OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [insight/] [gdb/] [i386-linux-nat.c] - Diff between revs 578 and 1765

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 578 Rev 1765
/* Native-dependent code for Linux/x86.
/* Native-dependent code for Linux/x86.
   Copyright 1999, 2000, 2001 Free Software Foundation, Inc.
   Copyright 1999, 2000, 2001 Free Software Foundation, Inc.
 
 
   This file is part of GDB.
   This file is part of GDB.
 
 
   This program is free software; you can redistribute it and/or modify
   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2 of the License, or
   the Free Software Foundation; either version 2 of the License, or
   (at your option) any later version.
   (at your option) any later version.
 
 
   This program is distributed in the hope that it will be useful,
   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.
   GNU General Public License for more details.
 
 
   You should have received a copy of the GNU General Public License
   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   along with this program; if not, write to the Free Software
   Foundation, Inc., 59 Temple Place - Suite 330,
   Foundation, Inc., 59 Temple Place - Suite 330,
   Boston, MA 02111-1307, USA.  */
   Boston, MA 02111-1307, USA.  */
 
 
#include "defs.h"
#include "defs.h"
#include "inferior.h"
#include "inferior.h"
#include "gdbcore.h"
#include "gdbcore.h"
#include "regcache.h"
#include "regcache.h"
 
 
#include "gdb_assert.h"
#include "gdb_assert.h"
#include <sys/ptrace.h>
#include <sys/ptrace.h>
#include <sys/user.h>
#include <sys/user.h>
#include <sys/procfs.h>
#include <sys/procfs.h>
 
 
#ifdef HAVE_SYS_REG_H
#ifdef HAVE_SYS_REG_H
#include <sys/reg.h>
#include <sys/reg.h>
#endif
#endif
 
 
#ifdef HAVE_SYS_DEBUGREG_H
#ifdef HAVE_SYS_DEBUGREG_H
#include <sys/debugreg.h>
#include <sys/debugreg.h>
#endif
#endif
 
 
#ifndef DR_FIRSTADDR
#ifndef DR_FIRSTADDR
#define DR_FIRSTADDR 0
#define DR_FIRSTADDR 0
#endif
#endif
 
 
#ifndef DR_LASTADDR
#ifndef DR_LASTADDR
#define DR_LASTADDR 3
#define DR_LASTADDR 3
#endif
#endif
 
 
#ifndef DR_STATUS
#ifndef DR_STATUS
#define DR_STATUS 6
#define DR_STATUS 6
#endif
#endif
 
 
#ifndef DR_CONTROL
#ifndef DR_CONTROL
#define DR_CONTROL 7
#define DR_CONTROL 7
#endif
#endif
 
 
/* Prototypes for supply_gregset etc.  */
/* Prototypes for supply_gregset etc.  */
#include "gregset.h"
#include "gregset.h"
 
 
/* Prototypes for i387_supply_fsave etc.  */
/* Prototypes for i387_supply_fsave etc.  */
#include "i387-nat.h"
#include "i387-nat.h"
 
 
/* Prototypes for local functions.  */
/* Prototypes for local functions.  */
static void dummy_sse_values (void);
static void dummy_sse_values (void);
 
 


 
 
/* The register sets used in Linux ELF core-dumps are identical to the
/* The register sets used in Linux ELF core-dumps are identical to the
   register sets in `struct user' that is used for a.out core-dumps,
   register sets in `struct user' that is used for a.out core-dumps,
   and is also used by `ptrace'.  The corresponding types are
   and is also used by `ptrace'.  The corresponding types are
   `elf_gregset_t' for the general-purpose registers (with
   `elf_gregset_t' for the general-purpose registers (with
   `elf_greg_t' the type of a single GP register) and `elf_fpregset_t'
   `elf_greg_t' the type of a single GP register) and `elf_fpregset_t'
   for the floating-point registers.
   for the floating-point registers.
 
