OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [gdb-5.3/] [bfd/] [elf64-sparc.c] - Diff between revs 1181 and 1765

Only display areas with differences | Details | Blame | View Log

Rev 1181 Rev 1765
/* SPARC-specific support for 64-bit ELF
/* SPARC-specific support for 64-bit ELF
   Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002
   Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002
   Free Software Foundation, Inc.
   Free Software Foundation, Inc.
 
 
This file is part of BFD, the Binary File Descriptor library.
This file is part of BFD, the Binary File Descriptor library.
 
 
This program is free software; you can redistribute it and/or modify
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
(at your option) any later version.
 
 
This program is distributed in the hope that it will be useful,
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.
GNU General Public License for more details.
 
 
You should have received a copy of the GNU General Public License
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */
 
 
#include "bfd.h"
#include "bfd.h"
#include "sysdep.h"
#include "sysdep.h"
#include "libbfd.h"
#include "libbfd.h"
#include "elf-bfd.h"
#include "elf-bfd.h"
#include "opcode/sparc.h"
#include "opcode/sparc.h"
 
 
/* This is defined if one wants to build upward compatible binaries
/* This is defined if one wants to build upward compatible binaries
   with the original sparc64-elf toolchain.  The support is kept in for
   with the original sparc64-elf toolchain.  The support is kept in for
   now but is turned off by default.  dje 970930  */
   now but is turned off by default.  dje 970930  */
/*#define SPARC64_OLD_RELOCS*/
/*#define SPARC64_OLD_RELOCS*/
 
 
#include "elf/sparc.h"
#include "elf/sparc.h"
 
 
/* In case we're on a 32-bit machine, construct a 64-bit "-1" value.  */
/* In case we're on a 32-bit machine, construct a 64-bit "-1" value.  */
#define MINUS_ONE (~ (bfd_vma) 0)
#define MINUS_ONE (~ (bfd_vma) 0)
 
 
static struct bfd_link_hash_table * sparc64_elf_bfd_link_hash_table_create
static struct bfd_link_hash_table * sparc64_elf_bfd_link_hash_table_create
  PARAMS ((bfd *));
  PARAMS ((bfd *));
static bfd_reloc_status_type init_insn_reloc
static bfd_reloc_status_type init_insn_reloc
  PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *,
  PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *,
           bfd *, bfd_vma *, bfd_vma *));
           bfd *, bfd_vma *, bfd_vma *));
static reloc_howto_type *sparc64_elf_reloc_type_lookup
static reloc_howto_type *sparc64_elf_reloc_type_lookup
  PARAMS ((bfd *, bfd_reloc_code_real_type));
  PARAMS ((bfd *, bfd_reloc_code_real_type));
static void sparc64_elf_info_to_howto
static void sparc64_elf_info_to_howto
  PARAMS ((bfd *, arelent *, Elf_Internal_Rela *));
  PARAMS ((bfd *, arelent *, Elf_Internal_Rela *));
 
 
static void sparc64_elf_build_plt
static void sparc64_elf_build_plt
  PARAMS ((bfd *, unsigned char *, int));
  PARAMS ((bfd *, unsigned char *, int));
static bfd_vma sparc64_elf_plt_entry_offset
static bfd_vma sparc64_elf_plt_entry_offset
  PARAMS ((bfd_vma));
  PARAMS ((bfd_vma));
static bfd_vma sparc64_elf_plt_ptr_offset
static bfd_vma sparc64_elf_plt_ptr_offset
  PARAMS ((bfd_vma, bfd_vma));
  PARAMS ((bfd_vma, bfd_vma));
 
 
static boolean sparc64_elf_check_relocs
static boolean sparc64_elf_check_relocs
  PARAMS ((bfd *, struct bfd_link_info *, asection *sec,
  PARAMS ((bfd *, struct bfd_link_info *, asection *sec,
           const Elf_Internal_Rela *));
           const Elf_Internal_Rela *));
static boolean sparc64_elf_adjust_dynamic_symbol
static boolean sparc64_elf_adjust_dynamic_symbol
  PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
  PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
static boolean sparc64_elf_size_dynamic_sections
static boolean sparc64_elf_size_dynamic_sections
  PARAMS ((bfd *, struct bfd_link_info *));
  PARAMS ((bfd *, struct bfd_link_info *));
static int sparc64_elf_get_symbol_type
static int sparc64_elf_get_symbol_type
  PARAMS (( Elf_Internal_Sym *, int));
  PARAMS (( Elf_Internal_Sym *, int));
static boolean sparc64_elf_add_symbol_hook
static boolean sparc64_elf_add_symbol_hook
  PARAMS ((bfd *, struct bfd_link_info *, const Elf_Internal_Sym *,
  PARAMS ((bfd *, struct bfd_link_info *, const Elf_Internal_Sym *,
           const char **, flagword *, asection **, bfd_vma *));
           const char **, flagword *, asection **, bfd_vma *));
static boolean sparc64_elf_output_arch_syms
static boolean sparc64_elf_output_arch_syms
  PARAMS ((bfd *, struct bfd_link_info *, PTR,
  PARAMS ((bfd *, struct bfd_link_info *, PTR,
           boolean (*) (PTR, const char *, Elf_Internal_Sym *, asection *)));
           boolean (*) (PTR, const char *, Elf_Internal_Sym *, asection *)));
static void sparc64_elf_symbol_processing
static void sparc64_elf_symbol_processing
  PARAMS ((bfd *, asymbol *));
  PARAMS ((bfd *, asymbol *));
 
 
static boolean sparc64_elf_merge_private_bfd_data
static boolean sparc64_elf_merge_private_bfd_data
  PARAMS ((bfd *, bfd *));
  PARAMS ((bfd *, bfd *));
 
 
static boolean sparc64_elf_fake_sections
static boolean sparc64_elf_fake_sections
  PARAMS ((bfd *, Elf32_Internal_Shdr *, asection *));
  PARAMS ((bfd *, Elf32_Internal_Shdr *, asection *));
 
 
static const char *sparc64_elf_print_symbol_all
static const char *sparc64_elf_print_symbol_all
  PARAMS ((bfd *, PTR, asymbol *));
  PARAMS ((bfd *, PTR, asymbol *));
static boolean sparc64_elf_relax_section
static boolean sparc64_elf_relax_section
  PARAMS ((bfd *, asection *, struct bfd_link_info *, boolean *));
  PARAMS ((bfd *, asection *, struct bfd_link_info *, boolean *));
static boolean sparc64_elf_relocate_section
static boolean sparc64_elf_relocate_section
  PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
  PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
           Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
           Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
static boolean sparc64_elf_finish_dynamic_symbol
static boolean sparc64_elf_finish_dynamic_symbol
  PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
  PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
           Elf_Internal_Sym *));
           Elf_Internal_Sym *));
static boolean sparc64_elf_finish_dynamic_sections
static boolean sparc64_elf_finish_dynamic_sections
  PARAMS ((bfd *, struct bfd_link_info *));
  PARAMS ((bfd *, struct bfd_link_info *));
static boolean sparc64_elf_object_p PARAMS ((bfd *));
static boolean sparc64_elf_object_p PARAMS ((bfd *));
static long sparc64_elf_get_reloc_upper_bound PARAMS ((bfd *, asection *));
static long sparc64_elf_get_reloc_upper_bound PARAMS ((bfd *, asection *));
static long sparc64_elf_get_dynamic_reloc_upper_bound PARAMS ((bfd *));
static long sparc64_elf_get_dynamic_reloc_upper_bound PARAMS ((bfd *));
static boolean sparc64_elf_slurp_one_reloc_table
static boolean sparc64_elf_slurp_one_reloc_table
  PARAMS ((bfd *, asection *, Elf_Internal_Shdr *, asymbol **, boolean));
  PARAMS ((bfd *, asection *, Elf_Internal_Shdr *, asymbol **, boolean));
static boolean sparc64_elf_slurp_reloc_table
static boolean sparc64_elf_slurp_reloc_table
  PARAMS ((bfd *, asection *, asymbol **, boolean));
  PARAMS ((bfd *, asection *, asymbol **, boolean));
static long sparc64_elf_canonicalize_dynamic_reloc
static long sparc64_elf_canonicalize_dynamic_reloc
  PARAMS ((bfd *, arelent **, asymbol **));
  PARAMS ((bfd *, arelent **, asymbol **));
static void sparc64_elf_write_relocs PARAMS ((bfd *, asection *, PTR));
static void sparc64_elf_write_relocs PARAMS ((bfd *, asection *, PTR));
static enum elf_reloc_type_class sparc64_elf_reloc_type_class
static enum elf_reloc_type_class sparc64_elf_reloc_type_class
  PARAMS ((const Elf_Internal_Rela *));
  PARAMS ((const Elf_Internal_Rela *));


/* The relocation "howto" table.  */
/* The relocation "howto" table.  */
 
 
static bfd_reloc_status_type sparc_elf_notsup_reloc
static bfd_reloc_status_type sparc_elf_notsup_reloc
  PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
  PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
static bfd_reloc_status_type sparc_elf_wdisp16_reloc
static bfd_reloc_status_type sparc_elf_wdisp16_reloc
  PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
  PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
static bfd_reloc_status_type sparc_elf_hix22_reloc
static bfd_reloc_status_type sparc_elf_hix22_reloc
  PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
  PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
static bfd_reloc_status_type sparc_elf_lox10_reloc
static bfd_reloc_status_type sparc_elf_lox10_reloc
  PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
  PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
 
 
static reloc_howto_type sparc64_elf_howto_table[] =
static reloc_howto_type sparc64_elf_howto_table[] =
{
{
  HOWTO(R_SPARC_NONE,      0,0, 0,false,0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_NONE",    false,0,0x00000000,true),
  HOWTO(R_SPARC_NONE,      0,0, 0,false,0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_NONE",    false,0,0x00000000,true),
  HOWTO(R_SPARC_8,         0,0, 8,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc,  "R_SPARC_8",       false,0,0x000000ff,true),
  HOWTO(R_SPARC_8,         0,0, 8,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc,  "R_SPARC_8",       false,0,0x000000ff,true),
  HOWTO(R_SPARC_16,        0,1,16,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc,  "R_SPARC_16",      false,0,0x0000ffff,true),
  HOWTO(R_SPARC_16,        0,1,16,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc,  "R_SPARC_16",      false,0,0x0000ffff,true),
  HOWTO(R_SPARC_32,        0,2,32,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc,  "R_SPARC_32",      false,0,0xffffffff,true),
  HOWTO(R_SPARC_32,        0,2,32,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc,  "R_SPARC_32",      false,0,0xffffffff,true),
  HOWTO(R_SPARC_DISP8,     0,0, 8,true, 0,complain_overflow_signed,  bfd_elf_generic_reloc,  "R_SPARC_DISP8",   false,0,0x000000ff,true),
  HOWTO(R_SPARC_DISP8,     0,0, 8,true, 0,complain_overflow_signed,  bfd_elf_generic_reloc,  "R_SPARC_DISP8",   false,0,0x000000ff,true),
  HOWTO(R_SPARC_DISP16,    0,1,16,true, 0,complain_overflow_signed,  bfd_elf_generic_reloc,  "R_SPARC_DISP16",  false,0,0x0000ffff,true),
  HOWTO(R_SPARC_DISP16,    0,1,16,true, 0,complain_overflow_signed,  bfd_elf_generic_reloc,  "R_SPARC_DISP16",  false,0,0x0000ffff,true),
  HOWTO(R_SPARC_DISP32,    0,2,32,true, 0,complain_overflow_signed,  bfd_elf_generic_reloc,  "R_SPARC_DISP32",  false,0,0xffffffff,true),
  HOWTO(R_SPARC_DISP32,    0,2,32,true, 0,complain_overflow_signed,  bfd_elf_generic_reloc,  "R_SPARC_DISP32",  false,0,0xffffffff,true),
  HOWTO(R_SPARC_WDISP30,   2,2,30,true, 0,complain_overflow_signed,  bfd_elf_generic_reloc,  "R_SPARC_WDISP30", false,0,0x3fffffff,true),
  HOWTO(R_SPARC_WDISP30,   2,2,30,true, 0,complain_overflow_signed,  bfd_elf_generic_reloc,  "R_SPARC_WDISP30", false,0,0x3fffffff,true),
  HOWTO(R_SPARC_WDISP22,   2,2,22,true, 0,complain_overflow_signed,  bfd_elf_generic_reloc,  "R_SPARC_WDISP22", false,0,0x003fffff,true),
  HOWTO(R_SPARC_WDISP22,   2,2,22,true, 0,complain_overflow_signed,  bfd_elf_generic_reloc,  "R_SPARC_WDISP22", false,0,0x003fffff,true),
  HOWTO(R_SPARC_HI22,     10,2,22,false,0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_HI22",    false,0,0x003fffff,true),
  HOWTO(R_SPARC_HI22,     10,2,22,false,0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_HI22",    false,0,0x003fffff,true),
  HOWTO(R_SPARC_22,        0,2,22,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc,  "R_SPARC_22",      false,0,0x003fffff,true),
  HOWTO(R_SPARC_22,        0,2,22,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc,  "R_SPARC_22",      false,0,0x003fffff,true),
  HOWTO(R_SPARC_13,        0,2,13,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc,  "R_SPARC_13",      false,0,0x00001fff,true),
  HOWTO(R_SPARC_13,        0,2,13,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc,  "R_SPARC_13",      false,0,0x00001fff,true),
  HOWTO(R_SPARC_LO10,      0,2,10,false,0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_LO10",    false,0,0x000003ff,true),
  HOWTO(R_SPARC_LO10,      0,2,10,false,0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_LO10",    false,0,0x000003ff,true),
  HOWTO(R_SPARC_GOT10,     0,2,10,false,0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_GOT10",   false,0,0x000003ff,true),
  HOWTO(R_SPARC_GOT10,     0,2,10,false,0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_GOT10",   false,0,0x000003ff,true),
  HOWTO(R_SPARC_GOT13,     0,2,13,false,0,complain_overflow_signed,  bfd_elf_generic_reloc,  "R_SPARC_GOT13",   false,0,0x00001fff,true),
  HOWTO(R_SPARC_GOT13,     0,2,13,false,0,complain_overflow_signed,  bfd_elf_generic_reloc,  "R_SPARC_GOT13",   false,0,0x00001fff,true),
  HOWTO(R_SPARC_GOT22,    10,2,22,false,0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_GOT22",   false,0,0x003fffff,true),
  HOWTO(R_SPARC_GOT22,    10,2,22,false,0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_GOT22",   false,0,0x003fffff,true),
  HOWTO(R_SPARC_PC10,      0,2,10,true, 0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_PC10",    false,0,0x000003ff,true),
  HOWTO(R_SPARC_PC10,      0,2,10,true, 0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_PC10",    false,0,0x000003ff,true),
  HOWTO(R_SPARC_PC22,     10,2,22,true, 0,complain_overflow_bitfield,bfd_elf_generic_reloc,  "R_SPARC_PC22",    false,0,0x003fffff,true),
  HOWTO(R_SPARC_PC22,     10,2,22,true, 0,complain_overflow_bitfield,bfd_elf_generic_reloc,  "R_SPARC_PC22",    false,0,0x003fffff,true),
  HOWTO(R_SPARC_WPLT30,    2,2,30,true, 0,complain_overflow_signed,  bfd_elf_generic_reloc,  "R_SPARC_WPLT30",  false,0,0x3fffffff,true),
  HOWTO(R_SPARC_WPLT30,    2,2,30,true, 0,complain_overflow_signed,  bfd_elf_generic_reloc,  "R_SPARC_WPLT30",  false,0,0x3fffffff,true),
  HOWTO(R_SPARC_COPY,      0,0,00,false,0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_COPY",    false,0,0x00000000,true),
  HOWTO(R_SPARC_COPY,      0,0,00,false,0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_COPY",    false,0,0x00000000,true),
  HOWTO(R_SPARC_GLOB_DAT,  0,0,00,false,0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_GLOB_DAT",false,0,0x00000000,true),
  HOWTO(R_SPARC_GLOB_DAT,  0,0,00,false,0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_GLOB_DAT",false,0,0x00000000,true),
  HOWTO(R_SPARC_JMP_SLOT,  0,0,00,false,0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_JMP_SLOT",false,0,0x00000000,true),
  HOWTO(R_SPARC_JMP_SLOT,  0,0,00,false,0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_JMP_SLOT",false,0,0x00000000,true),
  HOWTO(R_SPARC_RELATIVE,  0,0,00,false,0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_RELATIVE",false,0,0x00000000,true),
  HOWTO(R_SPARC_RELATIVE,  0,0,00,false,0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_RELATIVE",false,0,0x00000000,true),
  HOWTO(R_SPARC_UA32,      0,2,32,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc,  "R_SPARC_UA32",    false,0,0xffffffff,true),
  HOWTO(R_SPARC_UA32,      0,2,32,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc,  "R_SPARC_UA32",    false,0,0xffffffff,true),
#ifndef SPARC64_OLD_RELOCS
#ifndef SPARC64_OLD_RELOCS
  HOWTO(R_SPARC_PLT32,     0,2,32,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc,  "R_SPARC_PLT32",   false,0,0xffffffff,true),
  HOWTO(R_SPARC_PLT32,     0,2,32,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc,  "R_SPARC_PLT32",   false,0,0xffffffff,true),
  /* These aren't implemented yet.  */
  /* These aren't implemented yet.  */
  HOWTO(R_SPARC_HIPLT22,   0,0,00,false,0,complain_overflow_dont,    sparc_elf_notsup_reloc, "R_SPARC_HIPLT22",  false,0,0x00000000,true),
  HOWTO(R_SPARC_HIPLT22,   0,0,00,false,0,complain_overflow_dont,    sparc_elf_notsup_reloc, "R_SPARC_HIPLT22",  false,0,0x00000000,true),
  HOWTO(R_SPARC_LOPLT10,   0,0,00,false,0,complain_overflow_dont,    sparc_elf_notsup_reloc, "R_SPARC_LOPLT10",  false,0,0x00000000,true),
  HOWTO(R_SPARC_LOPLT10,   0,0,00,false,0,complain_overflow_dont,    sparc_elf_notsup_reloc, "R_SPARC_LOPLT10",  false,0,0x00000000,true),
  HOWTO(R_SPARC_PCPLT32,   0,0,00,false,0,complain_overflow_dont,    sparc_elf_notsup_reloc, "R_SPARC_PCPLT32",  false,0,0x00000000,true),
  HOWTO(R_SPARC_PCPLT32,   0,0,00,false,0,complain_overflow_dont,    sparc_elf_notsup_reloc, "R_SPARC_PCPLT32",  false,0,0x00000000,true),
  HOWTO(R_SPARC_PCPLT22,   0,0,00,false,0,complain_overflow_dont,    sparc_elf_notsup_reloc, "R_SPARC_PCPLT22",  false,0,0x00000000,true),
  HOWTO(R_SPARC_PCPLT22,   0,0,00,false,0,complain_overflow_dont,    sparc_elf_notsup_reloc, "R_SPARC_PCPLT22",  false,0,0x00000000,true),
  HOWTO(R_SPARC_PCPLT10,   0,0,00,false,0,complain_overflow_dont,    sparc_elf_notsup_reloc, "R_SPARC_PCPLT10",  false,0,0x00000000,true),
  HOWTO(R_SPARC_PCPLT10,   0,0,00,false,0,complain_overflow_dont,    sparc_elf_notsup_reloc, "R_SPARC_PCPLT10",  false,0,0x00000000,true),
#endif
#endif
  HOWTO(R_SPARC_10,        0,2,10,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc,  "R_SPARC_10",      false,0,0x000003ff,true),
  HOWTO(R_SPARC_10,        0,2,10,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc,  "R_SPARC_10",      false,0,0x000003ff,true),
  HOWTO(R_SPARC_11,        0,2,11,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc,  "R_SPARC_11",      false,0,0x000007ff,true),
  HOWTO(R_SPARC_11,        0,2,11,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc,  "R_SPARC_11",      false,0,0x000007ff,true),
  HOWTO(R_SPARC_64,        0,4,64,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc,  "R_SPARC_64",      false,0,MINUS_ONE, true),
  HOWTO(R_SPARC_64,        0,4,64,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc,  "R_SPARC_64",      false,0,MINUS_ONE, true),
  HOWTO(R_SPARC_OLO10,     0,2,13,false,0,complain_overflow_signed,  sparc_elf_notsup_reloc, "R_SPARC_OLO10",   false,0,0x00001fff,true),
  HOWTO(R_SPARC_OLO10,     0,2,13,false,0,complain_overflow_signed,  sparc_elf_notsup_reloc, "R_SPARC_OLO10",   false,0,0x00001fff,true),
  HOWTO(R_SPARC_HH22,     42,2,22,false,0,complain_overflow_unsigned,bfd_elf_generic_reloc,  "R_SPARC_HH22",    false,0,0x003fffff,true),
  HOWTO(R_SPARC_HH22,     42,2,22,false,0,complain_overflow_unsigned,bfd_elf_generic_reloc,  "R_SPARC_HH22",    false,0,0x003fffff,true),
  HOWTO(R_SPARC_HM10,     32,2,10,false,0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_HM10",    false,0,0x000003ff,true),
  HOWTO(R_SPARC_HM10,     32,2,10,false,0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_HM10",    false,0,0x000003ff,true),
  HOWTO(R_SPARC_LM22,     10,2,22,false,0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_LM22",    false,0,0x003fffff,true),
  HOWTO(R_SPARC_LM22,     10,2,22,false,0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_LM22",    false,0,0x003fffff,true),
  HOWTO(R_SPARC_PC_HH22,  42,2,22,true, 0,complain_overflow_unsigned,bfd_elf_generic_reloc,  "R_SPARC_PC_HH22",    false,0,0x003fffff,true),
  HOWTO(R_SPARC_PC_HH22,  42,2,22,true, 0,complain_overflow_unsigned,bfd_elf_generic_reloc,  "R_SPARC_PC_HH22",    false,0,0x003fffff,true),
  HOWTO(R_SPARC_PC_HM10,  32,2,10,true, 0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_PC_HM10",    false,0,0x000003ff,true),
  HOWTO(R_SPARC_PC_HM10,  32,2,10,true, 0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_PC_HM10",    false,0,0x000003ff,true),
  HOWTO(R_SPARC_PC_LM22,  10,2,22,true, 0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_PC_LM22",    false,0,0x003fffff,true),
  HOWTO(R_SPARC_PC_LM22,  10,2,22,true, 0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_PC_LM22",    false,0,0x003fffff,true),
  HOWTO(R_SPARC_WDISP16,   2,2,16,true, 0,complain_overflow_signed,  sparc_elf_wdisp16_reloc,"R_SPARC_WDISP16", false,0,0x00000000,true),
  HOWTO(R_SPARC_WDISP16,   2,2,16,true, 0,complain_overflow_signed,  sparc_elf_wdisp16_reloc,"R_SPARC_WDISP16", false,0,0x00000000,true),
  HOWTO(R_SPARC_WDISP19,   2,2,19,true, 0,complain_overflow_signed,  bfd_elf_generic_reloc,  "R_SPARC_WDISP19", false,0,0x0007ffff,true),
  HOWTO(R_SPARC_WDISP19,   2,2,19,true, 0,complain_overflow_signed,  bfd_elf_generic_reloc,  "R_SPARC_WDISP19", false,0,0x0007ffff,true),
  HOWTO(R_SPARC_UNUSED_42, 0,0, 0,false,0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_UNUSED_42",false,0,0x00000000,true),
  HOWTO(R_SPARC_UNUSED_42, 0,0, 0,false,0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_UNUSED_42",false,0,0x00000000,true),
  HOWTO(R_SPARC_7,         0,2, 7,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc,  "R_SPARC_7",       false,0,0x0000007f,true),
  HOWTO(R_SPARC_7,         0,2, 7,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc,  "R_SPARC_7",       false,0,0x0000007f,true),
  HOWTO(R_SPARC_5,         0,2, 5,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc,  "R_SPARC_5",       false,0,0x0000001f,true),
  HOWTO(R_SPARC_5,         0,2, 5,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc,  "R_SPARC_5",       false,0,0x0000001f,true),
  HOWTO(R_SPARC_6,         0,2, 6,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc,  "R_SPARC_6",       false,0,0x0000003f,true),
  HOWTO(R_SPARC_6,         0,2, 6,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc,  "R_SPARC_6",       false,0,0x0000003f,true),
  HOWTO(R_SPARC_DISP64,    0,4,64,true, 0,complain_overflow_signed,  bfd_elf_generic_reloc,  "R_SPARC_DISP64",  false,0,MINUS_ONE, true),
  HOWTO(R_SPARC_DISP64,    0,4,64,true, 0,complain_overflow_signed,  bfd_elf_generic_reloc,  "R_SPARC_DISP64",  false,0,MINUS_ONE, true),
  HOWTO(R_SPARC_PLT64,     0,4,64,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc,  "R_SPARC_PLT64",   false,0,MINUS_ONE, true),
  HOWTO(R_SPARC_PLT64,     0,4,64,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc,  "R_SPARC_PLT64",   false,0,MINUS_ONE, true),
  HOWTO(R_SPARC_HIX22,     0,4, 0,false,0,complain_overflow_bitfield,sparc_elf_hix22_reloc,  "R_SPARC_HIX22",   false,0,MINUS_ONE, false),
  HOWTO(R_SPARC_HIX22,     0,4, 0,false,0,complain_overflow_bitfield,sparc_elf_hix22_reloc,  "R_SPARC_HIX22",   false,0,MINUS_ONE, false),
  HOWTO(R_SPARC_LOX10,     0,4, 0,false,0,complain_overflow_dont,    sparc_elf_lox10_reloc,  "R_SPARC_LOX10",   false,0,MINUS_ONE, false),
  HOWTO(R_SPARC_LOX10,     0,4, 0,false,0,complain_overflow_dont,    sparc_elf_lox10_reloc,  "R_SPARC_LOX10",   false,0,MINUS_ONE, false),
  HOWTO(R_SPARC_H44,      22,2,22,false,0,complain_overflow_unsigned,bfd_elf_generic_reloc,  "R_SPARC_H44",     false,0,0x003fffff,false),
  HOWTO(R_SPARC_H44,      22,2,22,false,0,complain_overflow_unsigned,bfd_elf_generic_reloc,  "R_SPARC_H44",     false,0,0x003fffff,false),
  HOWTO(R_SPARC_M44,      12,2,10,false,0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_M44",     false,0,0x000003ff,false),
  HOWTO(R_SPARC_M44,      12,2,10,false,0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_M44",     false,0,0x000003ff,false),
  HOWTO(R_SPARC_L44,       0,2,13,false,0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_L44",     false,0,0x00000fff,false),
  HOWTO(R_SPARC_L44,       0,2,13,false,0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_L44",     false,0,0x00000fff,false),
  HOWTO(R_SPARC_REGISTER,  0,4, 0,false,0,complain_overflow_bitfield,sparc_elf_notsup_reloc, "R_SPARC_REGISTER",false,0,MINUS_ONE, false),
  HOWTO(R_SPARC_REGISTER,  0,4, 0,false,0,complain_overflow_bitfield,sparc_elf_notsup_reloc, "R_SPARC_REGISTER",false,0,MINUS_ONE, false),
  HOWTO(R_SPARC_UA64,        0,4,64,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc,  "R_SPARC_UA64",      false,0,MINUS_ONE, true),
  HOWTO(R_SPARC_UA64,        0,4,64,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc,  "R_SPARC_UA64",      false,0,MINUS_ONE, true),
  HOWTO(R_SPARC_UA16,        0,1,16,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc,  "R_SPARC_UA16",      false,0,0x0000ffff,true)
  HOWTO(R_SPARC_UA16,        0,1,16,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc,  "R_SPARC_UA16",      false,0,0x0000ffff,true)
};
};
 
 
struct elf_reloc_map {
struct elf_reloc_map {
  bfd_reloc_code_real_type bfd_reloc_val;
  bfd_reloc_code_real_type bfd_reloc_val;
  unsigned char elf_reloc_val;
  unsigned char elf_reloc_val;
};
};
 
