be created
                 before the linker maps input sections to output
                 before the linker maps input sections to output
                 sections.  The linker does that before
                 sections.  The linker does that before
                 adjust_dynamic_symbol is called, and it is that
                 adjust_dynamic_symbol is called, and it is that
                 function which decides whether anything needs to go
                 function which decides whether anything needs to go
                 into these sections.  */
                 into these sections.  */
              strip = true;
              strip = true;
            }
            }
          else
          else
            {
            {
              /* Remember whether there are any reloc sections other
              /* Remember whether there are any reloc sections other
                 than .rel.plt.  */
                 than .rel.plt.  */
              if (strcmp (name, ".rel.plt") != 0)
              if (strcmp (name, ".rel.plt") != 0)
                relocs = true;
                relocs = true;
 
 
              /* We use the reloc_count field as a counter if we need
              /* We use the reloc_count field as a counter if we need
                 to copy relocs into the output file.  */
                 to copy relocs into the output file.  */
              s->reloc_count = 0;
              s->reloc_count = 0;
            }
            }
        }
        }
      else if (strncmp (name, ".got", 4) != 0)
      else if (strncmp (name, ".got", 4) != 0)
        {
        {
          /* It's not one of our sections, so don't allocate space.  */
          /* It's not one of our sections, so don't allocate space.  */
          continue;
          continue;
        }
        }
 
 
      if (strip)
      if (strip)
        {
        {
          asection ** spp;
          asection ** spp;
 
 
          for (spp = &s->output_section->owner->sections;
          for (spp = &s->output_section->owner->sections;
               *spp != NULL;
               *spp != NULL;
               spp = &(*spp)->next)
               spp = &(*spp)->next)
            {
            {
              if (*spp == s->output_section)
              if (*spp == s->output_section)
                {
                {
                  bfd_section_list_remove (s->output_section->owner, spp);
                  bfd_section_list_remove (s->output_section->owner, spp);
                  --s->output_section->owner->section_count;
                  --s->output_section->owner->section_count;
                  break;
                  break;
                }
                }
            }
            }
          continue;
          continue;
        }
        }
 
 
      /* Allocate memory for the section contents.  */
      /* Allocate memory for the section contents.  */
      s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
      s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
      if (s->contents == NULL && s->_raw_size != 0)
      if (s->contents == NULL && s->_raw_size != 0)
        return false;
        return false;
    }
    }
 
 
  if (elf_hash_table (info)->dynamic_sections_created)
  if (elf_hash_table (info)->dynamic_sections_created)
    {
    {
      /* Add some entries to the .dynamic section.  We fill in the
      /* Add some entries to the .dynamic section.  We fill in the
         values later, in elf32_arm_finish_dynamic_sections, but we
         values later, in elf32_arm_finish_dynamic_sections, but we
         must add the entries now so that we get the correct size for
         must add the entries now so that we get the correct size for
         the .dynamic section.  The DT_DEBUG entry is filled in by the
         the .dynamic section.  The DT_DEBUG entry is filled in by the
         dynamic linker and used by the debugger.  */
         dynamic linker and used by the debugger.  */
#define add_dynamic_entry(TAG, VAL) \
#define add_dynamic_entry(TAG, VAL) \
  bfd_elf32_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL))
  bfd_elf32_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL))
 
 
      if (!info->shared)
      if (!info->shared)
        {
        {
          if (!add_dynamic_entry (DT_DEBUG, 0))
          if (!add_dynamic_entry (DT_DEBUG, 0))
            return false;
            return false;
        }
        }
 
 
      if (plt)
      if (plt)
        {
        {
          if (   !add_dynamic_entry (DT_PLTGOT, 0)
          if (   !add_dynamic_entry (DT_PLTGOT, 0)
              || !add_dynamic_entry (DT_PLTRELSZ, 0)
              || !add_dynamic_entry (DT_PLTRELSZ, 0)
              || !add_dynamic_entry (DT_PLTREL, DT_REL)
              || !add_dynamic_entry (DT_PLTREL, DT_REL)
              || !add_dynamic_entry (DT_JMPREL, 0))
              || !add_dynamic_entry (DT_JMPREL, 0))
            return false;
            return false;
        }
        }
 
