OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [gdb-5.3/] [bfd/] [reloc.c] - Diff between revs 1181 and 1765

Only display areas with differences | Details | Blame | View Log

Rev 1181 Rev 1765
/* BFD support for handling relocation entries.
/* BFD support for handling relocation entries.
   Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
   Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
   2000, 2001, 2002
   2000, 2001, 2002
   Free Software Foundation, Inc.
   Free Software Foundation, Inc.
   Written by Cygnus Support.
   Written by Cygnus Support.
 
 
This file is part of BFD, the Binary File Descriptor library.
This file is part of BFD, the Binary File Descriptor library.
 
 
This program is free software; you can redistribute it and/or modify
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
(at your option) any later version.
 
 
This program is distributed in the hope that it will be useful,
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.
GNU General Public License for more details.
 
 
You should have received a copy of the GNU General Public License
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */
 
 
/*
/*
SECTION
SECTION
        Relocations
        Relocations
 
 
        BFD maintains relocations in much the same way it maintains
        BFD maintains relocations in much the same way it maintains
        symbols: they are left alone until required, then read in
        symbols: they are left alone until required, then read in
        en-masse and translated into an internal form.  A common
        en-masse and translated into an internal form.  A common
        routine <<bfd_perform_relocation>> acts upon the
        routine <<bfd_perform_relocation>> acts upon the
        canonical form to do the fixup.
        canonical form to do the fixup.
 
 
        Relocations are maintained on a per section basis,
        Relocations are maintained on a per section basis,
        while symbols are maintained on a per BFD basis.
        while symbols are maintained on a per BFD basis.
 
 
        All that a back end has to do to fit the BFD interface is to create
        All that a back end has to do to fit the BFD interface is to create
        a <<struct reloc_cache_entry>> for each relocation
        a <<struct reloc_cache_entry>> for each relocation
        in a particular section, and fill in the right bits of the structures.
        in a particular section, and fill in the right bits of the structures.
 
 
@menu
@menu
@* typedef arelent::
@* typedef arelent::
@* howto manager::
@* howto manager::
@end menu
@end menu
 
 
*/
*/
 
 
/* DO compile in the reloc_code name table from libbfd.h.  */
/* DO compile in the reloc_code name table from libbfd.h.  */
#define _BFD_MAKE_TABLE_bfd_reloc_code_real
#define _BFD_MAKE_TABLE_bfd_reloc_code_real
 
 
#include "bfd.h"
#include "bfd.h"
#include "sysdep.h"
#include "sysdep.h"
#include "bfdlink.h"
#include "bfdlink.h"
#include "libbfd.h"
#include "libbfd.h"
/*
/*
DOCDD
DOCDD
INODE
INODE
        typedef arelent, howto manager, Relocations, Relocations
        typedef arelent, howto manager, Relocations, Relocations
 
 
SUBSECTION
SUBSECTION
        typedef arelent
        typedef arelent
 
 
        This is the structure of a relocation entry:
        This is the structure of a relocation entry:
 
 
CODE_FRAGMENT
CODE_FRAGMENT
.
.
.typedef enum bfd_reloc_status
.typedef enum bfd_reloc_status
.{
.{
.  {* No errors detected.  *}
.  {* No errors detected.  *}
.  bfd_reloc_ok,
.  bfd_reloc_ok,
.
.
.  {* The relocation was performed, but there was an overflow.  *}
.  {* The relocation was performed, but there was an overflow.  *}
.  bfd_reloc_overflow,
.  bfd_reloc_overflow,
.
.
.  {* The address to relocate was not within the section supplied.  *}
.  {* The address to relocate was not within the section supplied.  *}
.  bfd_reloc_outofrange,
.  bfd_reloc_outofrange,
.
.
.  {* Used by special functions.  *}
.  {* Used by special functions.  *}
.  bfd_reloc_continue,
.  bfd_reloc_continue,
.
.
.  {* Unsupported relocation size requested.  *}
.  {* Unsupported relocation size requested.  *}
.  bfd_reloc_notsupported,
.  bfd_reloc_notsupported,
.
.
.  {* Unused.  *}
.  {* Unused.  *}
.  bfd_reloc_other,
.  bfd_reloc_other,
.
.
.  {* The symbol to relocate against was undefined.  *}
.  {* The symbol to relocate against was undefined.  *}
.  bfd_reloc_undefined,
.  bfd_reloc_undefined,
.
.
.  {* The relocation was performed, but may not be ok - presently
.  {* The relocation was performed, but may not be ok - presently
.     generated only when linking i960 coff files with i960 b.out
.     generated only when linking i960 coff files with i960 b.out
.     symbols.  If this type is returned, the error_message argument
.     symbols.  If this type is returned, the error_message argument
.     to bfd_perform_relocation will be set.  *}
.     to bfd_perform_relocation will be set.  *}
.  bfd_reloc_dangerous
.  bfd_reloc_dangerous
. }
. }
. bfd_reloc_status_type;
. bfd_reloc_status_type;
.
.
.
.
.typedef struct reloc_cache_entry
.typedef struct reloc_cache_entry
.{
.{
.  {* A pointer into the canonical table of pointers.  *}
.  {* A pointer into the canonical table of pointers.  *}
.  struct symbol_cache_entry **sym_ptr_ptr;
.  struct symbol_cache_entry **sym_ptr_ptr;
.
.
.  {* offset in section.  *}
.  {* offset in section.  *}
.  bfd_size_type address;
.  bfd_size_type address;
.
.
.  {* addend for relocation value.  *}
.  {* addend for relocation value.  *}
.  bfd_vma addend;
.  bfd_vma addend;
.
.
.  {* Pointer to how to perform the required relocation.  *}
.  {* Pointer to how to perform the required relocation.  *}
.  reloc_howto_type *howto;
.  reloc_howto_type *howto;
.
.
.}
.}
.arelent;
.arelent;
.
.
*/
*/
 
 
/*
/*
DESCRIPTION
DESCRIPTION
 
 
        Here is a description of each of the fields within an <<arelent>>:
        Here is a description of each of the fields within an <<arelent>>:
 
 
        o <<sym_ptr_ptr>>
        o <<sym_ptr_ptr>>
 
 
        The symbol table pointer points to a pointer to the symbol
        The symbol table pointer points to a pointer to the symbol
        associated with the relocation request.  It is
        associated with the relocation request.  It is
        the pointer into the table returned by the back end's
        the pointer into the table returned by the back end's
        <<get_symtab>> action. @xref{Symbols}. The symbol is referenced
        <<get_symtab>> action. @xref{Symbols}. The symbol is referenced
        through a pointer to a pointer so that tools like the linker
        through a pointer to a pointer so that tools like the linker
        can fix up all the symbols of the same name by modifying only
        can fix up all the symbols of the same name by modifying only
        one pointer. The relocation routine looks in the symbol and
        one pointer. The relocation routine looks in the symbol and
        uses the base of the section the symbol is attached to and the
        uses the base of the section the symbol is attached to and the
        value of the symbol as the initial relocation offset. If the
        value of the symbol as the initial relocation offset. If the
        symbol pointer is zero, then the section provided is looked up.
        symbol pointer is zero, then the section provided is looked up.
 
 
        o <<address>>
        o <<address>>
 
 
        The <<address>> field gives the offset in bytes from the base of
        The <<address>> field gives the offset in bytes from the base of
        the section data which owns the relocation record to the first
        the section data which owns the relocation record to the first
        byte of relocatable information. The actual data relocated
        byte of relocatable information. The actual data relocated
        will be relative to this point; for example, a relocation
        will be relative to this point; for example, a relocation
        type which modifies the bottom two bytes of a four byte word
        type which modifies the bottom two bytes of a four byte word
        would not touch the first byte pointed to in a big endian
        would not touch the first byte pointed to in a big endian
        world.
        world.
 
 
        o <<addend>>
        o <<addend>>
 
 
        The <<addend>> is a value provided by the back end to be added (!)
        The <<addend>> is a value provided by the back end to be added (!)
        to the relocation offset. Its interpretation is dependent upon
        to the relocation offset. Its interpretation is dependent upon
        the howto. For example, on the 68k the code:
        the howto. For example, on the 68k the code:
 
 
|        char foo[];
|        char foo[];
|        main()
|        main()
|                {
|                {
|                return foo[0x12345678];
|                return foo[0x12345678];
|                }
|                }
 
 
        Could be compiled into:
        Could be compiled into:
 
 
|        linkw fp,#-4
|        linkw fp,#-4
|        moveb @@#12345678,d0
|        moveb @@#12345678,d0
|        extbl d0
|        extbl d0
|        unlk fp
|        unlk fp
|        rts
|        rts
 
 
        This could create a reloc pointing to <<foo>>, but leave the
        This could create a reloc pointing to <<foo>>, but leave the
        offset in the data, something like:
        offset in the data, something like:
 
 
|RELOCATION RECORDS FOR [.text]:
|RELOCATION RECORDS FOR [.text]:
|offset   type      value
|offset   type      value
|00000006 32        _foo
|00000006 32        _foo
|
|
|00000000 4e56 fffc          ; linkw fp,#-4
|00000000 4e56 fffc          ; linkw fp,#-4
|00000004 1039 1234 5678     ; moveb @@#12345678,d0
|00000004 1039 1234 5678     ; moveb @@#12345678,d0
|0000000a 49c0               ; extbl d0
|0000000a 49c0               ; extbl d0
|0000000c 4e5e               ; unlk fp
|0000000c 4e5e               ; unlk fp
|0000000e 4e75               ; rts
|0000000e 4e75               ; rts
 
 
        Using coff and an 88k, some instructions don't have enough
        Using coff and an 88k, some instructions don't have enough
        space in them to represent the full address range, and
        space in them to represent the full address range, and
        pointers have to be loaded in two parts. So you'd get something like:
        pointers have to be loaded in two parts. So you'd get something like:
 
 
|        or.u     r13,r0,hi16(_foo+0x12345678)
|        or.u     r13,r0,hi16(_foo+0x12345678)
|        ld.b     r2,r13,lo16(_foo+0x12345678)
|        ld.b     r2,r13,lo16(_foo+0x12345678)
|        jmp      r1
|        jmp      r1
 
 
        This should create two relocs, both pointing to <<_foo>>, and with
        This should create two relocs, both pointing to <<_foo>>, and with
        0x12340000 in their addend field. The data would consist of:
        0x12340000 in their addend field. The data would consist of:
 
 
|RELOCATION RECORDS FOR [.text]:
|RELOCATION RECORDS FOR [.text]:
|offset   type      value
|offset   type      value
|00000002 HVRT16    _foo+0x12340000
|00000002 HVRT16    _foo+0x12340000
|00000006 LVRT16    _foo+0x12340000
|00000006 LVRT16    _foo+0x12340000
|
|
|00000000 5da05678           ; or.u r13,r0,0x5678
|00000000 5da05678           ; or.u r13,r0,0x5678
|00000004 1c4d5678           ; ld.b r2,r13,0x5678
|00000004 1c4d5678           ; ld.b r2,r13,0x5678
|00000008 f400c001           ; jmp r1
|00000008 f400c001           ; jmp r1
 
 
        The relocation routine digs out the value from the data, adds
        The relocation routine digs out the value from the data, adds
        it to the addend to get the original offset, and then adds the
        it to the addend to get the original offset, and then adds the
        value of <<_foo>>. Note that all 32 bits have to be kept around
        value of <<_foo>>. Note that all 32 bits have to be kept around
        somewhere, to cope with carry from bit 15 to bit 16.
        somewhere, to cope with carry from bit 15 to bit 16.
 
 
        One further example is the sparc and the a.out format. The
        One further example is the sparc and the a.out format. The
        sparc has a similar problem to the 88k, in that some
        sparc has a similar problem to the 88k, in that some
        instructions don't have room for an entire offset, but on the
        instructions don't have room for an entire offset, but on the
        sparc the parts are created in odd sized lumps. The designers of
        sparc the parts are created in odd sized lumps. The designers of
        the a.out format chose to not use the data within the section
        the a.out format chose to not use the data within the section
        for storing part of the offset; all the offset is kept within
        for storing part of the offset; all the offset is kept within
        the reloc. Anything in the data should be ignored.
        the reloc. Anything in the data should be ignored.
 
 
|        save %sp,-112,%sp
|        save %sp,-112,%sp
|        sethi %hi(_foo+0x12345678),%g2
|        sethi %hi(_foo+0x12345678),%g2
|        ldsb [%g2+%lo(_foo+0x12345678)],%i0
|        ldsb [%g2+%lo(_foo+0x12345678)],%i0
|        ret
|        ret
|        restore
|        restore
 
 
        Both relocs contain a pointer to <<foo>>, and the offsets
        Both relocs contain a pointer to <<foo>>, and the offsets
        contain junk.
        contain junk.
 
 
|RELOCATION RECORDS FOR [.text]:
|RELOCATION RECORDS FOR [.text]:
|offset   type      value
|offset   type      value
|00000004 HI22      _foo+0x12345678
|00000004 HI22      _foo+0x12345678
|00000008 LO10      _foo+0x12345678
|00000008 LO10      _foo+0x12345678
|
|
|00000000 9de3bf90     ; save %sp,-112,%sp
|00000000 9de3bf90     ; save %sp,-112,%sp
|00000004 05000000     ; sethi %hi(_foo+0),%g2
|00000004 05000000     ; sethi %hi(_foo+0),%g2
|00000008 f048a000     ; ldsb [%g2+%lo(_foo+0)],%i0
|00000008 f048a000     ; ldsb [%g2+%lo(_foo+0)],%i0
|0000000c 81c7e008     ; ret
|0000000c 81c7e008     ; ret
|00000010 81e80000     ; restore
|00000010 81e80000     ; restore
 
 
        o <<howto>>
        o <<howto>>
 
 
        The <<howto>> field can be imagined as a
        The <<howto>> field can be imagined as a
        relocation instruction. It is a pointer to a structure which
        relocation instruction. It is a pointer to a structure which
        contains information on what to do with all of the other
        contains information on what to do with all of the other
        information in the reloc record and data section. A back end
        information in the reloc record and data section. A back end
        would normally have a relocation instruction set and turn
        would normally have a relocation instruction set and turn
        relocations into pointers to the correct structure on input -
        relocations into pointers to the correct structure on input -
        but it would be possible to create each howto field on demand.
        but it would be possible to create each howto field on demand.
 
 
*/
*/
 
 
/*
/*
SUBSUBSECTION
SUBSUBSECTION
        <<enum complain_overflow>>
        <<enum complain_overflow>>
 
 
        Indicates what sort of overflow checking should be done when
        Indicates what sort of overflow checking should be done when
        performing a relocation.
        performing a relocation.
 
 
CODE_FRAGMENT
CODE_FRAGMENT
.
.
.enum complain_overflow
.enum complain_overflow
.{
.{
.  {* Do not complain on overflow.  *}
.  {* Do not complain on overflow.  *}
.  complain_overflow_dont,
.  complain_overflow_dont,
.
.
.  {* Complain if the bitfield overflows, whether it is considered
.  {* Complain if the bitfield overflows, whether it is considered
.     as signed or unsigned.  *}
.     as signed or unsigned.  *}
.  complain_overflow_bitfield,
.  complain_overflow_bitfield,
.
.
.  {* Complain if the value overflows when considered as signed
.  {* Complain if the value overflows when considered as signed
.     number.  *}
.     number.  *}
.  complain_overflow_signed,
.  complain_overflow_signed,
.
.
.  {* Complain if the value overflows when considered as an
.  {* Complain if the value overflows when considered as an
.     unsigned number.  *}
.     unsigned number.  *}
.  complain_overflow_unsigned
.  complain_overflow_unsigned
.};
.};
 
 
*/
*/
 
 
/*
/*
SUBSUBSECTION
SUBSUBSECTION
        <<reloc_howto_type>>
        <<reloc_howto_type>>
 
 
        The <<reloc_howto_type>> is a structure which contains all the
        The <<reloc_howto_type>> is a structure which contains all the
        information that libbfd needs to know to tie up a back end's data.
        information that libbfd needs to know to tie up a back end's data.
 
 
CODE_FRAGMENT
CODE_FRAGMENT
.struct symbol_cache_entry;             {* Forward declaration.  *}
.struct symbol_cache_entry;             {* Forward declaration.  *}
.
.
.struct reloc_howto_struct
.struct reloc_howto_struct
.{
.{
.  {*  The type field has mainly a documentary use - the back end can
.  {*  The type field has mainly a documentary use - the back end can
.      do what it wants with it, though normally the back end's
.      do what it wants with it, though normally the back end's
.      external idea of what a reloc number is stored
.      external idea of what a reloc number is stored
.      in this field.  For example, a PC relative word relocation
.      in this field.  For example, a PC relative word relocation
.      in a coff environment has the type 023 - because that's
.      in a coff environment has the type 023 - because that's
.      what the outside world calls a R_PCRWORD reloc.  *}
.      what the outside world calls a R_PCRWORD reloc.  *}
.  unsigned int type;
.  unsigned int type;
.
.
.  {*  The value the final relocation is shifted right by.  This drops
.  {*  The value the final relocation is shifted right by.  This drops
.      unwanted data from the relocation.  *}
.      unwanted data from the relocation.  *}
.  unsigned int rightshift;
.  unsigned int rightshift;
.
.
.  {*  The size of the item to be relocated.  This is *not* a
.  {*  The size of the item to be relocated.  This is *not* a
.      power-of-two measure.  To get the number of bytes operated
.      power-of-two measure.  To get the number of bytes operated
.      on by a type of relocation, use bfd_get_reloc_size.  *}
.      on by a type of relocation, use bfd_get_reloc_size.  *}
.  int size;
.  int size;
.
.
.  {*  The number of bits in the item to be relocated.  This is used
.  {*  The number of bits in the item to be relocated.  This is used
.      when doing overflow checking.  *}
.      when doing overflow checking.  *}
.  unsigned int bitsize;
.  unsigned int bitsize;
.
.
.  {*  Notes that the relocation is relative to the location in the
.  {*  Notes that the relocation is relative to the location in the
.      data section of the addend.  The relocation function will
.      data section of the addend.  The relocation function will
.      subtract from the relocation value the address of the location
.      subtract from the relocation value the address of the location
.      being relocated.  *}
.      being relocated.  *}
.  boolean pc_relative;
.  boolean pc_relative;
.
.
.  {*  The bit position of the reloc value in the destination.
.  {*  The bit position of the reloc value in the destination.
.      The relocated value is left shifted by this amount.  *}
.      The relocated value is left shifted by this amount.  *}
.  unsigned int bitpos;
.  unsigned int bitpos;
.
.
.  {* What type of overflow error should be checked for when
.  {* What type of overflow error should be checked for when
.     relocating.  *}
.     relocating.  *}
.  enum complain_overflow complain_on_overflow;
.  enum complain_overflow complain_on_overflow;
.
.
.  {* If this field is non null, then the supplied function is
.  {* If this field is non null, then the supplied function is
.     called rather than the normal function.  This allows really
.     called rather than the normal function.  This allows really
.     strange relocation methods to be accomodated (e.g., i960 callj
.     strange relocation methods to be accomodated (e.g., i960 callj
.     instructions).  *}
.     instructions).  *}
.  bfd_reloc_status_type (*special_function)
.  bfd_reloc_status_type (*special_function)
.    PARAMS ((bfd *, arelent *, struct symbol_cache_entry *, PTR, asection *,
.    PARAMS ((bfd *, arelent *, struct symbol_cache_entry *, PTR, asection *,
.             bfd *, char **));
.             bfd *, char **));
.
.
.  {* The textual name of the relocation type.  *}
.  {* The textual name of the relocation type.  *}
.  char *name;
.  char *name;
.
.
.  {* Some formats record a relocation addend in the section contents
.  {* Some formats record a relocation addend in the section contents
.     rather than with the relocation.  For ELF formats this is the
.     rather than with the relocation.  For ELF formats this is the
.     distinction between USE_REL and USE_RELA (though the code checks
.     distinction between USE_REL and USE_RELA (though the code checks
.     for USE_REL == 1/0).  The value of this field is TRUE if the
.     for USE_REL == 1/0).  The value of this field is TRUE if the
.     addend is recorded with the section contents; when performing a
.     addend is recorded with the section contents; when performing a
.     partial link (ld -r) the section contents (the data) will be
.     partial link (ld -r) the section contents (the data) will be
.     modified.  The value of this field is FALSE if addends are
.     modified.  The value of this field is FALSE if addends are
.     recorded with the relocation (in arelent.addend); when performing
.     recorded with the relocation (in arelent.addend); when performing
.     a partial link the relocation will be modified.
.     a partial link the relocation will be modified.
.     All relocations for all ELF USE_RELA targets should set this field
.     All relocations for all ELF USE_RELA targets should set this field
.     to FALSE (values of TRUE should be looked on with suspicion).
.     to FALSE (values of TRUE should be looked on with suspicion).
.     However, the converse is not true: not all relocations of all ELF
.     However, the converse is not true: not all relocations of all ELF
.     USE_REL targets set this field to TRUE.  Why this is so is peculiar
.     USE_REL targets set this field to TRUE.  Why this is so is peculiar
.     to each particular target.  For relocs that aren't used in partial
.     to each particular target.  For relocs that aren't used in partial
.     links (e.g. GOT stuff) it doesn't matter what this is set to.  *}
.     links (e.g. GOT stuff) it doesn't matter what this is set to.  *}
.  boolean partial_inplace;
.  boolean partial_inplace;
.
.
.  {* The src_mask selects which parts of the read in data
.  {* The src_mask selects which parts of the read in data
.     are to be used in the relocation sum.  E.g., if this was an 8 bit
.     are to be used in the relocation sum.  E.g., if this was an 8 bit
.     byte of data which we read and relocated, this would be
.     byte of data which we read and relocated, this would be
.     0x000000ff.  When we have relocs which have an addend, such as
.     0x000000ff.  When we have relocs which have an addend, such as
.     sun4 extended relocs, the value in the offset part of a
.     sun4 extended relocs, the value in the offset part of a
.     relocating field is garbage so we never use it.  In this case
.     relocating field is garbage so we never use it.  In this case
.     the mask would be 0x00000000.  *}
.     the mask would be 0x00000000.  *}
.  bfd_vma src_mask;
.  bfd_vma src_mask;
.
.
.  {* The dst_mask selects which parts of the instruction are replaced
.  {* The dst_mask selects which parts of the instruction are replaced
.     into the instruction.  In most cases src_mask == dst_mask,
.     into the instruction.  In most cases src_mask == dst_mask,
.     except in the above special case, where dst_mask would be
.     except in the above special case, where dst_mask would be
.     0x000000ff, and src_mask would be 0x00000000.  *}
.     0x000000ff, and src_mask would be 0x00000000.  *}
.  bfd_vma dst_mask;
.  bfd_vma dst_mask;
.
.
.  {* When some formats create PC relative instructions, they leave
.  {* When some formats create PC relative instructions, they leave
.     the value of the pc of the place being relocated in the offset
.     the value of the pc of the place being relocated in the offset
.     slot of the instruction, so that a PC relative relocation can
.     slot of the instruction, so that a PC relative relocation can
.     be made just by adding in an ordinary offset (e.g., sun3 a.out).
.     be made just by adding in an ordinary offset (e.g., sun3 a.out).
.     Some formats leave the displacement part of an instruction
.     Some formats leave the displacement part of an instruction
.     empty (e.g., m88k bcs); this flag signals the fact.  *}
.     empty (e.g., m88k bcs); this flag signals the fact.  *}
.  boolean pcrel_offset;
.  boolean pcrel_offset;
.};
.};
.
.
*/
*/
 
 
/*
/*
FUNCTION
FUNCTION
        The HOWTO Macro
        The HOWTO Macro
 
 
DESCRIPTION
DESCRIPTION
        The HOWTO define is horrible and will go away.
        The HOWTO define is horrible and will go away.
 
 
.#define HOWTO(C, R, S, B, P, BI, O, SF, NAME, INPLACE, MASKSRC, MASKDST, PC) \
.#define HOWTO(C, R, S, B, P, BI, O, SF, NAME, INPLACE, MASKSRC, MASKDST, PC) \
.  { (unsigned) C, R, S, B, P, BI, O, SF, NAME, INPLACE, MASKSRC, MASKDST, PC }
.  { (unsigned) C, R, S, B, P, BI, O, SF, NAME, INPLACE, MASKSRC, MASKDST, PC }
 
 
DESCRIPTION
DESCRIPTION
        And will be replaced with the totally magic way. But for the
        And will be replaced with the totally magic way. But for the
        moment, we are compatible, so do it this way.
        moment, we are compatible, so do it this way.
 
 
.#define NEWHOWTO(FUNCTION, NAME, SIZE, REL, IN) \
.#define NEWHOWTO(FUNCTION, NAME, SIZE, REL, IN) \
.  HOWTO (0, 0, SIZE, 0, REL, 0, complain_overflow_dont, FUNCTION, \
.  HOWTO (0, 0, SIZE, 0, REL, 0, complain_overflow_dont, FUNCTION, \
.         NAME, false, 0, 0, IN)
.         NAME, false, 0, 0, IN)
.
.
 
 
DESCRIPTION
DESCRIPTION
        This is used to fill in an empty howto entry in an array.
        This is used to fill in an empty howto entry in an array.
 
 
.#define EMPTY_HOWTO(C) \
.#define EMPTY_HOWTO(C) \
.  HOWTO ((C), 0, 0, 0, false, 0, complain_overflow_dont, NULL, \
.  HOWTO ((C), 0, 0, 0, false, 0, complain_overflow_dont, NULL, \
.         NULL, false, 0, 0, false)
.         NULL, false, 0, 0, false)
.
.
 
 
DESCRIPTION
DESCRIPTION
        Helper routine to turn a symbol into a relocation value.
        Helper routine to turn a symbol into a relocation value.
 
 
.#define HOWTO_PREPARE(relocation, symbol)               \
.#define HOWTO_PREPARE(relocation, symbol)               \
.  {                                                     \
.  {                                                     \
.    if (symbol != (asymbol *) NULL)                     \
.    if (symbol != (asymbol *) NULL)                     \
.      {                                                 \
.      {                                                 \
.        if (bfd_is_com_section (symbol->section))       \
.        if (bfd_is_com_section (symbol->section))       \
.          {                                             \
.          {                                             \
.            relocation = 0;                             \
.            relocation = 0;                             \
.          }                                             \
.          }                                             \
.        else                                            \
.        else                                            \
.          {                                             \
.          {                                             \
.            relocation = symbol->value;                 \
.            relocation = symbol->value;                 \
.          }                                             \
.          }                                             \
.      }                                                 \
.      }                                                 \
.  }
.  }
.
.
*/
*/
 
 
/*
/*
FUNCTION
FUNCTION
        bfd_get_reloc_size
        bfd_get_reloc_size
 
 
SYNOPSIS
SYNOPSIS
        unsigned int bfd_get_reloc_size (reloc_howto_type *);
        unsigned int bfd_get_reloc_size (reloc_howto_type *);
 
 
DESCRIPTION
DESCRIPTION
        For a reloc_howto_type that operates on a fixed number of bytes,
        For a reloc_howto_type that operates on a fixed number of bytes,
        this returns the number of bytes operated on.
        this returns the number of bytes operated on.
 */
 */
 
 
unsigned int
unsigned int
bfd_get_reloc_size (howto)
bfd_get_reloc_size (howto)
     reloc_howto_type *howto;
     reloc_howto_type *howto;
{
{
  switch (howto->size)
  switch (howto->size)
    {
    {
    case 0: return 1;
    case 0: return 1;
    case 1: return 2;
    case 1: return 2;
    case 2: return 4;
    case 2: return 4;
    case 3: return 0;
    case 3: return 0;
    case 4: return 8;
    case 4: return 8;
    case 8: return 16;
    case 8: return 16;
    case -2: return 4;
    case -2: return 4;
    default: abort ();
    default: abort ();
    }
    }
}
}
 
 
/*
/*
TYPEDEF
TYPEDEF
        arelent_chain
        arelent_chain
 
 
DESCRIPTION
DESCRIPTION
 
 
        How relocs are tied together in an <<asection>>:
        How relocs are tied together in an <<asection>>:
 
 
.typedef struct relent_chain
.typedef struct relent_chain
.{
.{
.  arelent relent;
.  arelent relent;
.  struct relent_chain *next;
.  struct relent_chain *next;
.}
.}
.arelent_chain;
.arelent_chain;
.
.
*/
*/
 
 
/* N_ONES produces N one bits, without overflowing machine arithmetic.  */
/* N_ONES produces N one bits, without overflowing machine arithmetic.  */
#define N_ONES(n) (((((bfd_vma) 1 << ((n) - 1)) - 1) << 1) | 1)
#define N_ONES(n) (((((bfd_vma) 1 << ((n) - 1)) - 1) << 1) | 1)
 
 
/*
/*
FUNCTION
FUNCTION
        bfd_check_overflow
        bfd_check_overflow
 
 
SYNOPSIS
SYNOPSIS
        bfd_reloc_status_type
        bfd_reloc_status_type
                bfd_check_overflow
                bfd_check_overflow
                        (enum complain_overflow how,
                        (enum complain_overflow how,
                         unsigned int bitsize,
                         unsigned int bitsize,
                         unsigned int rightshift,
                         unsigned int rightshift,
                         unsigned int addrsize,
                         unsigned int addrsize,
                         bfd_vma relocation);
                         bfd_vma relocation);
 
 
DESCRIPTION
DESCRIPTION
        Perform overflow checking on @var{relocation} which has
        Perform overflow checking on @var{relocation} which has
        @var{bitsize} significant bits and will be shifted right by
        @var{bitsize} significant bits and will be shifted right by
        @var{rightshift} bits, on a machine with addresses containing
        @var{rightshift} bits, on a machine with addresses containing
        @var{addrsize} significant bits.  The result is either of
        @var{addrsize} significant bits.  The result is either of
        @code{bfd_reloc_ok} or @code{bfd_reloc_overflow}.
        @code{bfd_reloc_ok} or @code{bfd_reloc_overflow}.
 