 
   Those types used to be available under the names `gregset_t' and
   Those types used to be available under the names `gregset_t' and
   `fpregset_t' too, and this file used those names in the past.  But
   `fpregset_t' too, and this file used those names in the past.  But
   those names are now used for the register sets used in the
   those names are now used for the register sets used in the
   `mcontext_t' type, and have a different size and layout.  */
   `mcontext_t' type, and have a different size and layout.  */
 
 
/* Mapping between the general-purpose registers in `struct user'
/* Mapping between the general-purpose registers in `struct user'
   format and GDB's register array layout.  */
   format and GDB's register array layout.  */
static int regmap[] =
static int regmap[] =
{
{
  EAX, ECX, EDX, EBX,
  EAX, ECX, EDX, EBX,
  UESP, EBP, ESI, EDI,
  UESP, EBP, ESI, EDI,
  EIP, EFL, CS, SS,
  EIP, EFL, CS, SS,
  DS, ES, FS, GS
  DS, ES, FS, GS
};
};
 
 
/* Which ptrace request retrieves which registers?
/* Which ptrace request retrieves which registers?
   These apply to the corresponding SET requests as well.  */
   These apply to the corresponding SET requests as well.  */
#define GETREGS_SUPPLIES(regno) \
#define GETREGS_SUPPLIES(regno) \
  (0 <= (regno) && (regno) <= 15)
  (0 <= (regno) && (regno) <= 15)
#define GETFPREGS_SUPPLIES(regno) \
#define GETFPREGS_SUPPLIES(regno) \
  (FP0_REGNUM <= (regno) && (regno) <= LAST_FPU_CTRL_REGNUM)
  (FP0_REGNUM <= (regno) && (regno) <= LAST_FPU_CTRL_REGNUM)
#define GETFPXREGS_SUPPLIES(regno) \
#define GETFPXREGS_SUPPLIES(regno) \
  (FP0_REGNUM <= (regno) && (regno) <= MXCSR_REGNUM)
  (FP0_REGNUM <= (regno) && (regno) <= MXCSR_REGNUM)
 
 
/* Does the current host support the GETREGS request?  */
/* Does the current host support the GETREGS request?  */
int have_ptrace_getregs =
int have_ptrace_getregs =
#ifdef HAVE_PTRACE_GETREGS
#ifdef HAVE_PTRACE_GETREGS
  1
  1
#else
#else
  0
  0
#endif
#endif
;
;
 
 
/* Does the current host support the GETFPXREGS request?  The header
/* Does the current host support the GETFPXREGS request?  The header
   file may or may not define it, and even if it is defined, the
   file may or may not define it, and even if it is defined, the
   kernel will return EIO if it's running on a pre-SSE processor.
   kernel will return EIO if it's running on a pre-SSE processor.
 
 
   My instinct is to attach this to some architecture- or
   My instinct is to attach this to some architecture- or
   target-specific data structure, but really, a particular GDB
   target-specific data structure, but really, a particular GDB
   process can only run on top of one kernel at a time.  So it's okay
   process can only run on top of one kernel at a time.  So it's okay
   for this to be a simple variable.  */
   for this to be a simple variable.  */
int have_ptrace_getfpxregs =
int have_ptrace_getfpxregs =
#ifdef HAVE_PTRACE_GETFPXREGS
#ifdef HAVE_PTRACE_GETFPXREGS
  1
  1
#else
#else
  0
  0
#endif
#endif
;
;


 
 
/* Support for the user struct.  */
/* Support for the user struct.  */
 
 
/* Return the address of register REGNUM.  BLOCKEND is the value of
/* Return the address of register REGNUM.  BLOCKEND is the value of
   u.u_ar0, which should point to the registers.  */
   u.u_ar0, which should point to the registers.  */
 
 
CORE_ADDR
CORE_ADDR
register_u_addr (CORE_ADDR blockend, int regnum)
register_u_addr (CORE_ADDR blockend, int regnum)
{
{
  return (blockend + 4 * regmap[regnum]);
  return (blockend + 4 * regmap[regnum]);
}
}
 
 
/* Return the size of the user struct.  */
/* Return the size of the user struct.  */
 
 
int
int
kernel_u_size (void)
kernel_u_size (void)
{
{
  return (sizeof (struct user));
  return (sizeof (struct user));
}
}


 
 
/* Fetching registers directly from the U area, one at a time.  */
/* Fetching registers directly from the U area, one at a time.  */
 