 
static const struct elf_reloc_map sparc_reloc_map[] =
static const struct elf_reloc_map sparc_reloc_map[] =
{
{
  { BFD_RELOC_NONE, R_SPARC_NONE, },
  { BFD_RELOC_NONE, R_SPARC_NONE, },
  { BFD_RELOC_16, R_SPARC_16, },
  { BFD_RELOC_16, R_SPARC_16, },
  { BFD_RELOC_16_PCREL, R_SPARC_DISP16 },
  { BFD_RELOC_16_PCREL, R_SPARC_DISP16 },
  { BFD_RELOC_8, R_SPARC_8 },
  { BFD_RELOC_8, R_SPARC_8 },
  { BFD_RELOC_8_PCREL, R_SPARC_DISP8 },
  { BFD_RELOC_8_PCREL, R_SPARC_DISP8 },
  { BFD_RELOC_CTOR, R_SPARC_64 },
  { BFD_RELOC_CTOR, R_SPARC_64 },
  { BFD_RELOC_32, R_SPARC_32 },
  { BFD_RELOC_32, R_SPARC_32 },
  { BFD_RELOC_32_PCREL, R_SPARC_DISP32 },
  { BFD_RELOC_32_PCREL, R_SPARC_DISP32 },
  { BFD_RELOC_HI22, R_SPARC_HI22 },
  { BFD_RELOC_HI22, R_SPARC_HI22 },
  { BFD_RELOC_LO10, R_SPARC_LO10, },
  { BFD_RELOC_LO10, R_SPARC_LO10, },
  { BFD_RELOC_32_PCREL_S2, R_SPARC_WDISP30 },
  { BFD_RELOC_32_PCREL_S2, R_SPARC_WDISP30 },
  { BFD_RELOC_64_PCREL, R_SPARC_DISP64 },
  { BFD_RELOC_64_PCREL, R_SPARC_DISP64 },
  { BFD_RELOC_SPARC22, R_SPARC_22 },
  { BFD_RELOC_SPARC22, R_SPARC_22 },
  { BFD_RELOC_SPARC13, R_SPARC_13 },
  { BFD_RELOC_SPARC13, R_SPARC_13 },
  { BFD_RELOC_SPARC_GOT10, R_SPARC_GOT10 },
  { BFD_RELOC_SPARC_GOT10, R_SPARC_GOT10 },
  { BFD_RELOC_SPARC_GOT13, R_SPARC_GOT13 },
  { BFD_RELOC_SPARC_GOT13, R_SPARC_GOT13 },
  { BFD_RELOC_SPARC_GOT22, R_SPARC_GOT22 },
  { BFD_RELOC_SPARC_GOT22, R_SPARC_GOT22 },
  { BFD_RELOC_SPARC_PC10, R_SPARC_PC10 },
  { BFD_RELOC_SPARC_PC10, R_SPARC_PC10 },
  { BFD_RELOC_SPARC_PC22, R_SPARC_PC22 },
  { BFD_RELOC_SPARC_PC22, R_SPARC_PC22 },
  { BFD_RELOC_SPARC_WPLT30, R_SPARC_WPLT30 },
  { BFD_RELOC_SPARC_WPLT30, R_SPARC_WPLT30 },
  { BFD_RELOC_SPARC_COPY, R_SPARC_COPY },
  { BFD_RELOC_SPARC_COPY, R_SPARC_COPY },
  { BFD_RELOC_SPARC_GLOB_DAT, R_SPARC_GLOB_DAT },
  { BFD_RELOC_SPARC_GLOB_DAT, R_SPARC_GLOB_DAT },
  { BFD_RELOC_SPARC_JMP_SLOT, R_SPARC_JMP_SLOT },
  { BFD_RELOC_SPARC_JMP_SLOT, R_SPARC_JMP_SLOT },
  { BFD_RELOC_SPARC_RELATIVE, R_SPARC_RELATIVE },
  { BFD_RELOC_SPARC_RELATIVE, R_SPARC_RELATIVE },
  { BFD_RELOC_SPARC_WDISP22, R_SPARC_WDISP22 },
  { BFD_RELOC_SPARC_WDISP22, R_SPARC_WDISP22 },
  { BFD_RELOC_SPARC_UA16, R_SPARC_UA16 },
  { BFD_RELOC_SPARC_UA16, R_SPARC_UA16 },
  { BFD_RELOC_SPARC_UA32, R_SPARC_UA32 },
  { BFD_RELOC_SPARC_UA32, R_SPARC_UA32 },
  { BFD_RELOC_SPARC_UA64, R_SPARC_UA64 },
  { BFD_RELOC_SPARC_UA64, R_SPARC_UA64 },
  { BFD_RELOC_SPARC_10, R_SPARC_10 },
  { BFD_RELOC_SPARC_10, R_SPARC_10 },
  { BFD_RELOC_SPARC_11, R_SPARC_11 },
  { BFD_RELOC_SPARC_11, R_SPARC_11 },
  { BFD_RELOC_SPARC_64, R_SPARC_64 },
  { BFD_RELOC_SPARC_64, R_SPARC_64 },
  { BFD_RELOC_SPARC_OLO10, R_SPARC_OLO10 },
  { BFD_RELOC_SPARC_OLO10, R_SPARC_OLO10 },
  { BFD_RELOC_SPARC_HH22, R_SPARC_HH22 },
  { BFD_RELOC_SPARC_HH22, R_SPARC_HH22 },
  { BFD_RELOC_SPARC_HM10, R_SPARC_HM10 },
  { BFD_RELOC_SPARC_HM10, R_SPARC_HM10 },
  { BFD_RELOC_SPARC_LM22, R_SPARC_LM22 },
  { BFD_RELOC_SPARC_LM22, R_SPARC_LM22 },
  { BFD_RELOC_SPARC_PC_HH22, R_SPARC_PC_HH22 },
  { BFD_RELOC_SPARC_PC_HH22, R_SPARC_PC_HH22 },
  { BFD_RELOC_SPARC_PC_HM10, R_SPARC_PC_HM10 },
  { BFD_RELOC_SPARC_PC_HM10, R_SPARC_PC_HM10 },
  { BFD_RELOC_SPARC_PC_LM22, R_SPARC_PC_LM22 },
  { BFD_RELOC_SPARC_PC_LM22, R_SPARC_PC_LM22 },
  { BFD_RELOC_SPARC_WDISP16, R_SPARC_WDISP16 },
  { BFD_RELOC_SPARC_WDISP16, R_SPARC_WDISP16 },
  { BFD_RELOC_SPARC_WDISP19, R_SPARC_WDISP19 },
  { BFD_RELOC_SPARC_WDISP19, R_SPARC_WDISP19 },
  { BFD_RELOC_SPARC_7, R_SPARC_7 },
  { BFD_RELOC_SPARC_7, R_SPARC_7 },
  { BFD_RELOC_SPARC_5, R_SPARC_5 },
  { BFD_RELOC_SPARC_5, R_SPARC_5 },
  { BFD_RELOC_SPARC_6, R_SPARC_6 },
  { BFD_RELOC_SPARC_6, R_SPARC_6 },
  { BFD_RELOC_SPARC_DISP64, R_SPARC_DISP64 },
  { BFD_RELOC_SPARC_DISP64, R_SPARC_DISP64 },
#ifndef SPARC64_OLD_RELOCS
#ifndef SPARC64_OLD_RELOCS
  { BFD_RELOC_SPARC_PLT32, R_SPARC_PLT32 },
  { BFD_RELOC_SPARC_PLT32, R_SPARC_PLT32 },
#endif
#endif
  { BFD_RELOC_SPARC_PLT64, R_SPARC_PLT64 },
  { BFD_RELOC_SPARC_PLT64, R_SPARC_PLT64 },
  { BFD_RELOC_SPARC_HIX22, R_SPARC_HIX22 },
  { BFD_RELOC_SPARC_HIX22, R_SPARC_HIX22 },
  { BFD_RELOC_SPARC_LOX10, R_SPARC_LOX10 },
  { BFD_RELOC_SPARC_LOX10, R_SPARC_LOX10 },
  { BFD_RELOC_SPARC_H44, R_SPARC_H44 },
  { BFD_RELOC_SPARC_H44, R_SPARC_H44 },
  { BFD_RELOC_SPARC_M44, R_SPARC_M44 },
  { BFD_RELOC_SPARC_M44, R_SPARC_M44 },
  { BFD_RELOC_SPARC_L44, R_SPARC_L44 },
  { BFD_RELOC_SPARC_L44, R_SPARC_L44 },
  { BFD_RELOC_SPARC_REGISTER, R_SPARC_REGISTER }
  { BFD_RELOC_SPARC_REGISTER, R_SPARC_REGISTER }
};
};
 
 
static reloc_howto_type *
static reloc_howto_type *
sparc64_elf_reloc_type_lookup (abfd, code)
sparc64_elf_reloc_type_lookup (abfd, code)
     bfd *abfd ATTRIBUTE_UNUSED;
     bfd *abfd ATTRIBUTE_UNUSED;
     bfd_reloc_code_real_type code;
     bfd_reloc_code_real_type code;
{
{
  unsigned int i;
  unsigned int i;
  for (i = 0; i < sizeof (sparc_reloc_map) / sizeof (struct elf_reloc_map); i++)
  for (i = 0; i < sizeof (sparc_reloc_map) / sizeof (struct elf_reloc_map); i++)
    {
    {
      if (sparc_reloc_map[i].bfd_reloc_val == code)
      if (sparc_reloc_map[i].bfd_reloc_val == code)
        return &sparc64_elf_howto_table[(int) sparc_reloc_map[i].elf_reloc_val];
        return &sparc64_elf_howto_table[(int) sparc_reloc_map[i].elf_reloc_val];
    }
    }
  return 0;
  return 0;
}
}
 
 
static void
static void
sparc64_elf_info_to_howto (abfd, cache_ptr, dst)
sparc64_elf_info_to_howto (abfd, cache_ptr, dst)
     bfd *abfd ATTRIBUTE_UNUSED;
     bfd *abfd ATTRIBUTE_UNUSED;
     arelent *cache_ptr;
     arelent *cache_ptr;
     Elf64_Internal_Rela *dst;
     Elf64_Internal_Rela *dst;
{
{
  BFD_ASSERT (ELF64_R_TYPE_ID (dst->r_info) < (unsigned int) R_SPARC_max_std);
  BFD_ASSERT (ELF64_R_TYPE_ID (dst->r_info) < (unsigned int) R_SPARC_max_std);
  cache_ptr->howto = &sparc64_elf_howto_table[ELF64_R_TYPE_ID (dst->r_info)];
  cache_ptr->howto = &sparc64_elf_howto_table[ELF64_R_TYPE_ID (dst->r_info)];
}
}


/* Due to the way how we handle R_SPARC_OLO10, each entry in a SHT_RELA
/* Due to the way how we handle R_SPARC_OLO10, each entry in a SHT_RELA
   section can represent up to two relocs, we must tell the user to allocate
   section can represent up to two relocs, we must tell the user to allocate
   more space.  */
   more space.  */
 
 
static long
static long
sparc64_elf_get_reloc_upper_bound (abfd, sec)
sparc64_elf_get_reloc_upper_bound (abfd, sec)
     bfd *abfd ATTRIBUTE_UNUSED;
     bfd *abfd ATTRIBUTE_UNUSED;
     asection *sec;
     asection *sec;
{
{
  return (sec->reloc_count * 2 + 1) * sizeof (arelent *);
  return (sec->reloc_count * 2 + 1) * sizeof (arelent *);
}
}
 
 
static long
static long
sparc64_elf_get_dynamic_reloc_upper_bound (abfd)
sparc64_elf_get_dynamic_reloc_upper_bound (abfd)
     bfd *abfd;
     bfd *abfd;
{
{
  return _bfd_elf_get_dynamic_reloc_upper_bound (abfd) * 2;
  return _bfd_elf_get_dynamic_reloc_upper_bound (abfd) * 2;
}
}
 
 
/* Read  relocations for ASECT from REL_HDR.  There are RELOC_COUNT of
/* Read  relocations for ASECT from REL_HDR.  There are RELOC_COUNT of
   them.  We cannot use generic elf routines for this,  because R_SPARC_OLO10
   them.  We cannot use generic elf routines for this,  because R_SPARC_OLO10
   has secondary addend in ELF64_R_TYPE_DATA.  We handle it as two relocations
   has secondary addend in ELF64_R_TYPE_DATA.  We handle it as two relocations
   for the same location,  R_SPARC_LO10 and R_SPARC_13.  */
   for the same location,  R_SPARC_LO10 and R_SPARC_13.  */
 
 
static boolean
static boolean
sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols, dynamic)
sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols, dynamic)
     bfd *abfd;
     bfd *abfd;
     asection *asect;
     asection *asect;
     Elf_Internal_Shdr *rel_hdr;
     Elf_Internal_Shdr *rel_hdr;
     asymbol **symbols;
     asymbol **symbols;
     boolean dynamic;
     boolean dynamic;
{
{
  PTR allocated = NULL;
  PTR allocated = NULL;
  bfd_byte *native_relocs;
  bfd_byte *native_relocs;
  arelent *relent;
  arelent *relent;
  unsigned int i;
  unsigned int i;
  int entsize;
  int entsize;
  bfd_size_type count;
  bfd_size_type count;
  arelent *relents;
  arelent *relents;
 
 
  allocated = (PTR) bfd_malloc (rel_hdr->sh_size);
  allocated = (PTR) bfd_malloc (rel_hdr->sh_size);
  if (allocated == NULL)
  if (allocated == NULL)
    goto error_return;
    goto error_return;
 
 
  if (bfd_seek (abfd, rel_hdr->sh_offset, SEEK_SET) != 0
  if (bfd_seek (abfd, rel_hdr->sh_offset, SEEK_SET) != 0
      || bfd_bread (allocated, rel_hdr->sh_size, abfd) != rel_hdr->sh_size)
      || bfd_bread (allocated, rel_hdr->sh_size, abfd) != rel_hdr->sh_size)
    goto error_return;
    goto error_return;
 
 
  native_relocs = (bfd_byte *) allocated;
  native_relocs = (bfd_byte *) allocated;
 
 
  relents = asect->relocation + asect->reloc_count;
  relents = asect->relocation + asect->reloc_count;
 
 
  entsize = rel_hdr->sh_entsize;
  entsize = rel_hdr->sh_entsize;
  BFD_ASSERT (entsize == sizeof (Elf64_External_Rela));
  BFD_ASSERT (entsize == sizeof (Elf64_External_Rela));
 
 
  count = rel_hdr->sh_size / entsize;
  count = rel_hdr->sh_size / entsize;
 
 
  for (i = 0, relent = relents; i < count;
  for (i = 0, relent = relents; i < count;
       i++, relent++, native_relocs += entsize)
       i++, relent++, native_relocs += entsize)
    {
    {
      Elf_Internal_Rela rela;
      Elf_Internal_Rela rela;
 
 
      bfd_elf64_swap_reloca_in (abfd, (Elf64_External_Rela *) native_relocs, &rela);
      bfd_elf64_swap_reloca_in (abfd, (Elf64_External_Rela *) native_relocs, &rela);
 
 
      /* The address of an ELF reloc is section relative for an object
      /* The address of an ELF reloc is section relative for an object
         file, and absolute for an executable file or shared library.
         file, and absolute for an executable file or shared library.
         The address of a normal BFD reloc is always section relative,
         The address of a normal BFD reloc is always section relative,
         and the address of a dynamic reloc is absolute..  */
         and the address of a dynamic reloc is absolute..  */
      if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0 || dynamic)
      if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0 || dynamic)
        relent->address = rela.r_offset;
        relent->address = rela.r_offset;
      else
      else
        relent->address = rela.r_offset - asect->vma;
        relent->address = rela.r_offset - asect->vma;
 
 
      if (ELF64_R_SYM (rela.r_info) == 0)
      if (ELF64_R_SYM (rela.r_info) == 0)
        relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
        relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
      else
      else
        {
        {
          asymbol **ps, *s;
          asymbol **ps, *s;
 
 
          ps = symbols + ELF64_R_SYM (rela.r_info) - 1;
          ps = symbols + ELF64_R_SYM (rela.r_info) - 1;
          s = *ps;
          s = *ps;
 
 
          /* Canonicalize ELF section symbols.  FIXME: Why?  */
          /* Canonicalize ELF section symbols.  FIXME: Why?  */
          if ((s->flags & BSF_SECTION_SYM) == 0)
          if ((s->flags & BSF_SECTION_SYM) == 0)
            relent->sym_ptr_ptr = ps;
            relent->sym_ptr_ptr = ps;
          else
          else
            relent->sym_ptr_ptr = s->section->symbol_ptr_ptr;
            relent->sym_ptr_ptr = s->section->symbol_ptr_ptr;
        }
        }
 
 
      relent->addend = rela.r_addend;
      relent->addend = rela.r_addend;
 
 
      BFD_ASSERT (ELF64_R_TYPE_ID (rela.r_info) < (unsigned int) R_SPARC_max_std);
      BFD_ASSERT (ELF64_R_TYPE_ID (rela.r_info) < (unsigned int) R_SPARC_max_std);
      if (ELF64_R_TYPE_ID (rela.r_info) == R_SPARC_OLO10)
      if (ELF64_R_TYPE_ID (rela.r_info) == R_SPARC_OLO10)
        {
        {
          relent->howto = &sparc64_elf_howto_table[R_SPARC_LO10];
          relent->howto = &sparc64_elf_howto_table[R_SPARC_LO10];
          relent[1].address = relent->address;
          relent[1].address = relent->address;
          relent++;
          relent++;
          relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
          relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
          relent->addend = ELF64_R_TYPE_DATA (rela.r_info);
          relent->addend = ELF64_R_TYPE_DATA (rela.r_info);
          relent->howto = &sparc64_elf_howto_table[R_SPARC_13];
          relent->howto = &sparc64_elf_howto_table[R_SPARC_13];
        }
        }
      else
      else
        relent->howto = &sparc64_elf_howto_table[ELF64_R_TYPE_ID (rela.r_info)];
        relent->howto = &sparc64_elf_howto_table[ELF64_R_TYPE_ID (rela.r_info)];
    }
    }
 
 
  asect->reloc_count += relent - relents;
  asect->reloc_count += relent - relents;
 
 
  if (allocated != NULL)
  if (allocated != NULL)
    free (allocated);
    free (allocated);
 
 
  return true;
  return true;
 
 
 error_return:
 error_return:
  if (allocated != NULL)
  if (allocated != NULL)
    free (allocated);
    free (allocated);
  return false;
  return false;
}
}
 
 
/* Read in and swap the external relocs.  */
/* Read in and swap the external relocs.  */
 
 
static boolean
static boolean
sparc64_elf_slurp_reloc_table (abfd, asect, symbols, dynamic)
sparc64_elf_slurp_reloc_table (abfd, asect, symbols, dynamic)
     bfd *abfd;
     bfd *abfd;
     asection *asect;
     asection *asect;
     asymbol **symbols;
     asymbol **symbols;
     boolean dynamic;
     boolean dynamic;
{
{
  struct bfd_elf_section_data * const d = elf_section_data (asect);
  struct bfd_elf_section_data * const d = elf_section_data (asect);
  Elf_Internal_Shdr *rel_hdr;
  Elf_Internal_Shdr *rel_hdr;
  Elf_Internal_Shdr *rel_hdr2;
  Elf_Internal_Shdr *rel_hdr2;
  bfd_size_type amt;
  bfd_size_type amt;
 
 
  if (asect->relocation != NULL)
  if (asect->relocation != NULL)
    return true;
    return true;
 
 
  if (! dynamic)
  if (! dynamic)
    {
    {
      if ((asect->flags & SEC_RELOC) == 0
      if ((asect->flags & SEC_RELOC) == 0
          || asect->reloc_count == 0)
          || asect->reloc_count == 0)
        return true;
        return true;
 
 
      rel_hdr = &d->rel_hdr;
      rel_hdr = &d->rel_hdr;
      rel_hdr2 = d->rel_hdr2;
      rel_hdr2 = d->rel_hdr2;
 
 
      BFD_ASSERT (asect->rel_filepos == rel_hdr->sh_offset
      BFD_ASSERT (asect->rel_filepos == rel_hdr->sh_offset
                  || (rel_hdr2 && asect->rel_filepos == rel_hdr2->sh_offset));
                  || (rel_hdr2 && asect->rel_filepos == rel_hdr2->sh_offset));
    }
    }
  else
  else
    {
    {
      /* Note that ASECT->RELOC_COUNT tends not to be accurate in this
      /* Note that ASECT->RELOC_COUNT tends not to be accurate in this
         case because relocations against this section may use the
         case because relocations against this section may use the
         dynamic symbol table, and in that case bfd_section_from_shdr
         dynamic symbol table, and in that case bfd_section_from_shdr
         in elf.c does not update the RELOC_COUNT.  */
         in elf.c does not update the RELOC_COUNT.  */
      if (asect->_raw_size == 0)
      if (asect->_raw_size == 0)
        return true;
        return true;
 
 
      rel_hdr = &d->this_hdr;
      rel_hdr = &d->this_hdr;
      asect->reloc_count = NUM_SHDR_ENTRIES (rel_hdr);
      asect->reloc_count = NUM_SHDR_ENTRIES (rel_hdr);
      rel_hdr2 = NULL;
      rel_hdr2 = NULL;
    }
    }
 
 
  amt = asect->reloc_count;
  amt = asect->reloc_count;
  amt *= 2 * sizeof (arelent);
  amt *= 2 * sizeof (arelent);
  asect->relocation = (arelent *) bfd_alloc (abfd, amt);
  asect->relocation = (arelent *) bfd_alloc (abfd, amt);
  if (asect->relocation == NULL)
  if (asect->relocation == NULL)
    return false;
    return false;
 
 
  /* The sparc64_elf_slurp_one_reloc_table routine increments reloc_count.  */
  /* The sparc64_elf_slurp_one_reloc_table routine increments reloc_count.  */
  asect->reloc_count = 0;
  asect->reloc_count = 0;
 
 
  if (!sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols,
  if (!sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols,
                                          dynamic))
                                          dynamic))
    return false;
    return false;
 
 
  if (rel_hdr2
  if (rel_hdr2
      && !sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr2, symbols,
      && !sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr2, symbols,
                                             dynamic))
                                             dynamic))
    return false;
    return false;
 
 
  return true;
  return true;
}
}
 
 
/* Canonicalize the dynamic relocation entries.  Note that we return
/* Canonicalize the dynamic relocation entries.  Note that we return
   the dynamic relocations as a single block, although they are
   the dynamic relocations as a single block, although they are
   actually associated with particular sections; the interface, which
   actually associated with particular sections; the interface, which
   was designed for SunOS style shared libraries, expects that there
   was designed for SunOS style shared libraries, expects that there
   is only one set of dynamic relocs.  Any section that was actually
   is only one set of dynamic relocs.  Any section that was actually
   installed in the BFD, and has type SHT_REL or SHT_RELA, and uses
   installed in the BFD, and has type SHT_REL or SHT_RELA, and uses
   the dynamic symbol table, is considered to be a dynamic reloc
   the dynamic symbol table, is considered to be a dynamic reloc
   section.  */
   section.  */
 
 
static long
static long
sparc64_elf_canonicalize_dynamic_reloc (abfd, storage, syms)
sparc64_elf_canonicalize_dynamic_reloc (abfd, storage, syms)
     bfd *abfd;
     bfd *abfd;
     arelent **storage;
     arelent **storage;
     asymbol **syms;
     asymbol **syms;
{
{
  asection *s;
  asection *s;
  long ret;
  long ret;
 
 
  if (elf_dynsymtab (abfd) == 0)
  if (elf_dynsymtab (abfd) == 0)
    {
    {
      bfd_set_error (bfd_error_invalid_operation);
      bfd_set_error (bfd_error_invalid_operation);
      return -1;
      return -1;
    }
    }
 
 
  ret = 0;
  ret = 0;
  for (s = abfd->sections; s != NULL; s = s->next)
  for (s = abfd->sections; s != NULL; s = s->next)
    {
    {
      if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
      if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
          && (elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
          && (elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
        {
        {
          arelent *p;
          arelent *p;
          long count, i;
          long count, i;
 
 
          if (! sparc64_elf_slurp_reloc_table (abfd, s, syms, true))
          if (! sparc64_elf_slurp_reloc_table (abfd, s, syms, true))
            return -1;
            return -1;
          count = s->reloc_count;
          count = s->reloc_count;
          p = s->relocation;
          p = s->relocation;
          for (i = 0; i < count; i++)
          for (i = 0; i < count; i++)
            *storage++ = p++;
            *storage++ = p++;
          ret += count;
          ret += count;
        }
        }
    }
    }
 
 
  *storage = NULL;
  *storage = NULL;
 
 
  return ret;
  return ret;
}
}
 
 
/* Write out the relocs.  */
/* Write out the relocs.  */
 
 
static void
static void
sparc64_elf_write_relocs (abfd, sec, data)
sparc64_elf_write_relocs (abfd, sec, data)
     bfd *abfd;
     bfd *abfd;
     asection *sec;
     asection *sec;
     PTR data;
     PTR data;
{
{
  boolean *failedp = (boolean *) data;
  boolean *failedp = (boolean *) data;
  Elf_Internal_Shdr *rela_hdr;
  Elf_Internal_Shdr *rela_hdr;
  Elf64_External_Rela *outbound_relocas, *src_rela;
  Elf64_External_Rela *outbound_relocas, *src_rela;
  unsigned int idx, count;
  unsigned int idx, count;
  asymbol *last_sym = 0;
  asymbol *last_sym = 0;
  int last_sym_idx = 0;
  int last_sym_idx = 0;
 
 
  /* If we have already failed, don't do anything.  */
  /* If we have already failed, don't do anything.  */
  if (*failedp)
  if (*failedp)
    return;
    return;
 
 
  if ((sec->flags & SEC_RELOC) == 0)
  if ((sec->flags & SEC_RELOC) == 0)
    return;
    return;
 
 
  /* The linker backend writes the relocs out itself, and sets the
  /* The linker backend writes the relocs out itself, and sets the
     reloc_count field to zero to inhibit writing them here.  Also,
     reloc_count field to zero to inhibit writing them here.  Also,
     sometimes the SEC_RELOC flag gets set even when there aren't any
     sometimes the SEC_RELOC flag gets set even when there aren't any
     relocs.  */
     relocs.  */
  if (sec->reloc_count == 0)
  if (sec->reloc_count == 0)
    return;
    return;
 
 
  /* We can combine two relocs that refer to the same address
  /* We can combine two relocs that refer to the same address
     into R_SPARC_OLO10 if first one is R_SPARC_LO10 and the
     into R_SPARC_OLO10 if first one is R_SPARC_LO10 and the
     latter is R_SPARC_13 with no associated symbol.  */
     latter is R_SPARC_13 with no associated symbol.  */
  count = 0;
  count = 0;
  for (idx = 0; idx < sec->reloc_count; idx++)
  for (idx = 0; idx < sec->reloc_count; idx++)
    {
    {
      bfd_vma addr;
      bfd_vma addr;
 
 
      ++count;
      ++count;
 
 
      addr = sec->orelocation[idx]->address;
      addr = sec->orelocation[idx]->address;
      if (sec->orelocation[idx]->howto->type == R_SPARC_LO10
      if (sec->orelocation[idx]->howto->type == R_SPARC_LO10
          && idx < sec->reloc_count - 1)
          && idx < sec->reloc_count - 1)
        {
        {
          arelent *r = sec->orelocation[idx + 1];
          arelent *r = sec->orelocation[idx + 1];
 
 
          if (r->howto->type == R_SPARC_13
          if (r->howto->type == R_SPARC_13
              && r->address == addr
              && r->address == addr
              && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
              && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
              && (*r->sym_ptr_ptr)->value == 0)
              && (*r->sym_ptr_ptr)->value == 0)
            ++idx;
            ++idx;
        }
        }
    }
    }
 
 
  rela_hdr = &elf_section_data (sec)->rel_hdr;
  rela_hdr = &elf_section_data (sec)->rel_hdr;
 
 
  rela_hdr->sh_size = rela_hdr->sh_entsize * count;
  rela_hdr->sh_size = rela_hdr->sh_entsize * count;
  rela_hdr->contents = (PTR) bfd_alloc (abfd, rela_hdr->sh_size);
  rela_hdr->contents = (PTR) bfd_alloc (abfd, rela_hdr->sh_size);
  if (rela_hdr->contents == NULL)
  if (rela_hdr->contents == NULL)
    {
    {
      *failedp = true;
      *failedp = true;
      return;
      return;
    }
    }
 