 
      if (relocs)
      if (relocs)
        {
        {
          if (   !add_dynamic_entry (DT_REL, 0)
          if (   !add_dynamic_entry (DT_REL, 0)
              || !add_dynamic_entry (DT_RELSZ, 0)
              || !add_dynamic_entry (DT_RELSZ, 0)
              || !add_dynamic_entry (DT_RELENT, sizeof (Elf32_External_Rel)))
              || !add_dynamic_entry (DT_RELENT, sizeof (Elf32_External_Rel)))
            return false;
            return false;
        }
        }
 
 
      if ((info->flags & DF_TEXTREL) != 0)
      if ((info->flags & DF_TEXTREL) != 0)
        {
        {
          if (!add_dynamic_entry (DT_TEXTREL, 0))
          if (!add_dynamic_entry (DT_TEXTREL, 0))
            return false;
            return false;
          info->flags |= DF_TEXTREL;
          info->flags |= DF_TEXTREL;
        }
        }
    }
    }
#undef add_synamic_entry
#undef add_synamic_entry
 
 
  return true;
  return true;
}
}
 
 
/* This function is called via elf32_arm_link_hash_traverse if we are
/* This function is called via elf32_arm_link_hash_traverse if we are
   creating a shared object with -Bsymbolic.  It discards the space
   creating a shared object with -Bsymbolic.  It discards the space
   allocated to copy PC relative relocs against symbols which are
   allocated to copy PC relative relocs against symbols which are
   defined in regular objects.  We allocated space for them in the
   defined in regular objects.  We allocated space for them in the
   check_relocs routine, but we won't fill them in in the
   check_relocs routine, but we won't fill them in in the
   relocate_section routine.  */
   relocate_section routine.  */
 
 
static boolean
static boolean
elf32_arm_discard_copies (h, ignore)
elf32_arm_discard_copies (h, ignore)
     struct elf32_arm_link_hash_entry * h;
     struct elf32_arm_link_hash_entry * h;
     PTR ignore ATTRIBUTE_UNUSED;
     PTR ignore ATTRIBUTE_UNUSED;
{
{
  struct elf32_arm_pcrel_relocs_copied * s;
  struct elf32_arm_pcrel_relocs_copied * s;
 
 
  if (h->root.root.type == bfd_link_hash_warning)
  if (h->root.root.type == bfd_link_hash_warning)
    h = (struct elf32_arm_link_hash_entry *) h->root.root.u.i.link;
    h = (struct elf32_arm_link_hash_entry *) h->root.root.u.i.link;
 
 
  /* We only discard relocs for symbols defined in a regular object.  */
  /* We only discard relocs for symbols defined in a regular object.  */
  if ((h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
  if ((h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
    return true;
    return true;
 
 
  for (s = h->pcrel_relocs_copied; s != NULL; s = s->next)
  for (s = h->pcrel_relocs_copied; s != NULL; s = s->next)
    s->section->_raw_size -= s->count * sizeof (Elf32_External_Rel);
    s->section->_raw_size -= s->count * sizeof (Elf32_External_Rel);
 
 
  return true;
  return true;
}
}
 
 
/* Finish up dynamic symbol handling.  We set the contents of various
/* Finish up dynamic symbol handling.  We set the contents of various
   dynamic sections here.  */
   dynamic sections here.  */
 
 
static boolean
static boolean
elf32_arm_finish_dynamic_symbol (output_bfd, info, h, sym)
elf32_arm_finish_dynamic_symbol (output_bfd, info, h, sym)
     bfd * output_bfd;
     bfd * output_bfd;
     struct bfd_link_info * info;
     struct bfd_link_info * info;
     struct elf_link_hash_entry * h;
     struct elf_link_hash_entry * h;
     Elf_Internal_Sym * sym;
     Elf_Internal_Sym * sym;
{
{
  bfd * dynobj;
  bfd * dynobj;
 
 
  dynobj = elf_hash_table (info)->dynobj;
  dynobj = elf_hash_table (info)->dynobj;
 
 
  if (h->plt.offset != (bfd_vma) -1)
  if (h->plt.offset != (bfd_vma) -1)
    {
    {
      asection * splt;
      asection * splt;
      asection * sgot;
      asection * sgot;
      asection * srel;
      asection * srel;
      bfd_vma plt_index;
      bfd_vma plt_index;
      bfd_vma got_offset;
      bfd_vma got_offset;
      Elf_Internal_Rel rel;
      Elf_Internal_Rel rel;
 