 
*/
*/
 
 
bfd_reloc_status_type
bfd_reloc_status_type
bfd_check_overflow (how, bitsize, rightshift, addrsize, relocation)
bfd_check_overflow (how, bitsize, rightshift, addrsize, relocation)
     enum complain_overflow how;
     enum complain_overflow how;
     unsigned int bitsize;
     unsigned int bitsize;
     unsigned int rightshift;
     unsigned int rightshift;
     unsigned int addrsize;
     unsigned int addrsize;
     bfd_vma relocation;
     bfd_vma relocation;
{
{
  bfd_vma fieldmask, addrmask, signmask, ss, a;
  bfd_vma fieldmask, addrmask, signmask, ss, a;
  bfd_reloc_status_type flag = bfd_reloc_ok;
  bfd_reloc_status_type flag = bfd_reloc_ok;
 
 
  a = relocation;
  a = relocation;
 
 
  /* Note: BITSIZE should always be <= ADDRSIZE, but in case it's not,
  /* Note: BITSIZE should always be <= ADDRSIZE, but in case it's not,
     we'll be permissive: extra bits in the field mask will
     we'll be permissive: extra bits in the field mask will
     automatically extend the address mask for purposes of the
     automatically extend the address mask for purposes of the
     overflow check.  */
     overflow check.  */
  fieldmask = N_ONES (bitsize);
  fieldmask = N_ONES (bitsize);
  addrmask = N_ONES (addrsize) | fieldmask;
  addrmask = N_ONES (addrsize) | fieldmask;
 
 
  switch (how)
  switch (how)
    {
    {
    case complain_overflow_dont:
    case complain_overflow_dont:
      break;
      break;
 
 
    case complain_overflow_signed:
    case complain_overflow_signed:
      /* If any sign bits are set, all sign bits must be set.  That
      /* If any sign bits are set, all sign bits must be set.  That
         is, A must be a valid negative address after shifting.  */
         is, A must be a valid negative address after shifting.  */
      a = (a & addrmask) >> rightshift;
      a = (a & addrmask) >> rightshift;
      signmask = ~ (fieldmask >> 1);
      signmask = ~ (fieldmask >> 1);
      ss = a & signmask;
      ss = a & signmask;
      if (ss != 0 && ss != ((addrmask >> rightshift) & signmask))
      if (ss != 0 && ss != ((addrmask >> rightshift) & signmask))
        flag = bfd_reloc_overflow;
        flag = bfd_reloc_overflow;
      break;
      break;
 
 
    case complain_overflow_unsigned:
    case complain_overflow_unsigned:
      /* We have an overflow if the address does not fit in the field.  */
      /* We have an overflow if the address does not fit in the field.  */
      a = (a & addrmask) >> rightshift;
      a = (a & addrmask) >> rightshift;
      if ((a & ~ fieldmask) != 0)
      if ((a & ~ fieldmask) != 0)
        flag = bfd_reloc_overflow;
        flag = bfd_reloc_overflow;
      break;
      break;
 
 
    case complain_overflow_bitfield:
    case complain_overflow_bitfield:
      /* Bitfields are sometimes signed, sometimes unsigned.  We
      /* Bitfields are sometimes signed, sometimes unsigned.  We
         explicitly allow an address wrap too, which means a bitfield
         explicitly allow an address wrap too, which means a bitfield
         of n bits is allowed to store -2**n to 2**n-1.  Thus overflow
         of n bits is allowed to store -2**n to 2**n-1.  Thus overflow
         if the value has some, but not all, bits set outside the
         if the value has some, but not all, bits set outside the
         field.  */
         field.  */
      a >>= rightshift;
      a >>= rightshift;
      ss = a & ~ fieldmask;
      ss = a & ~ fieldmask;
      if (ss != 0 && ss != (((bfd_vma) -1 >> rightshift) & ~ fieldmask))
      if (ss != 0 && ss != (((bfd_vma) -1 >> rightshift) & ~ fieldmask))
        flag = bfd_reloc_overflow;
        flag = bfd_reloc_overflow;
      break;
      break;
 
 
    default:
    default:
      abort ();
      abort ();
    }
    }
 
 
  return flag;
  return flag;
}
}
 
 
/*
/*
FUNCTION
FUNCTION
        bfd_perform_relocation
        bfd_perform_relocation
 
 
SYNOPSIS
SYNOPSIS
        bfd_reloc_status_type
        bfd_reloc_status_type
                bfd_perform_relocation
                bfd_perform_relocation
                        (bfd *abfd,
                        (bfd *abfd,
                         arelent *reloc_entry,
                         arelent *reloc_entry,
                         PTR data,
                         PTR data,
                         asection *input_section,
                         asection *input_section,
                         bfd *output_bfd,
                         bfd *output_bfd,
                         char **error_message);
                         char **error_message);
 
 
DESCRIPTION
DESCRIPTION
        If @var{output_bfd} is supplied to this function, the
        If @var{output_bfd} is supplied to this function, the
        generated image will be relocatable; the relocations are
        generated image will be relocatable; the relocations are
        copied to the output file after they have been changed to
        copied to the output file after they have been changed to
        reflect the new state of the world. There are two ways of
        reflect the new state of the world. There are two ways of
        reflecting the results of partial linkage in an output file:
        reflecting the results of partial linkage in an output file:
        by modifying the output data in place, and by modifying the
        by modifying the output data in place, and by modifying the
        relocation record.  Some native formats (e.g., basic a.out and
        relocation record.  Some native formats (e.g., basic a.out and
        basic coff) have no way of specifying an addend in the
        basic coff) have no way of specifying an addend in the
        relocation type, so the addend has to go in the output data.
        relocation type, so the addend has to go in the output data.
        This is no big deal since in these formats the output data
        This is no big deal since in these formats the output data
        slot will always be big enough for the addend. Complex reloc
        slot will always be big enough for the addend. Complex reloc
        types with addends were invented to solve just this problem.
        types with addends were invented to solve just this problem.
        The @var{error_message} argument is set to an error message if
        The @var{error_message} argument is set to an error message if
        this return @code{bfd_reloc_dangerous}.
        this return @code{bfd_reloc_dangerous}.
 
 
*/
*/
 
 
bfd_reloc_status_type
bfd_reloc_status_type
bfd_perform_relocation (abfd, reloc_entry, data, input_section, output_bfd,
bfd_perform_relocation (abfd, reloc_entry, data, input_section, output_bfd,
                        error_message)
                        error_message)
     bfd *abfd;
     bfd *abfd;
     arelent *reloc_entry;
     arelent *reloc_entry;
     PTR data;
     PTR data;
     asection *input_section;
     asection *input_section;
     bfd *output_bfd;
     bfd *output_bfd;
     char **error_message;
     char **error_message;
{
{
  bfd_vma relocation;
  bfd_vma relocation;
  bfd_reloc_status_type flag = bfd_reloc_ok;
  bfd_reloc_status_type flag = bfd_reloc_ok;
  bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd);
  bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd);
  bfd_vma output_base = 0;
  bfd_vma output_base = 0;
  reloc_howto_type *howto = reloc_entry->howto;
  reloc_howto_type *howto = reloc_entry->howto;
  asection *reloc_target_output_section;
  asection *reloc_target_output_section;
  asymbol *symbol;
  asymbol *symbol;
 
 
  symbol = *(reloc_entry->sym_ptr_ptr);
  symbol = *(reloc_entry->sym_ptr_ptr);
  if (bfd_is_abs_section (symbol->section)
  if (bfd_is_abs_section (symbol->section)
      && output_bfd != (bfd *) NULL)
      && output_bfd != (bfd *) NULL)
    {
    {
      reloc_entry->address += input_section->output_offset;
      reloc_entry->address += input_section->output_offset;
      return bfd_reloc_ok;
      return bfd_reloc_ok;
    }
    }
 
 
  /* If we are not producing relocateable output, return an error if
  /* If we are not producing relocateable output, return an error if
     the symbol is not defined.  An undefined weak symbol is
     the symbol is not defined.  An undefined weak symbol is
     considered to have a value of zero (SVR4 ABI, p. 4-27).  */
     considered to have a value of zero (SVR4 ABI, p. 4-27).  */
  if (bfd_is_und_section (symbol->section)
  if (bfd_is_und_section (symbol->section)
      && (symbol->flags & BSF_WEAK) == 0
      && (symbol->flags & BSF_WEAK) == 0
      && output_bfd == (bfd *) NULL)
      && output_bfd == (bfd *) NULL)
    flag = bfd_reloc_undefined;
    flag = bfd_reloc_undefined;
 
 
  /* If there is a function supplied to handle this relocation type,
  /* If there is a function supplied to handle this relocation type,
     call it.  It'll return `bfd_reloc_continue' if further processing
     call it.  It'll return `bfd_reloc_continue' if further processing
     can be done.  */
     can be done.  */
  if (howto->special_function)
  if (howto->special_function)
    {
    {
      bfd_reloc_status_type cont;
      bfd_reloc_status_type cont;
      cont = howto->special_function (abfd, reloc_entry, symbol, data,
      cont = howto->special_function (abfd, reloc_entry, symbol, data,
                                      input_section, output_bfd,
                                      input_section, output_bfd,
                                      error_message);
                                      error_message);
      if (cont != bfd_reloc_continue)
      if (cont != bfd_reloc_continue)
        return cont;
        return cont;
    }
    }
 
 
  /* Is the address of the relocation really within the section?  */
  /* Is the address of the relocation really within the section?  */
  if (reloc_entry->address > (input_section->_cooked_size
  if (reloc_entry->address > (input_section->_cooked_size
                              / bfd_octets_per_byte (abfd)))
                              / bfd_octets_per_byte (abfd)))
    return bfd_reloc_outofrange;
    return bfd_reloc_outofrange;
 
 
  /* Work out which section the relocation is targetted at and the
  /* Work out which section the relocation is targetted at and the
     initial relocation command value.  */
     initial relocation command value.  */
 
 
  /* Get symbol value.  (Common symbols are special.)  */
  /* Get symbol value.  (Common symbols are special.)  */
  if (bfd_is_com_section (symbol->section))
  if (bfd_is_com_section (symbol->section))
    relocation = 0;
    relocation = 0;
  else
  else
    relocation = symbol->value;
    relocation = symbol->value;
 
 
  reloc_target_output_section = symbol->section->output_section;
  reloc_target_output_section = symbol->section->output_section;
 
 
  /* Convert input-section-relative symbol value to absolute.  */
  /* Convert input-section-relative symbol value to absolute.  */
  if (output_bfd && ! howto->partial_inplace)
  if (output_bfd && ! howto->partial_inplace)
    output_base = 0;
    output_base = 0;
  else
  else
    output_base = reloc_target_output_section->vma;
    output_base = reloc_target_output_section->vma;
 
 
  relocation += output_base + symbol->section->output_offset;
  relocation += output_base + symbol->section->output_offset;
 
 
  /* Add in supplied addend.  */
  /* Add in supplied addend.  */
  relocation += reloc_entry->addend;
  relocation += reloc_entry->addend;
 
 
  /* Here the variable relocation holds the final address of the
  /* Here the variable relocation holds the final address of the
     symbol we are relocating against, plus any addend.  */
     symbol we are relocating against, plus any addend.  */
 
 
  if (howto->pc_relative)
  if (howto->pc_relative)
    {
    {
      /* This is a PC relative relocation.  We want to set RELOCATION
      /* This is a PC relative relocation.  We want to set RELOCATION
         to the distance between the address of the symbol and the
         to the distance between the address of the symbol and the
         location.  RELOCATION is already the address of the symbol.
         location.  RELOCATION is already the address of the symbol.
 
 
         We start by subtracting the address of the section containing
         We start by subtracting the address of the section containing
         the location.
         the location.
 
 
         If pcrel_offset is set, we must further subtract the position
         If pcrel_offset is set, we must further subtract the position
         of the location within the section.  Some targets arrange for
         of the location within the section.  Some targets arrange for
         the addend to be the negative of the position of the location
         the addend to be the negative of the position of the location
         within the section; for example, i386-aout does this.  For
         within the section; for example, i386-aout does this.  For
         i386-aout, pcrel_offset is false.  Some other targets do not
         i386-aout, pcrel_offset is false.  Some other targets do not
         include the position of the location; for example, m88kbcs,
         include the position of the location; for example, m88kbcs,
         or ELF.  For those targets, pcrel_offset is true.
         or ELF.  For those targets, pcrel_offset is true.
 
 
         If we are producing relocateable output, then we must ensure
         If we are producing relocateable output, then we must ensure
         that this reloc will be correctly computed when the final
         that this reloc will be correctly computed when the final
         relocation is done.  If pcrel_offset is false we want to wind
         relocation is done.  If pcrel_offset is false we want to wind
         up with the negative of the location within the section,
         up with the negative of the location within the section,
         which means we must adjust the existing addend by the change
         which means we must adjust the existing addend by the change
         in the location within the section.  If pcrel_offset is true
         in the location within the section.  If pcrel_offset is true
         we do not want to adjust the existing addend at all.
         we do not want to adjust the existing addend at all.
 
 
         FIXME: This seems logical to me, but for the case of
         FIXME: This seems logical to me, but for the case of
         producing relocateable output it is not what the code
         producing relocateable output it is not what the code
         actually does.  I don't want to change it, because it seems
         actually does.  I don't want to change it, because it seems
         far too likely that something will break.  */
         far too likely that something will break.  */
 
 
      relocation -=
      relocation -=
        input_section->output_section->vma + input_section->output_offset;
        input_section->output_section->vma + input_section->output_offset;
 
 
      if (howto->pcrel_offset)
      if (howto->pcrel_offset)
        relocation -= reloc_entry->address;
        relocation -= reloc_entry->address;
    }
    }
 
 
  if (output_bfd != (bfd *) NULL)
  if (output_bfd != (bfd *) NULL)
    {
    {
      if (! howto->partial_inplace)
      if (! howto->partial_inplace)
        {
        {
          /* This is a partial relocation, and we want to apply the relocation
          /* This is a partial relocation, and we want to apply the relocation
             to the reloc entry rather than the raw data. Modify the reloc
             to the reloc entry rather than the raw data. Modify the reloc
             inplace to reflect what we now know.  */
             inplace to reflect what we now know.  */
          reloc_entry->addend = relocation;
          reloc_entry->addend = relocation;
          reloc_entry->address += input_section->output_offset;
          reloc_entry->address += input_section->output_offset;
          return flag;
          return flag;
        }
        }
      else
      else
        {
        {
          /* This is a partial relocation, but inplace, so modify the
          /* This is a partial relocation, but inplace, so modify the
             reloc record a bit.
             reloc record a bit.
 
 
             If we've relocated with a symbol with a section, change
             If we've relocated with a symbol with a section, change
             into a ref to the section belonging to the symbol.  */
             into a ref to the section belonging to the symbol.  */
 
 
          reloc_entry->address += input_section->output_offset;
          reloc_entry->address += input_section->output_offset;
 
 
          /* WTF?? */
          /* WTF?? */
          if (abfd->xvec->flavour == bfd_target_coff_flavour
          if (abfd->xvec->flavour == bfd_target_coff_flavour
              && strcmp (abfd->xvec->name, "coff-Intel-little") != 0
              && strcmp (abfd->xvec->name, "coff-Intel-little") != 0
              && strcmp (abfd->xvec->name, "coff-Intel-big") != 0)
              && strcmp (abfd->xvec->name, "coff-Intel-big") != 0)
            {
            {
#if 1
#if 1
              /* For m68k-coff, the addend was being subtracted twice during
              /* For m68k-coff, the addend was being subtracted twice during
                 relocation with -r.  Removing the line below this comment
                 relocation with -r.  Removing the line below this comment
                 fixes that problem; see PR 2953.
                 fixes that problem; see PR 2953.
 
 
However, Ian wrote the following, regarding removing the line below,
However, Ian wrote the following, regarding removing the line below,
which explains why it is still enabled:  --djm
which explains why it is still enabled:  --djm
 
 
If you put a patch like that into BFD you need to check all the COFF
If you put a patch like that into BFD you need to check all the COFF
linkers.  I am fairly certain that patch will break coff-i386 (e.g.,
linkers.  I am fairly certain that patch will break coff-i386 (e.g.,
SCO); see coff_i386_reloc in coff-i386.c where I worked around the
SCO); see coff_i386_reloc in coff-i386.c where I worked around the
problem in a different way.  There may very well be a reason that the
problem in a different way.  There may very well be a reason that the
code works as it does.
code works as it does.
 
 
Hmmm.  The first obvious point is that bfd_perform_relocation should
Hmmm.  The first obvious point is that bfd_perform_relocation should
not have any tests that depend upon the flavour.  It's seem like
not have any tests that depend upon the flavour.  It's seem like
entirely the wrong place for such a thing.  The second obvious point
entirely the wrong place for such a thing.  The second obvious point
is that the current code ignores the reloc addend when producing
is that the current code ignores the reloc addend when producing
relocateable output for COFF.  That's peculiar.  In fact, I really
relocateable output for COFF.  That's peculiar.  In fact, I really
have no idea what the point of the line you want to remove is.
have no idea what the point of the line you want to remove is.
 
 
A typical COFF reloc subtracts the old value of the symbol and adds in
A typical COFF reloc subtracts the old value of the symbol and adds in
the new value to the location in the object file (if it's a pc
the new value to the location in the object file (if it's a pc
relative reloc it adds the difference between the symbol value and the
relative reloc it adds the difference between the symbol value and the
location).  When relocating we need to preserve that property.
location).  When relocating we need to preserve that property.
 
 
BFD handles this by setting the addend to the negative of the old
BFD handles this by setting the addend to the negative of the old
value of the symbol.  Unfortunately it handles common symbols in a
value of the symbol.  Unfortunately it handles common symbols in a
non-standard way (it doesn't subtract the old value) but that's a
non-standard way (it doesn't subtract the old value) but that's a
different story (we can't change it without losing backward
different story (we can't change it without losing backward
compatibility with old object files) (coff-i386 does subtract the old
compatibility with old object files) (coff-i386 does subtract the old
value, to be compatible with existing coff-i386 targets, like SCO).
value, to be compatible with existing coff-i386 targets, like SCO).
 
 
So everything works fine when not producing relocateable output.  When
So everything works fine when not producing relocateable output.  When
we are producing relocateable output, logically we should do exactly
we are producing relocateable output, logically we should do exactly
what we do when not producing relocateable output.  Therefore, your
what we do when not producing relocateable output.  Therefore, your
patch is correct.  In fact, it should probably always just set
patch is correct.  In fact, it should probably always just set
reloc_entry->addend to 0 for all cases, since it is, in fact, going to
reloc_entry->addend to 0 for all cases, since it is, in fact, going to
add the value into the object file.  This won't hurt the COFF code,
add the value into the object file.  This won't hurt the COFF code,
which doesn't use the addend; I'm not sure what it will do to other
which doesn't use the addend; I'm not sure what it will do to other
formats (the thing to check for would be whether any formats both use
formats (the thing to check for would be whether any formats both use
the addend and set partial_inplace).
the addend and set partial_inplace).
 
 
When I wanted to make coff-i386 produce relocateable output, I ran
When I wanted to make coff-i386 produce relocateable output, I ran
into the problem that you are running into: I wanted to remove that
into the problem that you are running into: I wanted to remove that
line.  Rather than risk it, I made the coff-i386 relocs use a special
line.  Rather than risk it, I made the coff-i386 relocs use a special
function; it's coff_i386_reloc in coff-i386.c.  The function
function; it's coff_i386_reloc in coff-i386.c.  The function
specifically adds the addend field into the object file, knowing that
specifically adds the addend field into the object file, knowing that
bfd_perform_relocation is not going to.  If you remove that line, then
bfd_perform_relocation is not going to.  If you remove that line, then
coff-i386.c will wind up adding the addend field in twice.  It's
coff-i386.c will wind up adding the addend field in twice.  It's
trivial to fix; it just needs to be done.
trivial to fix; it just needs to be done.
 
 
The problem with removing the line is just that it may break some
The problem with removing the line is just that it may break some
working code.  With BFD it's hard to be sure of anything.  The right
working code.  With BFD it's hard to be sure of anything.  The right
way to deal with this is simply to build and test at least all the
way to deal with this is simply to build and test at least all the
supported COFF targets.  It should be straightforward if time and disk
supported COFF targets.  It should be straightforward if time and disk
space consuming.  For each target:
space consuming.  For each target:
    1) build the linker
    1) build the linker
    2) generate some executable, and link it using -r (I would
    2) generate some executable, and link it using -r (I would
       probably use paranoia.o and link against newlib/libc.a, which
       probably use paranoia.o and link against newlib/libc.a, which
       for all the supported targets would be available in
       for all the supported targets would be available in
       /usr/cygnus/progressive/H-host/target/lib/libc.a).
       /usr/cygnus/progressive/H-host/target/lib/libc.a).
    3) make the change to reloc.c
    3) make the change to reloc.c
    4) rebuild the linker
    4) rebuild the linker
    5) repeat step 2
    5) repeat step 2
    6) if the resulting object files are the same, you have at least
    6) if the resulting object files are the same, you have at least
       made it no worse
       made it no worse
    7) if they are different you have to figure out which version is
    7) if they are different you have to figure out which version is
       right
       right
*/
*/
              relocation -= reloc_entry->addend;
              relocation -= reloc_entry->addend;
#endif
#endif
              reloc_entry->addend = 0;
              reloc_entry->addend = 0;
            }
            }
          else
          else
            {
            {
              reloc_entry->addend = relocation;
              reloc_entry->addend = relocation;
            }
            }
        }
        }
    }
    }
  else
  else
    {
    {
      reloc_entry->addend = 0;
      reloc_entry->addend = 0;
    }
    }
 
 
  /* FIXME: This overflow checking is incomplete, because the value
  /* FIXME: This overflow checking is incomplete, because the value
     might have overflowed before we get here.  For a correct check we
     might have overflowed before we get here.  For a correct check we
     need to compute the value in a size larger than bitsize, but we
     need to compute the value in a size larger than bitsize, but we
     can't reasonably do that for a reloc the same size as a host
     can't reasonably do that for a reloc the same size as a host
     machine word.
     machine word.
     FIXME: We should also do overflow checking on the result after
     FIXME: We should also do overflow checking on the result after
     adding in the value contained in the object file.  */
     adding in the value contained in the object file.  */
  if (howto->complain_on_overflow != complain_overflow_dont
  if (howto->complain_on_overflow != complain_overflow_dont
      && flag == bfd_reloc_ok)
      && flag == bfd_reloc_ok)
    flag = bfd_check_overflow (howto->complain_on_overflow,
    flag = bfd_check_overflow (howto->complain_on_overflow,
                               howto->bitsize,
                               howto->bitsize,
                               howto->rightshift,
                               howto->rightshift,
                               bfd_arch_bits_per_address (abfd),
                               bfd_arch_bits_per_address (abfd),
                               relocation);
                               relocation);
 
 
  /* Either we are relocating all the way, or we don't want to apply
  /* Either we are relocating all the way, or we don't want to apply
     the relocation to the reloc entry (probably because there isn't
     the relocation to the reloc entry (probably because there isn't
     any room in the output format to describe addends to relocs).  */
     any room in the output format to describe addends to relocs).  */
 
 
  /* The cast to bfd_vma avoids a bug in the Alpha OSF/1 C compiler
  /* The cast to bfd_vma avoids a bug in the Alpha OSF/1 C compiler
     (OSF version 1.3, compiler version 3.11).  It miscompiles the
     (OSF version 1.3, compiler version 3.11).  It miscompiles the
     following program:
     following program:
 
 
     struct str
     struct str
     {
     {
       unsigned int i0;
       unsigned int i0;
     } s = { 0 };
     } s = { 0 };
 
 
     int
     int
     main ()
     main ()
     {
     {
       unsigned long x;
       unsigned long x;
 
 
       x = 0x100000000;
       x = 0x100000000;
       x <<= (unsigned long) s.i0;
       x <<= (unsigned long) s.i0;
       if (x == 0)
       if (x == 0)
         printf ("failed\n");
         printf ("failed\n");
       else
       else
         printf ("succeeded (%lx)\n", x);
         printf ("succeeded (%lx)\n", x);
     }
     }
     */
     */
 
 
  relocation >>= (bfd_vma) howto->rightshift;
  relocation >>= (bfd_vma) howto->rightshift;
 
 
  /* Shift everything up to where it's going to be used.  */
  /* Shift everything up to where it's going to be used.  */
  relocation <<= (bfd_vma) howto->bitpos;
  relocation <<= (bfd_vma) howto->bitpos;
 
 
  /* Wait for the day when all have the mask in them.  */
  /* Wait for the day when all have the mask in them.  */
 
 
  /* What we do:
  /* What we do:
     i instruction to be left alone
     i instruction to be left alone
     o offset within instruction
     o offset within instruction
     r relocation offset to apply
     r relocation offset to apply
     S src mask
     S src mask
     D dst mask
     D dst mask
     N ~dst mask
     N ~dst mask
     A part 1
     A part 1
     B part 2
     B part 2
     R result
     R result
 
 
     Do this:
     Do this:
     ((  i i i i i o o o o o  from bfd_get<size>
     ((  i i i i i o o o o o  from bfd_get<size>
     and           S S S S S) to get the size offset we want
     and           S S S S S) to get the size offset we want
     +   r r r r r r r r r r) to get the final value to place
     +   r r r r r r r r r r) to get the final value to place
     and           D D D D D  to chop to right size
     and           D D D D D  to chop to right size
     -----------------------
     -----------------------
     =             A A A A A
     =             A A A A A
     And this:
     And this:
     (   i i i i i o o o o o  from bfd_get<size>
     (   i i i i i o o o o o  from bfd_get<size>
     and N N N N N          ) get instruction
     and N N N N N          ) get instruction
     -----------------------
     -----------------------
     =   B B B B B
     =   B B B B B
 
 
     And then:
     And then:
     (   B B B B B
     (   B B B B B
     or            A A A A A)
     or            A A A A A)
     -----------------------
     -----------------------
     =   R R R R R R R R R R  put into bfd_put<size>
     =   R R R R R R R R R R  put into bfd_put<size>
     */
     */
 
 
#define DOIT(x) \
#define DOIT(x) \
  x = ( (x & ~howto->dst_mask) | (((x & howto->src_mask) +  relocation) & howto->dst_mask))
  x = ( (x & ~howto->dst_mask) | (((x & howto->src_mask) +  relocation) & howto->dst_mask))
 
 
  switch (howto->size)
  switch (howto->size)
    {
    {
    case 0:
    case 0:
      {
      {
        char x = bfd_get_8 (abfd, (char *) data + octets);
        char x = bfd_get_8 (abfd, (char *) data + octets);
        DOIT (x);
        DOIT (x);
        bfd_put_8 (abfd, x, (unsigned char *) data + octets);
        bfd_put_8 (abfd, x, (unsigned char *) data + octets);
      }
      }
      break;
      break;
 
 
    case 1:
    case 1:
      {
      {
        short x = bfd_get_16 (abfd, (bfd_byte *) data + octets);
        short x = bfd_get_16 (abfd, (bfd_byte *) data + octets);
        DOIT (x);
        DOIT (x);
        bfd_put_16 (abfd, (bfd_vma) x, (unsigned char *) data + octets);
        bfd_put_16 (abfd, (bfd_vma) x, (unsigned char *) data + octets);
      }
      }
      break;
      break;
    case 2:
    case 2:
      {
      {
        long x = bfd_get_32 (abfd, (bfd_byte *) data + octets);
        long x = bfd_get_32 (abfd, (bfd_byte *) data + octets);
        DOIT (x);
        DOIT (x);
        bfd_put_32 (abfd, (bfd_vma) x, (bfd_byte *) data + octets);
        bfd_put_32 (abfd, (bfd_vma) x, (bfd_byte *) data + octets);
      }
      }
      break;
      break;
    case -2:
    case -2:
      {
      {
        long x = bfd_get_32 (abfd, (bfd_byte *) data + octets);
        long x = bfd_get_32 (abfd, (bfd_byte *) data + octets);
        relocation = -relocation;
        relocation = -relocation;
        DOIT (x);
        DOIT (x);
        bfd_put_32 (abfd, (bfd_vma) x, (bfd_byte *) data + octets);
        bfd_put_32 (abfd, (bfd_vma) x, (bfd_byte *) data + octets);
      }
      }
      break;
      break;
 
 
    case -1:
    case -1:
      {
      {
        long x = bfd_get_16 (abfd, (bfd_byte *) data + octets);
        long x = bfd_get_16 (abfd, (bfd_byte *) data + octets);
        relocation = -relocation;
        relocation = -relocation;
        DOIT (x);
        DOIT (x);
        bfd_put_16 (abfd, (bfd_vma) x, (bfd_byte *) data + octets);
        bfd_put_16 (abfd, (bfd_vma) x, (bfd_byte *) data + octets);
      }
      }
      break;
      break;
 
 
    case 3:
    case 3:
      /* Do nothing */
      /* Do nothing */
      break;
      break;
 
 
    case 4:
    case 4:
#ifdef BFD64
#ifdef BFD64
      {
      {
        bfd_vma x = bfd_get_64 (abfd, (bfd_byte *) data + octets);
        bfd_vma x = bfd_get_64 (abfd, (bfd_byte *) data + octets);
        DOIT (x);
        DOIT (x);
        bfd_put_64 (abfd, x, (bfd_byte *) data + octets);
        bfd_put_64 (abfd, x, (bfd_byte *) data + octets);
      }
      }
#else
#else
      abort ();
      abort ();
#endif
#endif
      break;
      break;
    default:
    default:
      return bfd_reloc_other;
      return bfd_reloc_other;
    }
    }
 
 
  return flag;
  return flag;
}
}
 
 
/*
/*
FUNCTION
FUNCTION
        bfd_install_relocation
        bfd_install_relocation
 
 
SYNOPSIS
SYNOPSIS
        bfd_reloc_status_type
        bfd_reloc_status_type
                bfd_install_relocation
                bfd_install_relocation
                        (bfd *abfd,
                        (bfd *abfd,
                         arelent *reloc_entry,
                         arelent *reloc_entry,
                         PTR data, bfd_vma data_start,
                         PTR data, bfd_vma data_start,
                         asection *input_section,
                         asection *input_section,
                         char **error_message);
                         char **error_message);
 
 
DESCRIPTION
DESCRIPTION
        This looks remarkably like <<bfd_perform_relocation>>, except it
        This looks remarkably like <<bfd_perform_relocation>>, except it
        does not expect that the section contents have been filled in.
        does not expect that the section contents have been filled in.
        I.e., it's suitable for use when creating, rather than applying
        I.e., it's suitable for use when creating, rather than applying
        a relocation.
        a relocation.
 