 
  /* Figure out whether the relocations are RELA or REL relocations.  */
  /* Figure out whether the relocations are RELA or REL relocations.  */
  if (rela_hdr->sh_type != SHT_RELA)
  if (rela_hdr->sh_type != SHT_RELA)
    abort ();
    abort ();
 
 
  /* orelocation has the data, reloc_count has the count...  */
  /* orelocation has the data, reloc_count has the count...  */
  outbound_relocas = (Elf64_External_Rela *) rela_hdr->contents;
  outbound_relocas = (Elf64_External_Rela *) rela_hdr->contents;
  src_rela = outbound_relocas;
  src_rela = outbound_relocas;
 
 
  for (idx = 0; idx < sec->reloc_count; idx++)
  for (idx = 0; idx < sec->reloc_count; idx++)
    {
    {
      Elf_Internal_Rela dst_rela;
      Elf_Internal_Rela dst_rela;
      arelent *ptr;
      arelent *ptr;
      asymbol *sym;
      asymbol *sym;
      int n;
      int n;
 
 
      ptr = sec->orelocation[idx];
      ptr = sec->orelocation[idx];
 
 
      /* The address of an ELF reloc is section relative for an object
      /* The address of an ELF reloc is section relative for an object
         file, and absolute for an executable file or shared library.
         file, and absolute for an executable file or shared library.
         The address of a BFD reloc is always section relative.  */
         The address of a BFD reloc is always section relative.  */
      if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
      if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
        dst_rela.r_offset = ptr->address;
        dst_rela.r_offset = ptr->address;
      else
      else
        dst_rela.r_offset = ptr->address + sec->vma;
        dst_rela.r_offset = ptr->address + sec->vma;
 
 
      sym = *ptr->sym_ptr_ptr;
      sym = *ptr->sym_ptr_ptr;
      if (sym == last_sym)
      if (sym == last_sym)
        n = last_sym_idx;
        n = last_sym_idx;
      else if (bfd_is_abs_section (sym->section) && sym->value == 0)
      else if (bfd_is_abs_section (sym->section) && sym->value == 0)
        n = STN_UNDEF;
        n = STN_UNDEF;
      else
      else
        {
        {
          last_sym = sym;
          last_sym = sym;
          n = _bfd_elf_symbol_from_bfd_symbol (abfd, &sym);
          n = _bfd_elf_symbol_from_bfd_symbol (abfd, &sym);
          if (n < 0)
          if (n < 0)
            {
            {
              *failedp = true;
              *failedp = true;
              return;
              return;
            }
            }
          last_sym_idx = n;
          last_sym_idx = n;
        }
        }
 
 
      if ((*ptr->sym_ptr_ptr)->the_bfd != NULL
      if ((*ptr->sym_ptr_ptr)->the_bfd != NULL
          && (*ptr->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec
          && (*ptr->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec
          && ! _bfd_elf_validate_reloc (abfd, ptr))
          && ! _bfd_elf_validate_reloc (abfd, ptr))
        {
        {
          *failedp = true;
          *failedp = true;
          return;
          return;
        }
        }
 
 
      if (ptr->howto->type == R_SPARC_LO10
      if (ptr->howto->type == R_SPARC_LO10
          && idx < sec->reloc_count - 1)
          && idx < sec->reloc_count - 1)
        {
        {
          arelent *r = sec->orelocation[idx + 1];
          arelent *r = sec->orelocation[idx + 1];
 
 
          if (r->howto->type == R_SPARC_13
          if (r->howto->type == R_SPARC_13
              && r->address == ptr->address
              && r->address == ptr->address
              && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
              && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
              && (*r->sym_ptr_ptr)->value == 0)
              && (*r->sym_ptr_ptr)->value == 0)
            {
            {
              idx++;
              idx++;
              dst_rela.r_info
              dst_rela.r_info
                = ELF64_R_INFO (n, ELF64_R_TYPE_INFO (r->addend,
                = ELF64_R_INFO (n, ELF64_R_TYPE_INFO (r->addend,
                                                      R_SPARC_OLO10));
                                                      R_SPARC_OLO10));
            }
            }
          else
          else
            dst_rela.r_info = ELF64_R_INFO (n, R_SPARC_LO10);
            dst_rela.r_info = ELF64_R_INFO (n, R_SPARC_LO10);
        }
        }
      else
      else
        dst_rela.r_info = ELF64_R_INFO (n, ptr->howto->type);
        dst_rela.r_info = ELF64_R_INFO (n, ptr->howto->type);
 
 
      dst_rela.r_addend = ptr->addend;
      dst_rela.r_addend = ptr->addend;
      bfd_elf64_swap_reloca_out (abfd, &dst_rela, src_rela);
      bfd_elf64_swap_reloca_out (abfd, &dst_rela, src_rela);
      ++src_rela;
      ++src_rela;
    }
    }
}
}


/* Sparc64 ELF linker hash table.  */
/* Sparc64 ELF linker hash table.  */
 
 
struct sparc64_elf_app_reg
struct sparc64_elf_app_reg
{
{
  unsigned char bind;
  unsigned char bind;
  unsigned short shndx;
  unsigned short shndx;
  bfd *abfd;
  bfd *abfd;
  char *name;
  char *name;
};
};
 
 
struct sparc64_elf_link_hash_table
struct sparc64_elf_link_hash_table
{
{
  struct elf_link_hash_table root;
  struct elf_link_hash_table root;
 
 
  struct sparc64_elf_app_reg app_regs [4];
  struct sparc64_elf_app_reg app_regs [4];
};
};
 
 
/* Get the Sparc64 ELF linker hash table from a link_info structure.  */
/* Get the Sparc64 ELF linker hash table from a link_info structure.  */
 
 
#define sparc64_elf_hash_table(p) \
#define sparc64_elf_hash_table(p) \
  ((struct sparc64_elf_link_hash_table *) ((p)->hash))
  ((struct sparc64_elf_link_hash_table *) ((p)->hash))
 
 
/* Create a Sparc64 ELF linker hash table.  */
/* Create a Sparc64 ELF linker hash table.  */
 
 
static struct bfd_link_hash_table *
static struct bfd_link_hash_table *
sparc64_elf_bfd_link_hash_table_create (abfd)
sparc64_elf_bfd_link_hash_table_create (abfd)
     bfd *abfd;
     bfd *abfd;
{
{
  struct sparc64_elf_link_hash_table *ret;
  struct sparc64_elf_link_hash_table *ret;
  bfd_size_type amt = sizeof (struct sparc64_elf_link_hash_table);
  bfd_size_type amt = sizeof (struct sparc64_elf_link_hash_table);
 
 
  ret = (struct sparc64_elf_link_hash_table *) bfd_zmalloc (amt);
  ret = (struct sparc64_elf_link_hash_table *) bfd_zmalloc (amt);
  if (ret == (struct sparc64_elf_link_hash_table *) NULL)
  if (ret == (struct sparc64_elf_link_hash_table *) NULL)
    return NULL;
    return NULL;
 
 
  if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
  if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
                                       _bfd_elf_link_hash_newfunc))
                                       _bfd_elf_link_hash_newfunc))
    {
    {
      free (ret);
      free (ret);
      return NULL;
      return NULL;
    }
    }
 
 
  return &ret->root.root;
  return &ret->root.root;
}
}


/* Utility for performing the standard initial work of an instruction
/* Utility for performing the standard initial work of an instruction
   relocation.
   relocation.
   *PRELOCATION will contain the relocated item.
   *PRELOCATION will contain the relocated item.
   *PINSN will contain the instruction from the input stream.
   *PINSN will contain the instruction from the input stream.
   If the result is `bfd_reloc_other' the caller can continue with
   If the result is `bfd_reloc_other' the caller can continue with
   performing the relocation.  Otherwise it must stop and return the
   performing the relocation.  Otherwise it must stop and return the
   value to its caller.  */
   value to its caller.  */
 
 
static bfd_reloc_status_type
static bfd_reloc_status_type
init_insn_reloc (abfd,
init_insn_reloc (abfd,
                 reloc_entry,
                 reloc_entry,
                 symbol,
                 symbol,
                 data,
                 data,
                 input_section,
                 input_section,
                 output_bfd,
                 output_bfd,
                 prelocation,
                 prelocation,
                 pinsn)
                 pinsn)
     bfd *abfd;
     bfd *abfd;
     arelent *reloc_entry;
     arelent *reloc_entry;
     asymbol *symbol;
     asymbol *symbol;
     PTR data;
     PTR data;
     asection *input_section;
     asection *input_section;
     bfd *output_bfd;
     bfd *output_bfd;
     bfd_vma *prelocation;
     bfd_vma *prelocation;
     bfd_vma *pinsn;
     bfd_vma *pinsn;
{
{
  bfd_vma relocation;
  bfd_vma relocation;
  reloc_howto_type *howto = reloc_entry->howto;
  reloc_howto_type *howto = reloc_entry->howto;
 
 
  if (output_bfd != (bfd *) NULL
  if (output_bfd != (bfd *) NULL
      && (symbol->flags & BSF_SECTION_SYM) == 0
      && (symbol->flags & BSF_SECTION_SYM) == 0
      && (! howto->partial_inplace
      && (! howto->partial_inplace
          || reloc_entry->addend == 0))
          || reloc_entry->addend == 0))
    {
    {
      reloc_entry->address += input_section->output_offset;
      reloc_entry->address += input_section->output_offset;
      return bfd_reloc_ok;
      return bfd_reloc_ok;
    }
    }
 
 
  /* This works because partial_inplace is false.  */
  /* This works because partial_inplace is false.  */
  if (output_bfd != NULL)
  if (output_bfd != NULL)
    return bfd_reloc_continue;
    return bfd_reloc_continue;
 
 
  if (reloc_entry->address > input_section->_cooked_size)
  if (reloc_entry->address > input_section->_cooked_size)
    return bfd_reloc_outofrange;
    return bfd_reloc_outofrange;
 
 
  relocation = (symbol->value
  relocation = (symbol->value
                + symbol->section->output_section->vma
                + symbol->section->output_section->vma
                + symbol->section->output_offset);
                + symbol->section->output_offset);
  relocation += reloc_entry->addend;
  relocation += reloc_entry->addend;
  if (howto->pc_relative)
  if (howto->pc_relative)
    {
    {
      relocation -= (input_section->output_section->vma
      relocation -= (input_section->output_section->vma
                     + input_section->output_offset);
                     + input_section->output_offset);
      relocation -= reloc_entry->address;
      relocation -= reloc_entry->address;
    }
    }
 
 
  *prelocation = relocation;
  *prelocation = relocation;
  *pinsn = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
  *pinsn = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
  return bfd_reloc_other;
  return bfd_reloc_other;
}
}
 
 
/* For unsupported relocs.  */
/* For unsupported relocs.  */
 
 
static bfd_reloc_status_type
static bfd_reloc_status_type
sparc_elf_notsup_reloc (abfd,
sparc_elf_notsup_reloc (abfd,
                        reloc_entry,
                        reloc_entry,
                        symbol,
                        symbol,
                        data,
                        data,
                        input_section,
                        input_section,
                        output_bfd,
                        output_bfd,
                        error_message)
                        error_message)
     bfd *abfd ATTRIBUTE_UNUSED;
     bfd *abfd ATTRIBUTE_UNUSED;
     arelent *reloc_entry ATTRIBUTE_UNUSED;
     arelent *reloc_entry ATTRIBUTE_UNUSED;
     asymbol *symbol ATTRIBUTE_UNUSED;
     asymbol *symbol ATTRIBUTE_UNUSED;
     PTR data ATTRIBUTE_UNUSED;
     PTR data ATTRIBUTE_UNUSED;
     asection *input_section ATTRIBUTE_UNUSED;
     asection *input_section ATTRIBUTE_UNUSED;
     bfd *output_bfd ATTRIBUTE_UNUSED;
     bfd *output_bfd ATTRIBUTE_UNUSED;
     char **error_message ATTRIBUTE_UNUSED;
     char **error_message ATTRIBUTE_UNUSED;
{
{
  return bfd_reloc_notsupported;
  return bfd_reloc_notsupported;
}
}
 
 
/* Handle the WDISP16 reloc.  */
/* Handle the WDISP16 reloc.  */
 
 
static bfd_reloc_status_type
static bfd_reloc_status_type
sparc_elf_wdisp16_reloc (abfd, reloc_entry, symbol, data, input_section,
sparc_elf_wdisp16_reloc (abfd, reloc_entry, symbol, data, input_section,
                         output_bfd, error_message)
                         output_bfd, error_message)
     bfd *abfd;
     bfd *abfd;
     arelent *reloc_entry;
     arelent *reloc_entry;
     asymbol *symbol;
     asymbol *symbol;
     PTR data;
     PTR data;
     asection *input_section;
     asection *input_section;
     bfd *output_bfd;
     bfd *output_bfd;
     char **error_message ATTRIBUTE_UNUSED;
     char **error_message ATTRIBUTE_UNUSED;
{
{
  bfd_vma relocation;
  bfd_vma relocation;
  bfd_vma insn;
  bfd_vma insn;
  bfd_reloc_status_type status;
  bfd_reloc_status_type status;
 
 
  status = init_insn_reloc (abfd, reloc_entry, symbol, data,
  status = init_insn_reloc (abfd, reloc_entry, symbol, data,
                            input_section, output_bfd, &relocation, &insn);
                            input_section, output_bfd, &relocation, &insn);
  if (status != bfd_reloc_other)
  if (status != bfd_reloc_other)
    return status;
    return status;
 
 
  insn &= ~ (bfd_vma) 0x303fff;
  insn &= ~ (bfd_vma) 0x303fff;
  insn |= (((relocation >> 2) & 0xc000) << 6) | ((relocation >> 2) & 0x3fff);
  insn |= (((relocation >> 2) & 0xc000) << 6) | ((relocation >> 2) & 0x3fff);
  bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
  bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
 
 
  if ((bfd_signed_vma) relocation < - 0x40000
  if ((bfd_signed_vma) relocation < - 0x40000
      || (bfd_signed_vma) relocation > 0x3ffff)
      || (bfd_signed_vma) relocation > 0x3ffff)
    return bfd_reloc_overflow;
    return bfd_reloc_overflow;
  else
  else
    return bfd_reloc_ok;
    return bfd_reloc_ok;
}
}
 
 
/* Handle the HIX22 reloc.  */
/* Handle the HIX22 reloc.  */
 
 
static bfd_reloc_status_type
static bfd_reloc_status_type
sparc_elf_hix22_reloc (abfd,
sparc_elf_hix22_reloc (abfd,
                       reloc_entry,
                       reloc_entry,
                       symbol,
                       symbol,
                       data,
                       data,
                       input_section,
                       input_section,
                       output_bfd,
                       output_bfd,
                       error_message)
                       error_message)
     bfd *abfd;
     bfd *abfd;
     arelent *reloc_entry;
     arelent *reloc_entry;
     asymbol *symbol;
     asymbol *symbol;
     PTR data;
     PTR data;
     asection *input_section;
     asection *input_section;
     bfd *output_bfd;
     bfd *output_bfd;
     char **error_message ATTRIBUTE_UNUSED;
     char **error_message ATTRIBUTE_UNUSED;
{
{
  bfd_vma relocation;
  bfd_vma relocation;
  bfd_vma insn;
  bfd_vma insn;
  bfd_reloc_status_type status;
  bfd_reloc_status_type status;
 
 
  status = init_insn_reloc (abfd, reloc_entry, symbol, data,
  status = init_insn_reloc (abfd, reloc_entry, symbol, data,
                            input_section, output_bfd, &relocation, &insn);
                            input_section, output_bfd, &relocation, &insn);
  if (status != bfd_reloc_other)
  if (status != bfd_reloc_other)
    return status;
    return status;
 
 
  relocation ^= MINUS_ONE;
  relocation ^= MINUS_ONE;
  insn = (insn &~ (bfd_vma) 0x3fffff) | ((relocation >> 10) & 0x3fffff);
  insn = (insn &~ (bfd_vma) 0x3fffff) | ((relocation >> 10) & 0x3fffff);
  bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
  bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
 
 
  if ((relocation & ~ (bfd_vma) 0xffffffff) != 0)
  if ((relocation & ~ (bfd_vma) 0xffffffff) != 0)
    return bfd_reloc_overflow;
    return bfd_reloc_overflow;
  else
  else
    return bfd_reloc_ok;
    return bfd_reloc_ok;
}
}
 
 
/* Handle the LOX10 reloc.  */
/* Handle the LOX10 reloc.  */
 
 
static bfd_reloc_status_type
static bfd_reloc_status_type
sparc_elf_lox10_reloc (abfd,
sparc_elf_lox10_reloc (abfd,
                       reloc_entry,
                       reloc_entry,
                       symbol,
                       symbol,
                       data,
                       data,
                       input_section,
                       input_section,
                       output_bfd,
                       output_bfd,
                       error_message)
                       error_message)
     bfd *abfd;
     bfd *abfd;
     arelent *reloc_entry;
     arelent *reloc_entry;
     asymbol *symbol;
     asymbol *symbol;
     PTR data;
     PTR data;
     asection *input_section;
     asection *input_section;
     bfd *output_bfd;
     bfd *output_bfd;
     char **error_message ATTRIBUTE_UNUSED;
     char **error_message ATTRIBUTE_UNUSED;
{
{
  bfd_vma relocation;
  bfd_vma relocation;
  bfd_vma insn;
  bfd_vma insn;
  bfd_reloc_status_type status;
  bfd_reloc_status_type status;
 
 
  status = init_insn_reloc (abfd, reloc_entry, symbol, data,
  status = init_insn_reloc (abfd, reloc_entry, symbol, data,
                            input_section, output_bfd, &relocation, &insn);
                            input_section, output_bfd, &relocation, &insn);
  if (status != bfd_reloc_other)
  if (status != bfd_reloc_other)
    return status;
    return status;
 
 
  insn = (insn &~ (bfd_vma) 0x1fff) | 0x1c00 | (relocation & 0x3ff);
  insn = (insn &~ (bfd_vma) 0x1fff) | 0x1c00 | (relocation & 0x3ff);
  bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
  bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
 
 
  return bfd_reloc_ok;
  return bfd_reloc_ok;
}
}


/* PLT/GOT stuff */
/* PLT/GOT stuff */
 
 
/* Both the headers and the entries are icache aligned.  */
/* Both the headers and the entries are icache aligned.  */
#define PLT_ENTRY_SIZE          32
#define PLT_ENTRY_SIZE          32
#define PLT_HEADER_SIZE         (4 * PLT_ENTRY_SIZE)
#define PLT_HEADER_SIZE         (4 * PLT_ENTRY_SIZE)
#define LARGE_PLT_THRESHOLD     32768
#define LARGE_PLT_THRESHOLD     32768
#define GOT_RESERVED_ENTRIES    1
#define GOT_RESERVED_ENTRIES    1
 
 
#define ELF_DYNAMIC_INTERPRETER "/usr/lib/sparcv9/ld.so.1"
#define ELF_DYNAMIC_INTERPRETER "/usr/lib/sparcv9/ld.so.1"
 
 
/* Fill in the .plt section.  */
/* Fill in the .plt section.  */
 
 
static void
static void
sparc64_elf_build_plt (output_bfd, contents, nentries)
sparc64_elf_build_plt (output_bfd, contents, nentries)
     bfd *output_bfd;
     bfd *output_bfd;
     unsigned char *contents;
     unsigned char *contents;
     int nentries;
     int nentries;
{
{
  const unsigned int nop = 0x01000000;
  const unsigned int nop = 0x01000000;
  int i, j;
  int i, j;
 
 
  /* The first four entries are reserved, and are initially undefined.
  /* The first four entries are reserved, and are initially undefined.
     We fill them with `illtrap 0' to force ld.so to do something.  */
     We fill them with `illtrap 0' to force ld.so to do something.  */
 
 
  for (i = 0; i < PLT_HEADER_SIZE/4; ++i)
  for (i = 0; i < PLT_HEADER_SIZE/4; ++i)
    bfd_put_32 (output_bfd, (bfd_vma) 0, contents+i*4);
    bfd_put_32 (output_bfd, (bfd_vma) 0, contents+i*4);
 
 
  /* The first 32768 entries are close enough to plt1 to get there via
  /* The first 32768 entries are close enough to plt1 to get there via
     a straight branch.  */
     a straight branch.  */
 
 
  for (i = 4; i < LARGE_PLT_THRESHOLD && i < nentries; ++i)
  for (i = 4; i < LARGE_PLT_THRESHOLD && i < nentries; ++i)
    {
    {
      unsigned char *entry = contents + i * PLT_ENTRY_SIZE;
      unsigned char *entry = contents + i * PLT_ENTRY_SIZE;
      unsigned int sethi, ba;
      unsigned int sethi, ba;
 
 
      /* sethi (. - plt0), %g1 */
      /* sethi (. - plt0), %g1 */
      sethi = 0x03000000 | (i * PLT_ENTRY_SIZE);
      sethi = 0x03000000 | (i * PLT_ENTRY_SIZE);
 
 
      /* ba,a,pt %xcc, plt1 */
      /* ba,a,pt %xcc, plt1 */
      ba = 0x30680000 | (((contents+PLT_ENTRY_SIZE) - (entry+4)) / 4 & 0x7ffff);
      ba = 0x30680000 | (((contents+PLT_ENTRY_SIZE) - (entry+4)) / 4 & 0x7ffff);
 
 
      bfd_put_32 (output_bfd, (bfd_vma) sethi, entry);
      bfd_put_32 (output_bfd, (bfd_vma) sethi, entry);
      bfd_put_32 (output_bfd, (bfd_vma) ba,    entry + 4);
      bfd_put_32 (output_bfd, (bfd_vma) ba,    entry + 4);
      bfd_put_32 (output_bfd, (bfd_vma) nop,   entry + 8);
      bfd_put_32 (output_bfd, (bfd_vma) nop,   entry + 8);
      bfd_put_32 (output_bfd, (bfd_vma) nop,   entry + 12);
      bfd_put_32 (output_bfd, (bfd_vma) nop,   entry + 12);
      bfd_put_32 (output_bfd, (bfd_vma) nop,   entry + 16);
      bfd_put_32 (output_bfd, (bfd_vma) nop,   entry + 16);
      bfd_put_32 (output_bfd, (bfd_vma) nop,   entry + 20);
      bfd_put_32 (output_bfd, (bfd_vma) nop,   entry + 20);
      bfd_put_32 (output_bfd, (bfd_vma) nop,   entry + 24);
      bfd_put_32 (output_bfd, (bfd_vma) nop,   entry + 24);
      bfd_put_32 (output_bfd, (bfd_vma) nop,   entry + 28);
      bfd_put_32 (output_bfd, (bfd_vma) nop,   entry + 28);
    }
    }
 
 
  /* Now the tricky bit.  Entries 32768 and higher are grouped in blocks of
  /* Now the tricky bit.  Entries 32768 and higher are grouped in blocks of
     160: 160 entries and 160 pointers.  This is to separate code from data,
     160: 160 entries and 160 pointers.  This is to separate code from data,
     which is much friendlier on the cache.  */
     which is much friendlier on the cache.  */
 
 
  for (; i < nentries; i += 160)
  for (; i < nentries; i += 160)
    {
    {
      int block = (i + 160 <= nentries ? 160 : nentries - i);
      int block = (i + 160 <= nentries ? 160 : nentries - i);
      for (j = 0; j < block; ++j)
      for (j = 0; j < block; ++j)
        {
        {
          unsigned char *entry, *ptr;
          unsigned char *entry, *ptr;
          unsigned int ldx;
          unsigned int ldx;
 
 
          entry = contents + i*PLT_ENTRY_SIZE + j*4*6;
          entry = contents + i*PLT_ENTRY_SIZE + j*4*6;
          ptr = contents + i*PLT_ENTRY_SIZE + block*4*6 + j*8;
          ptr = contents + i*PLT_ENTRY_SIZE + block*4*6 + j*8;
 
 
          /* ldx [%o7 + ptr - (entry+4)], %g1 */
          /* ldx [%o7 + ptr - (entry+4)], %g1 */
          ldx = 0xc25be000 | ((ptr - (entry+4)) & 0x1fff);
          ldx = 0xc25be000 | ((ptr - (entry+4)) & 0x1fff);
 
 
          /* mov %o7,%g5
          /* mov %o7,%g5
             call .+8
             call .+8
             nop
             nop
             ldx [%o7+P],%g1
             ldx [%o7+P],%g1
             jmpl %o7+%g1,%g1
             jmpl %o7+%g1,%g1
             mov %g5,%o7  */
             mov %g5,%o7  */
          bfd_put_32 (output_bfd, (bfd_vma) 0x8a10000f, entry);
          bfd_put_32 (output_bfd, (bfd_vma) 0x8a10000f, entry);
          bfd_put_32 (output_bfd, (bfd_vma) 0x40000002, entry + 4);
          bfd_put_32 (output_bfd, (bfd_vma) 0x40000002, entry + 4);
          bfd_put_32 (output_bfd, (bfd_vma) nop,        entry + 8);
          bfd_put_32 (output_bfd, (bfd_vma) nop,        entry + 8);
          bfd_put_32 (output_bfd, (bfd_vma) ldx,        entry + 12);
          bfd_put_32 (output_bfd, (bfd_vma) ldx,        entry + 12);
          bfd_put_32 (output_bfd, (bfd_vma) 0x83c3c001, entry + 16);
          bfd_put_32 (output_bfd, (bfd_vma) 0x83c3c001, entry + 16);
          bfd_put_32 (output_bfd, (bfd_vma) 0x9e100005, entry + 20);
          bfd_put_32 (output_bfd, (bfd_vma) 0x9e100005, entry + 20);
 
 
          bfd_put_64 (output_bfd, (bfd_vma) (contents - (entry + 4)), ptr);
          bfd_put_64 (output_bfd, (bfd_vma) (contents - (entry + 4)), ptr);
        }
        }
    }
    }
}
}
 
 
/* Return the offset of a particular plt entry within the .plt section.  */
/* Return the offset of a particular plt entry within the .plt section.  */
 
 
static bfd_vma
static bfd_vma
sparc64_elf_plt_entry_offset (index)
sparc64_elf_plt_entry_offset (index)
     bfd_vma index;
     bfd_vma index;
{
{
  bfd_vma block, ofs;
  bfd_vma block, ofs;
 
 
  if (index < LARGE_PLT_THRESHOLD)
  if (index < LARGE_PLT_THRESHOLD)
    return index * PLT_ENTRY_SIZE;
    return index * PLT_ENTRY_SIZE;
 
 
  /* See above for details.  */
  /* See above for details.  */
 
 
  block = (index - LARGE_PLT_THRESHOLD) / 160;
  block = (index - LARGE_PLT_THRESHOLD) / 160;
  ofs = (index - LARGE_PLT_THRESHOLD) % 160;
  ofs = (index - LARGE_PLT_THRESHOLD) % 160;
 
 
  return (LARGE_PLT_THRESHOLD + block * 160) * PLT_ENTRY_SIZE + ofs * 6 * 4;
  return (LARGE_PLT_THRESHOLD + block * 160) * PLT_ENTRY_SIZE + ofs * 6 * 4;
}
}
 
 
static bfd_vma
static bfd_vma
sparc64_elf_plt_ptr_offset (index, max)
sparc64_elf_plt_ptr_offset (index, max)
     bfd_vma index;
     bfd_vma index;
     bfd_vma max;
     bfd_vma max;
{
{
  bfd_vma block, ofs, last;
  bfd_vma block, ofs, last;
 
 
  BFD_ASSERT(index >= LARGE_PLT_THRESHOLD);
  BFD_ASSERT(index >= LARGE_PLT_THRESHOLD);
 
 
  /* See above for details.  */
  /* See above for details.  */
 
 
  block = (((index - LARGE_PLT_THRESHOLD) / 160) * 160) + LARGE_PLT_THRESHOLD;
  block = (((index - LARGE_PLT_THRESHOLD) / 160) * 160) + LARGE_PLT_THRESHOLD;
  ofs = index - block;
  ofs = index - block;
  if (block + 160 > max)
  if (block + 160 > max)
    last = (max - LARGE_PLT_THRESHOLD) % 160;
    last = (max - LARGE_PLT_THRESHOLD) % 160;
  else
  else
    last = 160;
    last = 160;
 
 
  return (block * PLT_ENTRY_SIZE
  return (block * PLT_ENTRY_SIZE
          + last * 6*4
          + last * 6*4
          + ofs * 8);
          + ofs * 8);
}
}