 
/* FIXME: kettenis/2000-03-05: This duplicates code from `inptrace.c'.
/* FIXME: kettenis/2000-03-05: This duplicates code from `inptrace.c'.
   The problem is that we define FETCH_INFERIOR_REGISTERS since we
   The problem is that we define FETCH_INFERIOR_REGISTERS since we
   want to use our own versions of {fetch,store}_inferior_registers
   want to use our own versions of {fetch,store}_inferior_registers
   that use the GETREGS request.  This means that the code in
   that use the GETREGS request.  This means that the code in
   `infptrace.c' is #ifdef'd out.  But we need to fall back on that
   `infptrace.c' is #ifdef'd out.  But we need to fall back on that
   code when GDB is running on top of a kernel that doesn't support
   code when GDB is running on top of a kernel that doesn't support
   the GETREGS request.  I want to avoid changing `infptrace.c' right
   the GETREGS request.  I want to avoid changing `infptrace.c' right
   now.  */
   now.  */
 
 
#ifndef PT_READ_U
#ifndef PT_READ_U
#define PT_READ_U PTRACE_PEEKUSR
#define PT_READ_U PTRACE_PEEKUSR
#endif
#endif
#ifndef PT_WRITE_U
#ifndef PT_WRITE_U
#define PT_WRITE_U PTRACE_POKEUSR
#define PT_WRITE_U PTRACE_POKEUSR
#endif
#endif
 
 
/* Default the type of the ptrace transfer to int.  */
/* Default the type of the ptrace transfer to int.  */
#ifndef PTRACE_XFER_TYPE
#ifndef PTRACE_XFER_TYPE
#define PTRACE_XFER_TYPE int
#define PTRACE_XFER_TYPE int
#endif
#endif
 
 
/* Registers we shouldn't try to fetch.  */
/* Registers we shouldn't try to fetch.  */
#define OLD_CANNOT_FETCH_REGISTER(regno) ((regno) >= NUM_GREGS)
#define OLD_CANNOT_FETCH_REGISTER(regno) ((regno) >= NUM_GREGS)
 
 
/* Fetch one register.  */
/* Fetch one register.  */
 
 
static void
static void
fetch_register (int regno)
fetch_register (int regno)
{
{
  /* This isn't really an address.  But ptrace thinks of it as one.  */
  /* This isn't really an address.  But ptrace thinks of it as one.  */
  CORE_ADDR regaddr;
  CORE_ADDR regaddr;
  char mess[128];               /* For messages */
  char mess[128];               /* For messages */
  register int i;
  register int i;
  unsigned int offset;          /* Offset of registers within the u area.  */
  unsigned int offset;          /* Offset of registers within the u area.  */
  char buf[MAX_REGISTER_RAW_SIZE];
  char buf[MAX_REGISTER_RAW_SIZE];
  int tid;
  int tid;
 
 
  if (OLD_CANNOT_FETCH_REGISTER (regno))
  if (OLD_CANNOT_FETCH_REGISTER (regno))
    {
    {
      memset (buf, '\0', REGISTER_RAW_SIZE (regno));    /* Supply zeroes */
      memset (buf, '\0', REGISTER_RAW_SIZE (regno));    /* Supply zeroes */
      supply_register (regno, buf);
      supply_register (regno, buf);
      return;
      return;
    }
    }
 
 
  /* Overload thread id onto process id */
  /* Overload thread id onto process id */
  if ((tid = TIDGET (inferior_ptid)) == 0)
  if ((tid = TIDGET (inferior_ptid)) == 0)
    tid = PIDGET (inferior_ptid);       /* no thread id, just use process id */
    tid = PIDGET (inferior_ptid);       /* no thread id, just use process id */
 
 
  offset = U_REGS_OFFSET;
  offset = U_REGS_OFFSET;
 
 
  regaddr = register_addr (regno, offset);
  regaddr = register_addr (regno, offset);
  for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof (PTRACE_XFER_TYPE))
  for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof (PTRACE_XFER_TYPE))
    {
    {
      errno = 0;
      errno = 0;
      *(PTRACE_XFER_TYPE *) & buf[i] = ptrace (PT_READ_U, tid,
      *(PTRACE_XFER_TYPE *) & buf[i] = ptrace (PT_READ_U, tid,
                                               (PTRACE_ARG3_TYPE) regaddr, 0);
                                               (PTRACE_ARG3_TYPE) regaddr, 0);
      regaddr += sizeof (PTRACE_XFER_TYPE);
      regaddr += sizeof (PTRACE_XFER_TYPE);
      if (errno != 0)
      if (errno != 0)
        {
        {
          sprintf (mess, "reading register %s (#%d)",
          sprintf (mess, "reading register %s (#%d)",
                   REGISTER_NAME (regno), regno);
                   REGISTER_NAME (regno), regno);
          perror_with_name (mess);
          perror_with_name (mess);
        }
        }
    }
    }
  supply_register (regno, buf);
  supply_register (regno, buf);
}
}
 