 
        For now, this function should be considered reserved for the
        For now, this function should be considered reserved for the
        assembler.
        assembler.
*/
*/
 
 
bfd_reloc_status_type
bfd_reloc_status_type
bfd_install_relocation (abfd, reloc_entry, data_start, data_start_offset,
bfd_install_relocation (abfd, reloc_entry, data_start, data_start_offset,
                        input_section, error_message)
                        input_section, error_message)
     bfd *abfd;
     bfd *abfd;
     arelent *reloc_entry;
     arelent *reloc_entry;
     PTR data_start;
     PTR data_start;
     bfd_vma data_start_offset;
     bfd_vma data_start_offset;
     asection *input_section;
     asection *input_section;
     char **error_message;
     char **error_message;
{
{
  bfd_vma relocation;
  bfd_vma relocation;
  bfd_reloc_status_type flag = bfd_reloc_ok;
  bfd_reloc_status_type flag = bfd_reloc_ok;
  bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd);
  bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd);
  bfd_vma output_base = 0;
  bfd_vma output_base = 0;
  reloc_howto_type *howto = reloc_entry->howto;
  reloc_howto_type *howto = reloc_entry->howto;
  asection *reloc_target_output_section;
  asection *reloc_target_output_section;
  asymbol *symbol;
  asymbol *symbol;
  bfd_byte *data;
  bfd_byte *data;
 
 
  symbol = *(reloc_entry->sym_ptr_ptr);
  symbol = *(reloc_entry->sym_ptr_ptr);
  if (bfd_is_abs_section (symbol->section))
  if (bfd_is_abs_section (symbol->section))
    {
    {
      reloc_entry->address += input_section->output_offset;
      reloc_entry->address += input_section->output_offset;
      return bfd_reloc_ok;
      return bfd_reloc_ok;
    }
    }
 
 
  /* If there is a function supplied to handle this relocation type,
  /* If there is a function supplied to handle this relocation type,
     call it.  It'll return `bfd_reloc_continue' if further processing
     call it.  It'll return `bfd_reloc_continue' if further processing
     can be done.  */
     can be done.  */
  if (howto->special_function)
  if (howto->special_function)
    {
    {
      bfd_reloc_status_type cont;
      bfd_reloc_status_type cont;
 
 
      /* XXX - The special_function calls haven't been fixed up to deal
      /* XXX - The special_function calls haven't been fixed up to deal
         with creating new relocations and section contents.  */
         with creating new relocations and section contents.  */
      cont = howto->special_function (abfd, reloc_entry, symbol,
      cont = howto->special_function (abfd, reloc_entry, symbol,
                                      /* XXX - Non-portable! */
                                      /* XXX - Non-portable! */
                                      ((bfd_byte *) data_start
                                      ((bfd_byte *) data_start
                                       - data_start_offset),
                                       - data_start_offset),
                                      input_section, abfd, error_message);
                                      input_section, abfd, error_message);
      if (cont != bfd_reloc_continue)
      if (cont != bfd_reloc_continue)
        return cont;
        return cont;
    }
    }
 
 
  /* Is the address of the relocation really within the section?  */
  /* Is the address of the relocation really within the section?  */
  if (reloc_entry->address > (input_section->_cooked_size
  if (reloc_entry->address > (input_section->_cooked_size
                              / bfd_octets_per_byte (abfd)))
                              / bfd_octets_per_byte (abfd)))
    return bfd_reloc_outofrange;
    return bfd_reloc_outofrange;
 
 
  /* Work out which section the relocation is targetted at and the
  /* Work out which section the relocation is targetted at and the
     initial relocation command value.  */
     initial relocation command value.  */
 
 
  /* Get symbol value.  (Common symbols are special.)  */
  /* Get symbol value.  (Common symbols are special.)  */
  if (bfd_is_com_section (symbol->section))
  if (bfd_is_com_section (symbol->section))
    relocation = 0;
    relocation = 0;
  else
  else
    relocation = symbol->value;
    relocation = symbol->value;
 
 
  reloc_target_output_section = symbol->section->output_section;
  reloc_target_output_section = symbol->section->output_section;
 
 
  /* Convert input-section-relative symbol value to absolute.  */
  /* Convert input-section-relative symbol value to absolute.  */
  if (! howto->partial_inplace)
  if (! howto->partial_inplace)
    output_base = 0;
    output_base = 0;
  else
  else
    output_base = reloc_target_output_section->vma;
    output_base = reloc_target_output_section->vma;
 
 
  relocation += output_base + symbol->section->output_offset;
  relocation += output_base + symbol->section->output_offset;
 
 
  /* Add in supplied addend.  */
  /* Add in supplied addend.  */
  relocation += reloc_entry->addend;
  relocation += reloc_entry->addend;
 
 
  /* Here the variable relocation holds the final address of the
  /* Here the variable relocation holds the final address of the
     symbol we are relocating against, plus any addend.  */
     symbol we are relocating against, plus any addend.  */
 
 
  if (howto->pc_relative)
  if (howto->pc_relative)
    {
    {
      /* This is a PC relative relocation.  We want to set RELOCATION
      /* This is a PC relative relocation.  We want to set RELOCATION
         to the distance between the address of the symbol and the
         to the distance between the address of the symbol and the
         location.  RELOCATION is already the address of the symbol.
         location.  RELOCATION is already the address of the symbol.
 
 
         We start by subtracting the address of the section containing
         We start by subtracting the address of the section containing
         the location.
         the location.
 
 
         If pcrel_offset is set, we must further subtract the position
         If pcrel_offset is set, we must further subtract the position
         of the location within the section.  Some targets arrange for
         of the location within the section.  Some targets arrange for
         the addend to be the negative of the position of the location
         the addend to be the negative of the position of the location
         within the section; for example, i386-aout does this.  For
         within the section; for example, i386-aout does this.  For
         i386-aout, pcrel_offset is false.  Some other targets do not
         i386-aout, pcrel_offset is false.  Some other targets do not
         include the position of the location; for example, m88kbcs,
         include the position of the location; for example, m88kbcs,
         or ELF.  For those targets, pcrel_offset is true.
         or ELF.  For those targets, pcrel_offset is true.
 
 
         If we are producing relocateable output, then we must ensure
         If we are producing relocateable output, then we must ensure
         that this reloc will be correctly computed when the final
         that this reloc will be correctly computed when the final
         relocation is done.  If pcrel_offset is false we want to wind
         relocation is done.  If pcrel_offset is false we want to wind
         up with the negative of the location within the section,
         up with the negative of the location within the section,
         which means we must adjust the existing addend by the change
         which means we must adjust the existing addend by the change
         in the location within the section.  If pcrel_offset is true
         in the location within the section.  If pcrel_offset is true
         we do not want to adjust the existing addend at all.
         we do not want to adjust the existing addend at all.
 
 
         FIXME: This seems logical to me, but for the case of
         FIXME: This seems logical to me, but for the case of
         producing relocateable output it is not what the code
         producing relocateable output it is not what the code
         actually does.  I don't want to change it, because it seems
         actually does.  I don't want to change it, because it seems
         far too likely that something will break.  */
         far too likely that something will break.  */
 
 
      relocation -=
      relocation -=
        input_section->output_section->vma + input_section->output_offset;
        input_section->output_section->vma + input_section->output_offset;
 
 
      if (howto->pcrel_offset && howto->partial_inplace)
      if (howto->pcrel_offset && howto->partial_inplace)
        relocation -= reloc_entry->address;
        relocation -= reloc_entry->address;
    }
    }
 
 
  if (! howto->partial_inplace)
  if (! howto->partial_inplace)
    {
    {
      /* This is a partial relocation, and we want to apply the relocation
      /* This is a partial relocation, and we want to apply the relocation
         to the reloc entry rather than the raw data. Modify the reloc
         to the reloc entry rather than the raw data. Modify the reloc
         inplace to reflect what we now know.  */
         inplace to reflect what we now know.  */
      reloc_entry->addend = relocation;
      reloc_entry->addend = relocation;
      reloc_entry->address += input_section->output_offset;
      reloc_entry->address += input_section->output_offset;
      return flag;
      return flag;
    }
    }
  else
  else
    {
    {
      /* This is a partial relocation, but inplace, so modify the
      /* This is a partial relocation, but inplace, so modify the
         reloc record a bit.
         reloc record a bit.
 
 
         If we've relocated with a symbol with a section, change
         If we've relocated with a symbol with a section, change
         into a ref to the section belonging to the symbol.  */
         into a ref to the section belonging to the symbol.  */
      reloc_entry->address += input_section->output_offset;
      reloc_entry->address += input_section->output_offset;
 
 
      /* WTF?? */
      /* WTF?? */
      if (abfd->xvec->flavour == bfd_target_coff_flavour
      if (abfd->xvec->flavour == bfd_target_coff_flavour
          && strcmp (abfd->xvec->name, "coff-Intel-little") != 0
          && strcmp (abfd->xvec->name, "coff-Intel-little") != 0
          && strcmp (abfd->xvec->name, "coff-Intel-big") != 0)
          && strcmp (abfd->xvec->name, "coff-Intel-big") != 0)
        {
        {
#if 1
#if 1
/* For m68k-coff, the addend was being subtracted twice during
/* For m68k-coff, the addend was being subtracted twice during
   relocation with -r.  Removing the line below this comment
   relocation with -r.  Removing the line below this comment
   fixes that problem; see PR 2953.
   fixes that problem; see PR 2953.
 
 
However, Ian wrote the following, regarding removing the line below,
However, Ian wrote the following, regarding removing the line below,
which explains why it is still enabled:  --djm
which explains why it is still enabled:  --djm
 
 
If you put a patch like that into BFD you need to check all the COFF
If you put a patch like that into BFD you need to check all the COFF
linkers.  I am fairly certain that patch will break coff-i386 (e.g.,
linkers.  I am fairly certain that patch will break coff-i386 (e.g.,
SCO); see coff_i386_reloc in coff-i386.c where I worked around the
SCO); see coff_i386_reloc in coff-i386.c where I worked around the
problem in a different way.  There may very well be a reason that the
problem in a different way.  There may very well be a reason that the
code works as it does.
code works as it does.
 
 
Hmmm.  The first obvious point is that bfd_install_relocation should
Hmmm.  The first obvious point is that bfd_install_relocation should
not have any tests that depend upon the flavour.  It's seem like
not have any tests that depend upon the flavour.  It's seem like
entirely the wrong place for such a thing.  The second obvious point
entirely the wrong place for such a thing.  The second obvious point
is that the current code ignores the reloc addend when producing
is that the current code ignores the reloc addend when producing
relocateable output for COFF.  That's peculiar.  In fact, I really
relocateable output for COFF.  That's peculiar.  In fact, I really
have no idea what the point of the line you want to remove is.
have no idea what the point of the line you want to remove is.
 
 
A typical COFF reloc subtracts the old value of the symbol and adds in
A typical COFF reloc subtracts the old value of the symbol and adds in
the new value to the location in the object file (if it's a pc
the new value to the location in the object file (if it's a pc
relative reloc it adds the difference between the symbol value and the
relative reloc it adds the difference between the symbol value and the
location).  When relocating we need to preserve that property.
location).  When relocating we need to preserve that property.
 
 
BFD handles this by setting the addend to the negative of the old
BFD handles this by setting the addend to the negative of the old
value of the symbol.  Unfortunately it handles common symbols in a
value of the symbol.  Unfortunately it handles common symbols in a
non-standard way (it doesn't subtract the old value) but that's a
non-standard way (it doesn't subtract the old value) but that's a
different story (we can't change it without losing backward
different story (we can't change it without losing backward
compatibility with old object files) (coff-i386 does subtract the old
compatibility with old object files) (coff-i386 does subtract the old
value, to be compatible with existing coff-i386 targets, like SCO).
value, to be compatible with existing coff-i386 targets, like SCO).
 
 
So everything works fine when not producing relocateable output.  When
So everything works fine when not producing relocateable output.  When
we are producing relocateable output, logically we should do exactly
we are producing relocateable output, logically we should do exactly
what we do when not producing relocateable output.  Therefore, your
what we do when not producing relocateable output.  Therefore, your
patch is correct.  In fact, it should probably always just set
patch is correct.  In fact, it should probably always just set
reloc_entry->addend to 0 for all cases, since it is, in fact, going to
reloc_entry->addend to 0 for all cases, since it is, in fact, going to
add the value into the object file.  This won't hurt the COFF code,
add the value into the object file.  This won't hurt the COFF code,
which doesn't use the addend; I'm not sure what it will do to other
which doesn't use the addend; I'm not sure what it will do to other
formats (the thing to check for would be whether any formats both use
formats (the thing to check for would be whether any formats both use
the addend and set partial_inplace).
the addend and set partial_inplace).
 
 
When I wanted to make coff-i386 produce relocateable output, I ran
When I wanted to make coff-i386 produce relocateable output, I ran
into the problem that you are running into: I wanted to remove that
into the problem that you are running into: I wanted to remove that
line.  Rather than risk it, I made the coff-i386 relocs use a special
line.  Rather than risk it, I made the coff-i386 relocs use a special
function; it's coff_i386_reloc in coff-i386.c.  The function
function; it's coff_i386_reloc in coff-i386.c.  The function
specifically adds the addend field into the object file, knowing that
specifically adds the addend field into the object file, knowing that
bfd_install_relocation is not going to.  If you remove that line, then
bfd_install_relocation is not going to.  If you remove that line, then
coff-i386.c will wind up adding the addend field in twice.  It's
coff-i386.c will wind up adding the addend field in twice.  It's
trivial to fix; it just needs to be done.
trivial to fix; it just needs to be done.
 
 
The problem with removing the line is just that it may break some
The problem with removing the line is just that it may break some
working code.  With BFD it's hard to be sure of anything.  The right
working code.  With BFD it's hard to be sure of anything.  The right
way to deal with this is simply to build and test at least all the
way to deal with this is simply to build and test at least all the
supported COFF targets.  It should be straightforward if time and disk
supported COFF targets.  It should be straightforward if time and disk
space consuming.  For each target:
space consuming.  For each target:
    1) build the linker
    1) build the linker
    2) generate some executable, and link it using -r (I would
    2) generate some executable, and link it using -r (I would
       probably use paranoia.o and link against newlib/libc.a, which
       probably use paranoia.o and link against newlib/libc.a, which
       for all the supported targets would be available in
       for all the supported targets would be available in
       /usr/cygnus/progressive/H-host/target/lib/libc.a).
       /usr/cygnus/progressive/H-host/target/lib/libc.a).
    3) make the change to reloc.c
    3) make the change to reloc.c
    4) rebuild the linker
    4) rebuild the linker
    5) repeat step 2
    5) repeat step 2
    6) if the resulting object files are the same, you have at least
    6) if the resulting object files are the same, you have at least
       made it no worse
       made it no worse
    7) if they are different you have to figure out which version is
    7) if they are different you have to figure out which version is
       right.  */
       right.  */
          relocation -= reloc_entry->addend;
          relocation -= reloc_entry->addend;
#endif
#endif
          reloc_entry->addend = 0;
          reloc_entry->addend = 0;
        }
        }
      else
      else
        {
        {
          reloc_entry->addend = relocation;
          reloc_entry->addend = relocation;
        }
        }
    }
    }
 
 
  /* FIXME: This overflow checking is incomplete, because the value
  /* FIXME: This overflow checking is incomplete, because the value
     might have overflowed before we get here.  For a correct check we
     might have overflowed before we get here.  For a correct check we
     need to compute the value in a size larger than bitsize, but we
     need to compute the value in a size larger than bitsize, but we
     can't reasonably do that for a reloc the same size as a host
     can't reasonably do that for a reloc the same size as a host
     machine word.
     machine word.
     FIXME: We should also do overflow checking on the result after
     FIXME: We should also do overflow checking on the result after
     adding in the value contained in the object file.  */
     adding in the value contained in the object file.  */
  if (howto->complain_on_overflow != complain_overflow_dont)
  if (howto->complain_on_overflow != complain_overflow_dont)
    flag = bfd_check_overflow (howto->complain_on_overflow,
    flag = bfd_check_overflow (howto->complain_on_overflow,
                               howto->bitsize,
                               howto->bitsize,
                               howto->rightshift,
                               howto->rightshift,
                               bfd_arch_bits_per_address (abfd),
                               bfd_arch_bits_per_address (abfd),
                               relocation);
                               relocation);
 
 
  /* Either we are relocating all the way, or we don't want to apply
  /* Either we are relocating all the way, or we don't want to apply
     the relocation to the reloc entry (probably because there isn't
     the relocation to the reloc entry (probably because there isn't
     any room in the output format to describe addends to relocs).  */
     any room in the output format to describe addends to relocs).  */
 
 
  /* The cast to bfd_vma avoids a bug in the Alpha OSF/1 C compiler
  /* The cast to bfd_vma avoids a bug in the Alpha OSF/1 C compiler
     (OSF version 1.3, compiler version 3.11).  It miscompiles the
     (OSF version 1.3, compiler version 3.11).  It miscompiles the
     following program:
     following program:
 
 
     struct str
     struct str
     {
     {
       unsigned int i0;
       unsigned int i0;
     } s = { 0 };
     } s = { 0 };
 
 
     int
     int
     main ()
     main ()
     {
     {
       unsigned long x;
       unsigned long x;
 
 
       x = 0x100000000;
       x = 0x100000000;
       x <<= (unsigned long) s.i0;
       x <<= (unsigned long) s.i0;
       if (x == 0)
       if (x == 0)
         printf ("failed\n");
         printf ("failed\n");
       else
       else
         printf ("succeeded (%lx)\n", x);
         printf ("succeeded (%lx)\n", x);
     }
     }
     */
     */
 
 
  relocation >>= (bfd_vma) howto->rightshift;
  relocation >>= (bfd_vma) howto->rightshift;
 
 
  /* Shift everything up to where it's going to be used.  */
  /* Shift everything up to where it's going to be used.  */
  relocation <<= (bfd_vma) howto->bitpos;
  relocation <<= (bfd_vma) howto->bitpos;
 
 
  /* Wait for the day when all have the mask in them.  */
  /* Wait for the day when all have the mask in them.  */
 
 
  /* What we do:
  /* What we do:
     i instruction to be left alone
     i instruction to be left alone
     o offset within instruction
     o offset within instruction
     r relocation offset to apply
     r relocation offset to apply
     S src mask
     S src mask
     D dst mask
     D dst mask
     N ~dst mask
     N ~dst mask
     A part 1
     A part 1
     B part 2
     B part 2
     R result
     R result
 
 
     Do this:
     Do this:
     ((  i i i i i o o o o o  from bfd_get<size>
     ((  i i i i i o o o o o  from bfd_get<size>
     and           S S S S S) to get the size offset we want
     and           S S S S S) to get the size offset we want
     +   r r r r r r r r r r) to get the final value to place
     +   r r r r r r r r r r) to get the final value to place
     and           D D D D D  to chop to right size
     and           D D D D D  to chop to right size
     -----------------------
     -----------------------
     =             A A A A A
     =             A A A A A
     And this:
     And this:
     (   i i i i i o o o o o  from bfd_get<size>
     (   i i i i i o o o o o  from bfd_get<size>
     and N N N N N          ) get instruction
     and N N N N N          ) get instruction
     -----------------------
     -----------------------
     =   B B B B B
     =   B B B B B
 
 
     And then:
     And then:
     (   B B B B B
     (   B B B B B
     or            A A A A A)
     or            A A A A A)
     -----------------------
     -----------------------
     =   R R R R R R R R R R  put into bfd_put<size>
     =   R R R R R R R R R R  put into bfd_put<size>
     */
     */
 
 
#define DOIT(x) \
#define DOIT(x) \
  x = ( (x & ~howto->dst_mask) | (((x & howto->src_mask) +  relocation) & howto->dst_mask))
  x = ( (x & ~howto->dst_mask) | (((x & howto->src_mask) +  relocation) & howto->dst_mask))
 
 
  data = (bfd_byte *) data_start + (octets - data_start_offset);
  data = (bfd_byte *) data_start + (octets - data_start_offset);
 
 
  switch (howto->size)
  switch (howto->size)
    {
    {
    case 0:
    case 0:
      {
      {
        char x = bfd_get_8 (abfd, (char *) data);
        char x = bfd_get_8 (abfd, (char *) data);
        DOIT (x);
        DOIT (x);
        bfd_put_8 (abfd, x, (unsigned char *) data);
        bfd_put_8 (abfd, x, (unsigned char *) data);
      }
      }
      break;
      break;
 
 
    case 1:
    case 1:
      {
      {
        short x = bfd_get_16 (abfd, (bfd_byte *) data);
        short x = bfd_get_16 (abfd, (bfd_byte *) data);
        DOIT (x);
        DOIT (x);
        bfd_put_16 (abfd, (bfd_vma) x, (unsigned char *) data);
        bfd_put_16 (abfd, (bfd_vma) x, (unsigned char *) data);
      }
      }
      break;
      break;
    case 2:
    case 2:
      {
      {
        long x = bfd_get_32 (abfd, (bfd_byte *) data);
        long x = bfd_get_32 (abfd, (bfd_byte *) data);
        DOIT (x);
        DOIT (x);
        bfd_put_32 (abfd, (bfd_vma) x, (bfd_byte *) data);
        bfd_put_32 (abfd, (bfd_vma) x, (bfd_byte *) data);
      }
      }
      break;
      break;
    case -2:
    case -2:
      {
      {
        long x = bfd_get_32 (abfd, (bfd_byte *) data);
        long x = bfd_get_32 (abfd, (bfd_byte *) data);
        relocation = -relocation;
        relocation = -relocation;
        DOIT (x);
        DOIT (x);
        bfd_put_32 (abfd, (bfd_vma) x, (bfd_byte *) data);
        bfd_put_32 (abfd, (bfd_vma) x, (bfd_byte *) data);
      }
      }
      break;
      break;
 
 
    case 3:
    case 3:
      /* Do nothing */
      /* Do nothing */
      break;
      break;
 
 
    case 4:
    case 4:
      {
      {
        bfd_vma x = bfd_get_64 (abfd, (bfd_byte *) data);
        bfd_vma x = bfd_get_64 (abfd, (bfd_byte *) data);
        DOIT (x);
        DOIT (x);
        bfd_put_64 (abfd, x, (bfd_byte *) data);
        bfd_put_64 (abfd, x, (bfd_byte *) data);
      }
      }
      break;
      break;
    default:
    default:
      return bfd_reloc_other;
      return bfd_reloc_other;
    }
    }
 
 
  return flag;
  return flag;
}
}
 
 
/* This relocation routine is used by some of the backend linkers.
/* This relocation routine is used by some of the backend linkers.
   They do not construct asymbol or arelent structures, so there is no
   They do not construct asymbol or arelent structures, so there is no
   reason for them to use bfd_perform_relocation.  Also,
   reason for them to use bfd_perform_relocation.  Also,
   bfd_perform_relocation is so hacked up it is easier to write a new
   bfd_perform_relocation is so hacked up it is easier to write a new
   function than to try to deal with it.
   function than to try to deal with it.
 
 
   This routine does a final relocation.  Whether it is useful for a
   This routine does a final relocation.  Whether it is useful for a
   relocateable link depends upon how the object format defines
   relocateable link depends upon how the object format defines
   relocations.
   relocations.
 
 
   FIXME: This routine ignores any special_function in the HOWTO,
   FIXME: This routine ignores any special_function in the HOWTO,
   since the existing special_function values have been written for
   since the existing special_function values have been written for
   bfd_perform_relocation.
   bfd_perform_relocation.
 
 
   HOWTO is the reloc howto information.
   HOWTO is the reloc howto information.
   INPUT_BFD is the BFD which the reloc applies to.
   INPUT_BFD is the BFD which the reloc applies to.
   INPUT_SECTION is the section which the reloc applies to.
   INPUT_SECTION is the section which the reloc applies to.
   CONTENTS is the contents of the section.
   CONTENTS is the contents of the section.
   ADDRESS is the address of the reloc within INPUT_SECTION.
   ADDRESS is the address of the reloc within INPUT_SECTION.
   VALUE is the value of the symbol the reloc refers to.
   VALUE is the value of the symbol the reloc refers to.
   ADDEND is the addend of the reloc.  */
   ADDEND is the addend of the reloc.  */
 
 
bfd_reloc_status_type
bfd_reloc_status_type
_bfd_final_link_relocate (howto, input_bfd, input_section, contents, address,
_bfd_final_link_relocate (howto, input_bfd, input_section, contents, address,
                          value, addend)
                          value, addend)
     reloc_howto_type *howto;
     reloc_howto_type *howto;
     bfd *input_bfd;
     bfd *input_bfd;
     asection *input_section;
     asection *input_section;
     bfd_byte *contents;
     bfd_byte *contents;
     bfd_vma address;
     bfd_vma address;
     bfd_vma value;
     bfd_vma value;
     bfd_vma addend;
     bfd_vma addend;
{
{
  bfd_vma relocation;
  bfd_vma relocation;
 
 
  /* Sanity check the address.  */
  /* Sanity check the address.  */
  if (address > input_section->_raw_size)
  if (address > input_section->_raw_size)
    return bfd_reloc_outofrange;
    return bfd_reloc_outofrange;
 
 
  /* This function assumes that we are dealing with a basic relocation
  /* This function assumes that we are dealing with a basic relocation
     against a symbol.  We want to compute the value of the symbol to
     against a symbol.  We want to compute the value of the symbol to
     relocate to.  This is just VALUE, the value of the symbol, plus
     relocate to.  This is just VALUE, the value of the symbol, plus
     ADDEND, any addend associated with the reloc.  */
     ADDEND, any addend associated with the reloc.  */
  relocation = value + addend;
  relocation = value + addend;
 
 
  /* If the relocation is PC relative, we want to set RELOCATION to
  /* If the relocation is PC relative, we want to set RELOCATION to
     the distance between the symbol (currently in RELOCATION) and the
     the distance between the symbol (currently in RELOCATION) and the
     location we are relocating.  Some targets (e.g., i386-aout)
     location we are relocating.  Some targets (e.g., i386-aout)
     arrange for the contents of the section to be the negative of the
     arrange for the contents of the section to be the negative of the
     offset of the location within the section; for such targets
     offset of the location within the section; for such targets
     pcrel_offset is false.  Other targets (e.g., m88kbcs or ELF)
     pcrel_offset is false.  Other targets (e.g., m88kbcs or ELF)
     simply leave the contents of the section as zero; for such
     simply leave the contents of the section as zero; for such
     targets pcrel_offset is true.  If pcrel_offset is false we do not
     targets pcrel_offset is true.  If pcrel_offset is false we do not
     need to subtract out the offset of the location within the
     need to subtract out the offset of the location within the
     section (which is just ADDRESS).  */
     section (which is just ADDRESS).  */
  if (howto->pc_relative)
  if (howto->pc_relative)
    {
    {
      relocation -= (input_section->output_section->vma
      relocation -= (input_section->output_section->vma
                     + input_section->output_offset);
                     + input_section->output_offset);
      if (howto->pcrel_offset)
      if (howto->pcrel_offset)
        relocation -= address;
        relocation -= address;
    }
    }
 
 
  return _bfd_relocate_contents (howto, input_bfd, relocation,
  return _bfd_relocate_contents (howto, input_bfd, relocation,
                                 contents + address);
                                 contents + address);
}
}
 
 
/* Relocate a given location using a given value and howto.  */
/* Relocate a given location using a given value and howto.  */
 
 
bfd_reloc_status_type
bfd_reloc_status_type
_bfd_relocate_contents (howto, input_bfd, relocation, location)
_bfd_relocate_contents (howto, input_bfd, relocation, location)
     reloc_howto_type *howto;
     reloc_howto_type *howto;
     bfd *input_bfd;
     bfd *input_bfd;
     bfd_vma relocation;
     bfd_vma relocation;
     bfd_byte *location;
     bfd_byte *location;
{
{
  int size;
  int size;
  bfd_vma x = 0;
  bfd_vma x = 0;
  bfd_reloc_status_type flag;
  bfd_reloc_status_type flag;
  unsigned int rightshift = howto->rightshift;
  unsigned int rightshift = howto->rightshift;
  unsigned int bitpos = howto->bitpos;
  unsigned int bitpos = howto->bitpos;
 
 
  /* If the size is negative, negate RELOCATION.  This isn't very
  /* If the size is negative, negate RELOCATION.  This isn't very
     general.  */
     general.  */
  if (howto->size < 0)
  if (howto->size < 0)
    relocation = -relocation;
    relocation = -relocation;
 
 
  /* Get the value we are going to relocate.  */
  /* Get the value we are going to relocate.  */
  size = bfd_get_reloc_size (howto);
  size = bfd_get_reloc_size (howto);
  switch (size)
  switch (size)
    {
    {
    default:
    default:
    case 0:
    case 0:
      abort ();
      abort ();
    case 1:
    case 1:
      x = bfd_get_8 (input_bfd, location);
      x = bfd_get_8 (input_bfd, location);
      break;
      break;
    case 2:
    case 2:
      x = bfd_get_16 (input_bfd, location);
      x = bfd_get_16 (input_bfd, location);
      break;
      break;
    case 4:
    case 4:
      x = bfd_get_32 (input_bfd, location);
      x = bfd_get_32 (input_bfd, location);
      break;
      break;
    case 8:
    case 8:
#ifdef BFD64
#ifdef BFD64
      x = bfd_get_64 (input_bfd, location);
      x = bfd_get_64 (input_bfd, location);
#else
#else
      abort ();
      abort ();
#endif
#endif
      break;
      break;
    }
    }
 
 
  /* Check for overflow.  FIXME: We may drop bits during the addition
  /* Check for overflow.  FIXME: We may drop bits during the addition
     which we don't check for.  We must either check at every single
     which we don't check for.  We must either check at every single
     operation, which would be tedious, or we must do the computations
     operation, which would be tedious, or we must do the computations
     in a type larger than bfd_vma, which would be inefficient.  */
     in a type larger than bfd_vma, which would be inefficient.  */
  flag = bfd_reloc_ok;
  flag = bfd_reloc_ok;
  if (howto->complain_on_overflow != complain_overflow_dont)
  if (howto->complain_on_overflow != complain_overflow_dont)
    {
    {
      bfd_vma addrmask, fieldmask, signmask, ss;
      bfd_vma addrmask, fieldmask, signmask, ss;
      bfd_vma a, b, sum;
      bfd_vma a, b, sum;
 
 
      /* Get the values to be added together.  For signed and unsigned
      /* Get the values to be added together.  For signed and unsigned
         relocations, we assume that all values should be truncated to
         relocations, we assume that all values should be truncated to
         the size of an address.  For bitfields, all the bits matter.
         the size of an address.  For bitfields, all the bits matter.
         See also bfd_check_overflow.  */
         See also bfd_check_overflow.  */
      fieldmask = N_ONES (howto->bitsize);
      fieldmask = N_ONES (howto->bitsize);
      addrmask = N_ONES (bfd_arch_bits_per_address (input_bfd)) | fieldmask;
      addrmask = N_ONES (bfd_arch_bits_per_address (input_bfd)) | fieldmask;
      a = relocation;
      a = relocation;
      b = x & howto->src_mask;
      b = x & howto->src_mask;
 
 
      switch (howto->complain_on_overflow)
      switch (howto->complain_on_overflow)
        {
        {
        case complain_overflow_signed:
        case complain_overflow_signed:
          a = (a & addrmask) >> rightshift;
          a = (a & addrmask) >> rightshift;
 
 
          /* If any sign bits are set, all sign bits must be set.
          /* If any sign bits are set, all sign bits must be set.
             That is, A must be a valid negative address after
             That is, A must be a valid negative address after
             shifting.  */
             shifting.  */
          signmask = ~ (fieldmask >> 1);
          signmask = ~ (fieldmask >> 1);
          ss = a & signmask;
          ss = a & signmask;
          if (ss != 0 && ss != ((addrmask >> rightshift) & signmask))
          if (ss != 0 && ss != ((addrmask >> rightshift) & signmask))
            flag = bfd_reloc_overflow;
            flag = bfd_reloc_overflow;
 
 
          /* We only need this next bit of code if the sign bit of B
          /* We only need this next bit of code if the sign bit of B
             is below the sign bit of A.  This would only happen if
             is below the sign bit of A.  This would only happen if
             SRC_MASK had fewer bits than BITSIZE.  Note that if
             SRC_MASK had fewer bits than BITSIZE.  Note that if
             SRC_MASK has more bits than BITSIZE, we can get into
             SRC_MASK has more bits than BITSIZE, we can get into
             trouble; we would need to verify that B is in range, as
             trouble; we would need to verify that B is in range, as
             we do for A above.  */
             we do for A above.  */
          signmask = ((~ howto->src_mask) >> 1) & howto->src_mask;
          signmask = ((~ howto->src_mask) >> 1) & howto->src_mask;
 