 
      /* This symbol has an entry in the procedure linkage table.  Set
      /* This symbol has an entry in the procedure linkage table.  Set
         it up.  */
         it up.  */
 
 
      BFD_ASSERT (h->dynindx != -1);
      BFD_ASSERT (h->dynindx != -1);
 
 
      splt = bfd_get_section_by_name (dynobj, ".plt");
      splt = bfd_get_section_by_name (dynobj, ".plt");
      sgot = bfd_get_section_by_name (dynobj, ".got.plt");
      sgot = bfd_get_section_by_name (dynobj, ".got.plt");
      srel = bfd_get_section_by_name (dynobj, ".rel.plt");
      srel = bfd_get_section_by_name (dynobj, ".rel.plt");
      BFD_ASSERT (splt != NULL && sgot != NULL && srel != NULL);
      BFD_ASSERT (splt != NULL && sgot != NULL && srel != NULL);
 
 
      /* Get the index in the procedure linkage table which
      /* Get the index in the procedure linkage table which
         corresponds to this symbol.  This is the index of this symbol
         corresponds to this symbol.  This is the index of this symbol
         in all the symbols for which we are making plt entries.  The
         in all the symbols for which we are making plt entries.  The
         first entry in the procedure linkage table is reserved.  */
         first entry in the procedure linkage table is reserved.  */
      plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
      plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
 
 
      /* Get the offset into the .got table of the entry that
      /* Get the offset into the .got table of the entry that
         corresponds to this function.  Each .got entry is 4 bytes.
         corresponds to this function.  Each .got entry is 4 bytes.
         The first three are reserved.  */
         The first three are reserved.  */
      got_offset = (plt_index + 3) * 4;
      got_offset = (plt_index + 3) * 4;
 
 
      /* Fill in the entry in the procedure linkage table.  */
      /* Fill in the entry in the procedure linkage table.  */
      bfd_put_32 (output_bfd, elf32_arm_plt_entry[0],
      bfd_put_32 (output_bfd, elf32_arm_plt_entry[0],
                  splt->contents + h->plt.offset + 0);
                  splt->contents + h->plt.offset + 0);
      bfd_put_32 (output_bfd, elf32_arm_plt_entry[1],
      bfd_put_32 (output_bfd, elf32_arm_plt_entry[1],
                  splt->contents + h->plt.offset + 4);
                  splt->contents + h->plt.offset + 4);
      bfd_put_32 (output_bfd, elf32_arm_plt_entry[2],
      bfd_put_32 (output_bfd, elf32_arm_plt_entry[2],
                  splt->contents + h->plt.offset + 8);
                  splt->contents + h->plt.offset + 8);
      bfd_put_32 (output_bfd,
      bfd_put_32 (output_bfd,
                      (sgot->output_section->vma
                      (sgot->output_section->vma
                       + sgot->output_offset
                       + sgot->output_offset
                       + got_offset
                       + got_offset
                       - splt->output_section->vma
                       - splt->output_section->vma
                       - splt->output_offset
                       - splt->output_offset
                       - h->plt.offset - 12),
                       - h->plt.offset - 12),
                      splt->contents + h->plt.offset + 12);
                      splt->contents + h->plt.offset + 12);
 
 
      /* Fill in the entry in the global offset table.  */
      /* Fill in the entry in the global offset table.  */
      bfd_put_32 (output_bfd,
      bfd_put_32 (output_bfd,
                  (splt->output_section->vma
                  (splt->output_section->vma
                   + splt->output_offset),
                   + splt->output_offset),
                  sgot->contents + got_offset);
                  sgot->contents + got_offset);
 