 
/* Fetch register values from the inferior.
/* Fetch register values from the inferior.
   If REGNO is negative, do this for all registers.
   If REGNO is negative, do this for all registers.
   Otherwise, REGNO specifies which register (so we can save time). */
   Otherwise, REGNO specifies which register (so we can save time). */
 
 
void
void
old_fetch_inferior_registers (int regno)
old_fetch_inferior_registers (int regno)
{
{
  if (regno >= 0)
  if (regno >= 0)
    {
    {
      fetch_register (regno);
      fetch_register (regno);
    }
    }
  else
  else
    {
    {
      for (regno = 0; regno < NUM_REGS; regno++)
      for (regno = 0; regno < NUM_REGS; regno++)
        {
        {
          fetch_register (regno);
          fetch_register (regno);
        }
        }
    }
    }
}
}
 
 
/* Registers we shouldn't try to store.  */
/* Registers we shouldn't try to store.  */
#define OLD_CANNOT_STORE_REGISTER(regno) ((regno) >= NUM_GREGS)
#define OLD_CANNOT_STORE_REGISTER(regno) ((regno) >= NUM_GREGS)
 
 
/* Store one register. */
/* Store one register. */
 
 
static void
static void
store_register (int regno)
store_register (int regno)
{
{
  /* This isn't really an address.  But ptrace thinks of it as one.  */
  /* This isn't really an address.  But ptrace thinks of it as one.  */
  CORE_ADDR regaddr;
  CORE_ADDR regaddr;
  char mess[128];               /* For messages */
  char mess[128];               /* For messages */
  register int i;
  register int i;
  unsigned int offset;          /* Offset of registers within the u area.  */
  unsigned int offset;          /* Offset of registers within the u area.  */
  int tid;
  int tid;
 
 
  if (OLD_CANNOT_STORE_REGISTER (regno))
  if (OLD_CANNOT_STORE_REGISTER (regno))
    {
    {
      return;
      return;
    }
    }
 
 
  /* Overload thread id onto process id */
  /* Overload thread id onto process id */
  if ((tid = TIDGET (inferior_ptid)) == 0)
  if ((tid = TIDGET (inferior_ptid)) == 0)
    tid = PIDGET (inferior_ptid);       /* no thread id, just use process id */
    tid = PIDGET (inferior_ptid);       /* no thread id, just use process id */
 
 
  offset = U_REGS_OFFSET;
  offset = U_REGS_OFFSET;
 
 
  regaddr = register_addr (regno, offset);
  regaddr = register_addr (regno, offset);
  for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof (PTRACE_XFER_TYPE))
  for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof (PTRACE_XFER_TYPE))
    {
    {
      errno = 0;
      errno = 0;
      ptrace (PT_WRITE_U, tid, (PTRACE_ARG3_TYPE) regaddr,
      ptrace (PT_WRITE_U, tid, (PTRACE_ARG3_TYPE) regaddr,
              *(PTRACE_XFER_TYPE *) & registers[REGISTER_BYTE (regno) + i]);
              *(PTRACE_XFER_TYPE *) & registers[REGISTER_BYTE (regno) + i]);
      regaddr += sizeof (PTRACE_XFER_TYPE);
      regaddr += sizeof (PTRACE_XFER_TYPE);
      if (errno != 0)
      if (errno != 0)
        {
        {
          sprintf (mess, "writing register %s (#%d)",
          sprintf (mess, "writing register %s (#%d)",
                   REGISTER_NAME (regno), regno);
                   REGISTER_NAME (regno), regno);
          perror_with_name (mess);
          perror_with_name (mess);
        }
        }
    }
    }
}
}
 
 
/* Store our register values back into the inferior.
/* Store our register values back into the inferior.
   If REGNO is negative, do this for all registers.
   If REGNO is negative, do this for all registers.
   Otherwise, REGNO specifies which register (so we can save time).  */
   Otherwise, REGNO specifies which register (so we can save time).  */
 
 
void
void
old_store_inferior_registers (int regno)
old_store_inferior_registers (int regno)
{
{
  if (regno >= 0)
  if (regno >= 0)
    {
    {
      store_register (regno);
      store_register (regno);
    }
    }
  else
  else
    {
    {
      for (regno = 0; regno < NUM_REGS; regno++)
      for (regno = 0; regno < NUM_REGS; regno++)
        {
        {
          store_register (regno);
          store_register (regno);
        }
        }
    }
    }
}
}