 
          /* Set all the bits above the sign bit.  */
          /* Set all the bits above the sign bit.  */
          b = (b ^ signmask) - signmask;
          b = (b ^ signmask) - signmask;
 
 
          b = (b & addrmask) >> bitpos;
          b = (b & addrmask) >> bitpos;
 
 
          /* Now we can do the addition.  */
          /* Now we can do the addition.  */
          sum = a + b;
          sum = a + b;
 
 
          /* See if the result has the correct sign.  Bits above the
          /* See if the result has the correct sign.  Bits above the
             sign bit are junk now; ignore them.  If the sum is
             sign bit are junk now; ignore them.  If the sum is
             positive, make sure we did not have all negative inputs;
             positive, make sure we did not have all negative inputs;
             if the sum is negative, make sure we did not have all
             if the sum is negative, make sure we did not have all
             positive inputs.  The test below looks only at the sign
             positive inputs.  The test below looks only at the sign
             bits, and it really just
             bits, and it really just
                 SIGN (A) == SIGN (B) && SIGN (A) != SIGN (SUM)
                 SIGN (A) == SIGN (B) && SIGN (A) != SIGN (SUM)
             */
             */
          signmask = (fieldmask >> 1) + 1;
          signmask = (fieldmask >> 1) + 1;
          if (((~ (a ^ b)) & (a ^ sum)) & signmask)
          if (((~ (a ^ b)) & (a ^ sum)) & signmask)
            flag = bfd_reloc_overflow;
            flag = bfd_reloc_overflow;
 
 
          break;
          break;
 
 
        case complain_overflow_unsigned:
        case complain_overflow_unsigned:
          /* Checking for an unsigned overflow is relatively easy:
          /* Checking for an unsigned overflow is relatively easy:
             trim the addresses and add, and trim the result as well.
             trim the addresses and add, and trim the result as well.
             Overflow is normally indicated when the result does not
             Overflow is normally indicated when the result does not
             fit in the field.  However, we also need to consider the
             fit in the field.  However, we also need to consider the
             case when, e.g., fieldmask is 0x7fffffff or smaller, an
             case when, e.g., fieldmask is 0x7fffffff or smaller, an
             input is 0x80000000, and bfd_vma is only 32 bits; then we
             input is 0x80000000, and bfd_vma is only 32 bits; then we
             will get sum == 0, but there is an overflow, since the
             will get sum == 0, but there is an overflow, since the
             inputs did not fit in the field.  Instead of doing a
             inputs did not fit in the field.  Instead of doing a
             separate test, we can check for this by or-ing in the
             separate test, we can check for this by or-ing in the
             operands when testing for the sum overflowing its final
             operands when testing for the sum overflowing its final
             field.  */
             field.  */
          a = (a & addrmask) >> rightshift;
          a = (a & addrmask) >> rightshift;
          b = (b & addrmask) >> bitpos;
          b = (b & addrmask) >> bitpos;
          sum = (a + b) & addrmask;
          sum = (a + b) & addrmask;
          if ((a | b | sum) & ~ fieldmask)
          if ((a | b | sum) & ~ fieldmask)
            flag = bfd_reloc_overflow;
            flag = bfd_reloc_overflow;
 
 
          break;
          break;
 
 
        case complain_overflow_bitfield:
        case complain_overflow_bitfield:
          /* Much like the signed check, but for a field one bit
          /* Much like the signed check, but for a field one bit
             wider, and no trimming inputs with addrmask.  We allow a
             wider, and no trimming inputs with addrmask.  We allow a
             bitfield to represent numbers in the range -2**n to
             bitfield to represent numbers in the range -2**n to
             2**n-1, where n is the number of bits in the field.
             2**n-1, where n is the number of bits in the field.
             Note that when bfd_vma is 32 bits, a 32-bit reloc can't
             Note that when bfd_vma is 32 bits, a 32-bit reloc can't
             overflow, which is exactly what we want.  */
             overflow, which is exactly what we want.  */
          a >>= rightshift;
          a >>= rightshift;
 
 
          signmask = ~ fieldmask;
          signmask = ~ fieldmask;
          ss = a & signmask;
          ss = a & signmask;
          if (ss != 0 && ss != (((bfd_vma) -1 >> rightshift) & signmask))
          if (ss != 0 && ss != (((bfd_vma) -1 >> rightshift) & signmask))
            flag = bfd_reloc_overflow;
            flag = bfd_reloc_overflow;
 
 
          signmask = ((~ howto->src_mask) >> 1) & howto->src_mask;
          signmask = ((~ howto->src_mask) >> 1) & howto->src_mask;
          b = (b ^ signmask) - signmask;
          b = (b ^ signmask) - signmask;
 
 
          b >>= bitpos;
          b >>= bitpos;
 
 
          sum = a + b;
          sum = a + b;
 
 
          /* We mask with addrmask here to explicitly allow an address
          /* We mask with addrmask here to explicitly allow an address
             wrap-around.  The Linux kernel relies on it, and it is
             wrap-around.  The Linux kernel relies on it, and it is
             the only way to write assembler code which can run when
             the only way to write assembler code which can run when
             loaded at a location 0x80000000 away from the location at
             loaded at a location 0x80000000 away from the location at
             which it is linked.  */
             which it is linked.  */
          signmask = fieldmask + 1;
          signmask = fieldmask + 1;
          if (((~ (a ^ b)) & (a ^ sum)) & signmask & addrmask)
          if (((~ (a ^ b)) & (a ^ sum)) & signmask & addrmask)
            flag = bfd_reloc_overflow;
            flag = bfd_reloc_overflow;
 
 
          break;
          break;
 
 
        default:
        default:
          abort ();
          abort ();
        }
        }
    }
    }
 
 
  /* Put RELOCATION in the right bits.  */
  /* Put RELOCATION in the right bits.  */
  relocation >>= (bfd_vma) rightshift;
  relocation >>= (bfd_vma) rightshift;
  relocation <<= (bfd_vma) bitpos;
  relocation <<= (bfd_vma) bitpos;
 
 
  /* Add RELOCATION to the right bits of X.  */
  /* Add RELOCATION to the right bits of X.  */
  x = ((x & ~howto->dst_mask)
  x = ((x & ~howto->dst_mask)
       | (((x & howto->src_mask) + relocation) & howto->dst_mask));
       | (((x & howto->src_mask) + relocation) & howto->dst_mask));
 
 
  /* Put the relocated value back in the object file.  */
  /* Put the relocated value back in the object file.  */
  switch (size)
  switch (size)
    {
    {
    default:
    default:
    case 0:
    case 0:
      abort ();
      abort ();
    case 1:
    case 1:
      bfd_put_8 (input_bfd, x, location);
      bfd_put_8 (input_bfd, x, location);
      break;
      break;
    case 2:
    case 2:
      bfd_put_16 (input_bfd, x, location);
      bfd_put_16 (input_bfd, x, location);
      break;
      break;
    case 4:
    case 4:
      bfd_put_32 (input_bfd, x, location);
      bfd_put_32 (input_bfd, x, location);
      break;
      break;
    case 8:
    case 8:
#ifdef BFD64
#ifdef BFD64
      bfd_put_64 (input_bfd, x, location);
      bfd_put_64 (input_bfd, x, location);
#else
#else
      abort ();
      abort ();
#endif
#endif
      break;
      break;
    }
    }
 
 
  return flag;
  return flag;
}
}
 
 
/*
/*
DOCDD
DOCDD
INODE
INODE
        howto manager,  , typedef arelent, Relocations
        howto manager,  , typedef arelent, Relocations
 
 
SECTION
SECTION
        The howto manager
        The howto manager
 
 
        When an application wants to create a relocation, but doesn't
        When an application wants to create a relocation, but doesn't
        know what the target machine might call it, it can find out by
        know what the target machine might call it, it can find out by
        using this bit of code.
        using this bit of code.
 
 
*/
*/
 
 
/*
/*
TYPEDEF
TYPEDEF
        bfd_reloc_code_type
        bfd_reloc_code_type
 
 
DESCRIPTION
DESCRIPTION
        The insides of a reloc code.  The idea is that, eventually, there
        The insides of a reloc code.  The idea is that, eventually, there
        will be one enumerator for every type of relocation we ever do.
        will be one enumerator for every type of relocation we ever do.
        Pass one of these values to <<bfd_reloc_type_lookup>>, and it'll
        Pass one of these values to <<bfd_reloc_type_lookup>>, and it'll
        return a howto pointer.
        return a howto pointer.
 
 
        This does mean that the application must determine the correct
        This does mean that the application must determine the correct
        enumerator value; you can't get a howto pointer from a random set
        enumerator value; you can't get a howto pointer from a random set
        of attributes.
        of attributes.
 
 
SENUM
SENUM
   bfd_reloc_code_real
   bfd_reloc_code_real
 
 
ENUM
ENUM
  BFD_RELOC_64
  BFD_RELOC_64
ENUMX
ENUMX
  BFD_RELOC_32
  BFD_RELOC_32
ENUMX
ENUMX
  BFD_RELOC_26
  BFD_RELOC_26
ENUMX
ENUMX
  BFD_RELOC_24
  BFD_RELOC_24
ENUMX
ENUMX
  BFD_RELOC_16
  BFD_RELOC_16
ENUMX
ENUMX
  BFD_RELOC_14
  BFD_RELOC_14
ENUMX
ENUMX
  BFD_RELOC_8
  BFD_RELOC_8
ENUMDOC
ENUMDOC
  Basic absolute relocations of N bits.
  Basic absolute relocations of N bits.
 
 
ENUM
ENUM
  BFD_RELOC_64_PCREL
  BFD_RELOC_64_PCREL
ENUMX
ENUMX
  BFD_RELOC_32_PCREL
  BFD_RELOC_32_PCREL
ENUMX
ENUMX
  BFD_RELOC_24_PCREL
  BFD_RELOC_24_PCREL
ENUMX
ENUMX
  BFD_RELOC_16_PCREL
  BFD_RELOC_16_PCREL
ENUMX
ENUMX
  BFD_RELOC_12_PCREL
  BFD_RELOC_12_PCREL
ENUMX
ENUMX
  BFD_RELOC_8_PCREL
  BFD_RELOC_8_PCREL
ENUMDOC
ENUMDOC
  PC-relative relocations.  Sometimes these are relative to the address
  PC-relative relocations.  Sometimes these are relative to the address
of the relocation itself; sometimes they are relative to the start of
of the relocation itself; sometimes they are relative to the start of
the section containing the relocation.  It depends on the specific target.
the section containing the relocation.  It depends on the specific target.
 
 
The 24-bit relocation is used in some Intel 960 configurations.
The 24-bit relocation is used in some Intel 960 configurations.
 
 
ENUM
ENUM
  BFD_RELOC_32_GOT_PCREL
  BFD_RELOC_32_GOT_PCREL
ENUMX
ENUMX
  BFD_RELOC_16_GOT_PCREL
  BFD_RELOC_16_GOT_PCREL
ENUMX
ENUMX
  BFD_RELOC_8_GOT_PCREL
  BFD_RELOC_8_GOT_PCREL
ENUMX
ENUMX
  BFD_RELOC_32_GOTOFF
  BFD_RELOC_32_GOTOFF
ENUMX
ENUMX
  BFD_RELOC_16_GOTOFF
  BFD_RELOC_16_GOTOFF
ENUMX
ENUMX
  BFD_RELOC_LO16_GOTOFF
  BFD_RELOC_LO16_GOTOFF
ENUMX
ENUMX
  BFD_RELOC_HI16_GOTOFF
  BFD_RELOC_HI16_GOTOFF
ENUMX
ENUMX
  BFD_RELOC_HI16_S_GOTOFF
  BFD_RELOC_HI16_S_GOTOFF
ENUMX
ENUMX
  BFD_RELOC_8_GOTOFF
  BFD_RELOC_8_GOTOFF
ENUMX
ENUMX
  BFD_RELOC_64_PLT_PCREL
  BFD_RELOC_64_PLT_PCREL
ENUMX
ENUMX
  BFD_RELOC_32_PLT_PCREL
  BFD_RELOC_32_PLT_PCREL
ENUMX
ENUMX
  BFD_RELOC_24_PLT_PCREL
  BFD_RELOC_24_PLT_PCREL
ENUMX
ENUMX
  BFD_RELOC_16_PLT_PCREL
  BFD_RELOC_16_PLT_PCREL
ENUMX
ENUMX
  BFD_RELOC_8_PLT_PCREL
  BFD_RELOC_8_PLT_PCREL
ENUMX
ENUMX
  BFD_RELOC_64_PLTOFF
  BFD_RELOC_64_PLTOFF
ENUMX
ENUMX
  BFD_RELOC_32_PLTOFF
  BFD_RELOC_32_PLTOFF
ENUMX
ENUMX
  BFD_RELOC_16_PLTOFF
  BFD_RELOC_16_PLTOFF
ENUMX
ENUMX
  BFD_RELOC_LO16_PLTOFF
  BFD_RELOC_LO16_PLTOFF
ENUMX
ENUMX
  BFD_RELOC_HI16_PLTOFF
  BFD_RELOC_HI16_PLTOFF
ENUMX
ENUMX
  BFD_RELOC_HI16_S_PLTOFF
  BFD_RELOC_HI16_S_PLTOFF
ENUMX
ENUMX
  BFD_RELOC_8_PLTOFF
  BFD_RELOC_8_PLTOFF
ENUMDOC
ENUMDOC
  For ELF.
  For ELF.
 
 
ENUM
ENUM
  BFD_RELOC_68K_GLOB_DAT
  BFD_RELOC_68K_GLOB_DAT
ENUMX
ENUMX
  BFD_RELOC_68K_JMP_SLOT
  BFD_RELOC_68K_JMP_SLOT
ENUMX
ENUMX
  BFD_RELOC_68K_RELATIVE
  BFD_RELOC_68K_RELATIVE
ENUMDOC
ENUMDOC
  Relocations used by 68K ELF.
  Relocations used by 68K ELF.
 
 
ENUM
ENUM
  BFD_RELOC_32_BASEREL
  BFD_RELOC_32_BASEREL
ENUMX
ENUMX
  BFD_RELOC_16_BASEREL
  BFD_RELOC_16_BASEREL
ENUMX
ENUMX
  BFD_RELOC_LO16_BASEREL
  BFD_RELOC_LO16_BASEREL
ENUMX
ENUMX
  BFD_RELOC_HI16_BASEREL
  BFD_RELOC_HI16_BASEREL
ENUMX
ENUMX
  BFD_RELOC_HI16_S_BASEREL
  BFD_RELOC_HI16_S_BASEREL
ENUMX
ENUMX
  BFD_RELOC_8_BASEREL
  BFD_RELOC_8_BASEREL
ENUMX
ENUMX
  BFD_RELOC_RVA
  BFD_RELOC_RVA
ENUMDOC
ENUMDOC
  Linkage-table relative.
  Linkage-table relative.
 
 
ENUM
ENUM
  BFD_RELOC_8_FFnn
  BFD_RELOC_8_FFnn
ENUMDOC
ENUMDOC
  Absolute 8-bit relocation, but used to form an address like 0xFFnn.
  Absolute 8-bit relocation, but used to form an address like 0xFFnn.
 
 
ENUM
ENUM
  BFD_RELOC_32_PCREL_S2
  BFD_RELOC_32_PCREL_S2
ENUMX
ENUMX
  BFD_RELOC_16_PCREL_S2
  BFD_RELOC_16_PCREL_S2
ENUMX
ENUMX
  BFD_RELOC_23_PCREL_S2
  BFD_RELOC_23_PCREL_S2
ENUMDOC
ENUMDOC
  These PC-relative relocations are stored as word displacements --
  These PC-relative relocations are stored as word displacements --
i.e., byte displacements shifted right two bits.  The 30-bit word
i.e., byte displacements shifted right two bits.  The 30-bit word
displacement (<<32_PCREL_S2>> -- 32 bits, shifted 2) is used on the
displacement (<<32_PCREL_S2>> -- 32 bits, shifted 2) is used on the
SPARC.  (SPARC tools generally refer to this as <<WDISP30>>.)  The
SPARC.  (SPARC tools generally refer to this as <<WDISP30>>.)  The
signed 16-bit displacement is used on the MIPS, and the 23-bit
signed 16-bit displacement is used on the MIPS, and the 23-bit
displacement is used on the Alpha.
displacement is used on the Alpha.
 
 
ENUM
ENUM
  BFD_RELOC_HI22
  BFD_RELOC_HI22
ENUMX
ENUMX
  BFD_RELOC_LO10
  BFD_RELOC_LO10
ENUMDOC
ENUMDOC
  High 22 bits and low 10 bits of 32-bit value, placed into lower bits of
  High 22 bits and low 10 bits of 32-bit value, placed into lower bits of
the target word.  These are used on the SPARC.
the target word.  These are used on the SPARC.
 
 
ENUM
ENUM
  BFD_RELOC_GPREL16
  BFD_RELOC_GPREL16
ENUMX
ENUMX
  BFD_RELOC_GPREL32
  BFD_RELOC_GPREL32
ENUMDOC
ENUMDOC
  For systems that allocate a Global Pointer register, these are
  For systems that allocate a Global Pointer register, these are
displacements off that register.  These relocation types are
displacements off that register.  These relocation types are
handled specially, because the value the register will have is
handled specially, because the value the register will have is
decided relatively late.
decided relatively late.
 
 
ENUM
ENUM
  BFD_RELOC_I960_CALLJ
  BFD_RELOC_I960_CALLJ
ENUMDOC
ENUMDOC
  Reloc types used for i960/b.out.
  Reloc types used for i960/b.out.
 
 
ENUM
ENUM
  BFD_RELOC_NONE
  BFD_RELOC_NONE
ENUMX
ENUMX
  BFD_RELOC_SPARC_WDISP22
  BFD_RELOC_SPARC_WDISP22
ENUMX
ENUMX
  BFD_RELOC_SPARC22
  BFD_RELOC_SPARC22
ENUMX
ENUMX
  BFD_RELOC_SPARC13
  BFD_RELOC_SPARC13
ENUMX
ENUMX
  BFD_RELOC_SPARC_GOT10
  BFD_RELOC_SPARC_GOT10
ENUMX
ENUMX
  BFD_RELOC_SPARC_GOT13
  BFD_RELOC_SPARC_GOT13
ENUMX
ENUMX
  BFD_RELOC_SPARC_GOT22
  BFD_RELOC_SPARC_GOT22
ENUMX
ENUMX
  BFD_RELOC_SPARC_PC10
  BFD_RELOC_SPARC_PC10
ENUMX
ENUMX
  BFD_RELOC_SPARC_PC22
  BFD_RELOC_SPARC_PC22
ENUMX
ENUMX
  BFD_RELOC_SPARC_WPLT30
  BFD_RELOC_SPARC_WPLT30
ENUMX
ENUMX
  BFD_RELOC_SPARC_COPY
  BFD_RELOC_SPARC_COPY
ENUMX
ENUMX
  BFD_RELOC_SPARC_GLOB_DAT
  BFD_RELOC_SPARC_GLOB_DAT
ENUMX
ENUMX
  BFD_RELOC_SPARC_JMP_SLOT
  BFD_RELOC_SPARC_JMP_SLOT
ENUMX
ENUMX
  BFD_RELOC_SPARC_RELATIVE
  BFD_RELOC_SPARC_RELATIVE
ENUMX
ENUMX
  BFD_RELOC_SPARC_UA16
  BFD_RELOC_SPARC_UA16
ENUMX
ENUMX
  BFD_RELOC_SPARC_UA32
  BFD_RELOC_SPARC_UA32
ENUMX
ENUMX
  BFD_RELOC_SPARC_UA64
  BFD_RELOC_SPARC_UA64
ENUMDOC
ENUMDOC
  SPARC ELF relocations.  There is probably some overlap with other
  SPARC ELF relocations.  There is probably some overlap with other
  relocation types already defined.
  relocation types already defined.
 
 
ENUM
ENUM
  BFD_RELOC_SPARC_BASE13
  BFD_RELOC_SPARC_BASE13
ENUMX
ENUMX
  BFD_RELOC_SPARC_BASE22
  BFD_RELOC_SPARC_BASE22
ENUMDOC
ENUMDOC
  I think these are specific to SPARC a.out (e.g., Sun 4).
  I think these are specific to SPARC a.out (e.g., Sun 4).
 
 
ENUMEQ
ENUMEQ
  BFD_RELOC_SPARC_64
  BFD_RELOC_SPARC_64
  BFD_RELOC_64
  BFD_RELOC_64
ENUMX
ENUMX
  BFD_RELOC_SPARC_10
  BFD_RELOC_SPARC_10
ENUMX
ENUMX
  BFD_RELOC_SPARC_11
  BFD_RELOC_SPARC_11
ENUMX
ENUMX
  BFD_RELOC_SPARC_OLO10
  BFD_RELOC_SPARC_OLO10
ENUMX
ENUMX
  BFD_RELOC_SPARC_HH22
  BFD_RELOC_SPARC_HH22
ENUMX
ENUMX
  BFD_RELOC_SPARC_HM10
  BFD_RELOC_SPARC_HM10
ENUMX
ENUMX
  BFD_RELOC_SPARC_LM22
  BFD_RELOC_SPARC_LM22
ENUMX
ENUMX
  BFD_RELOC_SPARC_PC_HH22
  BFD_RELOC_SPARC_PC_HH22
ENUMX
ENUMX
  BFD_RELOC_SPARC_PC_HM10
  BFD_RELOC_SPARC_PC_HM10
ENUMX
ENUMX
  BFD_RELOC_SPARC_PC_LM22
  BFD_RELOC_SPARC_PC_LM22
ENUMX
ENUMX
  BFD_RELOC_SPARC_WDISP16
  BFD_RELOC_SPARC_WDISP16
ENUMX
ENUMX
  BFD_RELOC_SPARC_WDISP19
  BFD_RELOC_SPARC_WDISP19
ENUMX
ENUMX
  BFD_RELOC_SPARC_7
  BFD_RELOC_SPARC_7
ENUMX
ENUMX
  BFD_RELOC_SPARC_6
  BFD_RELOC_SPARC_6
ENUMX
ENUMX
  BFD_RELOC_SPARC_5
  BFD_RELOC_SPARC_5
ENUMEQX
ENUMEQX
  BFD_RELOC_SPARC_DISP64
  BFD_RELOC_SPARC_DISP64
  BFD_RELOC_64_PCREL
  BFD_RELOC_64_PCREL
ENUMX
ENUMX
  BFD_RELOC_SPARC_PLT32
  BFD_RELOC_SPARC_PLT32
ENUMX
ENUMX
  BFD_RELOC_SPARC_PLT64
  BFD_RELOC_SPARC_PLT64
ENUMX
ENUMX
  BFD_RELOC_SPARC_HIX22
  BFD_RELOC_SPARC_HIX22
ENUMX
ENUMX
  BFD_RELOC_SPARC_LOX10
  BFD_RELOC_SPARC_LOX10
ENUMX
ENUMX
  BFD_RELOC_SPARC_H44
  BFD_RELOC_SPARC_H44
ENUMX
ENUMX
  BFD_RELOC_SPARC_M44
  BFD_RELOC_SPARC_M44
ENUMX
ENUMX
  BFD_RELOC_SPARC_L44
  BFD_RELOC_SPARC_L44
ENUMX
ENUMX
  BFD_RELOC_SPARC_REGISTER
  BFD_RELOC_SPARC_REGISTER
ENUMDOC
ENUMDOC
  SPARC64 relocations
  SPARC64 relocations
 
 
ENUM
ENUM
  BFD_RELOC_SPARC_REV32
  BFD_RELOC_SPARC_REV32
ENUMDOC
ENUMDOC
  SPARC little endian relocation
  SPARC little endian relocation
 
 
ENUM
ENUM
  BFD_RELOC_ALPHA_GPDISP_HI16
  BFD_RELOC_ALPHA_GPDISP_HI16
ENUMDOC
ENUMDOC
  Alpha ECOFF and ELF relocations.  Some of these treat the symbol or
  Alpha ECOFF and ELF relocations.  Some of these treat the symbol or
     "addend" in some special way.
     "addend" in some special way.
  For GPDISP_HI16 ("gpdisp") relocations, the symbol is ignored when
  For GPDISP_HI16 ("gpdisp") relocations, the symbol is ignored when
     writing; when reading, it will be the absolute section symbol.  The
     writing; when reading, it will be the absolute section symbol.  The
     addend is the displacement in bytes of the "lda" instruction from
     addend is the displacement in bytes of the "lda" instruction from
     the "ldah" instruction (which is at the address of this reloc).
     the "ldah" instruction (which is at the address of this reloc).
ENUM
ENUM
  BFD_RELOC_ALPHA_GPDISP_LO16
  BFD_RELOC_ALPHA_GPDISP_LO16
ENUMDOC
ENUMDOC
  For GPDISP_LO16 ("ignore") relocations, the symbol is handled as
  For GPDISP_LO16 ("ignore") relocations, the symbol is handled as
     with GPDISP_HI16 relocs.  The addend is ignored when writing the
     with GPDISP_HI16 relocs.  The addend is ignored when writing the
     relocations out, and is filled in with the file's GP value on
     relocations out, and is filled in with the file's GP value on
     reading, for convenience.
     reading, for convenience.
 
 
ENUM
ENUM
  BFD_RELOC_ALPHA_GPDISP
  BFD_RELOC_ALPHA_GPDISP
ENUMDOC
ENUMDOC
  The ELF GPDISP relocation is exactly the same as the GPDISP_HI16
  The ELF GPDISP relocation is exactly the same as the GPDISP_HI16
     relocation except that there is no accompanying GPDISP_LO16
     relocation except that there is no accompanying GPDISP_LO16
     relocation.
     relocation.
 
 
ENUM
ENUM
  BFD_RELOC_ALPHA_LITERAL
  BFD_RELOC_ALPHA_LITERAL
ENUMX
ENUMX
  BFD_RELOC_ALPHA_ELF_LITERAL
  BFD_RELOC_ALPHA_ELF_LITERAL
ENUMX
ENUMX
  BFD_RELOC_ALPHA_LITUSE
  BFD_RELOC_ALPHA_LITUSE
ENUMDOC
ENUMDOC
  The Alpha LITERAL/LITUSE relocs are produced by a symbol reference;
  The Alpha LITERAL/LITUSE relocs are produced by a symbol reference;
     the assembler turns it into a LDQ instruction to load the address of
     the assembler turns it into a LDQ instruction to load the address of
     the symbol, and then fills in a register in the real instruction.
     the symbol, and then fills in a register in the real instruction.
 
 
     The LITERAL reloc, at the LDQ instruction, refers to the .lita
     The LITERAL reloc, at the LDQ instruction, refers to the .lita
     section symbol.  The addend is ignored when writing, but is filled
     section symbol.  The addend is ignored when writing, but is filled
     in with the file's GP value on reading, for convenience, as with the
     in with the file's GP value on reading, for convenience, as with the
     GPDISP_LO16 reloc.
     GPDISP_LO16 reloc.
 
 
     The ELF_LITERAL reloc is somewhere between 16_GOTOFF and GPDISP_LO16.
     The ELF_LITERAL reloc is somewhere between 16_GOTOFF and GPDISP_LO16.
     It should refer to the symbol to be referenced, as with 16_GOTOFF,
     It should refer to the symbol to be referenced, as with 16_GOTOFF,
     but it generates output not based on the position within the .got
     but it generates output not based on the position within the .got
     section, but relative to the GP value chosen for the file during the
     section, but relative to the GP value chosen for the file during the
     final link stage.
     final link stage.
 
 
     The LITUSE reloc, on the instruction using the loaded address, gives
     The LITUSE reloc, on the instruction using the loaded address, gives
     information to the linker that it might be able to use to optimize
     information to the linker that it might be able to use to optimize
     away some literal section references.  The symbol is ignored (read
     away some literal section references.  The symbol is ignored (read
     as the absolute section symbol), and the "addend" indicates the type
     as the absolute section symbol), and the "addend" indicates the type
     of instruction using the register:
     of instruction using the register:
              1 - "memory" fmt insn
              1 - "memory" fmt insn
              2 - byte-manipulation (byte offset reg)
              2 - byte-manipulation (byte offset reg)
              3 - jsr (target of branch)
              3 - jsr (target of branch)
 
 
ENUM
ENUM
  BFD_RELOC_ALPHA_HINT
  BFD_RELOC_ALPHA_HINT
ENUMDOC
ENUMDOC
  The HINT relocation indicates a value that should be filled into the
  The HINT relocation indicates a value that should be filled into the
     "hint" field of a jmp/jsr/ret instruction, for possible branch-
     "hint" field of a jmp/jsr/ret instruction, for possible branch-
     prediction logic which may be provided on some processors.
     prediction logic which may be provided on some processors.
 
 
ENUM
ENUM
  BFD_RELOC_ALPHA_LINKAGE
  BFD_RELOC_ALPHA_LINKAGE
ENUMDOC
ENUMDOC
  The LINKAGE relocation outputs a linkage pair in the object file,
  The LINKAGE relocation outputs a linkage pair in the object file,
     which is filled by the linker.
     which is filled by the linker.
 
 
ENUM
ENUM
  BFD_RELOC_ALPHA_CODEADDR
  BFD_RELOC_ALPHA_CODEADDR
ENUMDOC
ENUMDOC
  The CODEADDR relocation outputs a STO_CA in the object file,
  The CODEADDR relocation outputs a STO_CA in the object file,
     which is filled by the linker.
     which is filled by the linker.
 
 
ENUM
ENUM
  BFD_RELOC_ALPHA_GPREL_HI16
  BFD_RELOC_ALPHA_GPREL_HI16
ENUMX
ENUMX
  BFD_RELOC_ALPHA_GPREL_LO16
  BFD_RELOC_ALPHA_GPREL_LO16
ENUMDOC
ENUMDOC
  The GPREL_HI/LO relocations together form a 32-bit offset from the
  The GPREL_HI/LO relocations together form a 32-bit offset from the
     GP register.
     GP register.
 
 
ENUM
ENUM
  BFD_RELOC_ALPHA_BRSGP
  BFD_RELOC_ALPHA_BRSGP
ENUMDOC
ENUMDOC
  Like BFD_RELOC_23_PCREL_S2, except that the source and target must
  Like BFD_RELOC_23_PCREL_S2, except that the source and target must
  share a common GP, and the target address is adjusted for
  share a common GP, and the target address is adjusted for
  STO_ALPHA_STD_GPLOAD.
  STO_ALPHA_STD_GPLOAD.
 