/* Look through the relocs for a section during the first phase, and
/* Look through the relocs for a section during the first phase, and
   allocate space in the global offset table or procedure linkage
   allocate space in the global offset table or procedure linkage
   table.  */
   table.  */
 
 
static boolean
static boolean
sparc64_elf_check_relocs (abfd, info, sec, relocs)
sparc64_elf_check_relocs (abfd, info, sec, relocs)
     bfd *abfd;
     bfd *abfd;
     struct bfd_link_info *info;
     struct bfd_link_info *info;
     asection *sec;
     asection *sec;
     const Elf_Internal_Rela *relocs;
     const Elf_Internal_Rela *relocs;
{
{
  bfd *dynobj;
  bfd *dynobj;
  Elf_Internal_Shdr *symtab_hdr;
  Elf_Internal_Shdr *symtab_hdr;
  struct elf_link_hash_entry **sym_hashes;
  struct elf_link_hash_entry **sym_hashes;
  bfd_vma *local_got_offsets;
  bfd_vma *local_got_offsets;
  const Elf_Internal_Rela *rel;
  const Elf_Internal_Rela *rel;
  const Elf_Internal_Rela *rel_end;
  const Elf_Internal_Rela *rel_end;
  asection *sgot;
  asection *sgot;
  asection *srelgot;
  asection *srelgot;
  asection *sreloc;
  asection *sreloc;
 
 
  if (info->relocateable || !(sec->flags & SEC_ALLOC))
  if (info->relocateable || !(sec->flags & SEC_ALLOC))
    return true;
    return true;
 
 
  dynobj = elf_hash_table (info)->dynobj;
  dynobj = elf_hash_table (info)->dynobj;
  symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
  symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
  sym_hashes = elf_sym_hashes (abfd);
  sym_hashes = elf_sym_hashes (abfd);
  local_got_offsets = elf_local_got_offsets (abfd);
  local_got_offsets = elf_local_got_offsets (abfd);
 
 
  sgot = NULL;
  sgot = NULL;
  srelgot = NULL;
  srelgot = NULL;
  sreloc = NULL;
  sreloc = NULL;
 
 
  rel_end = relocs + NUM_SHDR_ENTRIES (& elf_section_data (sec)->rel_hdr);
  rel_end = relocs + NUM_SHDR_ENTRIES (& elf_section_data (sec)->rel_hdr);
  for (rel = relocs; rel < rel_end; rel++)
  for (rel = relocs; rel < rel_end; rel++)
    {
    {
      unsigned long r_symndx;
      unsigned long r_symndx;
      struct elf_link_hash_entry *h;
      struct elf_link_hash_entry *h;
 
 
      r_symndx = ELF64_R_SYM (rel->r_info);
      r_symndx = ELF64_R_SYM (rel->r_info);
      if (r_symndx < symtab_hdr->sh_info)
      if (r_symndx < symtab_hdr->sh_info)
        h = NULL;
        h = NULL;
      else
      else
        h = sym_hashes[r_symndx - symtab_hdr->sh_info];
        h = sym_hashes[r_symndx - symtab_hdr->sh_info];
 
 
      switch (ELF64_R_TYPE_ID (rel->r_info))
      switch (ELF64_R_TYPE_ID (rel->r_info))
        {
        {
        case R_SPARC_GOT10:
        case R_SPARC_GOT10:
        case R_SPARC_GOT13:
        case R_SPARC_GOT13:
        case R_SPARC_GOT22:
        case R_SPARC_GOT22:
          /* This symbol requires a global offset table entry.  */
          /* This symbol requires a global offset table entry.  */
 
 
          if (dynobj == NULL)
          if (dynobj == NULL)
            {
            {
              /* Create the .got section.  */
              /* Create the .got section.  */
              elf_hash_table (info)->dynobj = dynobj = abfd;
              elf_hash_table (info)->dynobj = dynobj = abfd;
              if (! _bfd_elf_create_got_section (dynobj, info))
              if (! _bfd_elf_create_got_section (dynobj, info))
                return false;
                return false;
            }
            }
 
 
          if (sgot == NULL)
          if (sgot == NULL)
            {
            {
              sgot = bfd_get_section_by_name (dynobj, ".got");
              sgot = bfd_get_section_by_name (dynobj, ".got");
              BFD_ASSERT (sgot != NULL);
              BFD_ASSERT (sgot != NULL);
            }
            }
 
 
          if (srelgot == NULL && (h != NULL || info->shared))
          if (srelgot == NULL && (h != NULL || info->shared))
            {
            {
              srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
              srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
              if (srelgot == NULL)
              if (srelgot == NULL)
                {
                {
                  srelgot = bfd_make_section (dynobj, ".rela.got");
                  srelgot = bfd_make_section (dynobj, ".rela.got");
                  if (srelgot == NULL
                  if (srelgot == NULL
                      || ! bfd_set_section_flags (dynobj, srelgot,
                      || ! bfd_set_section_flags (dynobj, srelgot,
                                                  (SEC_ALLOC
                                                  (SEC_ALLOC
                                                   | SEC_LOAD
                                                   | SEC_LOAD
                                                   | SEC_HAS_CONTENTS
                                                   | SEC_HAS_CONTENTS
                                                   | SEC_IN_MEMORY
                                                   | SEC_IN_MEMORY
                                                   | SEC_LINKER_CREATED
                                                   | SEC_LINKER_CREATED
                                                   | SEC_READONLY))
                                                   | SEC_READONLY))
                      || ! bfd_set_section_alignment (dynobj, srelgot, 3))
                      || ! bfd_set_section_alignment (dynobj, srelgot, 3))
                    return false;
                    return false;
                }
                }
            }
            }
 
 
          if (h != NULL)
          if (h != NULL)
            {
            {
              if (h->got.offset != (bfd_vma) -1)
              if (h->got.offset != (bfd_vma) -1)
                {
                {
                  /* We have already allocated space in the .got.  */
                  /* We have already allocated space in the .got.  */
                  break;
                  break;
                }
                }
              h->got.offset = sgot->_raw_size;
              h->got.offset = sgot->_raw_size;
 
 
              /* Make sure this symbol is output as a dynamic symbol.  */
              /* Make sure this symbol is output as a dynamic symbol.  */
              if (h->dynindx == -1)
              if (h->dynindx == -1)
                {
                {
                  if (! bfd_elf64_link_record_dynamic_symbol (info, h))
                  if (! bfd_elf64_link_record_dynamic_symbol (info, h))
                    return false;
                    return false;
                }
                }
 
 
              srelgot->_raw_size += sizeof (Elf64_External_Rela);
              srelgot->_raw_size += sizeof (Elf64_External_Rela);
            }
            }
          else
          else
            {
            {
              /* This is a global offset table entry for a local
              /* This is a global offset table entry for a local
                 symbol.  */
                 symbol.  */
              if (local_got_offsets == NULL)
              if (local_got_offsets == NULL)
                {
                {
                  bfd_size_type size;
                  bfd_size_type size;
                  register unsigned int i;
                  register unsigned int i;
 
 
                  size = symtab_hdr->sh_info;
                  size = symtab_hdr->sh_info;
                  size *= sizeof (bfd_vma);
                  size *= sizeof (bfd_vma);
                  local_got_offsets = (bfd_vma *) bfd_alloc (abfd, size);
                  local_got_offsets = (bfd_vma *) bfd_alloc (abfd, size);
                  if (local_got_offsets == NULL)
                  if (local_got_offsets == NULL)
                    return false;
                    return false;
                  elf_local_got_offsets (abfd) = local_got_offsets;
                  elf_local_got_offsets (abfd) = local_got_offsets;
                  for (i = 0; i < symtab_hdr->sh_info; i++)
                  for (i = 0; i < symtab_hdr->sh_info; i++)
                    local_got_offsets[i] = (bfd_vma) -1;
                    local_got_offsets[i] = (bfd_vma) -1;
                }
                }
              if (local_got_offsets[r_symndx] != (bfd_vma) -1)
              if (local_got_offsets[r_symndx] != (bfd_vma) -1)
                {
                {
                  /* We have already allocated space in the .got.  */
                  /* We have already allocated space in the .got.  */
                  break;
                  break;
                }
                }
              local_got_offsets[r_symndx] = sgot->_raw_size;
              local_got_offsets[r_symndx] = sgot->_raw_size;
 
 
              if (info->shared)
              if (info->shared)
                {
                {
                  /* If we are generating a shared object, we need to
                  /* If we are generating a shared object, we need to
                     output a R_SPARC_RELATIVE reloc so that the
                     output a R_SPARC_RELATIVE reloc so that the
                     dynamic linker can adjust this GOT entry.  */
                     dynamic linker can adjust this GOT entry.  */
                  srelgot->_raw_size += sizeof (Elf64_External_Rela);
                  srelgot->_raw_size += sizeof (Elf64_External_Rela);
                }
                }
            }
            }
 
 
          sgot->_raw_size += 8;
          sgot->_raw_size += 8;
 
 
#if 0
#if 0
          /* Doesn't work for 64-bit -fPIC, since sethi/or builds
          /* Doesn't work for 64-bit -fPIC, since sethi/or builds
             unsigned numbers.  If we permit ourselves to modify
             unsigned numbers.  If we permit ourselves to modify
             code so we get sethi/xor, this could work.
             code so we get sethi/xor, this could work.
             Question: do we consider conditionally re-enabling
             Question: do we consider conditionally re-enabling
             this for -fpic, once we know about object code models?  */
             this for -fpic, once we know about object code models?  */
          /* If the .got section is more than 0x1000 bytes, we add
          /* If the .got section is more than 0x1000 bytes, we add
             0x1000 to the value of _GLOBAL_OFFSET_TABLE_, so that 13
             0x1000 to the value of _GLOBAL_OFFSET_TABLE_, so that 13
             bit relocations have a greater chance of working.  */
             bit relocations have a greater chance of working.  */
          if (sgot->_raw_size >= 0x1000
          if (sgot->_raw_size >= 0x1000
              && elf_hash_table (info)->hgot->root.u.def.value == 0)
              && elf_hash_table (info)->hgot->root.u.def.value == 0)
            elf_hash_table (info)->hgot->root.u.def.value = 0x1000;
            elf_hash_table (info)->hgot->root.u.def.value = 0x1000;
#endif
#endif
 
 
          break;
          break;
 
 
        case R_SPARC_WPLT30:
        case R_SPARC_WPLT30:
        case R_SPARC_PLT32:
        case R_SPARC_PLT32:
        case R_SPARC_HIPLT22:
        case R_SPARC_HIPLT22:
        case R_SPARC_LOPLT10:
        case R_SPARC_LOPLT10:
        case R_SPARC_PCPLT32:
        case R_SPARC_PCPLT32:
        case R_SPARC_PCPLT22:
        case R_SPARC_PCPLT22:
        case R_SPARC_PCPLT10:
        case R_SPARC_PCPLT10:
        case R_SPARC_PLT64:
        case R_SPARC_PLT64:
          /* This symbol requires a procedure linkage table entry.  We
          /* This symbol requires a procedure linkage table entry.  We
             actually build the entry in adjust_dynamic_symbol,
             actually build the entry in adjust_dynamic_symbol,
             because this might be a case of linking PIC code without
             because this might be a case of linking PIC code without
             linking in any dynamic objects, in which case we don't
             linking in any dynamic objects, in which case we don't
             need to generate a procedure linkage table after all.  */
             need to generate a procedure linkage table after all.  */
 
 
          if (h == NULL)
          if (h == NULL)
            {
            {
              /* It does not make sense to have a procedure linkage
              /* It does not make sense to have a procedure linkage
                 table entry for a local symbol.  */
                 table entry for a local symbol.  */
              bfd_set_error (bfd_error_bad_value);
              bfd_set_error (bfd_error_bad_value);
              return false;
              return false;
            }
            }
 
 
          /* Make sure this symbol is output as a dynamic symbol.  */
          /* Make sure this symbol is output as a dynamic symbol.  */
          if (h->dynindx == -1)
          if (h->dynindx == -1)
            {
            {
              if (! bfd_elf64_link_record_dynamic_symbol (info, h))
              if (! bfd_elf64_link_record_dynamic_symbol (info, h))
                return false;
                return false;
            }
            }
 
 
          h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
          h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
          if (ELF64_R_TYPE_ID (rel->r_info) != R_SPARC_PLT32
          if (ELF64_R_TYPE_ID (rel->r_info) != R_SPARC_PLT32
              && ELF64_R_TYPE_ID (rel->r_info) != R_SPARC_PLT64)
              && ELF64_R_TYPE_ID (rel->r_info) != R_SPARC_PLT64)
            break;
            break;
          /* Fall through.  */
          /* Fall through.  */
        case R_SPARC_PC10:
        case R_SPARC_PC10:
        case R_SPARC_PC22:
        case R_SPARC_PC22:
        case R_SPARC_PC_HH22:
        case R_SPARC_PC_HH22:
        case R_SPARC_PC_HM10:
        case R_SPARC_PC_HM10:
        case R_SPARC_PC_LM22:
        case R_SPARC_PC_LM22:
          if (h != NULL
          if (h != NULL
              && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
              && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
            break;
            break;
          /* Fall through.  */
          /* Fall through.  */
        case R_SPARC_DISP8:
        case R_SPARC_DISP8:
        case R_SPARC_DISP16:
        case R_SPARC_DISP16:
        case R_SPARC_DISP32:
        case R_SPARC_DISP32:
        case R_SPARC_DISP64:
        case R_SPARC_DISP64:
        case R_SPARC_WDISP30:
        case R_SPARC_WDISP30:
        case R_SPARC_WDISP22:
        case R_SPARC_WDISP22:
        case R_SPARC_WDISP19:
        case R_SPARC_WDISP19:
        case R_SPARC_WDISP16:
        case R_SPARC_WDISP16:
          if (h == NULL)
          if (h == NULL)
            break;
            break;
          /* Fall through.  */
          /* Fall through.  */
        case R_SPARC_8:
        case R_SPARC_8:
        case R_SPARC_16:
        case R_SPARC_16:
        case R_SPARC_32:
        case R_SPARC_32:
        case R_SPARC_HI22:
        case R_SPARC_HI22:
        case R_SPARC_22:
        case R_SPARC_22:
        case R_SPARC_13:
        case R_SPARC_13:
        case R_SPARC_LO10:
        case R_SPARC_LO10:
        case R_SPARC_UA32:
        case R_SPARC_UA32:
        case R_SPARC_10:
        case R_SPARC_10:
        case R_SPARC_11:
        case R_SPARC_11:
        case R_SPARC_64:
        case R_SPARC_64:
        case R_SPARC_OLO10:
        case R_SPARC_OLO10:
        case R_SPARC_HH22:
        case R_SPARC_HH22:
        case R_SPARC_HM10:
        case R_SPARC_HM10:
        case R_SPARC_LM22:
        case R_SPARC_LM22:
        case R_SPARC_7:
        case R_SPARC_7:
        case R_SPARC_5:
        case R_SPARC_5:
        case R_SPARC_6:
        case R_SPARC_6:
        case R_SPARC_HIX22:
        case R_SPARC_HIX22:
        case R_SPARC_LOX10:
        case R_SPARC_LOX10:
        case R_SPARC_H44:
        case R_SPARC_H44:
        case R_SPARC_M44:
        case R_SPARC_M44:
        case R_SPARC_L44:
        case R_SPARC_L44:
        case R_SPARC_UA64:
        case R_SPARC_UA64:
        case R_SPARC_UA16:
        case R_SPARC_UA16:
          /* When creating a shared object, we must copy these relocs
          /* When creating a shared object, we must copy these relocs
             into the output file.  We create a reloc section in
             into the output file.  We create a reloc section in
             dynobj and make room for the reloc.
             dynobj and make room for the reloc.
 
 
             But don't do this for debugging sections -- this shows up
             But don't do this for debugging sections -- this shows up
             with DWARF2 -- first because they are not loaded, and
             with DWARF2 -- first because they are not loaded, and
             second because DWARF sez the debug info is not to be
             second because DWARF sez the debug info is not to be
             biased by the load address.  */
             biased by the load address.  */
          if (info->shared && (sec->flags & SEC_ALLOC))
          if (info->shared && (sec->flags & SEC_ALLOC))
            {
            {
              if (sreloc == NULL)
              if (sreloc == NULL)
                {
                {
                  const char *name;
                  const char *name;
 
 
                  name = (bfd_elf_string_from_elf_section
                  name = (bfd_elf_string_from_elf_section
                          (abfd,
                          (abfd,
                           elf_elfheader (abfd)->e_shstrndx,
                           elf_elfheader (abfd)->e_shstrndx,
                           elf_section_data (sec)->rel_hdr.sh_name));
                           elf_section_data (sec)->rel_hdr.sh_name));
                  if (name == NULL)
                  if (name == NULL)
                    return false;
                    return false;
 
 
                  BFD_ASSERT (strncmp (name, ".rela", 5) == 0
                  BFD_ASSERT (strncmp (name, ".rela", 5) == 0
                              && strcmp (bfd_get_section_name (abfd, sec),
                              && strcmp (bfd_get_section_name (abfd, sec),
                                         name + 5) == 0);
                                         name + 5) == 0);
 
 
                  sreloc = bfd_get_section_by_name (dynobj, name);
                  sreloc = bfd_get_section_by_name (dynobj, name);
                  if (sreloc == NULL)
                  if (sreloc == NULL)
                    {
                    {
                      flagword flags;
                      flagword flags;
 
 
                      sreloc = bfd_make_section (dynobj, name);
                      sreloc = bfd_make_section (dynobj, name);
                      flags = (SEC_HAS_CONTENTS | SEC_READONLY
                      flags = (SEC_HAS_CONTENTS | SEC_READONLY
                               | SEC_IN_MEMORY | SEC_LINKER_CREATED);
                               | SEC_IN_MEMORY | SEC_LINKER_CREATED);
                      if ((sec->flags & SEC_ALLOC) != 0)
                      if ((sec->flags & SEC_ALLOC) != 0)
                        flags |= SEC_ALLOC | SEC_LOAD;
                        flags |= SEC_ALLOC | SEC_LOAD;
                      if (sreloc == NULL
                      if (sreloc == NULL
                          || ! bfd_set_section_flags (dynobj, sreloc, flags)
                          || ! bfd_set_section_flags (dynobj, sreloc, flags)
                          || ! bfd_set_section_alignment (dynobj, sreloc, 3))
                          || ! bfd_set_section_alignment (dynobj, sreloc, 3))
                        return false;
                        return false;
                    }
                    }
                  if (sec->flags & SEC_READONLY)
                  if (sec->flags & SEC_READONLY)
                    info->flags |= DF_TEXTREL;
                    info->flags |= DF_TEXTREL;
                }
                }
 
 
              sreloc->_raw_size += sizeof (Elf64_External_Rela);
              sreloc->_raw_size += sizeof (Elf64_External_Rela);
            }
            }
          break;
          break;
 
 
        case R_SPARC_REGISTER:
        case R_SPARC_REGISTER:
          /* Nothing to do.  */
          /* Nothing to do.  */
          break;
          break;
 
 
        default:
        default:
          (*_bfd_error_handler) (_("%s: check_relocs: unhandled reloc type %d"),
          (*_bfd_error_handler) (_("%s: check_relocs: unhandled reloc type %d"),
                                bfd_archive_filename (abfd),
                                bfd_archive_filename (abfd),
                                ELF64_R_TYPE_ID (rel->r_info));
                                ELF64_R_TYPE_ID (rel->r_info));
          return false;
          return false;
        }
        }
    }
    }
 
 
  return true;
  return true;
}
}
 
 
/* Hook called by the linker routine which adds symbols from an object
/* Hook called by the linker routine which adds symbols from an object
   file.  We use it for STT_REGISTER symbols.  */
   file.  We use it for STT_REGISTER symbols.  */
 
 
static boolean
static boolean
sparc64_elf_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
sparc64_elf_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
     bfd *abfd;
     bfd *abfd;
     struct bfd_link_info *info;
     struct bfd_link_info *info;
     const Elf_Internal_Sym *sym;
     const Elf_Internal_Sym *sym;
     const char **namep;
     const char **namep;
     flagword *flagsp ATTRIBUTE_UNUSED;
     flagword *flagsp ATTRIBUTE_UNUSED;
     asection **secp ATTRIBUTE_UNUSED;
     asection **secp ATTRIBUTE_UNUSED;
     bfd_vma *valp ATTRIBUTE_UNUSED;
     bfd_vma *valp ATTRIBUTE_UNUSED;
{
{
  static const char *const stt_types[] = { "NOTYPE", "OBJECT", "FUNCTION" };
  static const char *const stt_types[] = { "NOTYPE", "OBJECT", "FUNCTION" };
 
 
  if (ELF_ST_TYPE (sym->st_info) == STT_REGISTER)
  if (ELF_ST_TYPE (sym->st_info) == STT_REGISTER)
    {
    {
      int reg;
      int reg;
      struct sparc64_elf_app_reg *p;
      struct sparc64_elf_app_reg *p;
 
 
      reg = (int)sym->st_value;
      reg = (int)sym->st_value;
      switch (reg & ~1)
      switch (reg & ~1)
        {
        {
        case 2: reg -= 2; break;
        case 2: reg -= 2; break;
        case 6: reg -= 4; break;
        case 6: reg -= 4; break;
        default:
        default:
          (*_bfd_error_handler)
          (*_bfd_error_handler)
            (_("%s: Only registers %%g[2367] can be declared using STT_REGISTER"),
            (_("%s: Only registers %%g[2367] can be declared using STT_REGISTER"),
             bfd_archive_filename (abfd));
             bfd_archive_filename (abfd));
          return false;
          return false;
        }
        }
 
 
      if (info->hash->creator != abfd->xvec
      if (info->hash->creator != abfd->xvec
          || (abfd->flags & DYNAMIC) != 0)
          || (abfd->flags & DYNAMIC) != 0)
        {
        {
          /* STT_REGISTER only works when linking an elf64_sparc object.
          /* STT_REGISTER only works when linking an elf64_sparc object.
             If STT_REGISTER comes from a dynamic object, don't put it into
             If STT_REGISTER comes from a dynamic object, don't put it into
             the output bfd.  The dynamic linker will recheck it.  */
             the output bfd.  The dynamic linker will recheck it.  */
          *namep = NULL;
          *namep = NULL;
          return true;
          return true;
        }
        }
 
 
      p = sparc64_elf_hash_table(info)->app_regs + reg;
      p = sparc64_elf_hash_table(info)->app_regs + reg;
 
 
      if (p->name != NULL && strcmp (p->name, *namep))
      if (p->name != NULL && strcmp (p->name, *namep))
        {
        {
          (*_bfd_error_handler)
          (*_bfd_error_handler)
            (_("Register %%g%d used incompatibly: %s in %s, previously %s in %s"),
            (_("Register %%g%d used incompatibly: %s in %s, previously %s in %s"),
             (int) sym->st_value,
             (int) sym->st_value,
             **namep ? *namep : "#scratch", bfd_archive_filename (abfd),
             **namep ? *namep : "#scratch", bfd_archive_filename (abfd),
             *p->name ? p->name : "#scratch", bfd_archive_filename (p->abfd));
             *p->name ? p->name : "#scratch", bfd_archive_filename (p->abfd));
          return false;
          return false;
        }
        }
 
 
      if (p->name == NULL)
      if (p->name == NULL)
        {
        {
          if (**namep)
          if (**namep)
            {
            {
              struct elf_link_hash_entry *h;
              struct elf_link_hash_entry *h;
 
 
              h = (struct elf_link_hash_entry *)
              h = (struct elf_link_hash_entry *)
                bfd_link_hash_lookup (info->hash, *namep, false, false, false);
                bfd_link_hash_lookup (info->hash, *namep, false, false, false);
 
 
              if (h != NULL)
              if (h != NULL)
                {
                {
                  unsigned char type = h->type;
                  unsigned char type = h->type;
 
 
                  if (type > STT_FUNC)
                  if (type > STT_FUNC)
                    type = 0;
                    type = 0;
                  (*_bfd_error_handler)
                  (*_bfd_error_handler)
                    (_("Symbol `%s' has differing types: REGISTER in %s, previously %s in %s"),
                    (_("Symbol `%s' has differing types: REGISTER in %s, previously %s in %s"),
                     *namep, bfd_archive_filename (abfd),
                     *namep, bfd_archive_filename (abfd),
                     stt_types[type], bfd_archive_filename (p->abfd));
                     stt_types[type], bfd_archive_filename (p->abfd));
                  return false;
                  return false;
                }
                }
 
 
              p->name = bfd_hash_allocate (&info->hash->table,
              p->name = bfd_hash_allocate (&info->hash->table,
                                           strlen (*namep) + 1);
                                           strlen (*namep) + 1);
              if (!p->name)
              if (!p->name)
                return false;
                return false;
 
 
              strcpy (p->name, *namep);
              strcpy (p->name, *namep);
            }
            }
          else
          else
            p->name = "";
            p->name = "";
          p->bind = ELF_ST_BIND (sym->st_info);
          p->bind = ELF_ST_BIND (sym->st_info);
          p->abfd = abfd;
          p->abfd = abfd;
          p->shndx = sym->st_shndx;
          p->shndx = sym->st_shndx;
        }
        }
      else
      else
        {
        {
          if (p->bind == STB_WEAK
          if (p->bind == STB_WEAK
              && ELF_ST_BIND (sym->st_info) == STB_GLOBAL)
              && ELF_ST_BIND (sym->st_info) == STB_GLOBAL)
            {
            {
              p->bind = STB_GLOBAL;
              p->bind = STB_GLOBAL;
              p->abfd = abfd;
              p->abfd = abfd;
            }
            }
        }
        }
      *namep = NULL;
      *namep = NULL;
      return true;
      return true;
    }
    }
  else if (*namep && **namep
  else if (*namep && **namep
           && info->hash->creator == abfd->xvec)
           && info->hash->creator == abfd->xvec)
    {
    {
      int i;
      int i;
      struct sparc64_elf_app_reg *p;
      struct sparc64_elf_app_reg *p;
 
 
      p = sparc64_elf_hash_table(info)->app_regs;
      p = sparc64_elf_hash_table(info)->app_regs;
      for (i = 0; i < 4; i++, p++)
      for (i = 0; i < 4; i++, p++)
        if (p->name != NULL && ! strcmp (p->name, *namep))
        if (p->name != NULL && ! strcmp (p->name, *namep))
          {
          {
            unsigned char type = ELF_ST_TYPE (sym->st_info);
            unsigned char type = ELF_ST_TYPE (sym->st_info);
 
 
            if (type > STT_FUNC)
            if (type > STT_FUNC)
              type = 0;
              type = 0;
            (*_bfd_error_handler)
            (*_bfd_error_handler)
              (_("Symbol `%s' has differing types: %s in %s, previously REGISTER in %s"),
              (_("Symbol `%s' has differing types: %s in %s, previously REGISTER in %s"),
               *namep, stt_types[type], bfd_archive_filename (abfd),
               *namep, stt_types[type], bfd_archive_filename (abfd),
               bfd_archive_filename (p->abfd));
               bfd_archive_filename (p->abfd));
            return false;
            return false;
          }
          }
    }
    }
  return true;
  return true;
}
}
 
 
/* This function takes care of emiting STT_REGISTER symbols
/* This function takes care of emiting STT_REGISTER symbols
   which we cannot easily keep in the symbol hash table.  */
   which we cannot easily keep in the symbol hash table.  */
 
 
static boolean
static boolean
sparc64_elf_output_arch_syms (output_bfd, info, finfo, func)
sparc64_elf_output_arch_syms (output_bfd, info, finfo, func)
     bfd *output_bfd ATTRIBUTE_UNUSED;
     bfd *output_bfd ATTRIBUTE_UNUSED;
     struct bfd_link_info *info;
     struct bfd_link_info *info;
     PTR finfo;
     PTR finfo;
     boolean (*func) PARAMS ((PTR, const char *,
     boolean (*func) PARAMS ((PTR, const char *,
                              Elf_Internal_Sym *, asection *));
                              Elf_Internal_Sym *, asection *));
{
{
  int reg;
  int reg;
  struct sparc64_elf_app_reg *app_regs =
  struct sparc64_elf_app_reg *app_regs =
    sparc64_elf_hash_table(info)->app_regs;
    sparc64_elf_hash_table(info)->app_regs;
  Elf_Internal_Sym sym;
  Elf_Internal_Sym sym;
 