 
 
/* Transfering the general-purpose registers between GDB, inferiors
/* Transfering the general-purpose registers between GDB, inferiors
   and core files.  */
   and core files.  */
 
 
/* Fill GDB's register array with the general-purpose register values
/* Fill GDB's register array with the general-purpose register values
   in *GREGSETP.  */
   in *GREGSETP.  */
 
 
void
void
supply_gregset (elf_gregset_t *gregsetp)
supply_gregset (elf_gregset_t *gregsetp)
{
{
  elf_greg_t *regp = (elf_greg_t *) gregsetp;
  elf_greg_t *regp = (elf_greg_t *) gregsetp;
  int i;
  int i;
 
 
  for (i = 0; i < NUM_GREGS; i++)
  for (i = 0; i < NUM_GREGS; i++)
    supply_register (i, (char *) (regp + regmap[i]));
    supply_register (i, (char *) (regp + regmap[i]));
}
}
 
 
/* Fill register REGNO (if it is a general-purpose register) in
/* Fill register REGNO (if it is a general-purpose register) in
   *GREGSETPS with the value in GDB's register array.  If REGNO is -1,
   *GREGSETPS with the value in GDB's register array.  If REGNO is -1,
   do this for all registers.  */
   do this for all registers.  */
 
 
void
void
fill_gregset (elf_gregset_t *gregsetp, int regno)
fill_gregset (elf_gregset_t *gregsetp, int regno)
{
{
  elf_greg_t *regp = (elf_greg_t *) gregsetp;
  elf_greg_t *regp = (elf_greg_t *) gregsetp;
  int i;
  int i;
 
 
  for (i = 0; i < NUM_GREGS; i++)
  for (i = 0; i < NUM_GREGS; i++)
    if ((regno == -1 || regno == i))
    if ((regno == -1 || regno == i))
      *(regp + regmap[i]) = *(elf_greg_t *) &registers[REGISTER_BYTE (i)];
      *(regp + regmap[i]) = *(elf_greg_t *) &registers[REGISTER_BYTE (i)];
}
}
 
 
#ifdef HAVE_PTRACE_GETREGS
#ifdef HAVE_PTRACE_GETREGS
 
 
/* Fetch all general-purpose registers from process/thread TID and
/* Fetch all general-purpose registers from process/thread TID and
   store their values in GDB's register array.  */
   store their values in GDB's register array.  */
 
 
static void
static void
fetch_regs (int tid)
fetch_regs (int tid)
{
{
  elf_gregset_t regs;
  elf_gregset_t regs;
 
 
  if (ptrace (PTRACE_GETREGS, tid, 0, (int) &regs) < 0)
  if (ptrace (PTRACE_GETREGS, tid, 0, (int) &regs) < 0)
    {
    {
      if (errno == EIO)
      if (errno == EIO)
        {
        {
          /* The kernel we're running on doesn't support the GETREGS
          /* The kernel we're running on doesn't support the GETREGS
             request.  Reset `have_ptrace_getregs'.  */
             request.  Reset `have_ptrace_getregs'.  */
          have_ptrace_getregs = 0;
          have_ptrace_getregs = 0;
          return;
          return;
        }
        }
 
 
      perror_with_name ("Couldn't get registers");
      perror_with_name ("Couldn't get registers");
    }
    }
 
 
  supply_gregset (&regs);
  supply_gregset (&regs);
}
}
 
 
/* Store all valid general-purpose registers in GDB's register array
/* Store all valid general-purpose registers in GDB's register array
   into the process/thread specified by TID.  */
   into the process/thread specified by TID.  */
 
 
static void
static void
store_regs (int tid, int regno)
store_regs (int tid, int regno)
{
{
  elf_gregset_t regs;
  elf_gregset_t regs;
 
 
  if (ptrace (PTRACE_GETREGS, tid, 0, (int) &regs) < 0)
  if (ptrace (PTRACE_GETREGS, tid, 0, (int) &regs) < 0)
    perror_with_name ("Couldn't get registers");
    perror_with_name ("Couldn't get registers");
 
 
  fill_gregset (&regs, regno);
  fill_gregset (&regs, regno);
 
 
  if (ptrace (PTRACE_SETREGS, tid, 0, (int) &regs) < 0)
  if (ptrace (PTRACE_SETREGS, tid, 0, (int) &regs) < 0)
    perror_with_name ("Couldn't write registers");
    perror_with_name ("Couldn't write registers");
}
}
 