 
ENUM
ENUM
  BFD_RELOC_ALPHA_TLSGD
  BFD_RELOC_ALPHA_TLSGD
ENUMX
ENUMX
  BFD_RELOC_ALPHA_TLSLDM
  BFD_RELOC_ALPHA_TLSLDM
ENUMX
ENUMX
  BFD_RELOC_ALPHA_DTPMOD64
  BFD_RELOC_ALPHA_DTPMOD64
ENUMX
ENUMX
  BFD_RELOC_ALPHA_GOTDTPREL16
  BFD_RELOC_ALPHA_GOTDTPREL16
ENUMX
ENUMX
  BFD_RELOC_ALPHA_DTPREL64
  BFD_RELOC_ALPHA_DTPREL64
ENUMX
ENUMX
  BFD_RELOC_ALPHA_DTPREL_HI16
  BFD_RELOC_ALPHA_DTPREL_HI16
ENUMX
ENUMX
  BFD_RELOC_ALPHA_DTPREL_LO16
  BFD_RELOC_ALPHA_DTPREL_LO16
ENUMX
ENUMX
  BFD_RELOC_ALPHA_DTPREL16
  BFD_RELOC_ALPHA_DTPREL16
ENUMX
ENUMX
  BFD_RELOC_ALPHA_GOTTPREL16
  BFD_RELOC_ALPHA_GOTTPREL16
ENUMX
ENUMX
  BFD_RELOC_ALPHA_TPREL64
  BFD_RELOC_ALPHA_TPREL64
ENUMX
ENUMX
  BFD_RELOC_ALPHA_TPREL_HI16
  BFD_RELOC_ALPHA_TPREL_HI16
ENUMX
ENUMX
  BFD_RELOC_ALPHA_TPREL_LO16
  BFD_RELOC_ALPHA_TPREL_LO16
ENUMX
ENUMX
  BFD_RELOC_ALPHA_TPREL16
  BFD_RELOC_ALPHA_TPREL16
ENUMDOC
ENUMDOC
  Alpha thread-local storage relocations.
  Alpha thread-local storage relocations.
 
 
ENUM
ENUM
  BFD_RELOC_MIPS_JMP
  BFD_RELOC_MIPS_JMP
ENUMDOC
ENUMDOC
  Bits 27..2 of the relocation address shifted right 2 bits;
  Bits 27..2 of the relocation address shifted right 2 bits;
     simple reloc otherwise.
     simple reloc otherwise.
 
 
ENUM
ENUM
  BFD_RELOC_MIPS16_JMP
  BFD_RELOC_MIPS16_JMP
ENUMDOC
ENUMDOC
  The MIPS16 jump instruction.
  The MIPS16 jump instruction.
 
 
ENUM
ENUM
  BFD_RELOC_MIPS16_GPREL
  BFD_RELOC_MIPS16_GPREL
ENUMDOC
ENUMDOC
  MIPS16 GP relative reloc.
  MIPS16 GP relative reloc.
 
 
ENUM
ENUM
  BFD_RELOC_HI16
  BFD_RELOC_HI16
ENUMDOC
ENUMDOC
  High 16 bits of 32-bit value; simple reloc.
  High 16 bits of 32-bit value; simple reloc.
ENUM
ENUM
  BFD_RELOC_HI16_S
  BFD_RELOC_HI16_S
ENUMDOC
ENUMDOC
  High 16 bits of 32-bit value but the low 16 bits will be sign
  High 16 bits of 32-bit value but the low 16 bits will be sign
     extended and added to form the final result.  If the low 16
     extended and added to form the final result.  If the low 16
     bits form a negative number, we need to add one to the high value
     bits form a negative number, we need to add one to the high value
     to compensate for the borrow when the low bits are added.
     to compensate for the borrow when the low bits are added.
ENUM
ENUM
  BFD_RELOC_LO16
  BFD_RELOC_LO16
ENUMDOC
ENUMDOC
  Low 16 bits.
  Low 16 bits.
ENUM
ENUM
  BFD_RELOC_PCREL_HI16_S
  BFD_RELOC_PCREL_HI16_S
ENUMDOC
ENUMDOC
  Like BFD_RELOC_HI16_S, but PC relative.
  Like BFD_RELOC_HI16_S, but PC relative.
ENUM
ENUM
  BFD_RELOC_PCREL_LO16
  BFD_RELOC_PCREL_LO16
ENUMDOC
ENUMDOC
  Like BFD_RELOC_LO16, but PC relative.
  Like BFD_RELOC_LO16, but PC relative.
 
 
ENUM
ENUM
  BFD_RELOC_MIPS_LITERAL
  BFD_RELOC_MIPS_LITERAL
ENUMDOC
ENUMDOC
  Relocation against a MIPS literal section.
  Relocation against a MIPS literal section.
 
 
ENUM
ENUM
  BFD_RELOC_MIPS_GOT16
  BFD_RELOC_MIPS_GOT16
ENUMX
ENUMX
  BFD_RELOC_MIPS_CALL16
  BFD_RELOC_MIPS_CALL16
ENUMX
ENUMX
  BFD_RELOC_MIPS_GOT_HI16
  BFD_RELOC_MIPS_GOT_HI16
ENUMX
ENUMX
  BFD_RELOC_MIPS_GOT_LO16
  BFD_RELOC_MIPS_GOT_LO16
ENUMX
ENUMX
  BFD_RELOC_MIPS_CALL_HI16
  BFD_RELOC_MIPS_CALL_HI16
ENUMX
ENUMX
  BFD_RELOC_MIPS_CALL_LO16
  BFD_RELOC_MIPS_CALL_LO16
ENUMX
ENUMX
  BFD_RELOC_MIPS_SUB
  BFD_RELOC_MIPS_SUB
ENUMX
ENUMX
  BFD_RELOC_MIPS_GOT_PAGE
  BFD_RELOC_MIPS_GOT_PAGE
ENUMX
ENUMX
  BFD_RELOC_MIPS_GOT_OFST
  BFD_RELOC_MIPS_GOT_OFST
ENUMX
ENUMX
  BFD_RELOC_MIPS_GOT_DISP
  BFD_RELOC_MIPS_GOT_DISP
ENUMX
ENUMX
  BFD_RELOC_MIPS_SHIFT5
  BFD_RELOC_MIPS_SHIFT5
ENUMX
ENUMX
  BFD_RELOC_MIPS_SHIFT6
  BFD_RELOC_MIPS_SHIFT6
ENUMX
ENUMX
  BFD_RELOC_MIPS_INSERT_A
  BFD_RELOC_MIPS_INSERT_A
ENUMX
ENUMX
  BFD_RELOC_MIPS_INSERT_B
  BFD_RELOC_MIPS_INSERT_B
ENUMX
ENUMX
  BFD_RELOC_MIPS_DELETE
  BFD_RELOC_MIPS_DELETE
ENUMX
ENUMX
  BFD_RELOC_MIPS_HIGHEST
  BFD_RELOC_MIPS_HIGHEST
ENUMX
ENUMX
  BFD_RELOC_MIPS_HIGHER
  BFD_RELOC_MIPS_HIGHER
ENUMX
ENUMX
  BFD_RELOC_MIPS_SCN_DISP
  BFD_RELOC_MIPS_SCN_DISP
ENUMX
ENUMX
  BFD_RELOC_MIPS_REL16
  BFD_RELOC_MIPS_REL16
ENUMX
ENUMX
  BFD_RELOC_MIPS_RELGOT
  BFD_RELOC_MIPS_RELGOT
ENUMX
ENUMX
  BFD_RELOC_MIPS_JALR
  BFD_RELOC_MIPS_JALR
COMMENT
COMMENT
ENUM
ENUM
  BFD_RELOC_FRV_LABEL16
  BFD_RELOC_FRV_LABEL16
ENUMX
ENUMX
  BFD_RELOC_FRV_LABEL24
  BFD_RELOC_FRV_LABEL24
ENUMX
ENUMX
  BFD_RELOC_FRV_LO16
  BFD_RELOC_FRV_LO16
ENUMX
ENUMX
  BFD_RELOC_FRV_HI16
  BFD_RELOC_FRV_HI16
ENUMX
ENUMX
  BFD_RELOC_FRV_GPREL12
  BFD_RELOC_FRV_GPREL12
ENUMX
ENUMX
  BFD_RELOC_FRV_GPRELU12
  BFD_RELOC_FRV_GPRELU12
ENUMX
ENUMX
  BFD_RELOC_FRV_GPREL32
  BFD_RELOC_FRV_GPREL32
ENUMX
ENUMX
  BFD_RELOC_FRV_GPRELHI
  BFD_RELOC_FRV_GPRELHI
ENUMX
ENUMX
  BFD_RELOC_FRV_GPRELLO
  BFD_RELOC_FRV_GPRELLO
ENUMDOC
ENUMDOC
  Fujitsu Frv Relocations.
  Fujitsu Frv Relocations.
COMMENT
COMMENT
COMMENT
COMMENT
ENUMDOC
ENUMDOC
  MIPS ELF relocations.
  MIPS ELF relocations.
 
 
COMMENT
COMMENT
 
 
ENUM
ENUM
  BFD_RELOC_386_GOT32
  BFD_RELOC_386_GOT32
ENUMX
ENUMX
  BFD_RELOC_386_PLT32
  BFD_RELOC_386_PLT32
ENUMX
ENUMX
  BFD_RELOC_386_COPY
  BFD_RELOC_386_COPY
ENUMX
ENUMX
  BFD_RELOC_386_GLOB_DAT
  BFD_RELOC_386_GLOB_DAT
ENUMX
ENUMX
  BFD_RELOC_386_JUMP_SLOT
  BFD_RELOC_386_JUMP_SLOT
ENUMX
ENUMX
  BFD_RELOC_386_RELATIVE
  BFD_RELOC_386_RELATIVE
ENUMX
ENUMX
  BFD_RELOC_386_GOTOFF
  BFD_RELOC_386_GOTOFF
ENUMX
ENUMX
  BFD_RELOC_386_GOTPC
  BFD_RELOC_386_GOTPC
ENUMX
ENUMX
  BFD_RELOC_386_TLS_LE
  BFD_RELOC_386_TLS_LE
ENUMX
ENUMX
  BFD_RELOC_386_TLS_GD
  BFD_RELOC_386_TLS_GD
ENUMX
ENUMX
  BFD_RELOC_386_TLS_LDM
  BFD_RELOC_386_TLS_LDM
ENUMX
ENUMX
  BFD_RELOC_386_TLS_LDO_32
  BFD_RELOC_386_TLS_LDO_32
ENUMX
ENUMX
  BFD_RELOC_386_TLS_IE_32
  BFD_RELOC_386_TLS_IE_32
ENUMX
ENUMX
  BFD_RELOC_386_TLS_LE_32
  BFD_RELOC_386_TLS_LE_32
ENUMX
ENUMX
  BFD_RELOC_386_TLS_DTPMOD32
  BFD_RELOC_386_TLS_DTPMOD32
ENUMX
ENUMX
  BFD_RELOC_386_TLS_DTPOFF32
  BFD_RELOC_386_TLS_DTPOFF32
ENUMX
ENUMX
  BFD_RELOC_386_TLS_TPOFF32
  BFD_RELOC_386_TLS_TPOFF32
ENUMDOC
ENUMDOC
  i386/elf relocations
  i386/elf relocations
 
 
ENUM
ENUM
  BFD_RELOC_X86_64_GOT32
  BFD_RELOC_X86_64_GOT32
ENUMX
ENUMX
  BFD_RELOC_X86_64_PLT32
  BFD_RELOC_X86_64_PLT32
ENUMX
ENUMX
  BFD_RELOC_X86_64_COPY
  BFD_RELOC_X86_64_COPY
ENUMX
ENUMX
  BFD_RELOC_X86_64_GLOB_DAT
  BFD_RELOC_X86_64_GLOB_DAT
ENUMX
ENUMX
  BFD_RELOC_X86_64_JUMP_SLOT
  BFD_RELOC_X86_64_JUMP_SLOT
ENUMX
ENUMX
  BFD_RELOC_X86_64_RELATIVE
  BFD_RELOC_X86_64_RELATIVE
ENUMX
ENUMX
  BFD_RELOC_X86_64_GOTPCREL
  BFD_RELOC_X86_64_GOTPCREL
ENUMX
ENUMX
  BFD_RELOC_X86_64_32S
  BFD_RELOC_X86_64_32S
ENUMDOC
ENUMDOC
  x86-64/elf relocations
  x86-64/elf relocations
 
 
ENUM
ENUM
  BFD_RELOC_NS32K_IMM_8
  BFD_RELOC_NS32K_IMM_8
ENUMX
ENUMX
  BFD_RELOC_NS32K_IMM_16
  BFD_RELOC_NS32K_IMM_16
ENUMX
ENUMX
  BFD_RELOC_NS32K_IMM_32
  BFD_RELOC_NS32K_IMM_32
ENUMX
ENUMX
  BFD_RELOC_NS32K_IMM_8_PCREL
  BFD_RELOC_NS32K_IMM_8_PCREL
ENUMX
ENUMX
  BFD_RELOC_NS32K_IMM_16_PCREL
  BFD_RELOC_NS32K_IMM_16_PCREL
ENUMX
ENUMX
  BFD_RELOC_NS32K_IMM_32_PCREL
  BFD_RELOC_NS32K_IMM_32_PCREL
ENUMX
ENUMX
  BFD_RELOC_NS32K_DISP_8
  BFD_RELOC_NS32K_DISP_8
ENUMX
ENUMX
  BFD_RELOC_NS32K_DISP_16
  BFD_RELOC_NS32K_DISP_16
ENUMX
ENUMX
  BFD_RELOC_NS32K_DISP_32
  BFD_RELOC_NS32K_DISP_32
ENUMX
ENUMX
  BFD_RELOC_NS32K_DISP_8_PCREL
  BFD_RELOC_NS32K_DISP_8_PCREL
ENUMX
ENUMX
  BFD_RELOC_NS32K_DISP_16_PCREL
  BFD_RELOC_NS32K_DISP_16_PCREL
ENUMX
ENUMX
  BFD_RELOC_NS32K_DISP_32_PCREL
  BFD_RELOC_NS32K_DISP_32_PCREL
ENUMDOC
ENUMDOC
  ns32k relocations
  ns32k relocations
 
 
ENUM
ENUM
  BFD_RELOC_PDP11_DISP_8_PCREL
  BFD_RELOC_PDP11_DISP_8_PCREL
ENUMX
ENUMX
  BFD_RELOC_PDP11_DISP_6_PCREL
  BFD_RELOC_PDP11_DISP_6_PCREL
ENUMDOC
ENUMDOC
  PDP11 relocations
  PDP11 relocations
 
 
ENUM
ENUM
  BFD_RELOC_PJ_CODE_HI16
  BFD_RELOC_PJ_CODE_HI16
ENUMX
ENUMX
  BFD_RELOC_PJ_CODE_LO16
  BFD_RELOC_PJ_CODE_LO16
ENUMX
ENUMX
  BFD_RELOC_PJ_CODE_DIR16
  BFD_RELOC_PJ_CODE_DIR16
ENUMX
ENUMX
  BFD_RELOC_PJ_CODE_DIR32
  BFD_RELOC_PJ_CODE_DIR32
ENUMX
ENUMX
  BFD_RELOC_PJ_CODE_REL16
  BFD_RELOC_PJ_CODE_REL16
ENUMX
ENUMX
  BFD_RELOC_PJ_CODE_REL32
  BFD_RELOC_PJ_CODE_REL32
ENUMDOC
ENUMDOC
  Picojava relocs.  Not all of these appear in object files.
  Picojava relocs.  Not all of these appear in object files.
 
 
ENUM
ENUM
  BFD_RELOC_PPC_B26
  BFD_RELOC_PPC_B26
ENUMX
ENUMX
  BFD_RELOC_PPC_BA26
  BFD_RELOC_PPC_BA26
ENUMX
ENUMX
  BFD_RELOC_PPC_TOC16
  BFD_RELOC_PPC_TOC16
ENUMX
ENUMX
  BFD_RELOC_PPC_B16
  BFD_RELOC_PPC_B16
ENUMX
ENUMX
  BFD_RELOC_PPC_B16_BRTAKEN
  BFD_RELOC_PPC_B16_BRTAKEN
ENUMX
ENUMX
  BFD_RELOC_PPC_B16_BRNTAKEN
  BFD_RELOC_PPC_B16_BRNTAKEN
ENUMX
ENUMX
  BFD_RELOC_PPC_BA16
  BFD_RELOC_PPC_BA16
ENUMX
ENUMX
  BFD_RELOC_PPC_BA16_BRTAKEN
  BFD_RELOC_PPC_BA16_BRTAKEN
ENUMX
ENUMX
  BFD_RELOC_PPC_BA16_BRNTAKEN
  BFD_RELOC_PPC_BA16_BRNTAKEN
ENUMX
ENUMX
  BFD_RELOC_PPC_COPY
  BFD_RELOC_PPC_COPY
ENUMX
ENUMX
  BFD_RELOC_PPC_GLOB_DAT
  BFD_RELOC_PPC_GLOB_DAT
ENUMX
ENUMX
  BFD_RELOC_PPC_JMP_SLOT
  BFD_RELOC_PPC_JMP_SLOT
ENUMX
ENUMX
  BFD_RELOC_PPC_RELATIVE
  BFD_RELOC_PPC_RELATIVE
ENUMX
ENUMX
  BFD_RELOC_PPC_LOCAL24PC
  BFD_RELOC_PPC_LOCAL24PC
ENUMX
ENUMX
  BFD_RELOC_PPC_EMB_NADDR32
  BFD_RELOC_PPC_EMB_NADDR32
ENUMX
ENUMX
  BFD_RELOC_PPC_EMB_NADDR16
  BFD_RELOC_PPC_EMB_NADDR16
ENUMX
ENUMX
  BFD_RELOC_PPC_EMB_NADDR16_LO
  BFD_RELOC_PPC_EMB_NADDR16_LO
ENUMX
ENUMX
  BFD_RELOC_PPC_EMB_NADDR16_HI
  BFD_RELOC_PPC_EMB_NADDR16_HI
ENUMX
ENUMX
  BFD_RELOC_PPC_EMB_NADDR16_HA
  BFD_RELOC_PPC_EMB_NADDR16_HA
ENUMX
ENUMX
  BFD_RELOC_PPC_EMB_SDAI16
  BFD_RELOC_PPC_EMB_SDAI16
ENUMX
ENUMX
  BFD_RELOC_PPC_EMB_SDA2I16
  BFD_RELOC_PPC_EMB_SDA2I16
ENUMX
ENUMX
  BFD_RELOC_PPC_EMB_SDA2REL
  BFD_RELOC_PPC_EMB_SDA2REL
ENUMX
ENUMX
  BFD_RELOC_PPC_EMB_SDA21
  BFD_RELOC_PPC_EMB_SDA21
ENUMX
ENUMX
  BFD_RELOC_PPC_EMB_MRKREF
  BFD_RELOC_PPC_EMB_MRKREF
ENUMX
ENUMX
  BFD_RELOC_PPC_EMB_RELSEC16
  BFD_RELOC_PPC_EMB_RELSEC16
ENUMX
ENUMX
  BFD_RELOC_PPC_EMB_RELST_LO
  BFD_RELOC_PPC_EMB_RELST_LO
ENUMX
ENUMX
  BFD_RELOC_PPC_EMB_RELST_HI
  BFD_RELOC_PPC_EMB_RELST_HI
ENUMX
ENUMX
  BFD_RELOC_PPC_EMB_RELST_HA
  BFD_RELOC_PPC_EMB_RELST_HA
ENUMX
ENUMX
  BFD_RELOC_PPC_EMB_BIT_FLD
  BFD_RELOC_PPC_EMB_BIT_FLD
ENUMX
ENUMX
  BFD_RELOC_PPC_EMB_RELSDA
  BFD_RELOC_PPC_EMB_RELSDA
ENUMX
ENUMX
  BFD_RELOC_PPC64_HIGHER
  BFD_RELOC_PPC64_HIGHER
ENUMX
ENUMX
  BFD_RELOC_PPC64_HIGHER_S
  BFD_RELOC_PPC64_HIGHER_S
ENUMX
ENUMX
  BFD_RELOC_PPC64_HIGHEST
  BFD_RELOC_PPC64_HIGHEST
ENUMX
ENUMX
  BFD_RELOC_PPC64_HIGHEST_S
  BFD_RELOC_PPC64_HIGHEST_S
ENUMX
ENUMX
  BFD_RELOC_PPC64_TOC16_LO
  BFD_RELOC_PPC64_TOC16_LO
ENUMX
ENUMX
  BFD_RELOC_PPC64_TOC16_HI
  BFD_RELOC_PPC64_TOC16_HI
ENUMX
ENUMX
  BFD_RELOC_PPC64_TOC16_HA
  BFD_RELOC_PPC64_TOC16_HA
ENUMX
ENUMX
  BFD_RELOC_PPC64_TOC
  BFD_RELOC_PPC64_TOC
ENUMX
ENUMX
  BFD_RELOC_PPC64_PLTGOT16
  BFD_RELOC_PPC64_PLTGOT16
ENUMX
ENUMX
  BFD_RELOC_PPC64_PLTGOT16_LO
  BFD_RELOC_PPC64_PLTGOT16_LO
ENUMX
ENUMX
  BFD_RELOC_PPC64_PLTGOT16_HI
  BFD_RELOC_PPC64_PLTGOT16_HI
ENUMX
ENUMX
  BFD_RELOC_PPC64_PLTGOT16_HA
  BFD_RELOC_PPC64_PLTGOT16_HA
ENUMX
ENUMX
  BFD_RELOC_PPC64_ADDR16_DS
  BFD_RELOC_PPC64_ADDR16_DS
ENUMX
ENUMX
  BFD_RELOC_PPC64_ADDR16_LO_DS
  BFD_RELOC_PPC64_ADDR16_LO_DS
ENUMX
ENUMX
  BFD_RELOC_PPC64_GOT16_DS
  BFD_RELOC_PPC64_GOT16_DS
ENUMX
ENUMX
  BFD_RELOC_PPC64_GOT16_LO_DS
  BFD_RELOC_PPC64_GOT16_LO_DS
ENUMX
ENUMX
  BFD_RELOC_PPC64_PLT16_LO_DS
  BFD_RELOC_PPC64_PLT16_LO_DS
ENUMX
ENUMX
  BFD_RELOC_PPC64_SECTOFF_DS
  BFD_RELOC_PPC64_SECTOFF_DS
ENUMX
ENUMX
  BFD_RELOC_PPC64_SECTOFF_LO_DS
  BFD_RELOC_PPC64_SECTOFF_LO_DS
ENUMX
ENUMX
  BFD_RELOC_PPC64_TOC16_DS
  BFD_RELOC_PPC64_TOC16_DS
ENUMX
ENUMX
  BFD_RELOC_PPC64_TOC16_LO_DS
  BFD_RELOC_PPC64_TOC16_LO_DS
ENUMX
ENUMX
  BFD_RELOC_PPC64_PLTGOT16_DS
  BFD_RELOC_PPC64_PLTGOT16_DS
ENUMX
ENUMX
  BFD_RELOC_PPC64_PLTGOT16_LO_DS
  BFD_RELOC_PPC64_PLTGOT16_LO_DS
ENUMDOC
ENUMDOC
  Power(rs6000) and PowerPC relocations.
  Power(rs6000) and PowerPC relocations.
 
 
ENUM
ENUM
  BFD_RELOC_I370_D12
  BFD_RELOC_I370_D12
ENUMDOC
ENUMDOC
  IBM 370/390 relocations
  IBM 370/390 relocations
 
 
ENUM
ENUM
  BFD_RELOC_CTOR
  BFD_RELOC_CTOR
ENUMDOC
ENUMDOC
  The type of reloc used to build a contructor table - at the moment
  The type of reloc used to build a contructor table - at the moment
  probably a 32 bit wide absolute relocation, but the target can choose.
  probably a 32 bit wide absolute relocation, but the target can choose.
  It generally does map to one of the other relocation types.
  It generally does map to one of the other relocation types.
 
 
ENUM
ENUM
  BFD_RELOC_ARM_PCREL_BRANCH
  BFD_RELOC_ARM_PCREL_BRANCH
ENUMDOC
ENUMDOC
  ARM 26 bit pc-relative branch.  The lowest two bits must be zero and are
  ARM 26 bit pc-relative branch.  The lowest two bits must be zero and are
  not stored in the instruction.
  not stored in the instruction.
ENUM
ENUM
  BFD_RELOC_ARM_PCREL_BLX
  BFD_RELOC_ARM_PCREL_BLX
ENUMDOC
ENUMDOC
  ARM 26 bit pc-relative branch.  The lowest bit must be zero and is
  ARM 26 bit pc-relative branch.  The lowest bit must be zero and is
  not stored in the instruction.  The 2nd lowest bit comes from a 1 bit
  not stored in the instruction.  The 2nd lowest bit comes from a 1 bit
  field in the instruction.
  field in the instruction.
ENUM
ENUM
  BFD_RELOC_THUMB_PCREL_BLX
  BFD_RELOC_THUMB_PCREL_BLX
ENUMDOC
ENUMDOC
  Thumb 22 bit pc-relative branch.  The lowest bit must be zero and is
  Thumb 22 bit pc-relative branch.  The lowest bit must be zero and is
  not stored in the instruction.  The 2nd lowest bit comes from a 1 bit
  not stored in the instruction.  The 2nd lowest bit comes from a 1 bit
  field in the instruction.
  field in the instruction.
ENUM
ENUM
  BFD_RELOC_ARM_IMMEDIATE
  BFD_RELOC_ARM_IMMEDIATE
ENUMX
ENUMX
  BFD_RELOC_ARM_ADRL_IMMEDIATE
  BFD_RELOC_ARM_ADRL_IMMEDIATE
ENUMX
ENUMX
  BFD_RELOC_ARM_OFFSET_IMM
  BFD_RELOC_ARM_OFFSET_IMM
ENUMX
ENUMX
  BFD_RELOC_ARM_SHIFT_IMM
  BFD_RELOC_ARM_SHIFT_IMM
ENUMX
ENUMX
  BFD_RELOC_ARM_SWI
  BFD_RELOC_ARM_SWI
ENUMX
ENUMX
  BFD_RELOC_ARM_MULTI
  BFD_RELOC_ARM_MULTI
ENUMX
ENUMX
  BFD_RELOC_ARM_CP_OFF_IMM
  BFD_RELOC_ARM_CP_OFF_IMM
ENUMX
ENUMX
  BFD_RELOC_ARM_ADR_IMM
  BFD_RELOC_ARM_ADR_IMM
ENUMX
ENUMX
  BFD_RELOC_ARM_LDR_IMM
  BFD_RELOC_ARM_LDR_IMM
ENUMX
ENUMX
  BFD_RELOC_ARM_LITERAL
  BFD_RELOC_ARM_LITERAL
ENUMX
ENUMX
  BFD_RELOC_ARM_IN_POOL
  BFD_RELOC_ARM_IN_POOL
ENUMX
ENUMX
  BFD_RELOC_ARM_OFFSET_IMM8
  BFD_RELOC_ARM_OFFSET_IMM8
ENUMX
ENUMX
  BFD_RELOC_ARM_HWLITERAL
  BFD_RELOC_ARM_HWLITERAL
ENUMX
ENUMX
  BFD_RELOC_ARM_THUMB_ADD
  BFD_RELOC_ARM_THUMB_ADD
ENUMX
ENUMX
  BFD_RELOC_ARM_THUMB_IMM
  BFD_RELOC_ARM_THUMB_IMM
ENUMX
ENUMX
  BFD_RELOC_ARM_THUMB_SHIFT
  BFD_RELOC_ARM_THUMB_SHIFT
ENUMX
ENUMX
  BFD_RELOC_ARM_THUMB_OFFSET
  BFD_RELOC_ARM_THUMB_OFFSET
ENUMX
ENUMX
  BFD_RELOC_ARM_GOT12
  BFD_RELOC_ARM_GOT12
ENUMX
ENUMX
  BFD_RELOC_ARM_GOT32
  BFD_RELOC_ARM_GOT32
ENUMX
ENUMX
  BFD_RELOC_ARM_JUMP_SLOT
  BFD_RELOC_ARM_JUMP_SLOT
ENUMX
ENUMX
  BFD_RELOC_ARM_COPY
  BFD_RELOC_ARM_COPY
ENUMX
ENUMX
  BFD_RELOC_ARM_GLOB_DAT
  BFD_RELOC_ARM_GLOB_DAT
ENUMX
ENUMX
  BFD_RELOC_ARM_PLT32
  BFD_RELOC_ARM_PLT32
ENUMX
ENUMX
  BFD_RELOC_ARM_RELATIVE
  BFD_RELOC_ARM_RELATIVE
ENUMX
ENUMX
  BFD_RELOC_ARM_GOTOFF
  BFD_RELOC_ARM_GOTOFF
ENUMX
ENUMX
  BFD_RELOC_ARM_GOTPC
  BFD_RELOC_ARM_GOTPC
ENUMDOC
ENUMDOC
  These relocs are only used within the ARM assembler.  They are not
  These relocs are only used within the ARM assembler.  They are not
  (at present) written to any object files.
  (at present) written to any object files.
 