 
  /* We arranged in size_dynamic_sections to put the STT_REGISTER entries
  /* We arranged in size_dynamic_sections to put the STT_REGISTER entries
     at the end of the dynlocal list, so they came at the end of the local
     at the end of the dynlocal list, so they came at the end of the local
     symbols in the symtab.  Except that they aren't STB_LOCAL, so we need
     symbols in the symtab.  Except that they aren't STB_LOCAL, so we need
     to back up symtab->sh_info.  */
     to back up symtab->sh_info.  */
  if (elf_hash_table (info)->dynlocal)
  if (elf_hash_table (info)->dynlocal)
    {
    {
      bfd * dynobj = elf_hash_table (info)->dynobj;
      bfd * dynobj = elf_hash_table (info)->dynobj;
      asection *dynsymsec = bfd_get_section_by_name (dynobj, ".dynsym");
      asection *dynsymsec = bfd_get_section_by_name (dynobj, ".dynsym");
      struct elf_link_local_dynamic_entry *e;
      struct elf_link_local_dynamic_entry *e;
 
 
      for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
      for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
        if (e->input_indx == -1)
        if (e->input_indx == -1)
          break;
          break;
      if (e)
      if (e)
        {
        {
          elf_section_data (dynsymsec->output_section)->this_hdr.sh_info
          elf_section_data (dynsymsec->output_section)->this_hdr.sh_info
            = e->dynindx;
            = e->dynindx;
        }
        }
    }
    }
 
 
  if (info->strip == strip_all)
  if (info->strip == strip_all)
    return true;
    return true;
 
 
  for (reg = 0; reg < 4; reg++)
  for (reg = 0; reg < 4; reg++)
    if (app_regs [reg].name != NULL)
    if (app_regs [reg].name != NULL)
      {
      {
        if (info->strip == strip_some
        if (info->strip == strip_some
            && bfd_hash_lookup (info->keep_hash,
            && bfd_hash_lookup (info->keep_hash,
                                app_regs [reg].name,
                                app_regs [reg].name,
                                false, false) == NULL)
                                false, false) == NULL)
          continue;
          continue;
 
 
        sym.st_value = reg < 2 ? reg + 2 : reg + 4;
        sym.st_value = reg < 2 ? reg + 2 : reg + 4;
        sym.st_size = 0;
        sym.st_size = 0;
        sym.st_other = 0;
        sym.st_other = 0;
        sym.st_info = ELF_ST_INFO (app_regs [reg].bind, STT_REGISTER);
        sym.st_info = ELF_ST_INFO (app_regs [reg].bind, STT_REGISTER);
        sym.st_shndx = app_regs [reg].shndx;
        sym.st_shndx = app_regs [reg].shndx;
        if (! (*func) (finfo, app_regs [reg].name, &sym,
        if (! (*func) (finfo, app_regs [reg].name, &sym,
                       sym.st_shndx == SHN_ABS
                       sym.st_shndx == SHN_ABS
                         ? bfd_abs_section_ptr : bfd_und_section_ptr))
                         ? bfd_abs_section_ptr : bfd_und_section_ptr))
          return false;
          return false;
      }
      }
 
 
  return true;
  return true;
}
}
 
 
static int
static int
sparc64_elf_get_symbol_type (elf_sym, type)
sparc64_elf_get_symbol_type (elf_sym, type)
     Elf_Internal_Sym * elf_sym;
     Elf_Internal_Sym * elf_sym;
     int type;
     int type;
{
{
  if (ELF_ST_TYPE (elf_sym->st_info) == STT_REGISTER)
  if (ELF_ST_TYPE (elf_sym->st_info) == STT_REGISTER)
    return STT_REGISTER;
    return STT_REGISTER;
  else
  else
    return type;
    return type;
}
}
 
 
/* A STB_GLOBAL,STT_REGISTER symbol should be BSF_GLOBAL
/* A STB_GLOBAL,STT_REGISTER symbol should be BSF_GLOBAL
   even in SHN_UNDEF section.  */
   even in SHN_UNDEF section.  */
 
 
static void
static void
sparc64_elf_symbol_processing (abfd, asym)
sparc64_elf_symbol_processing (abfd, asym)
     bfd *abfd ATTRIBUTE_UNUSED;
     bfd *abfd ATTRIBUTE_UNUSED;
     asymbol *asym;
     asymbol *asym;
{
{
  elf_symbol_type *elfsym;
  elf_symbol_type *elfsym;
 
 
  elfsym = (elf_symbol_type *) asym;
  elfsym = (elf_symbol_type *) asym;
  if (elfsym->internal_elf_sym.st_info
  if (elfsym->internal_elf_sym.st_info
      == ELF_ST_INFO (STB_GLOBAL, STT_REGISTER))
      == ELF_ST_INFO (STB_GLOBAL, STT_REGISTER))
    {
    {
      asym->flags |= BSF_GLOBAL;
      asym->flags |= BSF_GLOBAL;
    }
    }
}
}
 
 
/* Adjust a symbol defined by a dynamic object and referenced by a
/* Adjust a symbol defined by a dynamic object and referenced by a
   regular object.  The current definition is in some section of the
   regular object.  The current definition is in some section of the
   dynamic object, but we're not including those sections.  We have to
   dynamic object, but we're not including those sections.  We have to
   change the definition to something the rest of the link can
   change the definition to something the rest of the link can
   understand.  */
   understand.  */
 
 
static boolean
static boolean
sparc64_elf_adjust_dynamic_symbol (info, h)
sparc64_elf_adjust_dynamic_symbol (info, h)
     struct bfd_link_info *info;
     struct bfd_link_info *info;
     struct elf_link_hash_entry *h;
     struct elf_link_hash_entry *h;
{
{
  bfd *dynobj;
  bfd *dynobj;
  asection *s;
  asection *s;
  unsigned int power_of_two;
  unsigned int power_of_two;
 
 
  dynobj = elf_hash_table (info)->dynobj;
  dynobj = elf_hash_table (info)->dynobj;
 
 
  /* Make sure we know what is going on here.  */
  /* Make sure we know what is going on here.  */
  BFD_ASSERT (dynobj != NULL
  BFD_ASSERT (dynobj != NULL
              && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
              && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
                  || h->weakdef != NULL
                  || h->weakdef != NULL
                  || ((h->elf_link_hash_flags
                  || ((h->elf_link_hash_flags
                       & ELF_LINK_HASH_DEF_DYNAMIC) != 0
                       & ELF_LINK_HASH_DEF_DYNAMIC) != 0
                      && (h->elf_link_hash_flags
                      && (h->elf_link_hash_flags
                          & ELF_LINK_HASH_REF_REGULAR) != 0
                          & ELF_LINK_HASH_REF_REGULAR) != 0
                      && (h->elf_link_hash_flags
                      && (h->elf_link_hash_flags
                          & ELF_LINK_HASH_DEF_REGULAR) == 0)));
                          & ELF_LINK_HASH_DEF_REGULAR) == 0)));
 
 
  /* If this is a function, put it in the procedure linkage table.  We
  /* If this is a function, put it in the procedure linkage table.  We
     will fill in the contents of the procedure linkage table later
     will fill in the contents of the procedure linkage table later
     (although we could actually do it here).  The STT_NOTYPE
     (although we could actually do it here).  The STT_NOTYPE
     condition is a hack specifically for the Oracle libraries
     condition is a hack specifically for the Oracle libraries
     delivered for Solaris; for some inexplicable reason, they define
     delivered for Solaris; for some inexplicable reason, they define
     some of their functions as STT_NOTYPE when they really should be
     some of their functions as STT_NOTYPE when they really should be
     STT_FUNC.  */
     STT_FUNC.  */
  if (h->type == STT_FUNC
  if (h->type == STT_FUNC
      || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0
      || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0
      || (h->type == STT_NOTYPE
      || (h->type == STT_NOTYPE
          && (h->root.type == bfd_link_hash_defined
          && (h->root.type == bfd_link_hash_defined
              || h->root.type == bfd_link_hash_defweak)
              || h->root.type == bfd_link_hash_defweak)
          && (h->root.u.def.section->flags & SEC_CODE) != 0))
          && (h->root.u.def.section->flags & SEC_CODE) != 0))
    {
    {
      if (! elf_hash_table (info)->dynamic_sections_created)
      if (! elf_hash_table (info)->dynamic_sections_created)
        {
        {
          /* This case can occur if we saw a WPLT30 reloc in an input
          /* This case can occur if we saw a WPLT30 reloc in an input
             file, but none of the input files were dynamic objects.
             file, but none of the input files were dynamic objects.
             In such a case, we don't actually need to build a
             In such a case, we don't actually need to build a
             procedure linkage table, and we can just do a WDISP30
             procedure linkage table, and we can just do a WDISP30
             reloc instead.  */
             reloc instead.  */
          BFD_ASSERT ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0);
          BFD_ASSERT ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0);
          return true;
          return true;
        }
        }
 
 
      s = bfd_get_section_by_name (dynobj, ".plt");
      s = bfd_get_section_by_name (dynobj, ".plt");
      BFD_ASSERT (s != NULL);
      BFD_ASSERT (s != NULL);
 
 
      /* The first four bit in .plt is reserved.  */
      /* The first four bit in .plt is reserved.  */
      if (s->_raw_size == 0)
      if (s->_raw_size == 0)
        s->_raw_size = PLT_HEADER_SIZE;
        s->_raw_size = PLT_HEADER_SIZE;
 
 
      /* If this symbol is not defined in a regular file, and we are
      /* If this symbol is not defined in a regular file, and we are
         not generating a shared library, then set the symbol to this
         not generating a shared library, then set the symbol to this
         location in the .plt.  This is required to make function
         location in the .plt.  This is required to make function
         pointers compare as equal between the normal executable and
         pointers compare as equal between the normal executable and
         the shared library.  */
         the shared library.  */
      if (! info->shared
      if (! info->shared
          && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
          && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
        {
        {
          h->root.u.def.section = s;
          h->root.u.def.section = s;
          h->root.u.def.value = s->_raw_size;
          h->root.u.def.value = s->_raw_size;
        }
        }
 
 
      /* To simplify matters later, just store the plt index here.  */
      /* To simplify matters later, just store the plt index here.  */
      h->plt.offset = s->_raw_size / PLT_ENTRY_SIZE;
      h->plt.offset = s->_raw_size / PLT_ENTRY_SIZE;
 
 
      /* Make room for this entry.  */
      /* Make room for this entry.  */
      s->_raw_size += PLT_ENTRY_SIZE;
      s->_raw_size += PLT_ENTRY_SIZE;
 
 
      /* We also need to make an entry in the .rela.plt section.  */
      /* We also need to make an entry in the .rela.plt section.  */
 
 
      s = bfd_get_section_by_name (dynobj, ".rela.plt");
      s = bfd_get_section_by_name (dynobj, ".rela.plt");
      BFD_ASSERT (s != NULL);
      BFD_ASSERT (s != NULL);
 
 
      s->_raw_size += sizeof (Elf64_External_Rela);
      s->_raw_size += sizeof (Elf64_External_Rela);
 
 
      /* The procedure linkage table size is bounded by the magnitude
      /* The procedure linkage table size is bounded by the magnitude
         of the offset we can describe in the entry.  */
         of the offset we can describe in the entry.  */
      if (s->_raw_size >= (bfd_vma)1 << 32)
      if (s->_raw_size >= (bfd_vma)1 << 32)
        {
        {
          bfd_set_error (bfd_error_bad_value);
          bfd_set_error (bfd_error_bad_value);
          return false;
          return false;
        }
        }
 
 
      return true;
      return true;
    }
    }
 
 
  /* If this is a weak symbol, and there is a real definition, the
  /* If this is a weak symbol, and there is a real definition, the
     processor independent code will have arranged for us to see the
     processor independent code will have arranged for us to see the
     real definition first, and we can just use the same value.  */
     real definition first, and we can just use the same value.  */
  if (h->weakdef != NULL)
  if (h->weakdef != NULL)
    {
    {
      BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
      BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
                  || h->weakdef->root.type == bfd_link_hash_defweak);
                  || h->weakdef->root.type == bfd_link_hash_defweak);
      h->root.u.def.section = h->weakdef->root.u.def.section;
      h->root.u.def.section = h->weakdef->root.u.def.section;
      h->root.u.def.value = h->weakdef->root.u.def.value;
      h->root.u.def.value = h->weakdef->root.u.def.value;
      return true;
      return true;
    }
    }
 
 
  /* This is a reference to a symbol defined by a dynamic object which
  /* This is a reference to a symbol defined by a dynamic object which
     is not a function.  */
     is not a function.  */
 
 
  /* If we are creating a shared library, we must presume that the
  /* If we are creating a shared library, we must presume that the
     only references to the symbol are via the global offset table.
     only references to the symbol are via the global offset table.
     For such cases we need not do anything here; the relocations will
     For such cases we need not do anything here; the relocations will
     be handled correctly by relocate_section.  */
     be handled correctly by relocate_section.  */
  if (info->shared)
  if (info->shared)
    return true;
    return true;
 
 
  /* We must allocate the symbol in our .dynbss section, which will
  /* We must allocate the symbol in our .dynbss section, which will
     become part of the .bss section of the executable.  There will be
     become part of the .bss section of the executable.  There will be
     an entry for this symbol in the .dynsym section.  The dynamic
     an entry for this symbol in the .dynsym section.  The dynamic
     object will contain position independent code, so all references
     object will contain position independent code, so all references
     from the dynamic object to this symbol will go through the global
     from the dynamic object to this symbol will go through the global
     offset table.  The dynamic linker will use the .dynsym entry to
     offset table.  The dynamic linker will use the .dynsym entry to
     determine the address it must put in the global offset table, so
     determine the address it must put in the global offset table, so
     both the dynamic object and the regular object will refer to the
     both the dynamic object and the regular object will refer to the
     same memory location for the variable.  */
     same memory location for the variable.  */
 
 
  s = bfd_get_section_by_name (dynobj, ".dynbss");
  s = bfd_get_section_by_name (dynobj, ".dynbss");
  BFD_ASSERT (s != NULL);
  BFD_ASSERT (s != NULL);
 
 
  /* We must generate a R_SPARC_COPY reloc to tell the dynamic linker
  /* We must generate a R_SPARC_COPY reloc to tell the dynamic linker
     to copy the initial value out of the dynamic object and into the
     to copy the initial value out of the dynamic object and into the
     runtime process image.  We need to remember the offset into the
     runtime process image.  We need to remember the offset into the
     .rel.bss section we are going to use.  */
     .rel.bss section we are going to use.  */
  if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
  if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
    {
    {
      asection *srel;
      asection *srel;
 
 
      srel = bfd_get_section_by_name (dynobj, ".rela.bss");
      srel = bfd_get_section_by_name (dynobj, ".rela.bss");
      BFD_ASSERT (srel != NULL);
      BFD_ASSERT (srel != NULL);
      srel->_raw_size += sizeof (Elf64_External_Rela);
      srel->_raw_size += sizeof (Elf64_External_Rela);
      h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
      h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
    }
    }
 
 
  /* We need to figure out the alignment required for this symbol.  I
  /* We need to figure out the alignment required for this symbol.  I
     have no idea how ELF linkers handle this.  16-bytes is the size
     have no idea how ELF linkers handle this.  16-bytes is the size
     of the largest type that requires hard alignment -- long double.  */
     of the largest type that requires hard alignment -- long double.  */
  power_of_two = bfd_log2 (h->size);
  power_of_two = bfd_log2 (h->size);
  if (power_of_two > 4)
  if (power_of_two > 4)
    power_of_two = 4;
    power_of_two = 4;
 
 
  /* Apply the required alignment.  */
  /* Apply the required alignment.  */
  s->_raw_size = BFD_ALIGN (s->_raw_size,
  s->_raw_size = BFD_ALIGN (s->_raw_size,
                            (bfd_size_type) (1 << power_of_two));
                            (bfd_size_type) (1 << power_of_two));
  if (power_of_two > bfd_get_section_alignment (dynobj, s))
  if (power_of_two > bfd_get_section_alignment (dynobj, s))
    {
    {
      if (! bfd_set_section_alignment (dynobj, s, power_of_two))
      if (! bfd_set_section_alignment (dynobj, s, power_of_two))
        return false;
        return false;
    }
    }
 
 
  /* Define the symbol as being at this point in the section.  */
  /* Define the symbol as being at this point in the section.  */
  h->root.u.def.section = s;
  h->root.u.def.section = s;
  h->root.u.def.value = s->_raw_size;
  h->root.u.def.value = s->_raw_size;
 
 
  /* Increment the section size to make room for the symbol.  */
  /* Increment the section size to make room for the symbol.  */
  s->_raw_size += h->size;
  s->_raw_size += h->size;
 
 
  return true;
  return true;
}
}
 
 
/* Set the sizes of the dynamic sections.  */
/* Set the sizes of the dynamic sections.  */
 
 
static boolean
static boolean
sparc64_elf_size_dynamic_sections (output_bfd, info)
sparc64_elf_size_dynamic_sections (output_bfd, info)
     bfd *output_bfd;
     bfd *output_bfd;
     struct bfd_link_info *info;
     struct bfd_link_info *info;
{
{
  bfd *dynobj;
  bfd *dynobj;
  asection *s;
  asection *s;
  boolean relplt;
  boolean relplt;
 
 
  dynobj = elf_hash_table (info)->dynobj;
  dynobj = elf_hash_table (info)->dynobj;
  BFD_ASSERT (dynobj != NULL);
  BFD_ASSERT (dynobj != NULL);
 
 
  if (elf_hash_table (info)->dynamic_sections_created)
  if (elf_hash_table (info)->dynamic_sections_created)
    {
    {
      /* Set the contents of the .interp section to the interpreter.  */
      /* Set the contents of the .interp section to the interpreter.  */
      if (! info->shared)
      if (! info->shared)
        {
        {
          s = bfd_get_section_by_name (dynobj, ".interp");
          s = bfd_get_section_by_name (dynobj, ".interp");
          BFD_ASSERT (s != NULL);
          BFD_ASSERT (s != NULL);
          s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
          s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
          s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
          s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
        }
        }
    }
    }
  else
  else
    {
    {
      /* We may have created entries in the .rela.got section.
      /* We may have created entries in the .rela.got section.
         However, if we are not creating the dynamic sections, we will
         However, if we are not creating the dynamic sections, we will
         not actually use these entries.  Reset the size of .rela.got,
         not actually use these entries.  Reset the size of .rela.got,
         which will cause it to get stripped from the output file
         which will cause it to get stripped from the output file
         below.  */
         below.  */
      s = bfd_get_section_by_name (dynobj, ".rela.got");
      s = bfd_get_section_by_name (dynobj, ".rela.got");
      if (s != NULL)
      if (s != NULL)
        s->_raw_size = 0;
        s->_raw_size = 0;
    }
    }
 
 
  /* The check_relocs and adjust_dynamic_symbol entry points have
  /* The check_relocs and adjust_dynamic_symbol entry points have
     determined the sizes of the various dynamic sections.  Allocate
     determined the sizes of the various dynamic sections.  Allocate
     memory for them.  */
     memory for them.  */
  relplt = false;
  relplt = false;
  for (s = dynobj->sections; s != NULL; s = s->next)
  for (s = dynobj->sections; s != NULL; s = s->next)
    {
    {
      const char *name;
      const char *name;
      boolean strip;
      boolean strip;
 
 
      if ((s->flags & SEC_LINKER_CREATED) == 0)
      if ((s->flags & SEC_LINKER_CREATED) == 0)
        continue;
        continue;
 
 
      /* It's OK to base decisions on the section name, because none
      /* It's OK to base decisions on the section name, because none
         of the dynobj section names depend upon the input files.  */
         of the dynobj section names depend upon the input files.  */
      name = bfd_get_section_name (dynobj, s);
      name = bfd_get_section_name (dynobj, s);
 
 
      strip = false;
      strip = false;
 
 
      if (strncmp (name, ".rela", 5) == 0)
      if (strncmp (name, ".rela", 5) == 0)
        {
        {
          if (s->_raw_size == 0)
          if (s->_raw_size == 0)
            {
            {
              /* If we don't need this section, strip it from the
              /* If we don't need this section, strip it from the
                 output file.  This is to handle .rela.bss and
                 output file.  This is to handle .rela.bss and
                 .rel.plt.  We must create it in
                 .rel.plt.  We must create it in
                 create_dynamic_sections, because it must be created
                 create_dynamic_sections, because it must be created
                 before the linker maps input sections to output
                 before the linker maps input sections to output
                 sections.  The linker does that before
                 sections.  The linker does that before
                 adjust_dynamic_symbol is called, and it is that
                 adjust_dynamic_symbol is called, and it is that
                 function which decides whether anything needs to go
                 function which decides whether anything needs to go
                 into these sections.  */
                 into these sections.  */
              strip = true;
              strip = true;
            }
            }
          else
          else
            {
            {
              if (strcmp (name, ".rela.plt") == 0)
              if (strcmp (name, ".rela.plt") == 0)
                relplt = true;
                relplt = true;
 
 
              /* We use the reloc_count field as a counter if we need
              /* We use the reloc_count field as a counter if we need
                 to copy relocs into the output file.  */
                 to copy relocs into the output file.  */
              s->reloc_count = 0;
              s->reloc_count = 0;
            }
            }
        }
        }
      else if (strcmp (name, ".plt") != 0
      else if (strcmp (name, ".plt") != 0
               && strncmp (name, ".got", 4) != 0)
               && strncmp (name, ".got", 4) != 0)
        {
        {
          /* It's not one of our sections, so don't allocate space.  */
          /* It's not one of our sections, so don't allocate space.  */
          continue;
          continue;
        }
        }
 
 
      if (strip)
      if (strip)
        {
        {
          _bfd_strip_section_from_output (info, s);
          _bfd_strip_section_from_output (info, s);
          continue;
          continue;
        }
        }
 
 
      /* Allocate memory for the section contents.  Zero the memory
      /* Allocate memory for the section contents.  Zero the memory
         for the benefit of .rela.plt, which has 4 unused entries
         for the benefit of .rela.plt, which has 4 unused entries
         at the beginning, and we don't want garbage.  */
         at the beginning, and we don't want garbage.  */
      s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
      s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
      if (s->contents == NULL && s->_raw_size != 0)
      if (s->contents == NULL && s->_raw_size != 0)
        return false;
        return false;
    }
    }
 
 
  if (elf_hash_table (info)->dynamic_sections_created)
  if (elf_hash_table (info)->dynamic_sections_created)
    {
    {
      /* Add some entries to the .dynamic section.  We fill in the
      /* Add some entries to the .dynamic section.  We fill in the
         values later, in sparc64_elf_finish_dynamic_sections, but we
         values later, in sparc64_elf_finish_dynamic_sections, but we
         must add the entries now so that we get the correct size for
         must add the entries now so that we get the correct size for
         the .dynamic section.  The DT_DEBUG entry is filled in by the
         the .dynamic section.  The DT_DEBUG entry is filled in by the
         dynamic linker and used by the debugger.  */
         dynamic linker and used by the debugger.  */
#define add_dynamic_entry(TAG, VAL) \
#define add_dynamic_entry(TAG, VAL) \
  bfd_elf64_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL))
  bfd_elf64_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL))
 
 
      int reg;
      int reg;
      struct sparc64_elf_app_reg * app_regs;
      struct sparc64_elf_app_reg * app_regs;
      struct elf_strtab_hash *dynstr;
      struct elf_strtab_hash *dynstr;
      struct elf_link_hash_table *eht = elf_hash_table (info);
      struct elf_link_hash_table *eht = elf_hash_table (info);
 
 
      if (!info->shared)
      if (!info->shared)
        {
        {
          if (!add_dynamic_entry (DT_DEBUG, 0))
          if (!add_dynamic_entry (DT_DEBUG, 0))
            return false;
            return false;
        }
        }
 
 
      if (relplt)
      if (relplt)
        {
        {
          if (!add_dynamic_entry (DT_PLTGOT, 0)
          if (!add_dynamic_entry (DT_PLTGOT, 0)
              || !add_dynamic_entry (DT_PLTRELSZ, 0)
              || !add_dynamic_entry (DT_PLTRELSZ, 0)
              || !add_dynamic_entry (DT_PLTREL, DT_RELA)
              || !add_dynamic_entry (DT_PLTREL, DT_RELA)
              || !add_dynamic_entry (DT_JMPREL, 0))
              || !add_dynamic_entry (DT_JMPREL, 0))
            return false;
            return false;
        }
        }
 
 
      if (!add_dynamic_entry (DT_RELA, 0)
      if (!add_dynamic_entry (DT_RELA, 0)
          || !add_dynamic_entry (DT_RELASZ, 0)
          || !add_dynamic_entry (DT_RELASZ, 0)
          || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
          || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
        return false;
        return false;
 
 
      if (info->flags & DF_TEXTREL)
      if (info->flags & DF_TEXTREL)
        {
        {
          if (!add_dynamic_entry (DT_TEXTREL, 0))
          if (!add_dynamic_entry (DT_TEXTREL, 0))
            return false;
            return false;
        }
        }
 
 
      /* Add dynamic STT_REGISTER symbols and corresponding DT_SPARC_REGISTER
      /* Add dynamic STT_REGISTER symbols and corresponding DT_SPARC_REGISTER
         entries if needed.  */
         entries if needed.  */
      app_regs = sparc64_elf_hash_table (info)->app_regs;
      app_regs = sparc64_elf_hash_table (info)->app_regs;
      dynstr = eht->dynstr;
      dynstr = eht->dynstr;
 
 
      for (reg = 0; reg < 4; reg++)
      for (reg = 0; reg < 4; reg++)
        if (app_regs [reg].name != NULL)
        if (app_regs [reg].name != NULL)
          {
          {
            struct elf_link_local_dynamic_entry *entry, *e;
            struct elf_link_local_dynamic_entry *entry, *e;
 
 
            if (!add_dynamic_entry (DT_SPARC_REGISTER, 0))
            if (!add_dynamic_entry (DT_SPARC_REGISTER, 0))
              return false;
              return false;
 
 
            entry = (struct elf_link_local_dynamic_entry *)
            entry = (struct elf_link_local_dynamic_entry *)
              bfd_hash_allocate (&info->hash->table, sizeof (*entry));
              bfd_hash_allocate (&info->hash->table, sizeof (*entry));
            if (entry == NULL)
            if (entry == NULL)
              return false;
              return false;
 
 
            /* We cheat here a little bit: the symbol will not be local, so we
            /* We cheat here a little bit: the symbol will not be local, so we
               put it at the end of the dynlocal linked list.  We will fix it
               put it at the end of the dynlocal linked list.  We will fix it
               later on, as we have to fix other fields anyway.  */
               later on, as we have to fix other fields anyway.  */
            entry->isym.st_value = reg < 2 ? reg + 2 : reg + 4;
            entry->isym.st_value = reg < 2 ? reg + 2 : reg + 4;
            entry->isym.st_size = 0;
            entry->isym.st_size = 0;
            if (*app_regs [reg].name != '\0')
            if (*app_regs [reg].name != '\0')
              entry->isym.st_name
              entry->isym.st_name
                = _bfd_elf_strtab_add (dynstr, app_regs[reg].name, false);
                = _bfd_elf_strtab_add (dynstr, app_regs[reg].name, false);
            else
            else
              entry->isym.st_name = 0;
              entry->isym.st_name = 0;
            entry->isym.st_other = 0;
            entry->isym.st_other = 0;
            entry->isym.st_info = ELF_ST_INFO (app_regs [reg].bind,
            entry->isym.st_info = ELF_ST_INFO (app_regs [reg].bind,
                                               STT_REGISTER);
                                               STT_REGISTER);
            entry->isym.st_shndx = app_regs [reg].shndx;
            entry->isym.st_shndx = app_regs [reg].shndx;
            entry->next = NULL;
            entry->next = NULL;
            entry->input_bfd = output_bfd;
            entry->input_bfd = output_bfd;
            entry->input_indx = -1;
            entry->input_indx = -1;
 
 
            if (eht->dynlocal == NULL)
            if (eht->dynlocal == NULL)
              eht->dynlocal = entry;
              eht->dynlocal = entry;
            else
            else
              {
              {
                for (e = eht->dynlocal; e->next; e = e->next)
                for (e = eht->dynlocal; e->next; e = e->next)
                  ;
                  ;
                e->next = entry;
                e->next = entry;
              }
              }
            eht->dynsymcount++;
            eht->dynsymcount++;
          }
          }
    }
    }
#undef add_dynamic_entry
#undef add_dynamic_entry
 
 
  return true;
  return true;
}
}


#define SET_SEC_DO_RELAX(section) do { elf_section_data(section)->tdata = (void *)1; } while (0)
#define SET_SEC_DO_RELAX(section) do { elf_section_data(section)->tdata = (void *)1; } while (0)
#define SEC_DO_RELAX(section) (elf_section_data(section)->tdata == (void *)1)
#define SEC_DO_RELAX(section) (elf_section_data(section)->tdata == (void *)1)
 
 
static boolean
static boolean
sparc64_elf_relax_section (abfd, section, link_info, again)
sparc64_elf_relax_section (abfd, section, link_info, again)
     bfd *abfd ATTRIBUTE_UNUSED;
     bfd *abfd ATTRIBUTE_UNUSED;
     asection *section ATTRIBUTE_UNUSED;
     asection *section ATTRIBUTE_UNUSED;
     struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
     struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
     boolean *again;
     boolean *again;
{
{
  *again = false;
  *again = false;
  SET_SEC_DO_RELAX (section);
  SET_SEC_DO_RELAX (section);
  return true;
  return true;
}
}