 
      /* Fill in the entry in the .rel.plt section.  */
      /* Fill in the entry in the .rel.plt section.  */
      rel.r_offset = (sgot->output_section->vma
      rel.r_offset = (sgot->output_section->vma
                      + sgot->output_offset
                      + sgot->output_offset
                      + got_offset);
                      + got_offset);
      rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_JUMP_SLOT);
      rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_JUMP_SLOT);
      bfd_elf32_swap_reloc_out (output_bfd, &rel,
      bfd_elf32_swap_reloc_out (output_bfd, &rel,
                                ((Elf32_External_Rel *) srel->contents
                                ((Elf32_External_Rel *) srel->contents
                                 + plt_index));
                                 + plt_index));
 
 
      if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
      if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
        {
        {
          /* Mark the symbol as undefined, rather than as defined in
          /* Mark the symbol as undefined, rather than as defined in
             the .plt section.  Leave the value alone.  */
             the .plt section.  Leave the value alone.  */
          sym->st_shndx = SHN_UNDEF;
          sym->st_shndx = SHN_UNDEF;
          /* If the symbol is weak, we do need to clear the value.
          /* If the symbol is weak, we do need to clear the value.
             Otherwise, the PLT entry would provide a definition for
             Otherwise, the PLT entry would provide a definition for
             the symbol even if the symbol wasn't defined anywhere,
             the symbol even if the symbol wasn't defined anywhere,
             and so the symbol would never be NULL.  */
             and so the symbol would never be NULL.  */
          if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK)
          if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK)
              == 0)
              == 0)
            sym->st_value = 0;
            sym->st_value = 0;
        }
        }
    }
    }
 
 
  if (h->got.offset != (bfd_vma) -1)
  if (h->got.offset != (bfd_vma) -1)
    {
    {
      asection * sgot;
      asection * sgot;
      asection * srel;
      asection * srel;
      Elf_Internal_Rel rel;
      Elf_Internal_Rel rel;
 
 
      /* This symbol has an entry in the global offset table.  Set it
      /* This symbol has an entry in the global offset table.  Set it
         up.  */
         up.  */
      sgot = bfd_get_section_by_name (dynobj, ".got");
      sgot = bfd_get_section_by_name (dynobj, ".got");
      srel = bfd_get_section_by_name (dynobj, ".rel.got");
      srel = bfd_get_section_by_name (dynobj, ".rel.got");
      BFD_ASSERT (sgot != NULL && srel != NULL);
      BFD_ASSERT (sgot != NULL && srel != NULL);
 
 
      rel.r_offset = (sgot->output_section->vma
      rel.r_offset = (sgot->output_section->vma
                      + sgot->output_offset
                      + sgot->output_offset
                      + (h->got.offset &~ (bfd_vma) 1));
                      + (h->got.offset &~ (bfd_vma) 1));
 
 
      /* If this is a -Bsymbolic link, and the symbol is defined
      /* If this is a -Bsymbolic link, and the symbol is defined
         locally, we just want to emit a RELATIVE reloc.  The entry in
         locally, we just want to emit a RELATIVE reloc.  The entry in
         the global offset table will already have been initialized in
         the global offset table will already have been initialized in
         the relocate_section function.  */
         the relocate_section function.  */
      if (info->shared
      if (info->shared
          && (info->symbolic || h->dynindx == -1)
          && (info->symbolic || h->dynindx == -1)
          && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
          && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
        rel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
        rel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
      else
      else
        {
        {
          bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset);
          bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset);
          rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
          rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
        }
        }
 
 
      bfd_elf32_swap_reloc_out (output_bfd, &rel,
      bfd_elf32_swap_reloc_out (output_bfd, &rel,
                                ((Elf32_External_Rel *) srel->contents
                                ((Elf32_External_Rel *) srel->contents
                                 + srel->reloc_count));
                                 + srel->reloc_count));
      ++srel->reloc_count;
      ++srel->reloc_count;
    }
    }
 
 
  if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
  if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
    {
    {
      asection * s;
      asection * s;
      Elf_Internal_Rel rel;
      Elf_Internal_Rel rel;
 