 
ENUM
ENUM
  BFD_RELOC_SH_PCDISP8BY2
  BFD_RELOC_SH_PCDISP8BY2
ENUMX
ENUMX
  BFD_RELOC_SH_PCDISP12BY2
  BFD_RELOC_SH_PCDISP12BY2
ENUMX
ENUMX
  BFD_RELOC_SH_IMM4
  BFD_RELOC_SH_IMM4
ENUMX
ENUMX
  BFD_RELOC_SH_IMM4BY2
  BFD_RELOC_SH_IMM4BY2
ENUMX
ENUMX
  BFD_RELOC_SH_IMM4BY4
  BFD_RELOC_SH_IMM4BY4
ENUMX
ENUMX
  BFD_RELOC_SH_IMM8
  BFD_RELOC_SH_IMM8
ENUMX
ENUMX
  BFD_RELOC_SH_IMM8BY2
  BFD_RELOC_SH_IMM8BY2
ENUMX
ENUMX
  BFD_RELOC_SH_IMM8BY4
  BFD_RELOC_SH_IMM8BY4
ENUMX
ENUMX
  BFD_RELOC_SH_PCRELIMM8BY2
  BFD_RELOC_SH_PCRELIMM8BY2
ENUMX
ENUMX
  BFD_RELOC_SH_PCRELIMM8BY4
  BFD_RELOC_SH_PCRELIMM8BY4
ENUMX
ENUMX
  BFD_RELOC_SH_SWITCH16
  BFD_RELOC_SH_SWITCH16
ENUMX
ENUMX
  BFD_RELOC_SH_SWITCH32
  BFD_RELOC_SH_SWITCH32
ENUMX
ENUMX
  BFD_RELOC_SH_USES
  BFD_RELOC_SH_USES
ENUMX
ENUMX
  BFD_RELOC_SH_COUNT
  BFD_RELOC_SH_COUNT
ENUMX
ENUMX
  BFD_RELOC_SH_ALIGN
  BFD_RELOC_SH_ALIGN
ENUMX
ENUMX
  BFD_RELOC_SH_CODE
  BFD_RELOC_SH_CODE
ENUMX
ENUMX
  BFD_RELOC_SH_DATA
  BFD_RELOC_SH_DATA
ENUMX
ENUMX
  BFD_RELOC_SH_LABEL
  BFD_RELOC_SH_LABEL
ENUMX
ENUMX
  BFD_RELOC_SH_LOOP_START
  BFD_RELOC_SH_LOOP_START
ENUMX
ENUMX
  BFD_RELOC_SH_LOOP_END
  BFD_RELOC_SH_LOOP_END
ENUMX
ENUMX
  BFD_RELOC_SH_COPY
  BFD_RELOC_SH_COPY
ENUMX
ENUMX
  BFD_RELOC_SH_GLOB_DAT
  BFD_RELOC_SH_GLOB_DAT
ENUMX
ENUMX
  BFD_RELOC_SH_JMP_SLOT
  BFD_RELOC_SH_JMP_SLOT
ENUMX
ENUMX
  BFD_RELOC_SH_RELATIVE
  BFD_RELOC_SH_RELATIVE
ENUMX
ENUMX
  BFD_RELOC_SH_GOTPC
  BFD_RELOC_SH_GOTPC
ENUMX
ENUMX
  BFD_RELOC_SH_GOT_LOW16
  BFD_RELOC_SH_GOT_LOW16
ENUMX
ENUMX
  BFD_RELOC_SH_GOT_MEDLOW16
  BFD_RELOC_SH_GOT_MEDLOW16
ENUMX
ENUMX
  BFD_RELOC_SH_GOT_MEDHI16
  BFD_RELOC_SH_GOT_MEDHI16
ENUMX
ENUMX
  BFD_RELOC_SH_GOT_HI16
  BFD_RELOC_SH_GOT_HI16
ENUMX
ENUMX
  BFD_RELOC_SH_GOTPLT_LOW16
  BFD_RELOC_SH_GOTPLT_LOW16
ENUMX
ENUMX
  BFD_RELOC_SH_GOTPLT_MEDLOW16
  BFD_RELOC_SH_GOTPLT_MEDLOW16
ENUMX
ENUMX
  BFD_RELOC_SH_GOTPLT_MEDHI16
  BFD_RELOC_SH_GOTPLT_MEDHI16
ENUMX
ENUMX
  BFD_RELOC_SH_GOTPLT_HI16
  BFD_RELOC_SH_GOTPLT_HI16
ENUMX
ENUMX
  BFD_RELOC_SH_PLT_LOW16
  BFD_RELOC_SH_PLT_LOW16
ENUMX
ENUMX
  BFD_RELOC_SH_PLT_MEDLOW16
  BFD_RELOC_SH_PLT_MEDLOW16
ENUMX
ENUMX
  BFD_RELOC_SH_PLT_MEDHI16
  BFD_RELOC_SH_PLT_MEDHI16
ENUMX
ENUMX
  BFD_RELOC_SH_PLT_HI16
  BFD_RELOC_SH_PLT_HI16
ENUMX
ENUMX
  BFD_RELOC_SH_GOTOFF_LOW16
  BFD_RELOC_SH_GOTOFF_LOW16
ENUMX
ENUMX
  BFD_RELOC_SH_GOTOFF_MEDLOW16
  BFD_RELOC_SH_GOTOFF_MEDLOW16
ENUMX
ENUMX
  BFD_RELOC_SH_GOTOFF_MEDHI16
  BFD_RELOC_SH_GOTOFF_MEDHI16
ENUMX
ENUMX
  BFD_RELOC_SH_GOTOFF_HI16
  BFD_RELOC_SH_GOTOFF_HI16
ENUMX
ENUMX
  BFD_RELOC_SH_GOTPC_LOW16
  BFD_RELOC_SH_GOTPC_LOW16
ENUMX
ENUMX
  BFD_RELOC_SH_GOTPC_MEDLOW16
  BFD_RELOC_SH_GOTPC_MEDLOW16
ENUMX
ENUMX
  BFD_RELOC_SH_GOTPC_MEDHI16
  BFD_RELOC_SH_GOTPC_MEDHI16
ENUMX
ENUMX
  BFD_RELOC_SH_GOTPC_HI16
  BFD_RELOC_SH_GOTPC_HI16
ENUMX
ENUMX
  BFD_RELOC_SH_COPY64
  BFD_RELOC_SH_COPY64
ENUMX
ENUMX
  BFD_RELOC_SH_GLOB_DAT64
  BFD_RELOC_SH_GLOB_DAT64
ENUMX
ENUMX
  BFD_RELOC_SH_JMP_SLOT64
  BFD_RELOC_SH_JMP_SLOT64
ENUMX
ENUMX
  BFD_RELOC_SH_RELATIVE64
  BFD_RELOC_SH_RELATIVE64
ENUMX
ENUMX
  BFD_RELOC_SH_GOT10BY4
  BFD_RELOC_SH_GOT10BY4
ENUMX
ENUMX
  BFD_RELOC_SH_GOT10BY8
  BFD_RELOC_SH_GOT10BY8
ENUMX
ENUMX
  BFD_RELOC_SH_GOTPLT10BY4
  BFD_RELOC_SH_GOTPLT10BY4
ENUMX
ENUMX
  BFD_RELOC_SH_GOTPLT10BY8
  BFD_RELOC_SH_GOTPLT10BY8
ENUMX
ENUMX
  BFD_RELOC_SH_GOTPLT32
  BFD_RELOC_SH_GOTPLT32
ENUMX
ENUMX
  BFD_RELOC_SH_SHMEDIA_CODE
  BFD_RELOC_SH_SHMEDIA_CODE
ENUMX
ENUMX
  BFD_RELOC_SH_IMMU5
  BFD_RELOC_SH_IMMU5
ENUMX
ENUMX
  BFD_RELOC_SH_IMMS6
  BFD_RELOC_SH_IMMS6
ENUMX
ENUMX
  BFD_RELOC_SH_IMMS6BY32
  BFD_RELOC_SH_IMMS6BY32
ENUMX
ENUMX
  BFD_RELOC_SH_IMMU6
  BFD_RELOC_SH_IMMU6
ENUMX
ENUMX
  BFD_RELOC_SH_IMMS10
  BFD_RELOC_SH_IMMS10
ENUMX
ENUMX
  BFD_RELOC_SH_IMMS10BY2
  BFD_RELOC_SH_IMMS10BY2
ENUMX
ENUMX
  BFD_RELOC_SH_IMMS10BY4
  BFD_RELOC_SH_IMMS10BY4
ENUMX
ENUMX
  BFD_RELOC_SH_IMMS10BY8
  BFD_RELOC_SH_IMMS10BY8
ENUMX
ENUMX
  BFD_RELOC_SH_IMMS16
  BFD_RELOC_SH_IMMS16
ENUMX
ENUMX
  BFD_RELOC_SH_IMMU16
  BFD_RELOC_SH_IMMU16
ENUMX
ENUMX
  BFD_RELOC_SH_IMM_LOW16
  BFD_RELOC_SH_IMM_LOW16
ENUMX
ENUMX
  BFD_RELOC_SH_IMM_LOW16_PCREL
  BFD_RELOC_SH_IMM_LOW16_PCREL
ENUMX
ENUMX
  BFD_RELOC_SH_IMM_MEDLOW16
  BFD_RELOC_SH_IMM_MEDLOW16
ENUMX
ENUMX
  BFD_RELOC_SH_IMM_MEDLOW16_PCREL
  BFD_RELOC_SH_IMM_MEDLOW16_PCREL
ENUMX
ENUMX
  BFD_RELOC_SH_IMM_MEDHI16
  BFD_RELOC_SH_IMM_MEDHI16
ENUMX
ENUMX
  BFD_RELOC_SH_IMM_MEDHI16_PCREL
  BFD_RELOC_SH_IMM_MEDHI16_PCREL
ENUMX
ENUMX
  BFD_RELOC_SH_IMM_HI16
  BFD_RELOC_SH_IMM_HI16
ENUMX
ENUMX
  BFD_RELOC_SH_IMM_HI16_PCREL
  BFD_RELOC_SH_IMM_HI16_PCREL
ENUMX
ENUMX
  BFD_RELOC_SH_PT_16
  BFD_RELOC_SH_PT_16
ENUMDOC
ENUMDOC
  Hitachi SH relocs.  Not all of these appear in object files.
  Hitachi SH relocs.  Not all of these appear in object files.
 
 
ENUM
ENUM
  BFD_RELOC_THUMB_PCREL_BRANCH9
  BFD_RELOC_THUMB_PCREL_BRANCH9
ENUMX
ENUMX
  BFD_RELOC_THUMB_PCREL_BRANCH12
  BFD_RELOC_THUMB_PCREL_BRANCH12
ENUMX
ENUMX
  BFD_RELOC_THUMB_PCREL_BRANCH23
  BFD_RELOC_THUMB_PCREL_BRANCH23
ENUMDOC
ENUMDOC
  Thumb 23-, 12- and 9-bit pc-relative branches.  The lowest bit must
  Thumb 23-, 12- and 9-bit pc-relative branches.  The lowest bit must
  be zero and is not stored in the instruction.
  be zero and is not stored in the instruction.
 
 
ENUM
ENUM
  BFD_RELOC_ARC_B22_PCREL
  BFD_RELOC_ARC_B22_PCREL
ENUMDOC
ENUMDOC
  ARC Cores relocs.
  ARC Cores relocs.
  ARC 22 bit pc-relative branch.  The lowest two bits must be zero and are
  ARC 22 bit pc-relative branch.  The lowest two bits must be zero and are
  not stored in the instruction.  The high 20 bits are installed in bits 26
  not stored in the instruction.  The high 20 bits are installed in bits 26
  through 7 of the instruction.
  through 7 of the instruction.
ENUM
ENUM
  BFD_RELOC_ARC_B26
  BFD_RELOC_ARC_B26
ENUMDOC
ENUMDOC
  ARC 26 bit absolute branch.  The lowest two bits must be zero and are not
  ARC 26 bit absolute branch.  The lowest two bits must be zero and are not
  stored in the instruction.  The high 24 bits are installed in bits 23
  stored in the instruction.  The high 24 bits are installed in bits 23
  through 0.
  through 0.
 
 
ENUM
ENUM
  BFD_RELOC_D10V_10_PCREL_R
  BFD_RELOC_D10V_10_PCREL_R
ENUMDOC
ENUMDOC
  Mitsubishi D10V relocs.
  Mitsubishi D10V relocs.
  This is a 10-bit reloc with the right 2 bits
  This is a 10-bit reloc with the right 2 bits
  assumed to be 0.
  assumed to be 0.
ENUM
ENUM
  BFD_RELOC_D10V_10_PCREL_L
  BFD_RELOC_D10V_10_PCREL_L
ENUMDOC
ENUMDOC
  Mitsubishi D10V relocs.
  Mitsubishi D10V relocs.
  This is a 10-bit reloc with the right 2 bits
  This is a 10-bit reloc with the right 2 bits
  assumed to be 0.  This is the same as the previous reloc
  assumed to be 0.  This is the same as the previous reloc
  except it is in the left container, i.e.,
  except it is in the left container, i.e.,
  shifted left 15 bits.
  shifted left 15 bits.
ENUM
ENUM
  BFD_RELOC_D10V_18
  BFD_RELOC_D10V_18
ENUMDOC
ENUMDOC
  This is an 18-bit reloc with the right 2 bits
  This is an 18-bit reloc with the right 2 bits
  assumed to be 0.
  assumed to be 0.
ENUM
ENUM
  BFD_RELOC_D10V_18_PCREL
  BFD_RELOC_D10V_18_PCREL
ENUMDOC
ENUMDOC
  This is an 18-bit reloc with the right 2 bits
  This is an 18-bit reloc with the right 2 bits
  assumed to be 0.
  assumed to be 0.
 
 
ENUM
ENUM
  BFD_RELOC_D30V_6
  BFD_RELOC_D30V_6
ENUMDOC
ENUMDOC
  Mitsubishi D30V relocs.
  Mitsubishi D30V relocs.
  This is a 6-bit absolute reloc.
  This is a 6-bit absolute reloc.
ENUM
ENUM
  BFD_RELOC_D30V_9_PCREL
  BFD_RELOC_D30V_9_PCREL
ENUMDOC
ENUMDOC
  This is a 6-bit pc-relative reloc with
  This is a 6-bit pc-relative reloc with
  the right 3 bits assumed to be 0.
  the right 3 bits assumed to be 0.
ENUM
ENUM
  BFD_RELOC_D30V_9_PCREL_R
  BFD_RELOC_D30V_9_PCREL_R
ENUMDOC
ENUMDOC
  This is a 6-bit pc-relative reloc with
  This is a 6-bit pc-relative reloc with
  the right 3 bits assumed to be 0. Same
  the right 3 bits assumed to be 0. Same
  as the previous reloc but on the right side
  as the previous reloc but on the right side
  of the container.
  of the container.
ENUM
ENUM
  BFD_RELOC_D30V_15
  BFD_RELOC_D30V_15
ENUMDOC
ENUMDOC
  This is a 12-bit absolute reloc with the
  This is a 12-bit absolute reloc with the
  right 3 bitsassumed to be 0.
  right 3 bitsassumed to be 0.
ENUM
ENUM
  BFD_RELOC_D30V_15_PCREL
  BFD_RELOC_D30V_15_PCREL
ENUMDOC
ENUMDOC
  This is a 12-bit pc-relative reloc with
  This is a 12-bit pc-relative reloc with
  the right 3 bits assumed to be 0.
  the right 3 bits assumed to be 0.
ENUM
ENUM
  BFD_RELOC_D30V_15_PCREL_R
  BFD_RELOC_D30V_15_PCREL_R
ENUMDOC
ENUMDOC
  This is a 12-bit pc-relative reloc with
  This is a 12-bit pc-relative reloc with
  the right 3 bits assumed to be 0. Same
  the right 3 bits assumed to be 0. Same
  as the previous reloc but on the right side
  as the previous reloc but on the right side
  of the container.
  of the container.
ENUM
ENUM
  BFD_RELOC_D30V_21
  BFD_RELOC_D30V_21
ENUMDOC
ENUMDOC
  This is an 18-bit absolute reloc with
  This is an 18-bit absolute reloc with
  the right 3 bits assumed to be 0.
  the right 3 bits assumed to be 0.
ENUM
ENUM
  BFD_RELOC_D30V_21_PCREL
  BFD_RELOC_D30V_21_PCREL
ENUMDOC
ENUMDOC
  This is an 18-bit pc-relative reloc with
  This is an 18-bit pc-relative reloc with
  the right 3 bits assumed to be 0.
  the right 3 bits assumed to be 0.
ENUM
ENUM
  BFD_RELOC_D30V_21_PCREL_R
  BFD_RELOC_D30V_21_PCREL_R
ENUMDOC
ENUMDOC
  This is an 18-bit pc-relative reloc with
  This is an 18-bit pc-relative reloc with
  the right 3 bits assumed to be 0. Same
  the right 3 bits assumed to be 0. Same
  as the previous reloc but on the right side
  as the previous reloc but on the right side
  of the container.
  of the container.
ENUM
ENUM
  BFD_RELOC_D30V_32
  BFD_RELOC_D30V_32
ENUMDOC
ENUMDOC
  This is a 32-bit absolute reloc.
  This is a 32-bit absolute reloc.
ENUM
ENUM
  BFD_RELOC_D30V_32_PCREL
  BFD_RELOC_D30V_32_PCREL
ENUMDOC
ENUMDOC
  This is a 32-bit pc-relative reloc.
  This is a 32-bit pc-relative reloc.
 
 
ENUM
ENUM
  BFD_RELOC_DLX_HI16_S
  BFD_RELOC_DLX_HI16_S
ENUMDOC
ENUMDOC
  DLX relocs
  DLX relocs
ENUM
ENUM
  BFD_RELOC_DLX_LO16
  BFD_RELOC_DLX_LO16
ENUMDOC
ENUMDOC
  DLX relocs
  DLX relocs
ENUM
ENUM
  BFD_RELOC_DLX_JMP26
  BFD_RELOC_DLX_JMP26
ENUMDOC
ENUMDOC
  DLX relocs
  DLX relocs
 
 
ENUM
ENUM
  BFD_RELOC_M32R_24
  BFD_RELOC_M32R_24
ENUMDOC
ENUMDOC
  Mitsubishi M32R relocs.
  Mitsubishi M32R relocs.
  This is a 24 bit absolute address.
  This is a 24 bit absolute address.
ENUM
ENUM
  BFD_RELOC_M32R_10_PCREL
  BFD_RELOC_M32R_10_PCREL
ENUMDOC
ENUMDOC
  This is a 10-bit pc-relative reloc with the right 2 bits assumed to be 0.
  This is a 10-bit pc-relative reloc with the right 2 bits assumed to be 0.
ENUM
ENUM
  BFD_RELOC_M32R_18_PCREL
  BFD_RELOC_M32R_18_PCREL
ENUMDOC
ENUMDOC
  This is an 18-bit reloc with the right 2 bits assumed to be 0.
  This is an 18-bit reloc with the right 2 bits assumed to be 0.
ENUM
ENUM
  BFD_RELOC_M32R_26_PCREL
  BFD_RELOC_M32R_26_PCREL
ENUMDOC
ENUMDOC
  This is a 26-bit reloc with the right 2 bits assumed to be 0.
  This is a 26-bit reloc with the right 2 bits assumed to be 0.
ENUM
ENUM
  BFD_RELOC_M32R_HI16_ULO
  BFD_RELOC_M32R_HI16_ULO
ENUMDOC
ENUMDOC
  This is a 16-bit reloc containing the high 16 bits of an address
  This is a 16-bit reloc containing the high 16 bits of an address
  used when the lower 16 bits are treated as unsigned.
  used when the lower 16 bits are treated as unsigned.
ENUM
ENUM
  BFD_RELOC_M32R_HI16_SLO
  BFD_RELOC_M32R_HI16_SLO
ENUMDOC
ENUMDOC
  This is a 16-bit reloc containing the high 16 bits of an address
  This is a 16-bit reloc containing the high 16 bits of an address
  used when the lower 16 bits are treated as signed.
  used when the lower 16 bits are treated as signed.
ENUM
ENUM
  BFD_RELOC_M32R_LO16
  BFD_RELOC_M32R_LO16
ENUMDOC
ENUMDOC
  This is a 16-bit reloc containing the lower 16 bits of an address.
  This is a 16-bit reloc containing the lower 16 bits of an address.
ENUM
ENUM
  BFD_RELOC_M32R_SDA16
  BFD_RELOC_M32R_SDA16
ENUMDOC
ENUMDOC
  This is a 16-bit reloc containing the small data area offset for use in
  This is a 16-bit reloc containing the small data area offset for use in
  add3, load, and store instructions.
  add3, load, and store instructions.
 
 
ENUM
ENUM
  BFD_RELOC_V850_9_PCREL
  BFD_RELOC_V850_9_PCREL
ENUMDOC
ENUMDOC
  This is a 9-bit reloc
  This is a 9-bit reloc
ENUM
ENUM
  BFD_RELOC_V850_22_PCREL
  BFD_RELOC_V850_22_PCREL
ENUMDOC
ENUMDOC
  This is a 22-bit reloc
  This is a 22-bit reloc
 
 
ENUM
ENUM
  BFD_RELOC_V850_SDA_16_16_OFFSET
  BFD_RELOC_V850_SDA_16_16_OFFSET
ENUMDOC
ENUMDOC
  This is a 16 bit offset from the short data area pointer.
  This is a 16 bit offset from the short data area pointer.
ENUM
ENUM
  BFD_RELOC_V850_SDA_15_16_OFFSET
  BFD_RELOC_V850_SDA_15_16_OFFSET
ENUMDOC
ENUMDOC
  This is a 16 bit offset (of which only 15 bits are used) from the
  This is a 16 bit offset (of which only 15 bits are used) from the
  short data area pointer.
  short data area pointer.
ENUM
ENUM
  BFD_RELOC_V850_ZDA_16_16_OFFSET
  BFD_RELOC_V850_ZDA_16_16_OFFSET
ENUMDOC
ENUMDOC
  This is a 16 bit offset from the zero data area pointer.
  This is a 16 bit offset from the zero data area pointer.
ENUM
ENUM
  BFD_RELOC_V850_ZDA_15_16_OFFSET
  BFD_RELOC_V850_ZDA_15_16_OFFSET
ENUMDOC
ENUMDOC
  This is a 16 bit offset (of which only 15 bits are used) from the
  This is a 16 bit offset (of which only 15 bits are used) from the
  zero data area pointer.
  zero data area pointer.
ENUM
ENUM
  BFD_RELOC_V850_TDA_6_8_OFFSET
  BFD_RELOC_V850_TDA_6_8_OFFSET
ENUMDOC
ENUMDOC
  This is an 8 bit offset (of which only 6 bits are used) from the
  This is an 8 bit offset (of which only 6 bits are used) from the
  tiny data area pointer.
  tiny data area pointer.
ENUM
ENUM
  BFD_RELOC_V850_TDA_7_8_OFFSET
  BFD_RELOC_V850_TDA_7_8_OFFSET
ENUMDOC
ENUMDOC
  This is an 8bit offset (of which only 7 bits are used) from the tiny
  This is an 8bit offset (of which only 7 bits are used) from the tiny
  data area pointer.
  data area pointer.
ENUM
ENUM
  BFD_RELOC_V850_TDA_7_7_OFFSET
  BFD_RELOC_V850_TDA_7_7_OFFSET
ENUMDOC
ENUMDOC
  This is a 7 bit offset from the tiny data area pointer.
  This is a 7 bit offset from the tiny data area pointer.
ENUM
ENUM
  BFD_RELOC_V850_TDA_16_16_OFFSET
  BFD_RELOC_V850_TDA_16_16_OFFSET
ENUMDOC
ENUMDOC
  This is a 16 bit offset from the tiny data area pointer.
  This is a 16 bit offset from the tiny data area pointer.
COMMENT
COMMENT
ENUM
ENUM
  BFD_RELOC_V850_TDA_4_5_OFFSET
  BFD_RELOC_V850_TDA_4_5_OFFSET
ENUMDOC
ENUMDOC
  This is a 5 bit offset (of which only 4 bits are used) from the tiny
  This is a 5 bit offset (of which only 4 bits are used) from the tiny
  data area pointer.
  data area pointer.
ENUM
ENUM
  BFD_RELOC_V850_TDA_4_4_OFFSET
  BFD_RELOC_V850_TDA_4_4_OFFSET
ENUMDOC
ENUMDOC
  This is a 4 bit offset from the tiny data area pointer.
  This is a 4 bit offset from the tiny data area pointer.
ENUM
ENUM
  BFD_RELOC_V850_SDA_16_16_SPLIT_OFFSET
  BFD_RELOC_V850_SDA_16_16_SPLIT_OFFSET
ENUMDOC
ENUMDOC
  This is a 16 bit offset from the short data area pointer, with the
  This is a 16 bit offset from the short data area pointer, with the
  bits placed non-contigously in the instruction.
  bits placed non-contigously in the instruction.
ENUM
ENUM
  BFD_RELOC_V850_ZDA_16_16_SPLIT_OFFSET
  BFD_RELOC_V850_ZDA_16_16_SPLIT_OFFSET
ENUMDOC
ENUMDOC
  This is a 16 bit offset from the zero data area pointer, with the
  This is a 16 bit offset from the zero data area pointer, with the
  bits placed non-contigously in the instruction.
  bits placed non-contigously in the instruction.
ENUM
ENUM
  BFD_RELOC_V850_CALLT_6_7_OFFSET
  BFD_RELOC_V850_CALLT_6_7_OFFSET
ENUMDOC
ENUMDOC
  This is a 6 bit offset from the call table base pointer.
  This is a 6 bit offset from the call table base pointer.
ENUM
ENUM
  BFD_RELOC_V850_CALLT_16_16_OFFSET
  BFD_RELOC_V850_CALLT_16_16_OFFSET
ENUMDOC
ENUMDOC
  This is a 16 bit offset from the call table base pointer.
  This is a 16 bit offset from the call table base pointer.
ENUM
ENUM
  BFD_RELOC_V850_LONGCALL
  BFD_RELOC_V850_LONGCALL
ENUMDOC
ENUMDOC
  Used for relaxing indirect function calls.
  Used for relaxing indirect function calls.
ENUM
ENUM
  BFD_RELOC_V850_LONGJUMP
  BFD_RELOC_V850_LONGJUMP
ENUMDOC
ENUMDOC
  Used for relaxing indirect jumps.
  Used for relaxing indirect jumps.
ENUM
ENUM
  BFD_RELOC_V850_ALIGN
  BFD_RELOC_V850_ALIGN
ENUMDOC
ENUMDOC
  Used to maintain alignment whilst relaxing.
  Used to maintain alignment whilst relaxing.
ENUM
ENUM
  BFD_RELOC_MN10300_32_PCREL
  BFD_RELOC_MN10300_32_PCREL
ENUMDOC
ENUMDOC
  This is a 32bit pcrel reloc for the mn10300, offset by two bytes in the
  This is a 32bit pcrel reloc for the mn10300, offset by two bytes in the
  instruction.
  instruction.
ENUM
ENUM
  BFD_RELOC_MN10300_16_PCREL
  BFD_RELOC_MN10300_16_PCREL
ENUMDOC
ENUMDOC
  This is a 16bit pcrel reloc for the mn10300, offset by two bytes in the
  This is a 16bit pcrel reloc for the mn10300, offset by two bytes in the
  instruction.
  instruction.
 
 
ENUM
ENUM
  BFD_RELOC_TIC30_LDP
  BFD_RELOC_TIC30_LDP
ENUMDOC
ENUMDOC
  This is a 8bit DP reloc for the tms320c30, where the most
  This is a 8bit DP reloc for the tms320c30, where the most
  significant 8 bits of a 24 bit word are placed into the least
  significant 8 bits of a 24 bit word are placed into the least
  significant 8 bits of the opcode.
  significant 8 bits of the opcode.
 
 
ENUM
ENUM
  BFD_RELOC_TIC54X_PARTLS7
  BFD_RELOC_TIC54X_PARTLS7
ENUMDOC
ENUMDOC
  This is a 7bit reloc for the tms320c54x, where the least
  This is a 7bit reloc for the tms320c54x, where the least
  significant 7 bits of a 16 bit word are placed into the least
  significant 7 bits of a 16 bit word are placed into the least
  significant 7 bits of the opcode.
  significant 7 bits of the opcode.
 
 
ENUM
ENUM
  BFD_RELOC_TIC54X_PARTMS9
  BFD_RELOC_TIC54X_PARTMS9
ENUMDOC
ENUMDOC
  This is a 9bit DP reloc for the tms320c54x, where the most
  This is a 9bit DP reloc for the tms320c54x, where the most
  significant 9 bits of a 16 bit word are placed into the least
  significant 9 bits of a 16 bit word are placed into the least
  significant 9 bits of the opcode.
  significant 9 bits of the opcode.
 
 
ENUM
ENUM
  BFD_RELOC_TIC54X_23
  BFD_RELOC_TIC54X_23
ENUMDOC
ENUMDOC
  This is an extended address 23-bit reloc for the tms320c54x.
  This is an extended address 23-bit reloc for the tms320c54x.
 
 
ENUM
ENUM
  BFD_RELOC_TIC54X_16_OF_23
  BFD_RELOC_TIC54X_16_OF_23
ENUMDOC
ENUMDOC
  This is a 16-bit reloc for the tms320c54x, where the least
  This is a 16-bit reloc for the tms320c54x, where the least
  significant 16 bits of a 23-bit extended address are placed into
  significant 16 bits of a 23-bit extended address are placed into
  the opcode.
  the opcode.
 
 
ENUM
ENUM
  BFD_RELOC_TIC54X_MS7_OF_23
  BFD_RELOC_TIC54X_MS7_OF_23
ENUMDOC
ENUMDOC
  This is a reloc for the tms320c54x, where the most
  This is a reloc for the tms320c54x, where the most
  significant 7 bits of a 23-bit extended address are placed into
  significant 7 bits of a 23-bit extended address are placed into
  the opcode.
  the opcode.
 
 
ENUM
ENUM
  BFD_RELOC_FR30_48
  BFD_RELOC_FR30_48
ENUMDOC
ENUMDOC
  This is a 48 bit reloc for the FR30 that stores 32 bits.
  This is a 48 bit reloc for the FR30 that stores 32 bits.
ENUM
ENUM
  BFD_RELOC_FR30_20
  BFD_RELOC_FR30_20
ENUMDOC
ENUMDOC
  This is a 32 bit reloc for the FR30 that stores 20 bits split up into
  This is a 32 bit reloc for the FR30 that stores 20 bits split up into
  two sections.
  two sections.
ENUM
ENUM
  BFD_RELOC_FR30_6_IN_4
  BFD_RELOC_FR30_6_IN_4
ENUMDOC
ENUMDOC
  This is a 16 bit reloc for the FR30 that stores a 6 bit word offset in
  This is a 16 bit reloc for the FR30 that stores a 6 bit word offset in
  4 bits.
  4 bits.
ENUM
ENUM
  BFD_RELOC_FR30_8_IN_8
  BFD_RELOC_FR30_8_IN_8
ENUMDOC
ENUMDOC
  This is a 16 bit reloc for the FR30 that stores an 8 bit byte offset
  This is a 16 bit reloc for the FR30 that stores an 8 bit byte offset
  into 8 bits.
  into 8 bits.
ENUM
ENUM
  BFD_RELOC_FR30_9_IN_8
  BFD_RELOC_FR30_9_IN_8
ENUMDOC
ENUMDOC
  This is a 16 bit reloc for the FR30 that stores a 9 bit short offset
  This is a 16 bit reloc for the FR30 that stores a 9 bit short offset
  into 8 bits.
  into 8 bits.
ENUM
ENUM
  BFD_RELOC_FR30_10_IN_8
  BFD_RELOC_FR30_10_IN_8
ENUMDOC
ENUMDOC
  This is a 16 bit reloc for the FR30 that stores a 10 bit word offset
  This is a 16 bit reloc for the FR30 that stores a 10 bit word offset
  into 8 bits.
  into 8 bits.
ENUM
ENUM
  BFD_RELOC_FR30_9_PCREL
  BFD_RELOC_FR30_9_PCREL
ENUMDOC
ENUMDOC
  This is a 16 bit reloc for the FR30 that stores a 9 bit pc relative
  This is a 16 bit reloc for the FR30 that stores a 9 bit pc relative
  short offset into 8 bits.
  short offset into 8 bits.
ENUM
ENUM
  BFD_RELOC_FR30_12_PCREL
  BFD_RELOC_FR30_12_PCREL
ENUMDOC
ENUMDOC
  This is a 16 bit reloc for the FR30 that stores a 12 bit pc relative
  This is a 16 bit reloc for the FR30 that stores a 12 bit pc relative
  short offset into 11 bits.
  short offset into 11 bits.
 