/* This is the condition under which finish_dynamic_symbol will be called
/* This is the condition under which finish_dynamic_symbol will be called
   from elflink.h.  If elflink.h doesn't call our finish_dynamic_symbol
   from elflink.h.  If elflink.h doesn't call our finish_dynamic_symbol
   routine, we'll need to do something about initializing any .plt and
   routine, we'll need to do something about initializing any .plt and
   .got entries in relocate_section.  */
   .got entries in relocate_section.  */
#define WILL_CALL_FINISH_DYNAMIC_SYMBOL(DYN, INFO, H)                   \
#define WILL_CALL_FINISH_DYNAMIC_SYMBOL(DYN, INFO, H)                   \
  ((DYN)                                                                \
  ((DYN)                                                                \
   && ((INFO)->shared                                                   \
   && ((INFO)->shared                                                   \
       || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)       \
       || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)       \
   && ((H)->dynindx != -1                                               \
   && ((H)->dynindx != -1                                               \
       || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0))
       || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0))
 
 
/* Relocate a SPARC64 ELF section.  */
/* Relocate a SPARC64 ELF section.  */
 
 
static boolean
static boolean
sparc64_elf_relocate_section (output_bfd, info, input_bfd, input_section,
sparc64_elf_relocate_section (output_bfd, info, input_bfd, input_section,
                              contents, relocs, local_syms, local_sections)
                              contents, relocs, local_syms, local_sections)
     bfd *output_bfd;
     bfd *output_bfd;
     struct bfd_link_info *info;
     struct bfd_link_info *info;
     bfd *input_bfd;
     bfd *input_bfd;
     asection *input_section;
     asection *input_section;
     bfd_byte *contents;
     bfd_byte *contents;
     Elf_Internal_Rela *relocs;
     Elf_Internal_Rela *relocs;
     Elf_Internal_Sym *local_syms;
     Elf_Internal_Sym *local_syms;
     asection **local_sections;
     asection **local_sections;
{
{
  bfd *dynobj;
  bfd *dynobj;
  Elf_Internal_Shdr *symtab_hdr;
  Elf_Internal_Shdr *symtab_hdr;
  struct elf_link_hash_entry **sym_hashes;
  struct elf_link_hash_entry **sym_hashes;
  bfd_vma *local_got_offsets;
  bfd_vma *local_got_offsets;
  bfd_vma got_base;
  bfd_vma got_base;
  asection *sgot;
  asection *sgot;
  asection *splt;
  asection *splt;
  asection *sreloc;
  asection *sreloc;
  Elf_Internal_Rela *rel;
  Elf_Internal_Rela *rel;
  Elf_Internal_Rela *relend;
  Elf_Internal_Rela *relend;
 
 
  if (info->relocateable)
  if (info->relocateable)
    return true;
    return true;
 
 
  dynobj = elf_hash_table (info)->dynobj;
  dynobj = elf_hash_table (info)->dynobj;
  symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
  symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
  sym_hashes = elf_sym_hashes (input_bfd);
  sym_hashes = elf_sym_hashes (input_bfd);
  local_got_offsets = elf_local_got_offsets (input_bfd);
  local_got_offsets = elf_local_got_offsets (input_bfd);
 
 
  if (elf_hash_table(info)->hgot == NULL)
  if (elf_hash_table(info)->hgot == NULL)
    got_base = 0;
    got_base = 0;
  else
  else
    got_base = elf_hash_table (info)->hgot->root.u.def.value;
    got_base = elf_hash_table (info)->hgot->root.u.def.value;
 
 
  sgot = splt = sreloc = NULL;
  sgot = splt = sreloc = NULL;
 
 
  rel = relocs;
  rel = relocs;
  relend = relocs + NUM_SHDR_ENTRIES (& elf_section_data (input_section)->rel_hdr);
  relend = relocs + NUM_SHDR_ENTRIES (& elf_section_data (input_section)->rel_hdr);
  for (; rel < relend; rel++)
  for (; rel < relend; rel++)
    {
    {
      int r_type;
      int r_type;
      reloc_howto_type *howto;
      reloc_howto_type *howto;
      unsigned long r_symndx;
      unsigned long r_symndx;
      struct elf_link_hash_entry *h;
      struct elf_link_hash_entry *h;
      Elf_Internal_Sym *sym;
      Elf_Internal_Sym *sym;
      asection *sec;
      asection *sec;
      bfd_vma relocation, off;
      bfd_vma relocation, off;
      bfd_reloc_status_type r;
      bfd_reloc_status_type r;
      boolean is_plt = false;
      boolean is_plt = false;
      boolean unresolved_reloc;
      boolean unresolved_reloc;
 
 
      r_type = ELF64_R_TYPE_ID (rel->r_info);
      r_type = ELF64_R_TYPE_ID (rel->r_info);
      if (r_type < 0 || r_type >= (int) R_SPARC_max_std)
      if (r_type < 0 || r_type >= (int) R_SPARC_max_std)
        {
        {
          bfd_set_error (bfd_error_bad_value);
          bfd_set_error (bfd_error_bad_value);
          return false;
          return false;
        }
        }
      howto = sparc64_elf_howto_table + r_type;
      howto = sparc64_elf_howto_table + r_type;
 
 
      /* This is a final link.  */
      /* This is a final link.  */
      r_symndx = ELF64_R_SYM (rel->r_info);
      r_symndx = ELF64_R_SYM (rel->r_info);
      h = NULL;
      h = NULL;
      sym = NULL;
      sym = NULL;
      sec = NULL;
      sec = NULL;
      unresolved_reloc = false;
      unresolved_reloc = false;
      if (r_symndx < symtab_hdr->sh_info)
      if (r_symndx < symtab_hdr->sh_info)
        {
        {
          sym = local_syms + r_symndx;
          sym = local_syms + r_symndx;
          sec = local_sections[r_symndx];
          sec = local_sections[r_symndx];
          relocation = _bfd_elf_rela_local_sym (output_bfd, sym, sec, rel);
          relocation = _bfd_elf_rela_local_sym (output_bfd, sym, sec, rel);
        }
        }
      else
      else
        {
        {
          h = sym_hashes[r_symndx - symtab_hdr->sh_info];
          h = sym_hashes[r_symndx - symtab_hdr->sh_info];
          while (h->root.type == bfd_link_hash_indirect
          while (h->root.type == bfd_link_hash_indirect
                 || h->root.type == bfd_link_hash_warning)
                 || h->root.type == bfd_link_hash_warning)
            h = (struct elf_link_hash_entry *) h->root.u.i.link;
            h = (struct elf_link_hash_entry *) h->root.u.i.link;
 
 
          relocation = 0;
          relocation = 0;
          if (h->root.type == bfd_link_hash_defined
          if (h->root.type == bfd_link_hash_defined
              || h->root.type == bfd_link_hash_defweak)
              || h->root.type == bfd_link_hash_defweak)
            {
            {
              sec = h->root.u.def.section;
              sec = h->root.u.def.section;
              if (sec->output_section == NULL)
              if (sec->output_section == NULL)
                /* Set a flag that will be cleared later if we find a
                /* Set a flag that will be cleared later if we find a
                   relocation value for this symbol.  output_section
                   relocation value for this symbol.  output_section
                   is typically NULL for symbols satisfied by a shared
                   is typically NULL for symbols satisfied by a shared
                   library.  */
                   library.  */
                unresolved_reloc = true;
                unresolved_reloc = true;
              else
              else
                relocation = (h->root.u.def.value
                relocation = (h->root.u.def.value
                              + sec->output_section->vma
                              + sec->output_section->vma
                              + sec->output_offset);
                              + sec->output_offset);
            }
            }
          else if (h->root.type == bfd_link_hash_undefweak)
          else if (h->root.type == bfd_link_hash_undefweak)
            ;
            ;
          else if (info->shared
          else if (info->shared
                   && (!info->symbolic || info->allow_shlib_undefined)
                   && (!info->symbolic || info->allow_shlib_undefined)
                   && !info->no_undefined
                   && !info->no_undefined
                   && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
                   && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
            ;
            ;
          else
          else
            {
            {
              if (! ((*info->callbacks->undefined_symbol)
              if (! ((*info->callbacks->undefined_symbol)
                     (info, h->root.root.string, input_bfd,
                     (info, h->root.root.string, input_bfd,
                      input_section, rel->r_offset,
                      input_section, rel->r_offset,
                      (!info->shared || info->no_undefined
                      (!info->shared || info->no_undefined
                       || ELF_ST_VISIBILITY (h->other)))))
                       || ELF_ST_VISIBILITY (h->other)))))
                return false;
                return false;
 
 
              /* To avoid generating warning messages about truncated
              /* To avoid generating warning messages about truncated
                 relocations, set the relocation's address to be the same as
                 relocations, set the relocation's address to be the same as
                 the start of this section.  */
                 the start of this section.  */
 
 
              if (input_section->output_section != NULL)
              if (input_section->output_section != NULL)
                relocation = input_section->output_section->vma;
                relocation = input_section->output_section->vma;
              else
              else
                relocation = 0;
                relocation = 0;
            }
            }
        }
        }
 
 
 do_dynreloc:
 do_dynreloc:
      /* When generating a shared object, these relocations are copied
      /* When generating a shared object, these relocations are copied
         into the output file to be resolved at run time.  */
         into the output file to be resolved at run time.  */
      if (info->shared && r_symndx != 0 && (input_section->flags & SEC_ALLOC))
      if (info->shared && r_symndx != 0 && (input_section->flags & SEC_ALLOC))
        {
        {
          switch (r_type)
          switch (r_type)
            {
            {
            case R_SPARC_PC10:
            case R_SPARC_PC10:
            case R_SPARC_PC22:
            case R_SPARC_PC22:
            case R_SPARC_PC_HH22:
            case R_SPARC_PC_HH22:
            case R_SPARC_PC_HM10:
            case R_SPARC_PC_HM10:
            case R_SPARC_PC_LM22:
            case R_SPARC_PC_LM22:
              if (h != NULL
              if (h != NULL
                  && !strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_"))
                  && !strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_"))
                break;
                break;
              /* Fall through.  */
              /* Fall through.  */
            case R_SPARC_DISP8:
            case R_SPARC_DISP8:
            case R_SPARC_DISP16:
            case R_SPARC_DISP16:
            case R_SPARC_DISP32:
            case R_SPARC_DISP32:
            case R_SPARC_DISP64:
            case R_SPARC_DISP64:
            case R_SPARC_WDISP30:
            case R_SPARC_WDISP30:
            case R_SPARC_WDISP22:
            case R_SPARC_WDISP22:
            case R_SPARC_WDISP19:
            case R_SPARC_WDISP19:
            case R_SPARC_WDISP16:
            case R_SPARC_WDISP16:
              if (h == NULL)
              if (h == NULL)
                break;
                break;
              /* Fall through.  */
              /* Fall through.  */
            case R_SPARC_8:
            case R_SPARC_8:
            case R_SPARC_16:
            case R_SPARC_16:
            case R_SPARC_32:
            case R_SPARC_32:
            case R_SPARC_HI22:
            case R_SPARC_HI22:
            case R_SPARC_22:
            case R_SPARC_22:
            case R_SPARC_13:
            case R_SPARC_13:
            case R_SPARC_LO10:
            case R_SPARC_LO10:
            case R_SPARC_UA32:
            case R_SPARC_UA32:
            case R_SPARC_10:
            case R_SPARC_10:
            case R_SPARC_11:
            case R_SPARC_11:
            case R_SPARC_64:
            case R_SPARC_64:
            case R_SPARC_OLO10:
            case R_SPARC_OLO10:
            case R_SPARC_HH22:
            case R_SPARC_HH22:
            case R_SPARC_HM10:
            case R_SPARC_HM10:
            case R_SPARC_LM22:
            case R_SPARC_LM22:
            case R_SPARC_7:
            case R_SPARC_7:
            case R_SPARC_5:
            case R_SPARC_5:
            case R_SPARC_6:
            case R_SPARC_6:
            case R_SPARC_HIX22:
            case R_SPARC_HIX22:
            case R_SPARC_LOX10:
            case R_SPARC_LOX10:
            case R_SPARC_H44:
            case R_SPARC_H44:
            case R_SPARC_M44:
            case R_SPARC_M44:
            case R_SPARC_L44:
            case R_SPARC_L44:
            case R_SPARC_UA64:
            case R_SPARC_UA64:
            case R_SPARC_UA16:
            case R_SPARC_UA16:
              {
              {
                Elf_Internal_Rela outrel;
                Elf_Internal_Rela outrel;
                boolean skip, relocate;
                boolean skip, relocate;
 
 
                if (sreloc == NULL)
                if (sreloc == NULL)
                  {
                  {
                    const char *name =
                    const char *name =
                      (bfd_elf_string_from_elf_section
                      (bfd_elf_string_from_elf_section
                       (input_bfd,
                       (input_bfd,
                        elf_elfheader (input_bfd)->e_shstrndx,
                        elf_elfheader (input_bfd)->e_shstrndx,
                        elf_section_data (input_section)->rel_hdr.sh_name));
                        elf_section_data (input_section)->rel_hdr.sh_name));
 
 
                    if (name == NULL)
                    if (name == NULL)
                      return false;
                      return false;
 
 
                    BFD_ASSERT (strncmp (name, ".rela", 5) == 0
                    BFD_ASSERT (strncmp (name, ".rela", 5) == 0
                                && strcmp (bfd_get_section_name(input_bfd,
                                && strcmp (bfd_get_section_name(input_bfd,
                                                                input_section),
                                                                input_section),
                                           name + 5) == 0);
                                           name + 5) == 0);
 
 
                    sreloc = bfd_get_section_by_name (dynobj, name);
                    sreloc = bfd_get_section_by_name (dynobj, name);
                    BFD_ASSERT (sreloc != NULL);
                    BFD_ASSERT (sreloc != NULL);
                  }
                  }
 
 
                skip = false;
                skip = false;
                relocate = false;
                relocate = false;
 
 
                outrel.r_offset =
                outrel.r_offset =
                  _bfd_elf_section_offset (output_bfd, info, input_section,
                  _bfd_elf_section_offset (output_bfd, info, input_section,
                                           rel->r_offset);
                                           rel->r_offset);
                if (outrel.r_offset == (bfd_vma) -1)
                if (outrel.r_offset == (bfd_vma) -1)
                  skip = true;
                  skip = true;
                else if (outrel.r_offset == (bfd_vma) -2)
                else if (outrel.r_offset == (bfd_vma) -2)
                  skip = true, relocate = true;
                  skip = true, relocate = true;
 
 
                outrel.r_offset += (input_section->output_section->vma
                outrel.r_offset += (input_section->output_section->vma
                                    + input_section->output_offset);
                                    + input_section->output_offset);
 
 
                /* Optimize unaligned reloc usage now that we know where
                /* Optimize unaligned reloc usage now that we know where
                   it finally resides.  */
                   it finally resides.  */
                switch (r_type)
                switch (r_type)
                  {
                  {
                  case R_SPARC_16:
                  case R_SPARC_16:
                    if (outrel.r_offset & 1) r_type = R_SPARC_UA16;
                    if (outrel.r_offset & 1) r_type = R_SPARC_UA16;
                    break;
                    break;
                  case R_SPARC_UA16:
                  case R_SPARC_UA16:
                    if (!(outrel.r_offset & 1)) r_type = R_SPARC_16;
                    if (!(outrel.r_offset & 1)) r_type = R_SPARC_16;
                    break;
                    break;
                  case R_SPARC_32:
                  case R_SPARC_32:
                    if (outrel.r_offset & 3) r_type = R_SPARC_UA32;
                    if (outrel.r_offset & 3) r_type = R_SPARC_UA32;
                    break;
                    break;
                  case R_SPARC_UA32:
                  case R_SPARC_UA32:
                    if (!(outrel.r_offset & 3)) r_type = R_SPARC_32;
                    if (!(outrel.r_offset & 3)) r_type = R_SPARC_32;
                    break;
                    break;
                  case R_SPARC_64:
                  case R_SPARC_64:
                    if (outrel.r_offset & 7) r_type = R_SPARC_UA64;
                    if (outrel.r_offset & 7) r_type = R_SPARC_UA64;
                    break;
                    break;
                  case R_SPARC_UA64:
                  case R_SPARC_UA64:
                    if (!(outrel.r_offset & 7)) r_type = R_SPARC_64;
                    if (!(outrel.r_offset & 7)) r_type = R_SPARC_64;
                    break;
                    break;
                  case R_SPARC_DISP8:
                  case R_SPARC_DISP8:
                  case R_SPARC_DISP16:
                  case R_SPARC_DISP16:
                  case R_SPARC_DISP32:
                  case R_SPARC_DISP32:
                  case R_SPARC_DISP64:
                  case R_SPARC_DISP64:
                    /* If the symbol is not dynamic, we should not keep
                    /* If the symbol is not dynamic, we should not keep
                       a dynamic relocation.  But an .rela.* slot has been
                       a dynamic relocation.  But an .rela.* slot has been
                       allocated for it, output R_SPARC_NONE.
                       allocated for it, output R_SPARC_NONE.
                       FIXME: Add code tracking needed dynamic relocs as
                       FIXME: Add code tracking needed dynamic relocs as
                       e.g. i386 has.  */
                       e.g. i386 has.  */
                    if (h->dynindx == -1)
                    if (h->dynindx == -1)
                      skip = true, relocate = true;
                      skip = true, relocate = true;
                    break;
                    break;
                  }
                  }
 
 
                if (skip)
                if (skip)
                  memset (&outrel, 0, sizeof outrel);
                  memset (&outrel, 0, sizeof outrel);
                /* h->dynindx may be -1 if the symbol was marked to
                /* h->dynindx may be -1 if the symbol was marked to
                   become local.  */
                   become local.  */
                else if (h != NULL && ! is_plt
                else if (h != NULL && ! is_plt
                         && ((! info->symbolic && h->dynindx != -1)
                         && ((! info->symbolic && h->dynindx != -1)
                             || (h->elf_link_hash_flags
                             || (h->elf_link_hash_flags
                                 & ELF_LINK_HASH_DEF_REGULAR) == 0))
                                 & ELF_LINK_HASH_DEF_REGULAR) == 0))
                  {
                  {
                    BFD_ASSERT (h->dynindx != -1);
                    BFD_ASSERT (h->dynindx != -1);
                    outrel.r_info
                    outrel.r_info
                      = ELF64_R_INFO (h->dynindx,
                      = ELF64_R_INFO (h->dynindx,
                                      ELF64_R_TYPE_INFO (
                                      ELF64_R_TYPE_INFO (
                                        ELF64_R_TYPE_DATA (rel->r_info),
                                        ELF64_R_TYPE_DATA (rel->r_info),
                                                           r_type));
                                                           r_type));
                    outrel.r_addend = rel->r_addend;
                    outrel.r_addend = rel->r_addend;
                  }
                  }
                else
                else
                  {
                  {
                    if (r_type == R_SPARC_64)
                    if (r_type == R_SPARC_64)
                      {
                      {
                        outrel.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
                        outrel.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
                        outrel.r_addend = relocation + rel->r_addend;
                        outrel.r_addend = relocation + rel->r_addend;
                      }
                      }
                    else
                    else
                      {
                      {
                        long indx;
                        long indx;
 
 
                        if (is_plt)
                        if (is_plt)
                          sec = splt;
                          sec = splt;
                        else if (h == NULL)
                        else if (h == NULL)
                          sec = local_sections[r_symndx];
                          sec = local_sections[r_symndx];
                        else
                        else
                          {
                          {
                            BFD_ASSERT (h->root.type == bfd_link_hash_defined
                            BFD_ASSERT (h->root.type == bfd_link_hash_defined
                                        || (h->root.type
                                        || (h->root.type
                                            == bfd_link_hash_defweak));
                                            == bfd_link_hash_defweak));
                            sec = h->root.u.def.section;
                            sec = h->root.u.def.section;
                          }
                          }
                        if (sec != NULL && bfd_is_abs_section (sec))
                        if (sec != NULL && bfd_is_abs_section (sec))
                          indx = 0;
                          indx = 0;
                        else if (sec == NULL || sec->owner == NULL)
                        else if (sec == NULL || sec->owner == NULL)
                          {
                          {
                            bfd_set_error (bfd_error_bad_value);
                            bfd_set_error (bfd_error_bad_value);
                            return false;
                            return false;
                          }
                          }
                        else
                        else
                          {
                          {
                            asection *osec;
                            asection *osec;
 
 
                            osec = sec->output_section;
                            osec = sec->output_section;
                            indx = elf_section_data (osec)->dynindx;
                            indx = elf_section_data (osec)->dynindx;
 
 
                            /* FIXME: we really should be able to link non-pic
                            /* FIXME: we really should be able to link non-pic
                               shared libraries.  */
                               shared libraries.  */
                            if (indx == 0)
                            if (indx == 0)
                              {
                              {
                                BFD_FAIL ();
                                BFD_FAIL ();
                                (*_bfd_error_handler)
                                (*_bfd_error_handler)
                                  (_("%s: probably compiled without -fPIC?"),
                                  (_("%s: probably compiled without -fPIC?"),
                                   bfd_archive_filename (input_bfd));
                                   bfd_archive_filename (input_bfd));
                                bfd_set_error (bfd_error_bad_value);
                                bfd_set_error (bfd_error_bad_value);
                                return false;
                                return false;
                              }
                              }
                          }
                          }
 
 
                        outrel.r_info
                        outrel.r_info
                          = ELF64_R_INFO (indx,
                          = ELF64_R_INFO (indx,
                                          ELF64_R_TYPE_INFO (
                                          ELF64_R_TYPE_INFO (
                                            ELF64_R_TYPE_DATA (rel->r_info),
                                            ELF64_R_TYPE_DATA (rel->r_info),
                                                               r_type));
                                                               r_type));
                        outrel.r_addend = relocation + rel->r_addend;
                        outrel.r_addend = relocation + rel->r_addend;
                      }
                      }
                  }
                  }
 
 
                bfd_elf64_swap_reloca_out (output_bfd, &outrel,
                bfd_elf64_swap_reloca_out (output_bfd, &outrel,
                                           (((Elf64_External_Rela *)
                                           (((Elf64_External_Rela *)
                                             sreloc->contents)
                                             sreloc->contents)
                                            + sreloc->reloc_count));
                                            + sreloc->reloc_count));
                ++sreloc->reloc_count;
                ++sreloc->reloc_count;
 
 
                /* This reloc will be computed at runtime, so there's no
                /* This reloc will be computed at runtime, so there's no
                   need to do anything now.  */
                   need to do anything now.  */
                if (! relocate)
                if (! relocate)
                  continue;
                  continue;
              }
              }
            break;
            break;
            }
            }
        }
        }
 
 
      switch (r_type)
      switch (r_type)
        {
        {
        case R_SPARC_GOT10:
        case R_SPARC_GOT10:
        case R_SPARC_GOT13:
        case R_SPARC_GOT13:
        case R_SPARC_GOT22:
        case R_SPARC_GOT22:
          /* Relocation is to the entry for this symbol in the global
          /* Relocation is to the entry for this symbol in the global
             offset table.  */
             offset table.  */
          if (sgot == NULL)
          if (sgot == NULL)
            {
            {
              sgot = bfd_get_section_by_name (dynobj, ".got");
              sgot = bfd_get_section_by_name (dynobj, ".got");
              BFD_ASSERT (sgot != NULL);
              BFD_ASSERT (sgot != NULL);
            }
            }
 
 
          if (h != NULL)
          if (h != NULL)
            {
            {
              boolean dyn;
              boolean dyn;
 
 
              off = h->got.offset;
              off = h->got.offset;
              BFD_ASSERT (off != (bfd_vma) -1);
              BFD_ASSERT (off != (bfd_vma) -1);
              dyn = elf_hash_table (info)->dynamic_sections_created;
              dyn = elf_hash_table (info)->dynamic_sections_created;
 
 
              if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info, h)
              if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info, h)
                  || (info->shared
                  || (info->shared
                      && (info->symbolic
                      && (info->symbolic
                          || h->dynindx == -1
                          || h->dynindx == -1
                          || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL))
                          || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL))
                      && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
                      && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
                {
                {
                  /* This is actually a static link, or it is a -Bsymbolic
                  /* This is actually a static link, or it is a -Bsymbolic
                     link and the symbol is defined locally, or the symbol
                     link and the symbol is defined locally, or the symbol
                     was forced to be local because of a version file.  We
                     was forced to be local because of a version file.  We
                     must initialize this entry in the global offset table.
                     must initialize this entry in the global offset table.
                     Since the offset must always be a multiple of 8, we
                     Since the offset must always be a multiple of 8, we
                     use the least significant bit to record whether we
                     use the least significant bit to record whether we
                     have initialized it already.
                     have initialized it already.
 