 
      /* This symbol needs a copy reloc.  Set it up.  */
      /* This symbol needs a copy reloc.  Set it up.  */
      BFD_ASSERT (h->dynindx != -1
      BFD_ASSERT (h->dynindx != -1
                  && (h->root.type == bfd_link_hash_defined
                  && (h->root.type == bfd_link_hash_defined
                      || h->root.type == bfd_link_hash_defweak));
                      || h->root.type == bfd_link_hash_defweak));
 
 
      s = bfd_get_section_by_name (h->root.u.def.section->owner,
      s = bfd_get_section_by_name (h->root.u.def.section->owner,
                                   ".rel.bss");
                                   ".rel.bss");
      BFD_ASSERT (s != NULL);
      BFD_ASSERT (s != NULL);
 
 
      rel.r_offset = (h->root.u.def.value
      rel.r_offset = (h->root.u.def.value
                      + h->root.u.def.section->output_section->vma
                      + h->root.u.def.section->output_section->vma
                      + h->root.u.def.section->output_offset);
                      + h->root.u.def.section->output_offset);
      rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
      rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
      bfd_elf32_swap_reloc_out (output_bfd, &rel,
      bfd_elf32_swap_reloc_out (output_bfd, &rel,
                                ((Elf32_External_Rel *) s->contents
                                ((Elf32_External_Rel *) s->contents
                                 + s->reloc_count));
                                 + s->reloc_count));
      ++s->reloc_count;
      ++s->reloc_count;
    }
    }
 
 
  /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute.  */
  /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute.  */
  if (strcmp (h->root.root.string, "_DYNAMIC") == 0
  if (strcmp (h->root.root.string, "_DYNAMIC") == 0
      || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
      || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
    sym->st_shndx = SHN_ABS;
    sym->st_shndx = SHN_ABS;
 
 
  return true;
  return true;
}
}
 
 
/* Finish up the dynamic sections.  */
/* Finish up the dynamic sections.  */
 
 
static boolean
static boolean
elf32_arm_finish_dynamic_sections (output_bfd, info)
elf32_arm_finish_dynamic_sections (output_bfd, info)
     bfd * output_bfd;
     bfd * output_bfd;
     struct bfd_link_info * info;
     struct bfd_link_info * info;
{
{
  bfd * dynobj;
  bfd * dynobj;
  asection * sgot;
  asection * sgot;
  asection * sdyn;
  asection * sdyn;
 
 
  dynobj = elf_hash_table (info)->dynobj;
  dynobj = elf_hash_table (info)->dynobj;
 
 
  sgot = bfd_get_section_by_name (dynobj, ".got.plt");
  sgot = bfd_get_section_by_name (dynobj, ".got.plt");
  BFD_ASSERT (sgot != NULL);
  BFD_ASSERT (sgot != NULL);
  sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
  sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
 
 
  if (elf_hash_table (info)->dynamic_sections_created)
  if (elf_hash_table (info)->dynamic_sections_created)
    {
    {
      asection *splt;
      asection *splt;
      Elf32_External_Dyn *dyncon, *dynconend;
      Elf32_External_Dyn *dyncon, *dynconend;
 
 
      splt = bfd_get_section_by_name (dynobj, ".plt");
      splt = bfd_get_section_by_name (dynobj, ".plt");
      BFD_ASSERT (splt != NULL && sdyn != NULL);
      BFD_ASSERT (splt != NULL && sdyn != NULL);
 
 
      dyncon = (Elf32_External_Dyn *) sdyn->contents;
      dyncon = (Elf32_External_Dyn *) sdyn->contents;
      dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
      dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
 
 
      for (; dyncon < dynconend; dyncon++)
      for (; dyncon < dynconend; dyncon++)
        {
        {
          Elf_Internal_Dyn dyn;
          Elf_Internal_Dyn dyn;
          const char * name;
          const char * name;
          asection * s;
          asection * s;
 
 
          bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
          bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
 
 
          switch (dyn.d_tag)
          switch (dyn.d_tag)
            {
            {
            default:
            default:
              break;
              break;
 
 
            case DT_PLTGOT:
            case DT_PLTGOT:
              name = ".got";
              name = ".got";
              goto get_vma;
              goto get_vma;
            case DT_JMPREL:
            case DT_JMPREL:
              name = ".rel.plt";
              name = ".rel.plt";
            get_vma:
            get_vma:
              s = bfd_get_section_by_name (output_bfd, name);
              s = bfd_get_section_by_name (output_bfd, name);
              BFD_ASSERT (s != NULL);
              BFD_ASSERT (s != NULL);
              dyn.d_un.d_ptr = s->vma;
              dyn.d_un.d_ptr = s->vma;
              bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
              bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
              break;
              break;
 