 
ENUM
ENUM
  BFD_RELOC_MCORE_PCREL_IMM8BY4
  BFD_RELOC_MCORE_PCREL_IMM8BY4
ENUMX
ENUMX
  BFD_RELOC_MCORE_PCREL_IMM11BY2
  BFD_RELOC_MCORE_PCREL_IMM11BY2
ENUMX
ENUMX
  BFD_RELOC_MCORE_PCREL_IMM4BY2
  BFD_RELOC_MCORE_PCREL_IMM4BY2
ENUMX
ENUMX
  BFD_RELOC_MCORE_PCREL_32
  BFD_RELOC_MCORE_PCREL_32
ENUMX
ENUMX
  BFD_RELOC_MCORE_PCREL_JSR_IMM11BY2
  BFD_RELOC_MCORE_PCREL_JSR_IMM11BY2
ENUMX
ENUMX
  BFD_RELOC_MCORE_RVA
  BFD_RELOC_MCORE_RVA
ENUMDOC
ENUMDOC
  Motorola Mcore relocations.
  Motorola Mcore relocations.
 
 
ENUM
ENUM
  BFD_RELOC_MMIX_GETA
  BFD_RELOC_MMIX_GETA
ENUMX
ENUMX
  BFD_RELOC_MMIX_GETA_1
  BFD_RELOC_MMIX_GETA_1
ENUMX
ENUMX
  BFD_RELOC_MMIX_GETA_2
  BFD_RELOC_MMIX_GETA_2
ENUMX
ENUMX
  BFD_RELOC_MMIX_GETA_3
  BFD_RELOC_MMIX_GETA_3
ENUMDOC
ENUMDOC
  These are relocations for the GETA instruction.
  These are relocations for the GETA instruction.
ENUM
ENUM
  BFD_RELOC_MMIX_CBRANCH
  BFD_RELOC_MMIX_CBRANCH
ENUMX
ENUMX
  BFD_RELOC_MMIX_CBRANCH_J
  BFD_RELOC_MMIX_CBRANCH_J
ENUMX
ENUMX
  BFD_RELOC_MMIX_CBRANCH_1
  BFD_RELOC_MMIX_CBRANCH_1
ENUMX
ENUMX
  BFD_RELOC_MMIX_CBRANCH_2
  BFD_RELOC_MMIX_CBRANCH_2
ENUMX
ENUMX
  BFD_RELOC_MMIX_CBRANCH_3
  BFD_RELOC_MMIX_CBRANCH_3
ENUMDOC
ENUMDOC
  These are relocations for a conditional branch instruction.
  These are relocations for a conditional branch instruction.
ENUM
ENUM
  BFD_RELOC_MMIX_PUSHJ
  BFD_RELOC_MMIX_PUSHJ
ENUMX
ENUMX
  BFD_RELOC_MMIX_PUSHJ_1
  BFD_RELOC_MMIX_PUSHJ_1
ENUMX
ENUMX
  BFD_RELOC_MMIX_PUSHJ_2
  BFD_RELOC_MMIX_PUSHJ_2
ENUMX
ENUMX
  BFD_RELOC_MMIX_PUSHJ_3
  BFD_RELOC_MMIX_PUSHJ_3
ENUMDOC
ENUMDOC
  These are relocations for the PUSHJ instruction.
  These are relocations for the PUSHJ instruction.
ENUM
ENUM
  BFD_RELOC_MMIX_JMP
  BFD_RELOC_MMIX_JMP
ENUMX
ENUMX
  BFD_RELOC_MMIX_JMP_1
  BFD_RELOC_MMIX_JMP_1
ENUMX
ENUMX
  BFD_RELOC_MMIX_JMP_2
  BFD_RELOC_MMIX_JMP_2
ENUMX
ENUMX
  BFD_RELOC_MMIX_JMP_3
  BFD_RELOC_MMIX_JMP_3
ENUMDOC
ENUMDOC
  These are relocations for the JMP instruction.
  These are relocations for the JMP instruction.
ENUM
ENUM
  BFD_RELOC_MMIX_ADDR19
  BFD_RELOC_MMIX_ADDR19
ENUMDOC
ENUMDOC
  This is a relocation for a relative address as in a GETA instruction or
  This is a relocation for a relative address as in a GETA instruction or
  a branch.
  a branch.
ENUM
ENUM
  BFD_RELOC_MMIX_ADDR27
  BFD_RELOC_MMIX_ADDR27
ENUMDOC
ENUMDOC
  This is a relocation for a relative address as in a JMP instruction.
  This is a relocation for a relative address as in a JMP instruction.
ENUM
ENUM
  BFD_RELOC_MMIX_REG_OR_BYTE
  BFD_RELOC_MMIX_REG_OR_BYTE
ENUMDOC
ENUMDOC
  This is a relocation for an instruction field that may be a general
  This is a relocation for an instruction field that may be a general
  register or a value 0..255.
  register or a value 0..255.
ENUM
ENUM
  BFD_RELOC_MMIX_REG
  BFD_RELOC_MMIX_REG
ENUMDOC
ENUMDOC
  This is a relocation for an instruction field that may be a general
  This is a relocation for an instruction field that may be a general
  register.
  register.
ENUM
ENUM
  BFD_RELOC_MMIX_BASE_PLUS_OFFSET
  BFD_RELOC_MMIX_BASE_PLUS_OFFSET
ENUMDOC
ENUMDOC
  This is a relocation for two instruction fields holding a register and
  This is a relocation for two instruction fields holding a register and
  an offset, the equivalent of the relocation.
  an offset, the equivalent of the relocation.
ENUM
ENUM
  BFD_RELOC_MMIX_LOCAL
  BFD_RELOC_MMIX_LOCAL
ENUMDOC
ENUMDOC
  This relocation is an assertion that the expression is not allocated as
  This relocation is an assertion that the expression is not allocated as
  a global register.  It does not modify contents.
  a global register.  It does not modify contents.
 
 
ENUM
ENUM
  BFD_RELOC_AVR_7_PCREL
  BFD_RELOC_AVR_7_PCREL
ENUMDOC
ENUMDOC
  This is a 16 bit reloc for the AVR that stores 8 bit pc relative
  This is a 16 bit reloc for the AVR that stores 8 bit pc relative
  short offset into 7 bits.
  short offset into 7 bits.
ENUM
ENUM
  BFD_RELOC_AVR_13_PCREL
  BFD_RELOC_AVR_13_PCREL
ENUMDOC
ENUMDOC
  This is a 16 bit reloc for the AVR that stores 13 bit pc relative
  This is a 16 bit reloc for the AVR that stores 13 bit pc relative
  short offset into 12 bits.
  short offset into 12 bits.
ENUM
ENUM
  BFD_RELOC_AVR_16_PM
  BFD_RELOC_AVR_16_PM
ENUMDOC
ENUMDOC
  This is a 16 bit reloc for the AVR that stores 17 bit value (usually
  This is a 16 bit reloc for the AVR that stores 17 bit value (usually
  program memory address) into 16 bits.
  program memory address) into 16 bits.
ENUM
ENUM
  BFD_RELOC_AVR_LO8_LDI
  BFD_RELOC_AVR_LO8_LDI
ENUMDOC
ENUMDOC
  This is a 16 bit reloc for the AVR that stores 8 bit value (usually
  This is a 16 bit reloc for the AVR that stores 8 bit value (usually
  data memory address) into 8 bit immediate value of LDI insn.
  data memory address) into 8 bit immediate value of LDI insn.
ENUM
ENUM
  BFD_RELOC_AVR_HI8_LDI
  BFD_RELOC_AVR_HI8_LDI
ENUMDOC
ENUMDOC
  This is a 16 bit reloc for the AVR that stores 8 bit value (high 8 bit
  This is a 16 bit reloc for the AVR that stores 8 bit value (high 8 bit
  of data memory address) into 8 bit immediate value of LDI insn.
  of data memory address) into 8 bit immediate value of LDI insn.
ENUM
ENUM
  BFD_RELOC_AVR_HH8_LDI
  BFD_RELOC_AVR_HH8_LDI
ENUMDOC
ENUMDOC
  This is a 16 bit reloc for the AVR that stores 8 bit value (most high 8 bit
  This is a 16 bit reloc for the AVR that stores 8 bit value (most high 8 bit
  of program memory address) into 8 bit immediate value of LDI insn.
  of program memory address) into 8 bit immediate value of LDI insn.
ENUM
ENUM
  BFD_RELOC_AVR_LO8_LDI_NEG
  BFD_RELOC_AVR_LO8_LDI_NEG
ENUMDOC
ENUMDOC
  This is a 16 bit reloc for the AVR that stores negated 8 bit value
  This is a 16 bit reloc for the AVR that stores negated 8 bit value
  (usually data memory address) into 8 bit immediate value of SUBI insn.
  (usually data memory address) into 8 bit immediate value of SUBI insn.
ENUM
ENUM
  BFD_RELOC_AVR_HI8_LDI_NEG
  BFD_RELOC_AVR_HI8_LDI_NEG
ENUMDOC
ENUMDOC
  This is a 16 bit reloc for the AVR that stores negated 8 bit value
  This is a 16 bit reloc for the AVR that stores negated 8 bit value
  (high 8 bit of data memory address) into 8 bit immediate value of
  (high 8 bit of data memory address) into 8 bit immediate value of
  SUBI insn.
  SUBI insn.
ENUM
ENUM
  BFD_RELOC_AVR_HH8_LDI_NEG
  BFD_RELOC_AVR_HH8_LDI_NEG
ENUMDOC
ENUMDOC
  This is a 16 bit reloc for the AVR that stores negated 8 bit value
  This is a 16 bit reloc for the AVR that stores negated 8 bit value
  (most high 8 bit of program memory address) into 8 bit immediate value
  (most high 8 bit of program memory address) into 8 bit immediate value
  of LDI or SUBI insn.
  of LDI or SUBI insn.
ENUM
ENUM
  BFD_RELOC_AVR_LO8_LDI_PM
  BFD_RELOC_AVR_LO8_LDI_PM
ENUMDOC
ENUMDOC
  This is a 16 bit reloc for the AVR that stores 8 bit value (usually
  This is a 16 bit reloc for the AVR that stores 8 bit value (usually
  command address) into 8 bit immediate value of LDI insn.
  command address) into 8 bit immediate value of LDI insn.
ENUM
ENUM
  BFD_RELOC_AVR_HI8_LDI_PM
  BFD_RELOC_AVR_HI8_LDI_PM
ENUMDOC
ENUMDOC
  This is a 16 bit reloc for the AVR that stores 8 bit value (high 8 bit
  This is a 16 bit reloc for the AVR that stores 8 bit value (high 8 bit
  of command address) into 8 bit immediate value of LDI insn.
  of command address) into 8 bit immediate value of LDI insn.
ENUM
ENUM
  BFD_RELOC_AVR_HH8_LDI_PM
  BFD_RELOC_AVR_HH8_LDI_PM
ENUMDOC
ENUMDOC
  This is a 16 bit reloc for the AVR that stores 8 bit value (most high 8 bit
  This is a 16 bit reloc for the AVR that stores 8 bit value (most high 8 bit
  of command address) into 8 bit immediate value of LDI insn.
  of command address) into 8 bit immediate value of LDI insn.
ENUM
ENUM
  BFD_RELOC_AVR_LO8_LDI_PM_NEG
  BFD_RELOC_AVR_LO8_LDI_PM_NEG
ENUMDOC
ENUMDOC
  This is a 16 bit reloc for the AVR that stores negated 8 bit value
  This is a 16 bit reloc for the AVR that stores negated 8 bit value
  (usually command address) into 8 bit immediate value of SUBI insn.
  (usually command address) into 8 bit immediate value of SUBI insn.
ENUM
ENUM
  BFD_RELOC_AVR_HI8_LDI_PM_NEG
  BFD_RELOC_AVR_HI8_LDI_PM_NEG
ENUMDOC
ENUMDOC
  This is a 16 bit reloc for the AVR that stores negated 8 bit value
  This is a 16 bit reloc for the AVR that stores negated 8 bit value
  (high 8 bit of 16 bit command address) into 8 bit immediate value
  (high 8 bit of 16 bit command address) into 8 bit immediate value
  of SUBI insn.
  of SUBI insn.
ENUM
ENUM
  BFD_RELOC_AVR_HH8_LDI_PM_NEG
  BFD_RELOC_AVR_HH8_LDI_PM_NEG
ENUMDOC
ENUMDOC
  This is a 16 bit reloc for the AVR that stores negated 8 bit value
  This is a 16 bit reloc for the AVR that stores negated 8 bit value
  (high 6 bit of 22 bit command address) into 8 bit immediate
  (high 6 bit of 22 bit command address) into 8 bit immediate
  value of SUBI insn.
  value of SUBI insn.
ENUM
ENUM
  BFD_RELOC_AVR_CALL
  BFD_RELOC_AVR_CALL
ENUMDOC
ENUMDOC
  This is a 32 bit reloc for the AVR that stores 23 bit value
  This is a 32 bit reloc for the AVR that stores 23 bit value
  into 22 bits.
  into 22 bits.
 
 
ENUM
ENUM
  BFD_RELOC_390_12
  BFD_RELOC_390_12
ENUMDOC
ENUMDOC
   Direct 12 bit.
   Direct 12 bit.
ENUM
ENUM
  BFD_RELOC_390_GOT12
  BFD_RELOC_390_GOT12
ENUMDOC
ENUMDOC
  12 bit GOT offset.
  12 bit GOT offset.
ENUM
ENUM
  BFD_RELOC_390_PLT32
  BFD_RELOC_390_PLT32
ENUMDOC
ENUMDOC
  32 bit PC relative PLT address.
  32 bit PC relative PLT address.
ENUM
ENUM
  BFD_RELOC_390_COPY
  BFD_RELOC_390_COPY
ENUMDOC
ENUMDOC
  Copy symbol at runtime.
  Copy symbol at runtime.
ENUM
ENUM
  BFD_RELOC_390_GLOB_DAT
  BFD_RELOC_390_GLOB_DAT
ENUMDOC
ENUMDOC
  Create GOT entry.
  Create GOT entry.
ENUM
ENUM
  BFD_RELOC_390_JMP_SLOT
  BFD_RELOC_390_JMP_SLOT
ENUMDOC
ENUMDOC
  Create PLT entry.
  Create PLT entry.
ENUM
ENUM
  BFD_RELOC_390_RELATIVE
  BFD_RELOC_390_RELATIVE
ENUMDOC
ENUMDOC
  Adjust by program base.
  Adjust by program base.
ENUM
ENUM
  BFD_RELOC_390_GOTPC
  BFD_RELOC_390_GOTPC
ENUMDOC
ENUMDOC
  32 bit PC relative offset to GOT.
  32 bit PC relative offset to GOT.
ENUM
ENUM
  BFD_RELOC_390_GOT16
  BFD_RELOC_390_GOT16
ENUMDOC
ENUMDOC
  16 bit GOT offset.
  16 bit GOT offset.
ENUM
ENUM
  BFD_RELOC_390_PC16DBL
  BFD_RELOC_390_PC16DBL
ENUMDOC
ENUMDOC
  PC relative 16 bit shifted by 1.
  PC relative 16 bit shifted by 1.
ENUM
ENUM
  BFD_RELOC_390_PLT16DBL
  BFD_RELOC_390_PLT16DBL
ENUMDOC
ENUMDOC
  16 bit PC rel. PLT shifted by 1.
  16 bit PC rel. PLT shifted by 1.
ENUM
ENUM
  BFD_RELOC_390_PC32DBL
  BFD_RELOC_390_PC32DBL
ENUMDOC
ENUMDOC
  PC relative 32 bit shifted by 1.
  PC relative 32 bit shifted by 1.
ENUM
ENUM
  BFD_RELOC_390_PLT32DBL
  BFD_RELOC_390_PLT32DBL
ENUMDOC
ENUMDOC
  32 bit PC rel. PLT shifted by 1.
  32 bit PC rel. PLT shifted by 1.
ENUM
ENUM
  BFD_RELOC_390_GOTPCDBL
  BFD_RELOC_390_GOTPCDBL
ENUMDOC
ENUMDOC
  32 bit PC rel. GOT shifted by 1.
  32 bit PC rel. GOT shifted by 1.
ENUM
ENUM
  BFD_RELOC_390_GOT64
  BFD_RELOC_390_GOT64
ENUMDOC
ENUMDOC
  64 bit GOT offset.
  64 bit GOT offset.
ENUM
ENUM
  BFD_RELOC_390_PLT64
  BFD_RELOC_390_PLT64
ENUMDOC
ENUMDOC
  64 bit PC relative PLT address.
  64 bit PC relative PLT address.
ENUM
ENUM
  BFD_RELOC_390_GOTENT
  BFD_RELOC_390_GOTENT
ENUMDOC
ENUMDOC
  32 bit rel. offset to GOT entry.
  32 bit rel. offset to GOT entry.
 
 
ENUM
ENUM
  BFD_RELOC_IP2K_FR9
  BFD_RELOC_IP2K_FR9
ENUMDOC
ENUMDOC
  Scenix IP2K - 9-bit register number / data address
  Scenix IP2K - 9-bit register number / data address
ENUM
ENUM
  BFD_RELOC_IP2K_BANK
  BFD_RELOC_IP2K_BANK
ENUMDOC
ENUMDOC
  Scenix IP2K - 4-bit register/data bank number
  Scenix IP2K - 4-bit register/data bank number
ENUM
ENUM
  BFD_RELOC_IP2K_ADDR16CJP
  BFD_RELOC_IP2K_ADDR16CJP
ENUMDOC
ENUMDOC
  Scenix IP2K - low 13 bits of instruction word address
  Scenix IP2K - low 13 bits of instruction word address
ENUM
ENUM
  BFD_RELOC_IP2K_PAGE3
  BFD_RELOC_IP2K_PAGE3
ENUMDOC
ENUMDOC
  Scenix IP2K - high 3 bits of instruction word address
  Scenix IP2K - high 3 bits of instruction word address
ENUM
ENUM
  BFD_RELOC_IP2K_LO8DATA
  BFD_RELOC_IP2K_LO8DATA
ENUMX
ENUMX
  BFD_RELOC_IP2K_HI8DATA
  BFD_RELOC_IP2K_HI8DATA
ENUMX
ENUMX
  BFD_RELOC_IP2K_EX8DATA
  BFD_RELOC_IP2K_EX8DATA
ENUMDOC
ENUMDOC
  Scenix IP2K - ext/low/high 8 bits of data address
  Scenix IP2K - ext/low/high 8 bits of data address
ENUM
ENUM
  BFD_RELOC_IP2K_LO8INSN
  BFD_RELOC_IP2K_LO8INSN
ENUMX
ENUMX
  BFD_RELOC_IP2K_HI8INSN
  BFD_RELOC_IP2K_HI8INSN
ENUMDOC
ENUMDOC
  Scenix IP2K - low/high 8 bits of instruction word address
  Scenix IP2K - low/high 8 bits of instruction word address
ENUM
ENUM
  BFD_RELOC_IP2K_PC_SKIP
  BFD_RELOC_IP2K_PC_SKIP
ENUMDOC
ENUMDOC
  Scenix IP2K - even/odd PC modifier to modify snb pcl.0
  Scenix IP2K - even/odd PC modifier to modify snb pcl.0
ENUM
ENUM
  BFD_RELOC_IP2K_TEXT
  BFD_RELOC_IP2K_TEXT
ENUMDOC
ENUMDOC
  Scenix IP2K - 16 bit word address in text section.
  Scenix IP2K - 16 bit word address in text section.
ENUM
ENUM
  BFD_RELOC_IP2K_FR_OFFSET
  BFD_RELOC_IP2K_FR_OFFSET
ENUMDOC
ENUMDOC
  Scenix IP2K - 7-bit sp or dp offset
  Scenix IP2K - 7-bit sp or dp offset
ENUM
ENUM
  BFD_RELOC_VPE4KMATH_DATA
  BFD_RELOC_VPE4KMATH_DATA
ENUMX
ENUMX
  BFD_RELOC_VPE4KMATH_INSN
  BFD_RELOC_VPE4KMATH_INSN
ENUMDOC
ENUMDOC
  Scenix VPE4K coprocessor - data/insn-space addressing
  Scenix VPE4K coprocessor - data/insn-space addressing
 
 
ENUM
ENUM
  BFD_RELOC_VTABLE_INHERIT
  BFD_RELOC_VTABLE_INHERIT
ENUMX
ENUMX
  BFD_RELOC_VTABLE_ENTRY
  BFD_RELOC_VTABLE_ENTRY
ENUMDOC
ENUMDOC
  These two relocations are used by the linker to determine which of
  These two relocations are used by the linker to determine which of
  the entries in a C++ virtual function table are actually used.  When
  the entries in a C++ virtual function table are actually used.  When
  the --gc-sections option is given, the linker will zero out the entries
  the --gc-sections option is given, the linker will zero out the entries
  that are not used, so that the code for those functions need not be
  that are not used, so that the code for those functions need not be
  included in the output.
  included in the output.
 
 
  VTABLE_INHERIT is a zero-space relocation used to describe to the
  VTABLE_INHERIT is a zero-space relocation used to describe to the
  linker the inheritence tree of a C++ virtual function table.  The
  linker the inheritence tree of a C++ virtual function table.  The
  relocation's symbol should be the parent class' vtable, and the
  relocation's symbol should be the parent class' vtable, and the
  relocation should be located at the child vtable.
  relocation should be located at the child vtable.
 
 
  VTABLE_ENTRY is a zero-space relocation that describes the use of a
  VTABLE_ENTRY is a zero-space relocation that describes the use of a
  virtual function table entry.  The reloc's symbol should refer to the
  virtual function table entry.  The reloc's symbol should refer to the
  table of the class mentioned in the code.  Off of that base, an offset
  table of the class mentioned in the code.  Off of that base, an offset
  describes the entry that is being used.  For Rela hosts, this offset
  describes the entry that is being used.  For Rela hosts, this offset
  is stored in the reloc's addend.  For Rel hosts, we are forced to put
  is stored in the reloc's addend.  For Rel hosts, we are forced to put
  this offset in the reloc's section offset.
  this offset in the reloc's section offset.
 
 
ENUM
ENUM
  BFD_RELOC_IA64_IMM14
  BFD_RELOC_IA64_IMM14
ENUMX
ENUMX
  BFD_RELOC_IA64_IMM22
  BFD_RELOC_IA64_IMM22
ENUMX
ENUMX
  BFD_RELOC_IA64_IMM64
  BFD_RELOC_IA64_IMM64
ENUMX
ENUMX
  BFD_RELOC_IA64_DIR32MSB
  BFD_RELOC_IA64_DIR32MSB
ENUMX
ENUMX
  BFD_RELOC_IA64_DIR32LSB
  BFD_RELOC_IA64_DIR32LSB
ENUMX
ENUMX
  BFD_RELOC_IA64_DIR64MSB
  BFD_RELOC_IA64_DIR64MSB
ENUMX
ENUMX
  BFD_RELOC_IA64_DIR64LSB
  BFD_RELOC_IA64_DIR64LSB
ENUMX
ENUMX
  BFD_RELOC_IA64_GPREL22
  BFD_RELOC_IA64_GPREL22
ENUMX
ENUMX
  BFD_RELOC_IA64_GPREL64I
  BFD_RELOC_IA64_GPREL64I
ENUMX
ENUMX
  BFD_RELOC_IA64_GPREL32MSB
  BFD_RELOC_IA64_GPREL32MSB
ENUMX
ENUMX
  BFD_RELOC_IA64_GPREL32LSB
  BFD_RELOC_IA64_GPREL32LSB
ENUMX
ENUMX
  BFD_RELOC_IA64_GPREL64MSB
  BFD_RELOC_IA64_GPREL64MSB
ENUMX
ENUMX
  BFD_RELOC_IA64_GPREL64LSB
  BFD_RELOC_IA64_GPREL64LSB
ENUMX
ENUMX
  BFD_RELOC_IA64_LTOFF22
  BFD_RELOC_IA64_LTOFF22
ENUMX
ENUMX
  BFD_RELOC_IA64_LTOFF64I
  BFD_RELOC_IA64_LTOFF64I
ENUMX
ENUMX
  BFD_RELOC_IA64_PLTOFF22
  BFD_RELOC_IA64_PLTOFF22
ENUMX
ENUMX
  BFD_RELOC_IA64_PLTOFF64I
  BFD_RELOC_IA64_PLTOFF64I
ENUMX
ENUMX
  BFD_RELOC_IA64_PLTOFF64MSB
  BFD_RELOC_IA64_PLTOFF64MSB
ENUMX
ENUMX
  BFD_RELOC_IA64_PLTOFF64LSB
  BFD_RELOC_IA64_PLTOFF64LSB
ENUMX
ENUMX
  BFD_RELOC_IA64_FPTR64I
  BFD_RELOC_IA64_FPTR64I
ENUMX
ENUMX
  BFD_RELOC_IA64_FPTR32MSB
  BFD_RELOC_IA64_FPTR32MSB
ENUMX
ENUMX
  BFD_RELOC_IA64_FPTR32LSB
  BFD_RELOC_IA64_FPTR32LSB
ENUMX
ENUMX
  BFD_RELOC_IA64_FPTR64MSB
  BFD_RELOC_IA64_FPTR64MSB
ENUMX
ENUMX
  BFD_RELOC_IA64_FPTR64LSB
  BFD_RELOC_IA64_FPTR64LSB
ENUMX
ENUMX
  BFD_RELOC_IA64_PCREL21B
  BFD_RELOC_IA64_PCREL21B
ENUMX
ENUMX
  BFD_RELOC_IA64_PCREL21BI
  BFD_RELOC_IA64_PCREL21BI
ENUMX
ENUMX
  BFD_RELOC_IA64_PCREL21M
  BFD_RELOC_IA64_PCREL21M
ENUMX
ENUMX
  BFD_RELOC_IA64_PCREL21F
  BFD_RELOC_IA64_PCREL21F
ENUMX
ENUMX
  BFD_RELOC_IA64_PCREL22
  BFD_RELOC_IA64_PCREL22
ENUMX
ENUMX
  BFD_RELOC_IA64_PCREL60B
  BFD_RELOC_IA64_PCREL60B
ENUMX
ENUMX
  BFD_RELOC_IA64_PCREL64I
  BFD_RELOC_IA64_PCREL64I
ENUMX
ENUMX
  BFD_RELOC_IA64_PCREL32MSB
  BFD_RELOC_IA64_PCREL32MSB
ENUMX
ENUMX
  BFD_RELOC_IA64_PCREL32LSB
  BFD_RELOC_IA64_PCREL32LSB
ENUMX
ENUMX
  BFD_RELOC_IA64_PCREL64MSB
  BFD_RELOC_IA64_PCREL64MSB
ENUMX
ENUMX
  BFD_RELOC_IA64_PCREL64LSB
  BFD_RELOC_IA64_PCREL64LSB
ENUMX
ENUMX
  BFD_RELOC_IA64_LTOFF_FPTR22
  BFD_RELOC_IA64_LTOFF_FPTR22
ENUMX
ENUMX
  BFD_RELOC_IA64_LTOFF_FPTR64I
  BFD_RELOC_IA64_LTOFF_FPTR64I
ENUMX
ENUMX
  BFD_RELOC_IA64_LTOFF_FPTR32MSB
  BFD_RELOC_IA64_LTOFF_FPTR32MSB
ENUMX
ENUMX
  BFD_RELOC_IA64_LTOFF_FPTR32LSB
  BFD_RELOC_IA64_LTOFF_FPTR32LSB
ENUMX
ENUMX
  BFD_RELOC_IA64_LTOFF_FPTR64MSB
  BFD_RELOC_IA64_LTOFF_FPTR64MSB
ENUMX
ENUMX
  BFD_RELOC_IA64_LTOFF_FPTR64LSB
  BFD_RELOC_IA64_LTOFF_FPTR64LSB
ENUMX
ENUMX
  BFD_RELOC_IA64_SEGREL32MSB
  BFD_RELOC_IA64_SEGREL32MSB
ENUMX
ENUMX
  BFD_RELOC_IA64_SEGREL32LSB
  BFD_RELOC_IA64_SEGREL32LSB
ENUMX
ENUMX
  BFD_RELOC_IA64_SEGREL64MSB
  BFD_RELOC_IA64_SEGREL64MSB
ENUMX
ENUMX
  BFD_RELOC_IA64_SEGREL64LSB
  BFD_RELOC_IA64_SEGREL64LSB
ENUMX
ENUMX
  BFD_RELOC_IA64_SECREL32MSB
  BFD_RELOC_IA64_SECREL32MSB
ENUMX
ENUMX
  BFD_RELOC_IA64_SECREL32LSB
  BFD_RELOC_IA64_SECREL32LSB
ENUMX
ENUMX
  BFD_RELOC_IA64_SECREL64MSB
  BFD_RELOC_IA64_SECREL64MSB
ENUMX
ENUMX
  BFD_RELOC_IA64_SECREL64LSB
  BFD_RELOC_IA64_SECREL64LSB
ENUMX
ENUMX
  BFD_RELOC_IA64_REL32MSB
  BFD_RELOC_IA64_REL32MSB
ENUMX
ENUMX
  BFD_RELOC_IA64_REL32LSB
  BFD_RELOC_IA64_REL32LSB
ENUMX
ENUMX
  BFD_RELOC_IA64_REL64MSB
  BFD_RELOC_IA64_REL64MSB
ENUMX
ENUMX
  BFD_RELOC_IA64_REL64LSB
  BFD_RELOC_IA64_REL64LSB
ENUMX
ENUMX
  BFD_RELOC_IA64_LTV32MSB
  BFD_RELOC_IA64_LTV32MSB
ENUMX
ENUMX
  BFD_RELOC_IA64_LTV32LSB
  BFD_RELOC_IA64_LTV32LSB
ENUMX
ENUMX
  BFD_RELOC_IA64_LTV64MSB
  BFD_RELOC_IA64_LTV64MSB
ENUMX
ENUMX
  BFD_RELOC_IA64_LTV64LSB
  BFD_RELOC_IA64_LTV64LSB
ENUMX
ENUMX
  BFD_RELOC_IA64_IPLTMSB
  BFD_RELOC_IA64_IPLTMSB
ENUMX
ENUMX
  BFD_RELOC_IA64_IPLTLSB
  BFD_RELOC_IA64_IPLTLSB
ENUMX
ENUMX
  BFD_RELOC_IA64_COPY
  BFD_RELOC_IA64_COPY
ENUMX
ENUMX
  BFD_RELOC_IA64_LTOFF22X
  BFD_RELOC_IA64_LTOFF22X
ENUMX
ENUMX
  BFD_RELOC_IA64_LDXMOV
  BFD_RELOC_IA64_LDXMOV
ENUMX
ENUMX
  BFD_RELOC_IA64_TPREL14
  BFD_RELOC_IA64_TPREL14
ENUMX
ENUMX
  BFD_RELOC_IA64_TPREL22
  BFD_RELOC_IA64_TPREL22
ENUMX
ENUMX
  BFD_RELOC_IA64_TPREL64I
  BFD_RELOC_IA64_TPREL64I
ENUMX
ENUMX
  BFD_RELOC_IA64_TPREL64MSB
  BFD_RELOC_IA64_TPREL64MSB
ENUMX
ENUMX
  BFD_RELOC_IA64_TPREL64LSB
  BFD_RELOC_IA64_TPREL64LSB
ENUMX
ENUMX
  BFD_RELOC_IA64_LTOFF_TPREL22
  BFD_RELOC_IA64_LTOFF_TPREL22
ENUMX
ENUMX
  BFD_RELOC_IA64_DTPMOD64MSB
  BFD_RELOC_IA64_DTPMOD64MSB
ENUMX
ENUMX
  BFD_RELOC_IA64_DTPMOD64LSB
  BFD_RELOC_IA64_DTPMOD64LSB
ENUMX
ENUMX
  BFD_RELOC_IA64_LTOFF_DTPMOD22
  BFD_RELOC_IA64_LTOFF_DTPMOD22
ENUMX
ENUMX
  BFD_RELOC_IA64_DTPREL14
  BFD_RELOC_IA64_DTPREL14
ENUMX
ENUMX
  BFD_RELOC_IA64_DTPREL22
  BFD_RELOC_IA64_DTPREL22
ENUMX
ENUMX
  BFD_RELOC_IA64_DTPREL64I
  BFD_RELOC_IA64_DTPREL64I
ENUMX
ENUMX
  BFD_RELOC_IA64_DTPREL32MSB
  BFD_RELOC_IA64_DTPREL32MSB
ENUMX
ENUMX
  BFD_RELOC_IA64_DTPREL32LSB
  BFD_RELOC_IA64_DTPREL32LSB
ENUMX
ENUMX
  BFD_RELOC_IA64_DTPREL64MSB
  BFD_RELOC_IA64_DTPREL64MSB
ENUMX
ENUMX
  BFD_RELOC_IA64_DTPREL64LSB
  BFD_RELOC_IA64_DTPREL64LSB
ENUMX
ENUMX
  BFD_RELOC_IA64_LTOFF_DTPREL22
  BFD_RELOC_IA64_LTOFF_DTPREL22
ENUMDOC
ENUMDOC
  Intel IA64 Relocations.
  Intel IA64 Relocations.
 