 
                     When doing a dynamic link, we create a .rela.got
                     When doing a dynamic link, we create a .rela.got
                     relocation entry to initialize the value.  This is
                     relocation entry to initialize the value.  This is
                     done in the finish_dynamic_symbol routine.  */
                     done in the finish_dynamic_symbol routine.  */
 
 
                  if ((off & 1) != 0)
                  if ((off & 1) != 0)
                    off &= ~1;
                    off &= ~1;
                  else
                  else
                    {
                    {
                      bfd_put_64 (output_bfd, relocation,
                      bfd_put_64 (output_bfd, relocation,
                                  sgot->contents + off);
                                  sgot->contents + off);
                      h->got.offset |= 1;
                      h->got.offset |= 1;
                    }
                    }
                }
                }
              else
              else
                unresolved_reloc = false;
                unresolved_reloc = false;
            }
            }
          else
          else
            {
            {
              BFD_ASSERT (local_got_offsets != NULL);
              BFD_ASSERT (local_got_offsets != NULL);
              off = local_got_offsets[r_symndx];
              off = local_got_offsets[r_symndx];
              BFD_ASSERT (off != (bfd_vma) -1);
              BFD_ASSERT (off != (bfd_vma) -1);
 
 
              /* The offset must always be a multiple of 8.  We use
              /* The offset must always be a multiple of 8.  We use
                 the least significant bit to record whether we have
                 the least significant bit to record whether we have
                 already processed this entry.  */
                 already processed this entry.  */
              if ((off & 1) != 0)
              if ((off & 1) != 0)
                off &= ~1;
                off &= ~1;
              else
              else
                {
                {
                  local_got_offsets[r_symndx] |= 1;
                  local_got_offsets[r_symndx] |= 1;
 
 
                  if (info->shared)
                  if (info->shared)
                    {
                    {
                      asection *srelgot;
                      asection *srelgot;
                      Elf_Internal_Rela outrel;
                      Elf_Internal_Rela outrel;
 
 
                      /* The Solaris 2.7 64-bit linker adds the contents
                      /* The Solaris 2.7 64-bit linker adds the contents
                         of the location to the value of the reloc.
                         of the location to the value of the reloc.
                         Note this is different behaviour to the
                         Note this is different behaviour to the
                         32-bit linker, which both adds the contents
                         32-bit linker, which both adds the contents
                         and ignores the addend.  So clear the location.  */
                         and ignores the addend.  So clear the location.  */
                      bfd_put_64 (output_bfd, (bfd_vma) 0,
                      bfd_put_64 (output_bfd, (bfd_vma) 0,
                                  sgot->contents + off);
                                  sgot->contents + off);
 
 
                      /* We need to generate a R_SPARC_RELATIVE reloc
                      /* We need to generate a R_SPARC_RELATIVE reloc
                         for the dynamic linker.  */
                         for the dynamic linker.  */
                      srelgot = bfd_get_section_by_name(dynobj, ".rela.got");
                      srelgot = bfd_get_section_by_name(dynobj, ".rela.got");
                      BFD_ASSERT (srelgot != NULL);
                      BFD_ASSERT (srelgot != NULL);
 
 
                      outrel.r_offset = (sgot->output_section->vma
                      outrel.r_offset = (sgot->output_section->vma
                                         + sgot->output_offset
                                         + sgot->output_offset
                                         + off);
                                         + off);
                      outrel.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
                      outrel.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
                      outrel.r_addend = relocation;
                      outrel.r_addend = relocation;
                      bfd_elf64_swap_reloca_out (output_bfd, &outrel,
                      bfd_elf64_swap_reloca_out (output_bfd, &outrel,
                                                 (((Elf64_External_Rela *)
                                                 (((Elf64_External_Rela *)
                                                   srelgot->contents)
                                                   srelgot->contents)
                                                  + srelgot->reloc_count));
                                                  + srelgot->reloc_count));
                      ++srelgot->reloc_count;
                      ++srelgot->reloc_count;
                    }
                    }
                  else
                  else
                    bfd_put_64 (output_bfd, relocation, sgot->contents + off);
                    bfd_put_64 (output_bfd, relocation, sgot->contents + off);
                }
                }
            }
            }
          relocation = sgot->output_offset + off - got_base;
          relocation = sgot->output_offset + off - got_base;
          goto do_default;
          goto do_default;
 
 
        case R_SPARC_WPLT30:
        case R_SPARC_WPLT30:
        case R_SPARC_PLT32:
        case R_SPARC_PLT32:
        case R_SPARC_HIPLT22:
        case R_SPARC_HIPLT22:
        case R_SPARC_LOPLT10:
        case R_SPARC_LOPLT10:
        case R_SPARC_PCPLT32:
        case R_SPARC_PCPLT32:
        case R_SPARC_PCPLT22:
        case R_SPARC_PCPLT22:
        case R_SPARC_PCPLT10:
        case R_SPARC_PCPLT10:
        case R_SPARC_PLT64:
        case R_SPARC_PLT64:
          /* Relocation is to the entry for this symbol in the
          /* Relocation is to the entry for this symbol in the
             procedure linkage table.  */
             procedure linkage table.  */
          BFD_ASSERT (h != NULL);
          BFD_ASSERT (h != NULL);
 
 
          if (h->plt.offset == (bfd_vma) -1)
          if (h->plt.offset == (bfd_vma) -1)
            {
            {
              /* We didn't make a PLT entry for this symbol.  This
              /* We didn't make a PLT entry for this symbol.  This
                 happens when statically linking PIC code, or when
                 happens when statically linking PIC code, or when
                 using -Bsymbolic.  */
                 using -Bsymbolic.  */
              goto do_default;
              goto do_default;
            }
            }
 
 
          if (splt == NULL)
          if (splt == NULL)
            {
            {
              splt = bfd_get_section_by_name (dynobj, ".plt");
              splt = bfd_get_section_by_name (dynobj, ".plt");
              BFD_ASSERT (splt != NULL);
              BFD_ASSERT (splt != NULL);
            }
            }
 
 
          relocation = (splt->output_section->vma
          relocation = (splt->output_section->vma
                        + splt->output_offset
                        + splt->output_offset
                        + sparc64_elf_plt_entry_offset (h->plt.offset));
                        + sparc64_elf_plt_entry_offset (h->plt.offset));
          unresolved_reloc = false;
          unresolved_reloc = false;
          if (r_type == R_SPARC_WPLT30)
          if (r_type == R_SPARC_WPLT30)
            goto do_wplt30;
            goto do_wplt30;
          if (r_type == R_SPARC_PLT32 || r_type == R_SPARC_PLT64)
          if (r_type == R_SPARC_PLT32 || r_type == R_SPARC_PLT64)
            {
            {
              r_type = r_type == R_SPARC_PLT32 ? R_SPARC_32 : R_SPARC_64;
              r_type = r_type == R_SPARC_PLT32 ? R_SPARC_32 : R_SPARC_64;
              is_plt = true;
              is_plt = true;
              goto do_dynreloc;
              goto do_dynreloc;
            }
            }
          goto do_default;
          goto do_default;
 
 
        case R_SPARC_OLO10:
        case R_SPARC_OLO10:
          {
          {
            bfd_vma x;
            bfd_vma x;
 
 
            relocation += rel->r_addend;
            relocation += rel->r_addend;
            relocation = (relocation & 0x3ff) + ELF64_R_TYPE_DATA (rel->r_info);
            relocation = (relocation & 0x3ff) + ELF64_R_TYPE_DATA (rel->r_info);
 
 
            x = bfd_get_32 (input_bfd, contents + rel->r_offset);
            x = bfd_get_32 (input_bfd, contents + rel->r_offset);
            x = (x & ~(bfd_vma) 0x1fff) | (relocation & 0x1fff);
            x = (x & ~(bfd_vma) 0x1fff) | (relocation & 0x1fff);
            bfd_put_32 (input_bfd, x, contents + rel->r_offset);
            bfd_put_32 (input_bfd, x, contents + rel->r_offset);
 
 
            r = bfd_check_overflow (howto->complain_on_overflow,
            r = bfd_check_overflow (howto->complain_on_overflow,
                                    howto->bitsize, howto->rightshift,
                                    howto->bitsize, howto->rightshift,
                                    bfd_arch_bits_per_address (input_bfd),
                                    bfd_arch_bits_per_address (input_bfd),
                                    relocation);
                                    relocation);
          }
          }
          break;
          break;
 
 
        case R_SPARC_WDISP16:
        case R_SPARC_WDISP16:
          {
          {
            bfd_vma x;
            bfd_vma x;
 
 
            relocation += rel->r_addend;
            relocation += rel->r_addend;
            /* Adjust for pc-relative-ness.  */
            /* Adjust for pc-relative-ness.  */
            relocation -= (input_section->output_section->vma
            relocation -= (input_section->output_section->vma
                           + input_section->output_offset);
                           + input_section->output_offset);
            relocation -= rel->r_offset;
            relocation -= rel->r_offset;
 
 
            x = bfd_get_32 (input_bfd, contents + rel->r_offset);
            x = bfd_get_32 (input_bfd, contents + rel->r_offset);
            x &= ~(bfd_vma) 0x303fff;
            x &= ~(bfd_vma) 0x303fff;
            x |= ((((relocation >> 2) & 0xc000) << 6)
            x |= ((((relocation >> 2) & 0xc000) << 6)
                  | ((relocation >> 2) & 0x3fff));
                  | ((relocation >> 2) & 0x3fff));
            bfd_put_32 (input_bfd, x, contents + rel->r_offset);
            bfd_put_32 (input_bfd, x, contents + rel->r_offset);
 
 
            r = bfd_check_overflow (howto->complain_on_overflow,
            r = bfd_check_overflow (howto->complain_on_overflow,
                                    howto->bitsize, howto->rightshift,
                                    howto->bitsize, howto->rightshift,
                                    bfd_arch_bits_per_address (input_bfd),
                                    bfd_arch_bits_per_address (input_bfd),
                                    relocation);
                                    relocation);
          }
          }
          break;
          break;
 
 
        case R_SPARC_HIX22:
        case R_SPARC_HIX22:
          {
          {
            bfd_vma x;
            bfd_vma x;
 
 
            relocation += rel->r_addend;
            relocation += rel->r_addend;
            relocation = relocation ^ MINUS_ONE;
            relocation = relocation ^ MINUS_ONE;
 
 
            x = bfd_get_32 (input_bfd, contents + rel->r_offset);
            x = bfd_get_32 (input_bfd, contents + rel->r_offset);
            x = (x & ~(bfd_vma) 0x3fffff) | ((relocation >> 10) & 0x3fffff);
            x = (x & ~(bfd_vma) 0x3fffff) | ((relocation >> 10) & 0x3fffff);
            bfd_put_32 (input_bfd, x, contents + rel->r_offset);
            bfd_put_32 (input_bfd, x, contents + rel->r_offset);
 
 
            r = bfd_check_overflow (howto->complain_on_overflow,
            r = bfd_check_overflow (howto->complain_on_overflow,
                                    howto->bitsize, howto->rightshift,
                                    howto->bitsize, howto->rightshift,
                                    bfd_arch_bits_per_address (input_bfd),
                                    bfd_arch_bits_per_address (input_bfd),
                                    relocation);
                                    relocation);
          }
          }
          break;
          break;
 
 
        case R_SPARC_LOX10:
        case R_SPARC_LOX10:
          {
          {
            bfd_vma x;
            bfd_vma x;
 
 
            relocation += rel->r_addend;
            relocation += rel->r_addend;
            relocation = (relocation & 0x3ff) | 0x1c00;
            relocation = (relocation & 0x3ff) | 0x1c00;
 
 
            x = bfd_get_32 (input_bfd, contents + rel->r_offset);
            x = bfd_get_32 (input_bfd, contents + rel->r_offset);
            x = (x & ~(bfd_vma) 0x1fff) | relocation;
            x = (x & ~(bfd_vma) 0x1fff) | relocation;
            bfd_put_32 (input_bfd, x, contents + rel->r_offset);
            bfd_put_32 (input_bfd, x, contents + rel->r_offset);
 
 
            r = bfd_reloc_ok;
            r = bfd_reloc_ok;
          }
          }
          break;
          break;
 
 
        case R_SPARC_WDISP30:
        case R_SPARC_WDISP30:
        do_wplt30:
        do_wplt30:
          if (SEC_DO_RELAX (input_section)
          if (SEC_DO_RELAX (input_section)
              && rel->r_offset + 4 < input_section->_raw_size)
              && rel->r_offset + 4 < input_section->_raw_size)
            {
            {
#define G0              0
#define G0              0
#define O7              15
#define O7              15
#define XCC             (2 << 20)
#define XCC             (2 << 20)
#define COND(x)         (((x)&0xf)<<25)
#define COND(x)         (((x)&0xf)<<25)
#define CONDA           COND(0x8)
#define CONDA           COND(0x8)
#define INSN_BPA        (F2(0,1) | CONDA | BPRED | XCC)
#define INSN_BPA        (F2(0,1) | CONDA | BPRED | XCC)
#define INSN_BA         (F2(0,2) | CONDA)
#define INSN_BA         (F2(0,2) | CONDA)
#define INSN_OR         F3(2, 0x2, 0)
#define INSN_OR         F3(2, 0x2, 0)
#define INSN_NOP        F2(0,4)
#define INSN_NOP        F2(0,4)
 
 
              bfd_vma x, y;
              bfd_vma x, y;
 
 
              /* If the instruction is a call with either:
              /* If the instruction is a call with either:
                 restore
                 restore
                 arithmetic instruction with rd == %o7
                 arithmetic instruction with rd == %o7
                 where rs1 != %o7 and rs2 if it is register != %o7
                 where rs1 != %o7 and rs2 if it is register != %o7
                 then we can optimize if the call destination is near
                 then we can optimize if the call destination is near
                 by changing the call into a branch always.  */
                 by changing the call into a branch always.  */
              x = bfd_get_32 (input_bfd, contents + rel->r_offset);
              x = bfd_get_32 (input_bfd, contents + rel->r_offset);
              y = bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
              y = bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
              if ((x & OP(~0)) == OP(1) && (y & OP(~0)) == OP(2))
              if ((x & OP(~0)) == OP(1) && (y & OP(~0)) == OP(2))
                {
                {
                  if (((y & OP3(~0)) == OP3(0x3d) /* restore */
                  if (((y & OP3(~0)) == OP3(0x3d) /* restore */
                       || ((y & OP3(0x28)) == 0 /* arithmetic */
                       || ((y & OP3(0x28)) == 0 /* arithmetic */
                           && (y & RD(~0)) == RD(O7)))
                           && (y & RD(~0)) == RD(O7)))
                      && (y & RS1(~0)) != RS1(O7)
                      && (y & RS1(~0)) != RS1(O7)
                      && ((y & F3I(~0))
                      && ((y & F3I(~0))
                          || (y & RS2(~0)) != RS2(O7)))
                          || (y & RS2(~0)) != RS2(O7)))
                    {
                    {
                      bfd_vma reloc;
                      bfd_vma reloc;
 
 
                      reloc = relocation + rel->r_addend - rel->r_offset;
                      reloc = relocation + rel->r_addend - rel->r_offset;
                      reloc -= (input_section->output_section->vma
                      reloc -= (input_section->output_section->vma
                                + input_section->output_offset);
                                + input_section->output_offset);
                      if (reloc & 3)
                      if (reloc & 3)
                        goto do_default;
                        goto do_default;
 
 
                      /* Ensure the branch fits into simm22.  */
                      /* Ensure the branch fits into simm22.  */
                      if ((reloc & ~(bfd_vma)0x7fffff)
                      if ((reloc & ~(bfd_vma)0x7fffff)
                           && ((reloc | 0x7fffff) != MINUS_ONE))
                           && ((reloc | 0x7fffff) != MINUS_ONE))
                        goto do_default;
                        goto do_default;
                      reloc >>= 2;
                      reloc >>= 2;
 
 
                      /* Check whether it fits into simm19.  */
                      /* Check whether it fits into simm19.  */
                      if ((reloc & 0x3c0000) == 0
                      if ((reloc & 0x3c0000) == 0
                          || (reloc & 0x3c0000) == 0x3c0000)
                          || (reloc & 0x3c0000) == 0x3c0000)
                        x = INSN_BPA | (reloc & 0x7ffff); /* ba,pt %xcc */
                        x = INSN_BPA | (reloc & 0x7ffff); /* ba,pt %xcc */
                      else
                      else
                        x = INSN_BA | (reloc & 0x3fffff); /* ba */
                        x = INSN_BA | (reloc & 0x3fffff); /* ba */
                      bfd_put_32 (input_bfd, x, contents + rel->r_offset);
                      bfd_put_32 (input_bfd, x, contents + rel->r_offset);
                      r = bfd_reloc_ok;
                      r = bfd_reloc_ok;
                      if (rel->r_offset >= 4
                      if (rel->r_offset >= 4
                          && (y & (0xffffffff ^ RS1(~0)))
                          && (y & (0xffffffff ^ RS1(~0)))
                             == (INSN_OR | RD(O7) | RS2(G0)))
                             == (INSN_OR | RD(O7) | RS2(G0)))
                        {
                        {
                          bfd_vma z;
                          bfd_vma z;
                          unsigned int reg;
                          unsigned int reg;
 
 
                          z = bfd_get_32 (input_bfd,
                          z = bfd_get_32 (input_bfd,
                                          contents + rel->r_offset - 4);
                                          contents + rel->r_offset - 4);
                          if ((z & (0xffffffff ^ RD(~0)))
                          if ((z & (0xffffffff ^ RD(~0)))
                              != (INSN_OR | RS1(O7) | RS2(G0)))
                              != (INSN_OR | RS1(O7) | RS2(G0)))
                            break;
                            break;
 
 
                          /* The sequence was
                          /* The sequence was
                             or %o7, %g0, %rN
                             or %o7, %g0, %rN
                             call foo
                             call foo
                             or %rN, %g0, %o7
                             or %rN, %g0, %o7
 
 
                             If call foo was replaced with ba, replace
                             If call foo was replaced with ba, replace
                             or %rN, %g0, %o7 with nop.  */
                             or %rN, %g0, %o7 with nop.  */
 
 
                          reg = (y & RS1(~0)) >> 14;
                          reg = (y & RS1(~0)) >> 14;
                          if (reg != ((z & RD(~0)) >> 25)
                          if (reg != ((z & RD(~0)) >> 25)
                              || reg == G0 || reg == O7)
                              || reg == G0 || reg == O7)
                            break;
                            break;
 
 
                          bfd_put_32 (input_bfd, (bfd_vma) INSN_NOP,
                          bfd_put_32 (input_bfd, (bfd_vma) INSN_NOP,
                                      contents + rel->r_offset + 4);
                                      contents + rel->r_offset + 4);
                        }
                        }
                      break;
                      break;
                    }
                    }
                }
                }
            }
            }
          /* FALLTHROUGH */
          /* FALLTHROUGH */
 
 
        default:
        default:
        do_default:
        do_default:
          r = _bfd_final_link_relocate (howto, input_bfd, input_section,
          r = _bfd_final_link_relocate (howto, input_bfd, input_section,
                                        contents, rel->r_offset,
                                        contents, rel->r_offset,
                                        relocation, rel->r_addend);
                                        relocation, rel->r_addend);
          break;
          break;
        }
        }
 
 
      /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
      /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
         because such sections are not SEC_ALLOC and thus ld.so will
         because such sections are not SEC_ALLOC and thus ld.so will
         not process them.  */
         not process them.  */
      if (unresolved_reloc
      if (unresolved_reloc
          && !((input_section->flags & SEC_DEBUGGING) != 0
          && !((input_section->flags & SEC_DEBUGGING) != 0
               && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0))
               && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0))
        (*_bfd_error_handler)
        (*_bfd_error_handler)
          (_("%s(%s+0x%lx): unresolvable relocation against symbol `%s'"),
          (_("%s(%s+0x%lx): unresolvable relocation against symbol `%s'"),
           bfd_archive_filename (input_bfd),
           bfd_archive_filename (input_bfd),
           bfd_get_section_name (input_bfd, input_section),
           bfd_get_section_name (input_bfd, input_section),
           (long) rel->r_offset,
           (long) rel->r_offset,
           h->root.root.string);
           h->root.root.string);
 
 
      switch (r)
      switch (r)
        {
        {
        case bfd_reloc_ok:
        case bfd_reloc_ok:
          break;
          break;
 
 
        default:
        default:
        case bfd_reloc_outofrange:
        case bfd_reloc_outofrange:
          abort ();
          abort ();
 
 
        case bfd_reloc_overflow:
        case bfd_reloc_overflow:
          {
          {
            const char *name;
            const char *name;
 
 
            /* The Solaris native linker silently disregards
            /* The Solaris native linker silently disregards
               overflows.  We don't, but this breaks stabs debugging
               overflows.  We don't, but this breaks stabs debugging
               info, whose relocations are only 32-bits wide.  Ignore
               info, whose relocations are only 32-bits wide.  Ignore
               overflows in this case.  */
               overflows in this case.  */
            if (r_type == R_SPARC_32
            if (r_type == R_SPARC_32
                && (input_section->flags & SEC_DEBUGGING) != 0
                && (input_section->flags & SEC_DEBUGGING) != 0
                && strcmp (bfd_section_name (input_bfd, input_section),
                && strcmp (bfd_section_name (input_bfd, input_section),
                           ".stab") == 0)
                           ".stab") == 0)
              break;
              break;
 
 
            if (h != NULL)
            if (h != NULL)
              {
              {
                if (h->root.type == bfd_link_hash_undefweak
                if (h->root.type == bfd_link_hash_undefweak
                    && howto->pc_relative)
                    && howto->pc_relative)
                  {
                  {
                    /* Assume this is a call protected by other code that
                    /* Assume this is a call protected by other code that
                       detect the symbol is undefined.  If this is the case,
                       detect the symbol is undefined.  If this is the case,
                       we can safely ignore the overflow.  If not, the
                       we can safely ignore the overflow.  If not, the
                       program is hosed anyway, and a little warning isn't
                       program is hosed anyway, and a little warning isn't
                       going to help.  */
                       going to help.  */
                    break;
                    break;
                  }
                  }
 
 
                name = h->root.root.string;
                name = h->root.root.string;
              }
              }
            else
            else
              {
              {
                name = (bfd_elf_string_from_elf_section
                name = (bfd_elf_string_from_elf_section
                        (input_bfd,
                        (input_bfd,
                         symtab_hdr->sh_link,
                         symtab_hdr->sh_link,
                         sym->st_name));
                         sym->st_name));
                if (name == NULL)
                if (name == NULL)
                  return false;
                  return false;
                if (*name == '\0')
                if (*name == '\0')
                  name = bfd_section_name (input_bfd, sec);
                  name = bfd_section_name (input_bfd, sec);
              }
              }
            if (! ((*info->callbacks->reloc_overflow)
            if (! ((*info->callbacks->reloc_overflow)
                   (info, name, howto->name, (bfd_vma) 0,
                   (info, name, howto->name, (bfd_vma) 0,
                    input_bfd, input_section, rel->r_offset)))
                    input_bfd, input_section, rel->r_offset)))
              return false;
              return false;
          }
          }
        break;
        break;
        }
        }
    }
    }
 
 
  return true;
  return true;
}
}
 
 
/* Finish up dynamic symbol handling.  We set the contents of various
/* Finish up dynamic symbol handling.  We set the contents of various
   dynamic sections here.  */
   dynamic sections here.  */
 
 
static boolean
static boolean
sparc64_elf_finish_dynamic_symbol (output_bfd, info, h, sym)
sparc64_elf_finish_dynamic_symbol (output_bfd, info, h, sym)
     bfd *output_bfd;
     bfd *output_bfd;
     struct bfd_link_info *info;
     struct bfd_link_info *info;
     struct elf_link_hash_entry *h;
     struct elf_link_hash_entry *h;
     Elf_Internal_Sym *sym;
     Elf_Internal_Sym *sym;
{
{
  bfd *dynobj;
  bfd *dynobj;
 
 
  dynobj = elf_hash_table (info)->dynobj;
  dynobj = elf_hash_table (info)->dynobj;
 
 
  if (h->plt.offset != (bfd_vma) -1)
  if (h->plt.offset != (bfd_vma) -1)
    {
    {
      asection *splt;
      asection *splt;
      asection *srela;
      asection *srela;
      Elf_Internal_Rela rela;
      Elf_Internal_Rela rela;
 
 
      /* This symbol has an entry in the PLT.  Set it up.  */
      /* This symbol has an entry in the PLT.  Set it up.  */
 
 
      BFD_ASSERT (h->dynindx != -1);
      BFD_ASSERT (h->dynindx != -1);
 
 
      splt = bfd_get_section_by_name (dynobj, ".plt");
      splt = bfd_get_section_by_name (dynobj, ".plt");
      srela = bfd_get_section_by_name (dynobj, ".rela.plt");
      srela = bfd_get_section_by_name (dynobj, ".rela.plt");
      BFD_ASSERT (splt != NULL && srela != NULL);
      BFD_ASSERT (splt != NULL && srela != NULL);
 
 
      /* Fill in the entry in the .rela.plt section.  */
      /* Fill in the entry in the .rela.plt section.  */
 
 
      if (h->plt.offset < LARGE_PLT_THRESHOLD)
      if (h->plt.offset < LARGE_PLT_THRESHOLD)
        {
        {
          rela.r_offset = sparc64_elf_plt_entry_offset (h->plt.offset);
          rela.r_offset = sparc64_elf_plt_entry_offset (h->plt.offset);
          rela.r_addend = 0;
          rela.r_addend = 0;
        }
        }
      else
      else
        {
        {
          bfd_vma max = splt->_raw_size / PLT_ENTRY_SIZE;
          bfd_vma max = splt->_raw_size / PLT_ENTRY_SIZE;
          rela.r_offset = sparc64_elf_plt_ptr_offset (h->plt.offset, max);
          rela.r_offset = sparc64_elf_plt_ptr_offset (h->plt.offset, max);
          rela.r_addend = -(sparc64_elf_plt_entry_offset (h->plt.offset) + 4)
          rela.r_addend = -(sparc64_elf_plt_entry_offset (h->plt.offset) + 4)
                          -(splt->output_section->vma + splt->output_offset);
                          -(splt->output_section->vma + splt->output_offset);
        }
        }
      rela.r_offset += (splt->output_section->vma + splt->output_offset);
      rela.r_offset += (splt->output_section->vma + splt->output_offset);
      rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_JMP_SLOT);
      rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_JMP_SLOT);
 
 
      /* Adjust for the first 4 reserved elements in the .plt section
      /* Adjust for the first 4 reserved elements in the .plt section
         when setting the offset in the .rela.plt section.
         when setting the offset in the .rela.plt section.
         Sun forgot to read their own ABI and copied elf32-sparc behaviour,
         Sun forgot to read their own ABI and copied elf32-sparc behaviour,
         thus .plt[4] has corresponding .rela.plt[0] and so on.  */
         thus .plt[4] has corresponding .rela.plt[0] and so on.  */
 
 
      bfd_elf64_swap_reloca_out (output_bfd, &rela,
      bfd_elf64_swap_reloca_out (output_bfd, &rela,
                                 ((Elf64_External_Rela *) srela->contents
                                 ((Elf64_External_Rela *) srela->contents
                                  + (h->plt.offset - 4)));
                                  + (h->plt.offset - 4)));
 
 
      if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
      if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
        {
        {
          /* Mark the symbol as undefined, rather than as defined in
          /* Mark the symbol as undefined, rather than as defined in
             the .plt section.  Leave the value alone.  */
             the .plt section.  Leave the value alone.  */
          sym->st_shndx = SHN_UNDEF;
          sym->st_shndx = SHN_UNDEF;
          /* If the symbol is weak, we do need to clear the value.
          /* If the symbol is weak, we do need to clear the value.
             Otherwise, the PLT entry would provide a definition for
             Otherwise, the PLT entry would provide a definition for
             the symbol even if the symbol wasn't defined anywhere,
             the symbol even if the symbol wasn't defined anywhere,
             and so the symbol would never be NULL.  */
             and so the symbol would never be NULL.  */
          if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK)
          if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK)
              == 0)
              == 0)
            sym->st_value = 0;
            sym->st_value = 0;
        }
        }
    }
    }
 
 
  if (h->got.offset != (bfd_vma) -1)
  if (h->got.offset != (bfd_vma) -1)
    {
    {
      asection *sgot;
      asection *sgot;
      asection *srela;
      asection *srela;
      Elf_Internal_Rela rela;
      Elf_Internal_Rela rela;
 
 
      /* This symbol has an entry in the GOT.  Set it up.  */
      /* This symbol has an entry in the GOT.  Set it up.  */
 
 
      sgot = bfd_get_section_by_name (dynobj, ".got");
      sgot = bfd_get_section_by_name (dynobj, ".got");
      srela = bfd_get_section_by_name (dynobj, ".rela.got");
      srela = bfd_get_section_by_name (dynobj, ".rela.got");
      BFD_ASSERT (sgot != NULL && srela != NULL);
      BFD_ASSERT (sgot != NULL && srela != NULL);
 
 
      rela.r_offset = (sgot->output_section->vma
      rela.r_offset = (sgot->output_section->vma
                       + sgot->output_offset
                       + sgot->output_offset
                       + (h->got.offset &~ (bfd_vma) 1));
                       + (h->got.offset &~ (bfd_vma) 1));
 
 
      /* If this is a -Bsymbolic link, and the symbol is defined
      /* If this is a -Bsymbolic link, and the symbol is defined
         locally, we just want to emit a RELATIVE reloc.  Likewise if
         locally, we just want to emit a RELATIVE reloc.  Likewise if
         the symbol was forced to be local because of a version file.
         the symbol was forced to be local because of a version file.
         The entry in the global offset table will already have been
         The entry in the global offset table will already have been
         initialized in the relocate_section function.  */
         initialized in the relocate_section function.  */
      if (info->shared
      if (info->shared
          && (info->symbolic || h->dynindx == -1)
          && (info->symbolic || h->dynindx == -1)
          && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
          && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
        {
        {
          asection *sec = h->root.u.def.section;
          asection *sec = h->root.u.def.section;
          rela.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
          rela.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
          rela.r_addend = (h->root.u.def.value
          rela.r_addend = (h->root.u.def.value
                           + sec->output_section->vma
                           + sec->output_section->vma
                           + sec->output_offset);
                           + sec->output_offset);
        }
        }
      else
      else
        {
        {
          bfd_put_64 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset);
          bfd_put_64 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset);
          rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_GLOB_DAT);
          rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_GLOB_DAT);
          rela.r_addend = 0;
          rela.r_addend = 0;
        }
        }
 
 
      bfd_elf64_swap_reloca_out (output_bfd, &rela,
      bfd_elf64_swap_reloca_out (output_bfd, &rela,
                                 ((Elf64_External_Rela *) srela->contents
                                 ((Elf64_External_Rela *) srela->contents
                                  + srela->reloc_count));
                                  + srela->reloc_count));
      ++srela->reloc_count;
      ++srela->reloc_count;
    }
    }
 
 
  if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
  if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
    {
    {
      asection *s;
      asection *s;
      Elf_Internal_Rela rela;
      Elf_Internal_Rela rela;
 