 
            case DT_PLTRELSZ:
            case DT_PLTRELSZ:
              s = bfd_get_section_by_name (output_bfd, ".rel.plt");
              s = bfd_get_section_by_name (output_bfd, ".rel.plt");
              BFD_ASSERT (s != NULL);
              BFD_ASSERT (s != NULL);
              if (s->_cooked_size != 0)
              if (s->_cooked_size != 0)
                dyn.d_un.d_val = s->_cooked_size;
                dyn.d_un.d_val = s->_cooked_size;
              else
              else
                dyn.d_un.d_val = s->_raw_size;
                dyn.d_un.d_val = s->_raw_size;
              bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
              bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
              break;
              break;
 
 
            case DT_RELSZ:
            case DT_RELSZ:
              /* My reading of the SVR4 ABI indicates that the
              /* My reading of the SVR4 ABI indicates that the
                 procedure linkage table relocs (DT_JMPREL) should be
                 procedure linkage table relocs (DT_JMPREL) should be
                 included in the overall relocs (DT_REL).  This is
                 included in the overall relocs (DT_REL).  This is
                 what Solaris does.  However, UnixWare can not handle
                 what Solaris does.  However, UnixWare can not handle
                 that case.  Therefore, we override the DT_RELSZ entry
                 that case.  Therefore, we override the DT_RELSZ entry
                 here to make it not include the JMPREL relocs.  Since
                 here to make it not include the JMPREL relocs.  Since
                 the linker script arranges for .rel.plt to follow all
                 the linker script arranges for .rel.plt to follow all
                 other relocation sections, we don't have to worry
                 other relocation sections, we don't have to worry
                 about changing the DT_REL entry.  */
                 about changing the DT_REL entry.  */
              s = bfd_get_section_by_name (output_bfd, ".rel.plt");
              s = bfd_get_section_by_name (output_bfd, ".rel.plt");
              if (s != NULL)
              if (s != NULL)
                {
                {
                  if (s->_cooked_size != 0)
                  if (s->_cooked_size != 0)
                    dyn.d_un.d_val -= s->_cooked_size;
                    dyn.d_un.d_val -= s->_cooked_size;
                  else
                  else
                    dyn.d_un.d_val -= s->_raw_size;
                    dyn.d_un.d_val -= s->_raw_size;
                }
                }
              bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
              bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
              break;
              break;
 
 
              /* Set the bottom bit of DT_INIT/FINI if the
              /* Set the bottom bit of DT_INIT/FINI if the
                 corresponding function is Thumb.  */
                 corresponding function is Thumb.  */
            case DT_INIT:
            case DT_INIT:
              name = info->init_function;
              name = info->init_function;
              goto get_sym;
              goto get_sym;
            case DT_FINI:
            case DT_FINI:
              name = info->fini_function;
              name = info->fini_function;
            get_sym:
            get_sym:
              /* If it wasn't set by elf_bfd_final_link
              /* If it wasn't set by elf_bfd_final_link
                 then there is nothing to ajdust.  */
                 then there is nothing to ajdust.  */
              if (dyn.d_un.d_val != 0)
              if (dyn.d_un.d_val != 0)
                {
                {
                  struct elf_link_hash_entry * eh;
                  struct elf_link_hash_entry * eh;
 
 
                  eh = elf_link_hash_lookup (elf_hash_table (info), name,
                  eh = elf_link_hash_lookup (elf_hash_table (info), name,
                                             false, false, true);
                                             false, false, true);
                  if (eh != (struct elf_link_hash_entry *) NULL
                  if (eh != (struct elf_link_hash_entry *) NULL
                      && ELF_ST_TYPE (eh->type) == STT_ARM_TFUNC)
                      && ELF_ST_TYPE (eh->type) == STT_ARM_TFUNC)
                    {
                    {
                      dyn.d_un.d_val |= 1;
                      dyn.d_un.d_val |= 1;
                      bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
                      bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
                    }
                    }
                }
                }
              break;
              break;
            }
            }
        }
        }
 