 
ENUM
ENUM
  BFD_RELOC_M68HC11_HI8
  BFD_RELOC_M68HC11_HI8
ENUMDOC
ENUMDOC
  Motorola 68HC11 reloc.
  Motorola 68HC11 reloc.
  This is the 8 bit high part of an absolute address.
  This is the 8 bit high part of an absolute address.
ENUM
ENUM
  BFD_RELOC_M68HC11_LO8
  BFD_RELOC_M68HC11_LO8
ENUMDOC
ENUMDOC
  Motorola 68HC11 reloc.
  Motorola 68HC11 reloc.
  This is the 8 bit low part of an absolute address.
  This is the 8 bit low part of an absolute address.
ENUM
ENUM
  BFD_RELOC_M68HC11_3B
  BFD_RELOC_M68HC11_3B
ENUMDOC
ENUMDOC
  Motorola 68HC11 reloc.
  Motorola 68HC11 reloc.
  This is the 3 bit of a value.
  This is the 3 bit of a value.
ENUM
ENUM
  BFD_RELOC_M68HC11_RL_JUMP
  BFD_RELOC_M68HC11_RL_JUMP
ENUMDOC
ENUMDOC
  Motorola 68HC11 reloc.
  Motorola 68HC11 reloc.
  This reloc marks the beginning of a jump/call instruction.
  This reloc marks the beginning of a jump/call instruction.
  It is used for linker relaxation to correctly identify beginning
  It is used for linker relaxation to correctly identify beginning
  of instruction and change some branchs to use PC-relative
  of instruction and change some branchs to use PC-relative
  addressing mode.
  addressing mode.
ENUM
ENUM
  BFD_RELOC_M68HC11_RL_GROUP
  BFD_RELOC_M68HC11_RL_GROUP
ENUMDOC
ENUMDOC
  Motorola 68HC11 reloc.
  Motorola 68HC11 reloc.
  This reloc marks a group of several instructions that gcc generates
  This reloc marks a group of several instructions that gcc generates
  and for which the linker relaxation pass can modify and/or remove
  and for which the linker relaxation pass can modify and/or remove
  some of them.
  some of them.
ENUM
ENUM
  BFD_RELOC_M68HC11_LO16
  BFD_RELOC_M68HC11_LO16
ENUMDOC
ENUMDOC
  Motorola 68HC11 reloc.
  Motorola 68HC11 reloc.
  This is the 16-bit lower part of an address.  It is used for 'call'
  This is the 16-bit lower part of an address.  It is used for 'call'
  instruction to specify the symbol address without any special
  instruction to specify the symbol address without any special
  transformation (due to memory bank window).
  transformation (due to memory bank window).
ENUM
ENUM
  BFD_RELOC_M68HC11_PAGE
  BFD_RELOC_M68HC11_PAGE
ENUMDOC
ENUMDOC
  Motorola 68HC11 reloc.
  Motorola 68HC11 reloc.
  This is a 8-bit reloc that specifies the page number of an address.
  This is a 8-bit reloc that specifies the page number of an address.
  It is used by 'call' instruction to specify the page number of
  It is used by 'call' instruction to specify the page number of
  the symbol.
  the symbol.
ENUM
ENUM
  BFD_RELOC_M68HC11_24
  BFD_RELOC_M68HC11_24
ENUMDOC
ENUMDOC
  Motorola 68HC11 reloc.
  Motorola 68HC11 reloc.
  This is a 24-bit reloc that represents the address with a 16-bit
  This is a 24-bit reloc that represents the address with a 16-bit
  value and a 8-bit page number.  The symbol address is transformed
  value and a 8-bit page number.  The symbol address is transformed
  to follow the 16K memory bank of 68HC12 (seen as mapped in the window).
  to follow the 16K memory bank of 68HC12 (seen as mapped in the window).
 
 
ENUM
ENUM
  BFD_RELOC_CRIS_BDISP8
  BFD_RELOC_CRIS_BDISP8
ENUMX
ENUMX
  BFD_RELOC_CRIS_UNSIGNED_5
  BFD_RELOC_CRIS_UNSIGNED_5
ENUMX
ENUMX
  BFD_RELOC_CRIS_SIGNED_6
  BFD_RELOC_CRIS_SIGNED_6
ENUMX
ENUMX
  BFD_RELOC_CRIS_UNSIGNED_6
  BFD_RELOC_CRIS_UNSIGNED_6
ENUMX
ENUMX
  BFD_RELOC_CRIS_UNSIGNED_4
  BFD_RELOC_CRIS_UNSIGNED_4
ENUMDOC
ENUMDOC
  These relocs are only used within the CRIS assembler.  They are not
  These relocs are only used within the CRIS assembler.  They are not
  (at present) written to any object files.
  (at present) written to any object files.
ENUM
ENUM
  BFD_RELOC_CRIS_COPY
  BFD_RELOC_CRIS_COPY
ENUMX
ENUMX
  BFD_RELOC_CRIS_GLOB_DAT
  BFD_RELOC_CRIS_GLOB_DAT
ENUMX
ENUMX
  BFD_RELOC_CRIS_JUMP_SLOT
  BFD_RELOC_CRIS_JUMP_SLOT
ENUMX
ENUMX
  BFD_RELOC_CRIS_RELATIVE
  BFD_RELOC_CRIS_RELATIVE
ENUMDOC
ENUMDOC
  Relocs used in ELF shared libraries for CRIS.
  Relocs used in ELF shared libraries for CRIS.
ENUM
ENUM
  BFD_RELOC_CRIS_32_GOT
  BFD_RELOC_CRIS_32_GOT
ENUMDOC
ENUMDOC
  32-bit offset to symbol-entry within GOT.
  32-bit offset to symbol-entry within GOT.
ENUM
ENUM
  BFD_RELOC_CRIS_16_GOT
  BFD_RELOC_CRIS_16_GOT
ENUMDOC
ENUMDOC
  16-bit offset to symbol-entry within GOT.
  16-bit offset to symbol-entry within GOT.
ENUM
ENUM
  BFD_RELOC_CRIS_32_GOTPLT
  BFD_RELOC_CRIS_32_GOTPLT
ENUMDOC
ENUMDOC
  32-bit offset to symbol-entry within GOT, with PLT handling.
  32-bit offset to symbol-entry within GOT, with PLT handling.
ENUM
ENUM
  BFD_RELOC_CRIS_16_GOTPLT
  BFD_RELOC_CRIS_16_GOTPLT
ENUMDOC
ENUMDOC
  16-bit offset to symbol-entry within GOT, with PLT handling.
  16-bit offset to symbol-entry within GOT, with PLT handling.
ENUM
ENUM
  BFD_RELOC_CRIS_32_GOTREL
  BFD_RELOC_CRIS_32_GOTREL
ENUMDOC
ENUMDOC
  32-bit offset to symbol, relative to GOT.
  32-bit offset to symbol, relative to GOT.
ENUM
ENUM
  BFD_RELOC_CRIS_32_PLT_GOTREL
  BFD_RELOC_CRIS_32_PLT_GOTREL
ENUMDOC
ENUMDOC
  32-bit offset to symbol with PLT entry, relative to GOT.
  32-bit offset to symbol with PLT entry, relative to GOT.
ENUM
ENUM
  BFD_RELOC_CRIS_32_PLT_PCREL
  BFD_RELOC_CRIS_32_PLT_PCREL
ENUMDOC
ENUMDOC
  32-bit offset to symbol with PLT entry, relative to this relocation.
  32-bit offset to symbol with PLT entry, relative to this relocation.
 
 
ENUM
ENUM
  BFD_RELOC_860_COPY
  BFD_RELOC_860_COPY
ENUMX
ENUMX
  BFD_RELOC_860_GLOB_DAT
  BFD_RELOC_860_GLOB_DAT
ENUMX
ENUMX
  BFD_RELOC_860_JUMP_SLOT
  BFD_RELOC_860_JUMP_SLOT
ENUMX
ENUMX
  BFD_RELOC_860_RELATIVE
  BFD_RELOC_860_RELATIVE
ENUMX
ENUMX
  BFD_RELOC_860_PC26
  BFD_RELOC_860_PC26
ENUMX
ENUMX
  BFD_RELOC_860_PLT26
  BFD_RELOC_860_PLT26
ENUMX
ENUMX
  BFD_RELOC_860_PC16
  BFD_RELOC_860_PC16
ENUMX
ENUMX
  BFD_RELOC_860_LOW0
  BFD_RELOC_860_LOW0
ENUMX
ENUMX
  BFD_RELOC_860_SPLIT0
  BFD_RELOC_860_SPLIT0
ENUMX
ENUMX
  BFD_RELOC_860_LOW1
  BFD_RELOC_860_LOW1
ENUMX
ENUMX
  BFD_RELOC_860_SPLIT1
  BFD_RELOC_860_SPLIT1
ENUMX
ENUMX
  BFD_RELOC_860_LOW2
  BFD_RELOC_860_LOW2
ENUMX
ENUMX
  BFD_RELOC_860_SPLIT2
  BFD_RELOC_860_SPLIT2
ENUMX
ENUMX
  BFD_RELOC_860_LOW3
  BFD_RELOC_860_LOW3
ENUMX
ENUMX
  BFD_RELOC_860_LOGOT0
  BFD_RELOC_860_LOGOT0
ENUMX
ENUMX
  BFD_RELOC_860_SPGOT0
  BFD_RELOC_860_SPGOT0
ENUMX
ENUMX
  BFD_RELOC_860_LOGOT1
  BFD_RELOC_860_LOGOT1
ENUMX
ENUMX
  BFD_RELOC_860_SPGOT1
  BFD_RELOC_860_SPGOT1
ENUMX
ENUMX
  BFD_RELOC_860_LOGOTOFF0
  BFD_RELOC_860_LOGOTOFF0
ENUMX
ENUMX
  BFD_RELOC_860_SPGOTOFF0
  BFD_RELOC_860_SPGOTOFF0
ENUMX
ENUMX
  BFD_RELOC_860_LOGOTOFF1
  BFD_RELOC_860_LOGOTOFF1
ENUMX
ENUMX
  BFD_RELOC_860_SPGOTOFF1
  BFD_RELOC_860_SPGOTOFF1
ENUMX
ENUMX
  BFD_RELOC_860_LOGOTOFF2
  BFD_RELOC_860_LOGOTOFF2
ENUMX
ENUMX
  BFD_RELOC_860_LOGOTOFF3
  BFD_RELOC_860_LOGOTOFF3
ENUMX
ENUMX
  BFD_RELOC_860_LOPC
  BFD_RELOC_860_LOPC
ENUMX
ENUMX
  BFD_RELOC_860_HIGHADJ
  BFD_RELOC_860_HIGHADJ
ENUMX
ENUMX
  BFD_RELOC_860_HAGOT
  BFD_RELOC_860_HAGOT
ENUMX
ENUMX
  BFD_RELOC_860_HAGOTOFF
  BFD_RELOC_860_HAGOTOFF
ENUMX
ENUMX
  BFD_RELOC_860_HAPC
  BFD_RELOC_860_HAPC
ENUMX
ENUMX
  BFD_RELOC_860_HIGH
  BFD_RELOC_860_HIGH
ENUMX
ENUMX
  BFD_RELOC_860_HIGOT
  BFD_RELOC_860_HIGOT
ENUMX
ENUMX
  BFD_RELOC_860_HIGOTOFF
  BFD_RELOC_860_HIGOTOFF
ENUMDOC
ENUMDOC
  Intel i860 Relocations.
  Intel i860 Relocations.
 
 
ENUM
ENUM
  BFD_RELOC_OPENRISC_ABS_26
  BFD_RELOC_OPENRISC_ABS_26
ENUMX
ENUMX
  BFD_RELOC_OPENRISC_REL_26
  BFD_RELOC_OPENRISC_REL_26
ENUMDOC
ENUMDOC
  OpenRISC Relocations.
  OpenRISC Relocations.
 
 
ENUM
ENUM
  BFD_RELOC_H8_DIR16A8
  BFD_RELOC_H8_DIR16A8
ENUMX
ENUMX
  BFD_RELOC_H8_DIR16R8
  BFD_RELOC_H8_DIR16R8
ENUMX
ENUMX
  BFD_RELOC_H8_DIR24A8
  BFD_RELOC_H8_DIR24A8
ENUMX
ENUMX
  BFD_RELOC_H8_DIR24R8
  BFD_RELOC_H8_DIR24R8
ENUMX
ENUMX
  BFD_RELOC_H8_DIR32A16
  BFD_RELOC_H8_DIR32A16
ENUMDOC
ENUMDOC
  H8 elf Relocations.
  H8 elf Relocations.
 
 
ENUM
ENUM
  BFD_RELOC_XSTORMY16_REL_12
  BFD_RELOC_XSTORMY16_REL_12
ENUMX
ENUMX
  BFD_RELOC_XSTORMY16_24
  BFD_RELOC_XSTORMY16_24
ENUMX
ENUMX
  BFD_RELOC_XSTORMY16_FPTR16
  BFD_RELOC_XSTORMY16_FPTR16
ENUMDOC
ENUMDOC
  Sony Xstormy16 Relocations.
  Sony Xstormy16 Relocations.
 
 
ENUM
ENUM
  BFD_RELOC_VAX_GLOB_DAT
  BFD_RELOC_VAX_GLOB_DAT
ENUMX
ENUMX
  BFD_RELOC_VAX_JMP_SLOT
  BFD_RELOC_VAX_JMP_SLOT
ENUMX
ENUMX
  BFD_RELOC_VAX_RELATIVE
  BFD_RELOC_VAX_RELATIVE
ENUMDOC
ENUMDOC
  Relocations used by VAX ELF.
  Relocations used by VAX ELF.
 
 
ENDSENUM
ENDSENUM
  BFD_RELOC_UNUSED
  BFD_RELOC_UNUSED
CODE_FRAGMENT
CODE_FRAGMENT
.
.
.typedef enum bfd_reloc_code_real bfd_reloc_code_real_type;
.typedef enum bfd_reloc_code_real bfd_reloc_code_real_type;
*/
*/
 
 
/*
/*
FUNCTION
FUNCTION
        bfd_reloc_type_lookup
        bfd_reloc_type_lookup
 
 
SYNOPSIS
SYNOPSIS
        reloc_howto_type *
        reloc_howto_type *
        bfd_reloc_type_lookup (bfd *abfd, bfd_reloc_code_real_type code);
        bfd_reloc_type_lookup (bfd *abfd, bfd_reloc_code_real_type code);
 
 
DESCRIPTION
DESCRIPTION
        Return a pointer to a howto structure which, when
        Return a pointer to a howto structure which, when
        invoked, will perform the relocation @var{code} on data from the
        invoked, will perform the relocation @var{code} on data from the
        architecture noted.
        architecture noted.
 
 
*/
*/
 
 
reloc_howto_type *
reloc_howto_type *
bfd_reloc_type_lookup (abfd, code)
bfd_reloc_type_lookup (abfd, code)
     bfd *abfd;
     bfd *abfd;
     bfd_reloc_code_real_type code;
     bfd_reloc_code_real_type code;
{
{
  return BFD_SEND (abfd, reloc_type_lookup, (abfd, code));
  return BFD_SEND (abfd, reloc_type_lookup, (abfd, code));
}
}
 
 
static reloc_howto_type bfd_howto_32 =
static reloc_howto_type bfd_howto_32 =
HOWTO (0, 00, 2, 32, false, 0, complain_overflow_bitfield, 0, "VRT32", false, 0xffffffff, 0xffffffff, true);
HOWTO (0, 00, 2, 32, false, 0, complain_overflow_bitfield, 0, "VRT32", false, 0xffffffff, 0xffffffff, true);
 
 
/*
/*
INTERNAL_FUNCTION
INTERNAL_FUNCTION
        bfd_default_reloc_type_lookup
        bfd_default_reloc_type_lookup
 
 
SYNOPSIS
SYNOPSIS
        reloc_howto_type *bfd_default_reloc_type_lookup
        reloc_howto_type *bfd_default_reloc_type_lookup
        (bfd *abfd, bfd_reloc_code_real_type  code);
        (bfd *abfd, bfd_reloc_code_real_type  code);
 
 
DESCRIPTION
DESCRIPTION
        Provides a default relocation lookup routine for any architecture.
        Provides a default relocation lookup routine for any architecture.
 
 
*/
*/
 
 
reloc_howto_type *
reloc_howto_type *
bfd_default_reloc_type_lookup (abfd, code)
bfd_default_reloc_type_lookup (abfd, code)
     bfd *abfd;
     bfd *abfd;
     bfd_reloc_code_real_type code;
     bfd_reloc_code_real_type code;
{
{
  switch (code)
  switch (code)
    {
    {
    case BFD_RELOC_CTOR:
    case BFD_RELOC_CTOR:
      /* The type of reloc used in a ctor, which will be as wide as the
      /* The type of reloc used in a ctor, which will be as wide as the
         address - so either a 64, 32, or 16 bitter.  */
         address - so either a 64, 32, or 16 bitter.  */
      switch (bfd_get_arch_info (abfd)->bits_per_address)
      switch (bfd_get_arch_info (abfd)->bits_per_address)
        {
        {
        case 64:
        case 64:
          BFD_FAIL ();
          BFD_FAIL ();
        case 32:
        case 32:
          return &bfd_howto_32;
          return &bfd_howto_32;
        case 16:
        case 16:
          BFD_FAIL ();
          BFD_FAIL ();
        default:
        default:
          BFD_FAIL ();
          BFD_FAIL ();
        }
        }
    default:
    default:
      BFD_FAIL ();
      BFD_FAIL ();
    }
    }
  return (reloc_howto_type *) NULL;
  return (reloc_howto_type *) NULL;
}
}
 
 
/*
/*
FUNCTION
FUNCTION
        bfd_get_reloc_code_name
        bfd_get_reloc_code_name
 
 
SYNOPSIS
SYNOPSIS
        const char *bfd_get_reloc_code_name (bfd_reloc_code_real_type code);
        const char *bfd_get_reloc_code_name (bfd_reloc_code_real_type code);
 
 
DESCRIPTION
DESCRIPTION
        Provides a printable name for the supplied relocation code.
        Provides a printable name for the supplied relocation code.
        Useful mainly for printing error messages.
        Useful mainly for printing error messages.
*/
*/
 
 
const char *
const char *
bfd_get_reloc_code_name (code)
bfd_get_reloc_code_name (code)
     bfd_reloc_code_real_type code;
     bfd_reloc_code_real_type code;
{
{
  if (code > BFD_RELOC_UNUSED)
  if (code > BFD_RELOC_UNUSED)
    return 0;
    return 0;
  return bfd_reloc_code_real_names[(int)code];
  return bfd_reloc_code_real_names[(int)code];
}
}
 
 
/*
/*
INTERNAL_FUNCTION
INTERNAL_FUNCTION
        bfd_generic_relax_section
        bfd_generic_relax_section
 
 
SYNOPSIS
SYNOPSIS
        boolean bfd_generic_relax_section
        boolean bfd_generic_relax_section
         (bfd *abfd,
         (bfd *abfd,
          asection *section,
          asection *section,
          struct bfd_link_info *,
          struct bfd_link_info *,
          boolean *);
          boolean *);
 
 
DESCRIPTION
DESCRIPTION
        Provides default handling for relaxing for back ends which
        Provides default handling for relaxing for back ends which
        don't do relaxing -- i.e., does nothing.
        don't do relaxing -- i.e., does nothing.
*/
*/
 
 
boolean
boolean
bfd_generic_relax_section (abfd, section, link_info, again)
bfd_generic_relax_section (abfd, section, link_info, again)
     bfd *abfd ATTRIBUTE_UNUSED;
     bfd *abfd ATTRIBUTE_UNUSED;
     asection *section ATTRIBUTE_UNUSED;
     asection *section ATTRIBUTE_UNUSED;
     struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
     struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
     boolean *again;
     boolean *again;
{
{
  *again = false;
  *again = false;
  return true;
  return true;
}
}
 
 
/*
/*
INTERNAL_FUNCTION
INTERNAL_FUNCTION
        bfd_generic_gc_sections
        bfd_generic_gc_sections
 
 
SYNOPSIS
SYNOPSIS
        boolean bfd_generic_gc_sections
        boolean bfd_generic_gc_sections
         (bfd *, struct bfd_link_info *);
         (bfd *, struct bfd_link_info *);
 
 
DESCRIPTION
DESCRIPTION
        Provides default handling for relaxing for back ends which
        Provides default handling for relaxing for back ends which
        don't do section gc -- i.e., does nothing.
        don't do section gc -- i.e., does nothing.
*/
*/
 
 
boolean
boolean
bfd_generic_gc_sections (abfd, link_info)
bfd_generic_gc_sections (abfd, link_info)
     bfd *abfd ATTRIBUTE_UNUSED;
     bfd *abfd ATTRIBUTE_UNUSED;
     struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
     struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
{
{
  return true;
  return true;
}
}
 
 
/*
/*
INTERNAL_FUNCTION
INTERNAL_FUNCTION
        bfd_generic_merge_sections
        bfd_generic_merge_sections
 
 
SYNOPSIS
SYNOPSIS
        boolean bfd_generic_merge_sections
        boolean bfd_generic_merge_sections
         (bfd *, struct bfd_link_info *);
         (bfd *, struct bfd_link_info *);
 
 
DESCRIPTION
DESCRIPTION
        Provides default handling for SEC_MERGE section merging for back ends
        Provides default handling for SEC_MERGE section merging for back ends
        which don't have SEC_MERGE support -- i.e., does nothing.
        which don't have SEC_MERGE support -- i.e., does nothing.
*/
*/
 
 
boolean
boolean
bfd_generic_merge_sections (abfd, link_info)
bfd_generic_merge_sections (abfd, link_info)
     bfd *abfd ATTRIBUTE_UNUSED;
     bfd *abfd ATTRIBUTE_UNUSED;
     struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
     struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
{
{
  return true;
  return true;
}
}
 
 
/*
/*
INTERNAL_FUNCTION
INTERNAL_FUNCTION
        bfd_generic_get_relocated_section_contents
        bfd_generic_get_relocated_section_contents
 
 
SYNOPSIS
SYNOPSIS
        bfd_byte *
        bfd_byte *
           bfd_generic_get_relocated_section_contents (bfd *abfd,
           bfd_generic_get_relocated_section_contents (bfd *abfd,
             struct bfd_link_info *link_info,
             struct bfd_link_info *link_info,
             struct bfd_link_order *link_order,
             struct bfd_link_order *link_order,
             bfd_byte *data,
             bfd_byte *data,
             boolean relocateable,
             boolean relocateable,
             asymbol **symbols);
             asymbol **symbols);
 
 
DESCRIPTION
DESCRIPTION
        Provides default handling of relocation effort for back ends
        Provides default handling of relocation effort for back ends
        which can't be bothered to do it efficiently.
        which can't be bothered to do it efficiently.
 
 
*/
*/
 
 
bfd_byte *
bfd_byte *
bfd_generic_get_relocated_section_contents (abfd, link_info, link_order, data,
bfd_generic_get_relocated_section_contents (abfd, link_info, link_order, data,
                                            relocateable, symbols)
                                            relocateable, symbols)
     bfd *abfd;
     bfd *abfd;
     struct bfd_link_info *link_info;
     struct bfd_link_info *link_info;
     struct bfd_link_order *link_order;
     struct bfd_link_order *link_order;
     bfd_byte *data;
     bfd_byte *data;
     boolean relocateable;
     boolean relocateable;
     asymbol **symbols;
     asymbol **symbols;
{
{
  /* Get enough memory to hold the stuff.  */
  /* Get enough memory to hold the stuff.  */
  bfd *input_bfd = link_order->u.indirect.section->owner;
  bfd *input_bfd = link_order->u.indirect.section->owner;
  asection *input_section = link_order->u.indirect.section;
  asection *input_section = link_order->u.indirect.section;
 
 
  long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
  long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
  arelent **reloc_vector = NULL;
  arelent **reloc_vector = NULL;
  long reloc_count;
  long reloc_count;
 
 
  if (reloc_size < 0)
  if (reloc_size < 0)
    goto error_return;
    goto error_return;
 
 
  reloc_vector = (arelent **) bfd_malloc ((bfd_size_type) reloc_size);
  reloc_vector = (arelent **) bfd_malloc ((bfd_size_type) reloc_size);
  if (reloc_vector == NULL && reloc_size != 0)
  if (reloc_vector == NULL && reloc_size != 0)
    goto error_return;
    goto error_return;
 
 
  /* Read in the section.  */
  /* Read in the section.  */
  if (!bfd_get_section_contents (input_bfd,
  if (!bfd_get_section_contents (input_bfd,
                                 input_section,
                                 input_section,
                                 (PTR) data,
                                 (PTR) data,
                                 (bfd_vma) 0,
                                 (bfd_vma) 0,
                                 input_section->_raw_size))
                                 input_section->_raw_size))
    goto error_return;
    goto error_return;
 
 
  /* We're not relaxing the section, so just copy the size info.  */
  /* We're not relaxing the section, so just copy the size info.  */
  input_section->_cooked_size = input_section->_raw_size;
  input_section->_cooked_size = input_section->_raw_size;
  input_section->reloc_done = true;
  input_section->reloc_done = true;
 
 
  reloc_count = bfd_canonicalize_reloc (input_bfd,
  reloc_count = bfd_canonicalize_reloc (input_bfd,
                                        input_section,
                                        input_section,
                                        reloc_vector,
                                        reloc_vector,
                                        symbols);
                                        symbols);
  if (reloc_count < 0)
  if (reloc_count < 0)
    goto error_return;
    goto error_return;
 
 
  if (reloc_count > 0)
  if (reloc_count > 0)
    {
    {
      arelent **parent;
      arelent **parent;
      for (parent = reloc_vector; *parent != (arelent *) NULL;
      for (parent = reloc_vector; *parent != (arelent *) NULL;
           parent++)
           parent++)
        {
        {
          char *error_message = (char *) NULL;
          char *error_message = (char *) NULL;
          bfd_reloc_status_type r =
          bfd_reloc_status_type r =
            bfd_perform_relocation (input_bfd,
            bfd_perform_relocation (input_bfd,
                                    *parent,
                                    *parent,
                                    (PTR) data,
                                    (PTR) data,
                                    input_section,
                                    input_section,
                                    relocateable ? abfd : (bfd *) NULL,
                                    relocateable ? abfd : (bfd *) NULL,
                                    &error_message);
                                    &error_message);
 
 
          if (relocateable)
          if (relocateable)
            {
            {
              asection *os = input_section->output_section;
              asection *os = input_section->output_section;
 
 
              /* A partial link, so keep the relocs.  */
              /* A partial link, so keep the relocs.  */
              os->orelocation[os->reloc_count] = *parent;
              os->orelocation[os->reloc_count] = *parent;
              os->reloc_count++;
              os->reloc_count++;
            }
            }
 
 
          if (r != bfd_reloc_ok)
          if (r != bfd_reloc_ok)
            {
            {
              switch (r)
              switch (r)
                {
                {
                case bfd_reloc_undefined:
                case bfd_reloc_undefined:
                  if (!((*link_info->callbacks->undefined_symbol)
                  if (!((*link_info->callbacks->undefined_symbol)
                        (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
                        (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
                         input_bfd, input_section, (*parent)->address,
                         input_bfd, input_section, (*parent)->address,
                         true)))
                         true)))
                    goto error_return;
                    goto error_return;
                  break;
                  break;
                case bfd_reloc_dangerous:
                case bfd_reloc_dangerous:
                  BFD_ASSERT (error_message != (char *) NULL);
                  BFD_ASSERT (error_message != (char *) NULL);
                  if (!((*link_info->callbacks->reloc_dangerous)
                  if (!((*link_info->callbacks->reloc_dangerous)
                        (link_info, error_message, input_bfd, input_section,
                        (link_info, error_message, input_bfd, input_section,
                         (*parent)->address)))
                         (*parent)->address)))
                    goto error_return;
                    goto error_return;
                  break;
                  break;
                case bfd_reloc_overflow:
                case bfd_reloc_overflow:
                  if (!((*link_info->callbacks->reloc_overflow)
                  if (!((*link_info->callbacks->reloc_overflow)
                        (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
                        (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
                         (*parent)->howto->name, (*parent)->addend,
                         (*parent)->howto->name, (*parent)->addend,
                         input_bfd, input_section, (*parent)->address)))
                         input_bfd, input_section, (*parent)->address)))
                    goto error_return;
                    goto error_return;
                  break;
                  break;
                case bfd_reloc_outofrange:
                case bfd_reloc_outofrange:
                default:
                default:
                  abort ();
                  abort ();
                  break;
                  break;
                }
                }
 
 
            }
            }
        }
        }
    }
    }
  if (reloc_vector != NULL)
  if (reloc_vector != NULL)
    free (reloc_vector);
    free (reloc_vector);
  return data;
  return data;
 
 
error_return:
error_return:
  if (reloc_vector != NULL)
  if (reloc_vector != NULL)
    free (reloc_vector);
    free (reloc_vector);
  return NULL;
  return NULL;
}
}
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.