 
      /* This symbols needs a copy reloc.  Set it up.  */
      /* This symbols needs a copy reloc.  Set it up.  */
 
 
      BFD_ASSERT (h->dynindx != -1);
      BFD_ASSERT (h->dynindx != -1);
 
 
      s = bfd_get_section_by_name (h->root.u.def.section->owner,
      s = bfd_get_section_by_name (h->root.u.def.section->owner,
                                   ".rela.bss");
                                   ".rela.bss");
      BFD_ASSERT (s != NULL);
      BFD_ASSERT (s != NULL);
 
 
      rela.r_offset = (h->root.u.def.value
      rela.r_offset = (h->root.u.def.value
                       + h->root.u.def.section->output_section->vma
                       + h->root.u.def.section->output_section->vma
                       + h->root.u.def.section->output_offset);
                       + h->root.u.def.section->output_offset);
      rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_COPY);
      rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_COPY);
      rela.r_addend = 0;
      rela.r_addend = 0;
      bfd_elf64_swap_reloca_out (output_bfd, &rela,
      bfd_elf64_swap_reloca_out (output_bfd, &rela,
                                 ((Elf64_External_Rela *) s->contents
                                 ((Elf64_External_Rela *) s->contents
                                  + s->reloc_count));
                                  + s->reloc_count));
      ++s->reloc_count;
      ++s->reloc_count;
    }
    }
 
 
  /* Mark some specially defined symbols as absolute.  */
  /* Mark some specially defined symbols as absolute.  */
  if (strcmp (h->root.root.string, "_DYNAMIC") == 0
  if (strcmp (h->root.root.string, "_DYNAMIC") == 0
      || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0
      || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0
      || strcmp (h->root.root.string, "_PROCEDURE_LINKAGE_TABLE_") == 0)
      || strcmp (h->root.root.string, "_PROCEDURE_LINKAGE_TABLE_") == 0)
    sym->st_shndx = SHN_ABS;
    sym->st_shndx = SHN_ABS;
 
 
  return true;
  return true;
}
}
 
 
/* Finish up the dynamic sections.  */
/* Finish up the dynamic sections.  */
 
 
static boolean
static boolean
sparc64_elf_finish_dynamic_sections (output_bfd, info)
sparc64_elf_finish_dynamic_sections (output_bfd, info)
     bfd *output_bfd;
     bfd *output_bfd;
     struct bfd_link_info *info;
     struct bfd_link_info *info;
{
{
  bfd *dynobj;
  bfd *dynobj;
  int stt_regidx = -1;
  int stt_regidx = -1;
  asection *sdyn;
  asection *sdyn;
  asection *sgot;
  asection *sgot;
 
 
  dynobj = elf_hash_table (info)->dynobj;
  dynobj = elf_hash_table (info)->dynobj;
 
 
  sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
  sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
 
 
  if (elf_hash_table (info)->dynamic_sections_created)
  if (elf_hash_table (info)->dynamic_sections_created)
    {
    {
      asection *splt;
      asection *splt;
      Elf64_External_Dyn *dyncon, *dynconend;
      Elf64_External_Dyn *dyncon, *dynconend;
 
 
      splt = bfd_get_section_by_name (dynobj, ".plt");
      splt = bfd_get_section_by_name (dynobj, ".plt");
      BFD_ASSERT (splt != NULL && sdyn != NULL);
      BFD_ASSERT (splt != NULL && sdyn != NULL);
 
 
      dyncon = (Elf64_External_Dyn *) sdyn->contents;
      dyncon = (Elf64_External_Dyn *) sdyn->contents;
      dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
      dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
      for (; dyncon < dynconend; dyncon++)
      for (; dyncon < dynconend; dyncon++)
        {
        {
          Elf_Internal_Dyn dyn;
          Elf_Internal_Dyn dyn;
          const char *name;
          const char *name;
          boolean size;
          boolean size;
 
 
          bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
          bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
 
 
          switch (dyn.d_tag)
          switch (dyn.d_tag)
            {
            {
            case DT_PLTGOT:   name = ".plt"; size = false; break;
            case DT_PLTGOT:   name = ".plt"; size = false; break;
            case DT_PLTRELSZ: name = ".rela.plt"; size = true; break;
            case DT_PLTRELSZ: name = ".rela.plt"; size = true; break;
            case DT_JMPREL:   name = ".rela.plt"; size = false; break;
            case DT_JMPREL:   name = ".rela.plt"; size = false; break;
            case DT_SPARC_REGISTER:
            case DT_SPARC_REGISTER:
              if (stt_regidx == -1)
              if (stt_regidx == -1)
                {
                {
                  stt_regidx =
                  stt_regidx =
                    _bfd_elf_link_lookup_local_dynindx (info, output_bfd, -1);
                    _bfd_elf_link_lookup_local_dynindx (info, output_bfd, -1);
                  if (stt_regidx == -1)
                  if (stt_regidx == -1)
                    return false;
                    return false;
                }
                }
              dyn.d_un.d_val = stt_regidx++;
              dyn.d_un.d_val = stt_regidx++;
              bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
              bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
              /* fallthrough */
              /* fallthrough */
            default:          name = NULL; size = false; break;
            default:          name = NULL; size = false; break;
            }
            }
 
 
          if (name != NULL)
          if (name != NULL)
            {
            {
              asection *s;
              asection *s;
 
 
              s = bfd_get_section_by_name (output_bfd, name);
              s = bfd_get_section_by_name (output_bfd, name);
              if (s == NULL)
              if (s == NULL)
                dyn.d_un.d_val = 0;
                dyn.d_un.d_val = 0;
              else
              else
                {
                {
                  if (! size)
                  if (! size)
                    dyn.d_un.d_ptr = s->vma;
                    dyn.d_un.d_ptr = s->vma;
                  else
                  else
                    {
                    {
                      if (s->_cooked_size != 0)
                      if (s->_cooked_size != 0)
                        dyn.d_un.d_val = s->_cooked_size;
                        dyn.d_un.d_val = s->_cooked_size;
                      else
                      else
                        dyn.d_un.d_val = s->_raw_size;
                        dyn.d_un.d_val = s->_raw_size;
                    }
                    }
                }
                }
              bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
              bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
            }
            }
        }
        }
 
 
      /* Initialize the contents of the .plt section.  */
      /* Initialize the contents of the .plt section.  */
      if (splt->_raw_size > 0)
      if (splt->_raw_size > 0)
        {
        {
          sparc64_elf_build_plt (output_bfd, splt->contents,
          sparc64_elf_build_plt (output_bfd, splt->contents,
                                 (int) (splt->_raw_size / PLT_ENTRY_SIZE));
                                 (int) (splt->_raw_size / PLT_ENTRY_SIZE));
        }
        }
 
 
      elf_section_data (splt->output_section)->this_hdr.sh_entsize =
      elf_section_data (splt->output_section)->this_hdr.sh_entsize =
        PLT_ENTRY_SIZE;
        PLT_ENTRY_SIZE;
    }
    }
 
 
  /* Set the first entry in the global offset table to the address of
  /* Set the first entry in the global offset table to the address of
     the dynamic section.  */
     the dynamic section.  */
  sgot = bfd_get_section_by_name (dynobj, ".got");
  sgot = bfd_get_section_by_name (dynobj, ".got");
  BFD_ASSERT (sgot != NULL);
  BFD_ASSERT (sgot != NULL);
  if (sgot->_raw_size > 0)
  if (sgot->_raw_size > 0)
    {
    {
      if (sdyn == NULL)
      if (sdyn == NULL)
        bfd_put_64 (output_bfd, (bfd_vma) 0, sgot->contents);
        bfd_put_64 (output_bfd, (bfd_vma) 0, sgot->contents);
      else
      else
        bfd_put_64 (output_bfd,
        bfd_put_64 (output_bfd,
                    sdyn->output_section->vma + sdyn->output_offset,
                    sdyn->output_section->vma + sdyn->output_offset,
                    sgot->contents);
                    sgot->contents);
    }
    }
 
 
  elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 8;
  elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 8;
 
 
  return true;
  return true;
}
}
 
 
static enum elf_reloc_type_class
static enum elf_reloc_type_class
sparc64_elf_reloc_type_class (rela)
sparc64_elf_reloc_type_class (rela)
     const Elf_Internal_Rela *rela;
     const Elf_Internal_Rela *rela;
{
{
  switch ((int) ELF64_R_TYPE (rela->r_info))
  switch ((int) ELF64_R_TYPE (rela->r_info))
    {
    {
    case R_SPARC_RELATIVE:
    case R_SPARC_RELATIVE:
      return reloc_class_relative;
      return reloc_class_relative;
    case R_SPARC_JMP_SLOT:
    case R_SPARC_JMP_SLOT:
      return reloc_class_plt;
      return reloc_class_plt;
    case R_SPARC_COPY:
    case R_SPARC_COPY:
      return reloc_class_copy;
      return reloc_class_copy;
    default:
    default:
      return reloc_class_normal;
      return reloc_class_normal;
    }
    }
}
}


/* Functions for dealing with the e_flags field.  */
/* Functions for dealing with the e_flags field.  */
 
 
/* Merge backend specific data from an object file to the output
/* Merge backend specific data from an object file to the output
   object file when linking.  */
   object file when linking.  */
 
 
static boolean
static boolean
sparc64_elf_merge_private_bfd_data (ibfd, obfd)
sparc64_elf_merge_private_bfd_data (ibfd, obfd)
     bfd *ibfd;
     bfd *ibfd;
     bfd *obfd;
     bfd *obfd;
{
{
  boolean error;
  boolean error;
  flagword new_flags, old_flags;
  flagword new_flags, old_flags;
  int new_mm, old_mm;
  int new_mm, old_mm;
 
 
  if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
  if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
      || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
      || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
    return true;
    return true;
 
 
  new_flags = elf_elfheader (ibfd)->e_flags;
  new_flags = elf_elfheader (ibfd)->e_flags;
  old_flags = elf_elfheader (obfd)->e_flags;
  old_flags = elf_elfheader (obfd)->e_flags;
 
 
  if (!elf_flags_init (obfd))   /* First call, no flags set */
  if (!elf_flags_init (obfd))   /* First call, no flags set */
    {
    {
      elf_flags_init (obfd) = true;
      elf_flags_init (obfd) = true;
      elf_elfheader (obfd)->e_flags = new_flags;
      elf_elfheader (obfd)->e_flags = new_flags;
    }
    }
 
 
  else if (new_flags == old_flags)      /* Compatible flags are ok */
  else if (new_flags == old_flags)      /* Compatible flags are ok */
    ;
    ;
 
 
  else                                  /* Incompatible flags */
  else                                  /* Incompatible flags */
    {
    {
      error = false;
      error = false;
 
 
#define EF_SPARC_ISA_EXTENSIONS \
#define EF_SPARC_ISA_EXTENSIONS \
  (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3 | EF_SPARC_HAL_R1)
  (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3 | EF_SPARC_HAL_R1)
 
 
      if ((ibfd->flags & DYNAMIC) != 0)
      if ((ibfd->flags & DYNAMIC) != 0)
        {
        {
          /* We don't want dynamic objects memory ordering and
          /* We don't want dynamic objects memory ordering and
             architecture to have any role. That's what dynamic linker
             architecture to have any role. That's what dynamic linker
             should do.  */
             should do.  */
          new_flags &= ~(EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS);
          new_flags &= ~(EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS);
          new_flags |= (old_flags
          new_flags |= (old_flags
                        & (EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS));
                        & (EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS));
        }
        }
      else
      else
        {
        {
          /* Choose the highest architecture requirements.  */
          /* Choose the highest architecture requirements.  */
          old_flags |= (new_flags & EF_SPARC_ISA_EXTENSIONS);
          old_flags |= (new_flags & EF_SPARC_ISA_EXTENSIONS);
          new_flags |= (old_flags & EF_SPARC_ISA_EXTENSIONS);
          new_flags |= (old_flags & EF_SPARC_ISA_EXTENSIONS);
          if ((old_flags & (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3))
          if ((old_flags & (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3))
              && (old_flags & EF_SPARC_HAL_R1))
              && (old_flags & EF_SPARC_HAL_R1))
            {
            {
              error = true;
              error = true;
              (*_bfd_error_handler)
              (*_bfd_error_handler)
                (_("%s: linking UltraSPARC specific with HAL specific code"),
                (_("%s: linking UltraSPARC specific with HAL specific code"),
                 bfd_archive_filename (ibfd));
                 bfd_archive_filename (ibfd));
            }
            }
          /* Choose the most restrictive memory ordering.  */
          /* Choose the most restrictive memory ordering.  */
          old_mm = (old_flags & EF_SPARCV9_MM);
          old_mm = (old_flags & EF_SPARCV9_MM);
          new_mm = (new_flags & EF_SPARCV9_MM);
          new_mm = (new_flags & EF_SPARCV9_MM);
          old_flags &= ~EF_SPARCV9_MM;
          old_flags &= ~EF_SPARCV9_MM;
          new_flags &= ~EF_SPARCV9_MM;
          new_flags &= ~EF_SPARCV9_MM;
          if (new_mm < old_mm)
          if (new_mm < old_mm)
            old_mm = new_mm;
            old_mm = new_mm;
          old_flags |= old_mm;
          old_flags |= old_mm;
          new_flags |= old_mm;
          new_flags |= old_mm;
        }
        }
 
 
      /* Warn about any other mismatches */
      /* Warn about any other mismatches */
      if (new_flags != old_flags)
      if (new_flags != old_flags)
        {
        {
          error = true;
          error = true;
          (*_bfd_error_handler)
          (*_bfd_error_handler)
            (_("%s: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
            (_("%s: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
             bfd_archive_filename (ibfd), (long) new_flags, (long) old_flags);
             bfd_archive_filename (ibfd), (long) new_flags, (long) old_flags);
        }
        }
 
 
      elf_elfheader (obfd)->e_flags = old_flags;
      elf_elfheader (obfd)->e_flags = old_flags;
 
 
      if (error)
      if (error)
        {
        {
          bfd_set_error (bfd_error_bad_value);
          bfd_set_error (bfd_error_bad_value);
          return false;
          return false;
        }
        }
    }
    }
  return true;
  return true;
}
}
 
 
/* MARCO: Set the correct entry size for the .stab section.  */
/* MARCO: Set the correct entry size for the .stab section.  */
 
 
static boolean
static boolean
sparc64_elf_fake_sections (abfd, hdr, sec)
sparc64_elf_fake_sections (abfd, hdr, sec)
     bfd *abfd ATTRIBUTE_UNUSED;
     bfd *abfd ATTRIBUTE_UNUSED;
     Elf32_Internal_Shdr *hdr ATTRIBUTE_UNUSED;
     Elf32_Internal_Shdr *hdr ATTRIBUTE_UNUSED;
     asection *sec;
     asection *sec;
{
{
  const char *name;
  const char *name;
 
 
  name = bfd_get_section_name (abfd, sec);
  name = bfd_get_section_name (abfd, sec);
 
 
  if (strcmp (name, ".stab") == 0)
  if (strcmp (name, ".stab") == 0)
    {
    {
      /* Even in the 64bit case the stab entries are only 12 bytes long.  */
      /* Even in the 64bit case the stab entries are only 12 bytes long.  */
      elf_section_data (sec)->this_hdr.sh_entsize = 12;
      elf_section_data (sec)->this_hdr.sh_entsize = 12;
    }
    }
 
 
  return true;
  return true;
}
}


/* Print a STT_REGISTER symbol to file FILE.  */
/* Print a STT_REGISTER symbol to file FILE.  */
 
 
static const char *
static const char *
sparc64_elf_print_symbol_all (abfd, filep, symbol)
sparc64_elf_print_symbol_all (abfd, filep, symbol)
     bfd *abfd ATTRIBUTE_UNUSED;
     bfd *abfd ATTRIBUTE_UNUSED;
     PTR filep;
     PTR filep;
     asymbol *symbol;
     asymbol *symbol;
{
{
  FILE *file = (FILE *) filep;
  FILE *file = (FILE *) filep;
  int reg, type;
  int reg, type;
 
 
  if (ELF_ST_TYPE (((elf_symbol_type *) symbol)->internal_elf_sym.st_info)
  if (ELF_ST_TYPE (((elf_symbol_type *) symbol)->internal_elf_sym.st_info)
      != STT_REGISTER)
      != STT_REGISTER)
    return NULL;
    return NULL;
 
 
  reg = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
  reg = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
  type = symbol->flags;
  type = symbol->flags;
  fprintf (file, "REG_%c%c%11s%c%c    R", "GOLI" [reg / 8], '0' + (reg & 7), "",
  fprintf (file, "REG_%c%c%11s%c%c    R", "GOLI" [reg / 8], '0' + (reg & 7), "",
                 ((type & BSF_LOCAL)
                 ((type & BSF_LOCAL)
                  ? (type & BSF_GLOBAL) ? '!' : 'l'
                  ? (type & BSF_GLOBAL) ? '!' : 'l'
                  : (type & BSF_GLOBAL) ? 'g' : ' '),
                  : (type & BSF_GLOBAL) ? 'g' : ' '),
                 (type & BSF_WEAK) ? 'w' : ' ');
                 (type & BSF_WEAK) ? 'w' : ' ');
  if (symbol->name == NULL || symbol->name [0] == '\0')
  if (symbol->name == NULL || symbol->name [0] == '\0')
    return "#scratch";
    return "#scratch";
  else
  else
    return symbol->name;
    return symbol->name;
}
}


/* Set the right machine number for a SPARC64 ELF file.  */
/* Set the right machine number for a SPARC64 ELF file.  */
 
 
static boolean
static boolean
sparc64_elf_object_p (abfd)
sparc64_elf_object_p (abfd)
     bfd *abfd;
     bfd *abfd;
{
{
  unsigned long mach = bfd_mach_sparc_v9;
  unsigned long mach = bfd_mach_sparc_v9;
 
 
  if (elf_elfheader (abfd)->e_flags & EF_SPARC_SUN_US3)
  if (elf_elfheader (abfd)->e_flags & EF_SPARC_SUN_US3)
    mach = bfd_mach_sparc_v9b;
    mach = bfd_mach_sparc_v9b;
  else if (elf_elfheader (abfd)->e_flags & EF_SPARC_SUN_US1)
  else if (elf_elfheader (abfd)->e_flags & EF_SPARC_SUN_US1)
    mach = bfd_mach_sparc_v9a;
    mach = bfd_mach_sparc_v9a;
  return bfd_default_set_arch_mach (abfd, bfd_arch_sparc, mach);
  return bfd_default_set_arch_mach (abfd, bfd_arch_sparc, mach);
}
}
 
 
/* Relocations in the 64 bit SPARC ELF ABI are more complex than in
/* Relocations in the 64 bit SPARC ELF ABI are more complex than in
   standard ELF, because R_SPARC_OLO10 has secondary addend in
   standard ELF, because R_SPARC_OLO10 has secondary addend in
   ELF64_R_TYPE_DATA field.  This structure is used to redirect the
   ELF64_R_TYPE_DATA field.  This structure is used to redirect the
   relocation handling routines.  */
   relocation handling routines.  */
 
 
const struct elf_size_info sparc64_elf_size_info =
const struct elf_size_info sparc64_elf_size_info =
{
{
  sizeof (Elf64_External_Ehdr),
  sizeof (Elf64_External_Ehdr),
  sizeof (Elf64_External_Phdr),
  sizeof (Elf64_External_Phdr),
  sizeof (Elf64_External_Shdr),
  sizeof (Elf64_External_Shdr),
  sizeof (Elf64_External_Rel),
  sizeof (Elf64_External_Rel),
  sizeof (Elf64_External_Rela),
  sizeof (Elf64_External_Rela),
  sizeof (Elf64_External_Sym),
  sizeof (Elf64_External_Sym),
  sizeof (Elf64_External_Dyn),
  sizeof (Elf64_External_Dyn),
  sizeof (Elf_External_Note),
  sizeof (Elf_External_Note),
  4,            /* hash-table entry size */
  4,            /* hash-table entry size */
  /* internal relocations per external relocations.
  /* internal relocations per external relocations.
     For link purposes we use just 1 internal per
     For link purposes we use just 1 internal per
     1 external, for assembly and slurp symbol table
     1 external, for assembly and slurp symbol table
     we use 2.  */
     we use 2.  */
  1,
  1,
  64,           /* arch_size */
  64,           /* arch_size */
  8,            /* file_align */
  8,            /* file_align */
  ELFCLASS64,
  ELFCLASS64,
  EV_CURRENT,
  EV_CURRENT,
  bfd_elf64_write_out_phdrs,
  bfd_elf64_write_out_phdrs,
  bfd_elf64_write_shdrs_and_ehdr,
  bfd_elf64_write_shdrs_and_ehdr,
  sparc64_elf_write_relocs,
  sparc64_elf_write_relocs,
  bfd_elf64_swap_symbol_in,
  bfd_elf64_swap_symbol_in,
  bfd_elf64_swap_symbol_out,
  bfd_elf64_swap_symbol_out,
  sparc64_elf_slurp_reloc_table,
  sparc64_elf_slurp_reloc_table,
  bfd_elf64_slurp_symbol_table,
  bfd_elf64_slurp_symbol_table,
  bfd_elf64_swap_dyn_in,
  bfd_elf64_swap_dyn_in,
  bfd_elf64_swap_dyn_out,
  bfd_elf64_swap_dyn_out,
  NULL,
  NULL,
  NULL,
  NULL,
  NULL,
  NULL,
  NULL
  NULL
};
};
 
 
#define TARGET_BIG_SYM  bfd_elf64_sparc_vec
#define TARGET_BIG_SYM  bfd_elf64_sparc_vec
#define TARGET_BIG_NAME "elf64-sparc"
#define TARGET_BIG_NAME "elf64-sparc"
#define ELF_ARCH        bfd_arch_sparc
#define ELF_ARCH        bfd_arch_sparc
#define ELF_MAXPAGESIZE 0x100000
#define ELF_MAXPAGESIZE 0x100000
 
 
/* This is the official ABI value.  */
/* This is the official ABI value.  */
#define ELF_MACHINE_CODE EM_SPARCV9
#define ELF_MACHINE_CODE EM_SPARCV9
 
 
/* This is the value that we used before the ABI was released.  */
/* This is the value that we used before the ABI was released.  */
#define ELF_MACHINE_ALT1 EM_OLD_SPARCV9
#define ELF_MACHINE_ALT1 EM_OLD_SPARCV9
 
 
#define bfd_elf64_bfd_link_hash_table_create \
#define bfd_elf64_bfd_link_hash_table_create \
  sparc64_elf_bfd_link_hash_table_create
  sparc64_elf_bfd_link_hash_table_create
 
 
#define elf_info_to_howto \
#define elf_info_to_howto \
  sparc64_elf_info_to_howto
  sparc64_elf_info_to_howto
#define bfd_elf64_get_reloc_upper_bound \
#define bfd_elf64_get_reloc_upper_bound \
  sparc64_elf_get_reloc_upper_bound
  sparc64_elf_get_reloc_upper_bound
#define bfd_elf64_get_dynamic_reloc_upper_bound \
#define bfd_elf64_get_dynamic_reloc_upper_bound \
  sparc64_elf_get_dynamic_reloc_upper_bound
  sparc64_elf_get_dynamic_reloc_upper_bound
#define bfd_elf64_canonicalize_dynamic_reloc \
#define bfd_elf64_canonicalize_dynamic_reloc \
  sparc64_elf_canonicalize_dynamic_reloc
  sparc64_elf_canonicalize_dynamic_reloc
#define bfd_elf64_bfd_reloc_type_lookup \
#define bfd_elf64_bfd_reloc_type_lookup \
  sparc64_elf_reloc_type_lookup
  sparc64_elf_reloc_type_lookup
#define bfd_elf64_bfd_relax_section \
#define bfd_elf64_bfd_relax_section \
  sparc64_elf_relax_section
  sparc64_elf_relax_section
 
 
#define elf_backend_create_dynamic_sections \
#define elf_backend_create_dynamic_sections \
  _bfd_elf_create_dynamic_sections
  _bfd_elf_create_dynamic_sections
#define elf_backend_add_symbol_hook \
#define elf_backend_add_symbol_hook \
  sparc64_elf_add_symbol_hook
  sparc64_elf_add_symbol_hook
#define elf_backend_get_symbol_type \
#define elf_backend_get_symbol_type \
  sparc64_elf_get_symbol_type
  sparc64_elf_get_symbol_type
#define elf_backend_symbol_processing \
#define elf_backend_symbol_processing \
  sparc64_elf_symbol_processing
  sparc64_elf_symbol_processing
#define elf_backend_check_relocs \
#define elf_backend_check_relocs \
  sparc64_elf_check_relocs
  sparc64_elf_check_relocs
#define elf_backend_adjust_dynamic_symbol \
#define elf_backend_adjust_dynamic_symbol \
  sparc64_elf_adjust_dynamic_symbol
  sparc64_elf_adjust_dynamic_symbol
#define elf_backend_size_dynamic_sections \
#define elf_backend_size_dynamic_sections \
  sparc64_elf_size_dynamic_sections
  sparc64_elf_size_dynamic_sections
#define elf_backend_relocate_section \
#define elf_backend_relocate_section \
  sparc64_elf_relocate_section
  sparc64_elf_relocate_section
#define elf_backend_finish_dynamic_symbol \
#define elf_backend_finish_dynamic_symbol \
  sparc64_elf_finish_dynamic_symbol
  sparc64_elf_finish_dynamic_symbol
#define elf_backend_finish_dynamic_sections \
#define elf_backend_finish_dynamic_sections \
  sparc64_elf_finish_dynamic_sections
  sparc64_elf_finish_dynamic_sections
#define elf_backend_print_symbol_all \
#define elf_backend_print_symbol_all \
  sparc64_elf_print_symbol_all
  sparc64_elf_print_symbol_all
#define elf_backend_output_arch_syms \
#define elf_backend_output_arch_syms \
  sparc64_elf_output_arch_syms
  sparc64_elf_output_arch_syms
#define bfd_elf64_bfd_merge_private_bfd_data \
#define bfd_elf64_bfd_merge_private_bfd_data \
  sparc64_elf_merge_private_bfd_data
  sparc64_elf_merge_private_bfd_data
#define elf_backend_fake_sections \
#define elf_backend_fake_sections \
  sparc64_elf_fake_sections
  sparc64_elf_fake_sections
 
 
#define elf_backend_size_info \
#define elf_backend_size_info \
  sparc64_elf_size_info
  sparc64_elf_size_info
#define elf_backend_object_p \
#define elf_backend_object_p \
  sparc64_elf_object_p
  sparc64_elf_object_p
#define elf_backend_reloc_type_class \
#define elf_backend_reloc_type_class \
  sparc64_elf_reloc_type_class
  sparc64_elf_reloc_type_class
 
 
#define elf_backend_want_got_plt 0
#define elf_backend_want_got_plt 0
#define elf_backend_plt_readonly 0
#define elf_backend_plt_readonly 0
#define elf_backend_want_plt_sym 1
#define elf_backend_want_plt_sym 1
#define elf_backend_rela_normal 1
#define elf_backend_rela_normal 1
 
 
/* Section 5.2.4 of the ABI specifies a 256-byte boundary for the table.  */
/* Section 5.2.4 of the ABI specifies a 256-byte boundary for the table.  */
#define elf_backend_plt_alignment 8
#define elf_backend_plt_alignment 8
 
 
#define elf_backend_got_header_size 8
#define elf_backend_got_header_size 8
#define elf_backend_plt_header_size PLT_HEADER_SIZE
#define elf_backend_plt_header_size PLT_HEADER_SIZE
 
 
#include "elf64-target.h"
#include "elf64-target.h"
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.