 
      /* Fill in the first entry in the procedure linkage table.  */
      /* Fill in the first entry in the procedure linkage table.  */
      if (splt->_raw_size > 0)
      if (splt->_raw_size > 0)
        {
        {
          bfd_put_32 (output_bfd, elf32_arm_plt0_entry[0], splt->contents +  0);
          bfd_put_32 (output_bfd, elf32_arm_plt0_entry[0], splt->contents +  0);
          bfd_put_32 (output_bfd, elf32_arm_plt0_entry[1], splt->contents +  4);
          bfd_put_32 (output_bfd, elf32_arm_plt0_entry[1], splt->contents +  4);
          bfd_put_32 (output_bfd, elf32_arm_plt0_entry[2], splt->contents +  8);
          bfd_put_32 (output_bfd, elf32_arm_plt0_entry[2], splt->contents +  8);
          bfd_put_32 (output_bfd, elf32_arm_plt0_entry[3], splt->contents + 12);
          bfd_put_32 (output_bfd, elf32_arm_plt0_entry[3], splt->contents + 12);
        }
        }
 
 
      /* UnixWare sets the entsize of .plt to 4, although that doesn't
      /* UnixWare sets the entsize of .plt to 4, although that doesn't
         really seem like the right value.  */
         really seem like the right value.  */
      elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
      elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
    }
    }
 
 
  /* Fill in the first three entries in the global offset table.  */
  /* Fill in the first three entries in the global offset table.  */
  if (sgot->_raw_size > 0)
  if (sgot->_raw_size > 0)
    {
    {
      if (sdyn == NULL)
      if (sdyn == NULL)
        bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
        bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
      else
      else
        bfd_put_32 (output_bfd,
        bfd_put_32 (output_bfd,
                    sdyn->output_section->vma + sdyn->output_offset,
                    sdyn->output_section->vma + sdyn->output_offset,
                    sgot->contents);
                    sgot->contents);
      bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
      bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
      bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
      bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
    }
    }
 
 
  elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
  elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
 
 
  return true;
  return true;
}
}
 
 
static void
static void
elf32_arm_post_process_headers (abfd, link_info)
elf32_arm_post_process_headers (abfd, link_info)
     bfd * abfd;
     bfd * abfd;
     struct bfd_link_info * link_info ATTRIBUTE_UNUSED;
     struct bfd_link_info * link_info ATTRIBUTE_UNUSED;
{
{
  Elf_Internal_Ehdr * i_ehdrp;  /* ELF file header, internal form.  */
  Elf_Internal_Ehdr * i_ehdrp;  /* ELF file header, internal form.  */
 
 
  i_ehdrp = elf_elfheader (abfd);
  i_ehdrp = elf_elfheader (abfd);
 
 
  i_ehdrp->e_ident[EI_OSABI]      = ARM_ELF_OS_ABI_VERSION;
  i_ehdrp->e_ident[EI_OSABI]      = ARM_ELF_OS_ABI_VERSION;
  i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
  i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
}
}
 
 
static enum elf_reloc_type_class
static enum elf_reloc_type_class
elf32_arm_reloc_type_class (rela)
elf32_arm_reloc_type_class (rela)
     const Elf_Internal_Rela *rela;
     const Elf_Internal_Rela *rela;
{
{
  switch ((int) ELF32_R_TYPE (rela->r_info))
  switch ((int) ELF32_R_TYPE (rela->r_info))
    {
    {
    case R_ARM_RELATIVE:
    case R_ARM_RELATIVE:
      return reloc_class_relative;
      return reloc_class_relative;
    case R_ARM_JUMP_SLOT:
    case R_ARM_JUMP_SLOT:
      return reloc_class_plt;
      return reloc_class_plt;
    case R_ARM_COPY:
    case R_ARM_COPY:
      return reloc_class_copy;
      return reloc_class_copy;
    default:
    default:
      return reloc_class_normal;
      return reloc_class_normal;
    }
    }
}
}
 
 
 
 
#define ELF_ARCH                        bfd_arch_arm
#define ELF_ARCH                        bfd_arch_arm
#define ELF_MACHINE_CODE                EM_ARM
#define ELF_MACHINE_CODE                EM_ARM
#ifndef ELF_MAXPAGESIZE
#ifndef ELF_MAXPAGESIZE
#define ELF_MAXPAGESIZE                 0x8000
#define ELF_MAXPAGESIZE                 0x8000
#endif
#endif
 