 
#else
#else
 
 
static void fetch_regs (int tid) {}
static void fetch_regs (int tid) {}
static void store_regs (int tid, int regno) {}
static void store_regs (int tid, int regno) {}
 
 
#endif
#endif


 
 
/* Transfering floating-point registers between GDB, inferiors and cores.  */
/* Transfering floating-point registers between GDB, inferiors and cores.  */
 
 
/* Fill GDB's register array with the floating-point register values in
/* Fill GDB's register array with the floating-point register values in
   *FPREGSETP.  */
   *FPREGSETP.  */
 
 
void
void
supply_fpregset (elf_fpregset_t *fpregsetp)
supply_fpregset (elf_fpregset_t *fpregsetp)
{
{
  i387_supply_fsave ((char *) fpregsetp);
  i387_supply_fsave ((char *) fpregsetp);
  dummy_sse_values ();
  dummy_sse_values ();
}
}
 
 
/* Fill register REGNO (if it is a floating-point register) in
/* Fill register REGNO (if it is a floating-point register) in
   *FPREGSETP with the value in GDB's register array.  If REGNO is -1,
   *FPREGSETP with the value in GDB's register array.  If REGNO is -1,
   do this for all registers.  */
   do this for all registers.  */
 
 
void
void
fill_fpregset (elf_fpregset_t *fpregsetp, int regno)
fill_fpregset (elf_fpregset_t *fpregsetp, int regno)
{
{
  i387_fill_fsave ((char *) fpregsetp, regno);
  i387_fill_fsave ((char *) fpregsetp, regno);
}
}
 
 
#ifdef HAVE_PTRACE_GETREGS
#ifdef HAVE_PTRACE_GETREGS
 
 
/* Fetch all floating-point registers from process/thread TID and store
/* Fetch all floating-point registers from process/thread TID and store
   thier values in GDB's register array.  */
   thier values in GDB's register array.  */
 
 
static void
static void
fetch_fpregs (int tid)
fetch_fpregs (int tid)
{
{
  elf_fpregset_t fpregs;
  elf_fpregset_t fpregs;
 
 
  if (ptrace (PTRACE_GETFPREGS, tid, 0, (int) &fpregs) < 0)
  if (ptrace (PTRACE_GETFPREGS, tid, 0, (int) &fpregs) < 0)
    perror_with_name ("Couldn't get floating point status");
    perror_with_name ("Couldn't get floating point status");
 
 
  supply_fpregset (&fpregs);
  supply_fpregset (&fpregs);
}
}
 
 
/* Store all valid floating-point registers in GDB's register array
/* Store all valid floating-point registers in GDB's register array
   into the process/thread specified by TID.  */
   into the process/thread specified by TID.  */
 
 
static void
static void
store_fpregs (int tid, int regno)
store_fpregs (int tid, int regno)
{
{
  elf_fpregset_t fpregs;
  elf_fpregset_t fpregs;
 
 
  if (ptrace (PTRACE_GETFPREGS, tid, 0, (int) &fpregs) < 0)
  if (ptrace (PTRACE_GETFPREGS, tid, 0, (int) &fpregs) < 0)
    perror_with_name ("Couldn't get floating point status");
    perror_with_name ("Couldn't get floating point status");
 
 
  fill_fpregset (&fpregs, regno);
  fill_fpregset (&fpregs, regno);
 
 
  if (ptrace (PTRACE_SETFPREGS, tid, 0, (int) &fpregs) < 0)
  if (ptrace (PTRACE_SETFPREGS, tid, 0, (int) &fpregs) < 0)
    perror_with_name ("Couldn't write floating point status");
    perror_with_name ("Couldn't write floating point status");
}
}
 
 
#else
#else
 
 
static void fetch_fpregs (int tid) {}
static void fetch_fpregs (int tid) {}
static void store_fpregs (int tid, int regno) {}
static void store_fpregs (int tid, int regno) {}
 