 
#define bfd_elf32_bfd_copy_private_bfd_data     elf32_arm_copy_private_bfd_data
#define bfd_elf32_bfd_copy_private_bfd_data     elf32_arm_copy_private_bfd_data
#define bfd_elf32_bfd_merge_private_bfd_data    elf32_arm_merge_private_bfd_data
#define bfd_elf32_bfd_merge_private_bfd_data    elf32_arm_merge_private_bfd_data
#define bfd_elf32_bfd_set_private_flags         elf32_arm_set_private_flags
#define bfd_elf32_bfd_set_private_flags         elf32_arm_set_private_flags
#define bfd_elf32_bfd_print_private_bfd_data    elf32_arm_print_private_bfd_data
#define bfd_elf32_bfd_print_private_bfd_data    elf32_arm_print_private_bfd_data
#define bfd_elf32_bfd_link_hash_table_create    elf32_arm_link_hash_table_create
#define bfd_elf32_bfd_link_hash_table_create    elf32_arm_link_hash_table_create
#define bfd_elf32_bfd_reloc_type_lookup         elf32_arm_reloc_type_lookup
#define bfd_elf32_bfd_reloc_type_lookup         elf32_arm_reloc_type_lookup
#define bfd_elf32_find_nearest_line             elf32_arm_find_nearest_line
#define bfd_elf32_find_nearest_line             elf32_arm_find_nearest_line
 
 
#define elf_backend_get_symbol_type             elf32_arm_get_symbol_type
#define elf_backend_get_symbol_type             elf32_arm_get_symbol_type
#define elf_backend_gc_mark_hook                elf32_arm_gc_mark_hook
#define elf_backend_gc_mark_hook                elf32_arm_gc_mark_hook
#define elf_backend_gc_sweep_hook               elf32_arm_gc_sweep_hook
#define elf_backend_gc_sweep_hook               elf32_arm_gc_sweep_hook
#define elf_backend_check_relocs                elf32_arm_check_relocs
#define elf_backend_check_relocs                elf32_arm_check_relocs
#define elf_backend_relocate_section            elf32_arm_relocate_section
#define elf_backend_relocate_section            elf32_arm_relocate_section
#define elf_backend_adjust_dynamic_symbol       elf32_arm_adjust_dynamic_symbol
#define elf_backend_adjust_dynamic_symbol       elf32_arm_adjust_dynamic_symbol
#define elf_backend_create_dynamic_sections     _bfd_elf_create_dynamic_sections
#define elf_backend_create_dynamic_sections     _bfd_elf_create_dynamic_sections
#define elf_backend_finish_dynamic_symbol       elf32_arm_finish_dynamic_symbol
#define elf_backend_finish_dynamic_symbol       elf32_arm_finish_dynamic_symbol
#define elf_backend_finish_dynamic_sections     elf32_arm_finish_dynamic_sections
#define elf_backend_finish_dynamic_sections     elf32_arm_finish_dynamic_sections
#define elf_backend_size_dynamic_sections       elf32_arm_size_dynamic_sections
#define elf_backend_size_dynamic_sections       elf32_arm_size_dynamic_sections
#define elf_backend_post_process_headers        elf32_arm_post_process_headers
#define elf_backend_post_process_headers        elf32_arm_post_process_headers
#define elf_backend_reloc_type_class            elf32_arm_reloc_type_class
#define elf_backend_reloc_type_class            elf32_arm_reloc_type_class
 
 
#define elf_backend_can_gc_sections 1
#define elf_backend_can_gc_sections 1
#define elf_backend_plt_readonly    1
#define elf_backend_plt_readonly    1
#define elf_backend_want_got_plt    1
#define elf_backend_want_got_plt    1
#define elf_backend_want_plt_sym    0
#define elf_backend_want_plt_sym    0
#ifndef USE_REL
#ifndef USE_REL
#define elf_backend_rela_normal     1
#define elf_backend_rela_normal     1
#endif
#endif
 
 
#define elf_backend_got_header_size     12
#define elf_backend_got_header_size     12
#define elf_backend_plt_header_size     PLT_ENTRY_SIZE
#define elf_backend_plt_header_size     PLT_ENTRY_SIZE
 
 
#include "elf32-target.h"
#include "elf32-target.h"
 
 
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.