 
#endif
#endif


 
 
/* Transfering floating-point and SSE registers to and from GDB.  */
/* Transfering floating-point and SSE registers to and from GDB.  */
 
 
#ifdef HAVE_PTRACE_GETFPXREGS
#ifdef HAVE_PTRACE_GETFPXREGS
 
 
/* Fill GDB's register array with the floating-point and SSE register
/* Fill GDB's register array with the floating-point and SSE register
   values in *FPXREGSETP.  */
   values in *FPXREGSETP.  */
 
 
static void
static void
supply_fpxregset (elf_fpxregset_t *fpxregsetp)
supply_fpxregset (elf_fpxregset_t *fpxregsetp)
{
{
  i387_supply_fxsave ((char *) fpxregsetp);
  i387_supply_fxsave ((char *) fpxregsetp);
}
}
 
 
/* Fill register REGNO (if it is a floating-point or SSE register) in
/* Fill register REGNO (if it is a floating-point or SSE register) in
   *FPXREGSETP with the value in GDB's register array.  If REGNO is
   *FPXREGSETP with the value in GDB's register array.  If REGNO is
   -1, do this for all registers.  */
   -1, do this for all registers.  */
 
 
static void
static void
fill_fpxregset (elf_fpxregset_t *fpxregsetp, int regno)
fill_fpxregset (elf_fpxregset_t *fpxregsetp, int regno)
{
{
  i387_fill_fxsave ((char *) fpxregsetp, regno);
  i387_fill_fxsave ((char *) fpxregsetp, regno);
}
}
 
 
/* Fetch all registers covered by the PTRACE_GETFPXREGS request from
/* Fetch all registers covered by the PTRACE_GETFPXREGS request from
   process/thread TID and store their values in GDB's register array.
   process/thread TID and store their values in GDB's register array.
   Return non-zero if successful, zero otherwise.  */
   Return non-zero if successful, zero otherwise.  */
 
 
static int
static int
fetch_fpxregs (int tid)
fetch_fpxregs (int tid)
{
{
  elf_fpxregset_t fpxregs;
  elf_fpxregset_t fpxregs;
 
 
  if (! have_ptrace_getfpxregs)
  if (! have_ptrace_getfpxregs)
    return 0;
    return 0;
 
 
  if (ptrace (PTRACE_GETFPXREGS, tid, 0, (int) &fpxregs) < 0)
  if (ptrace (PTRACE_GETFPXREGS, tid, 0, (int) &fpxregs) < 0)
    {
    {
      if (errno == EIO)
      if (errno == EIO)
        {
        {
          have_ptrace_getfpxregs = 0;
          have_ptrace_getfpxregs = 0;
          return 0;
          return 0;
        }
        }
 
 
      perror_with_name ("Couldn't read floating-point and SSE registers");
      perror_with_name ("Couldn't read floating-point and SSE registers");
    }
    }
 
 
  supply_fpxregset (&fpxregs);
  supply_fpxregset (&fpxregs);
  return 1;
  return 1;
}
}
 
 
/* Store all valid registers in GDB's register array covered by the
/* Store all valid registers in GDB's register array covered by the
   PTRACE_SETFPXREGS request into the process/thread specified by TID.
   PTRACE_SETFPXREGS request into the process/thread specified by TID.
   Return non-zero if successful, zero otherwise.  */
   Return non-zero if successful, zero otherwise.  */
 
 
static int
static int
store_fpxregs (int tid, int regno)
store_fpxregs (int tid, int regno)
{
{
  elf_fpxregset_t fpxregs;
  elf_fpxregset_t fpxregs;
 
 
  if (! have_ptrace_getfpxregs)
  if (! have_ptrace_getfpxregs)
    return 0;
    return 0;
 
 
  if (ptrace (PTRACE_GETFPXREGS, tid, 0, &fpxregs) == -1)
  if (ptrace (PTRACE_GETFPXREGS, tid, 0, &fpxregs) == -1)
    {
    {
      if (errno == EIO)
      if (errno == EIO)
        {
        {
          have_ptrace_getfpxregs = 0;
          have_ptrace_getfpxregs = 0;
          return 0;
          return 0;
        }
        }
 
 
      perror_with_name ("Couldn't read floating-point and SSE registers");
      perror_with_name ("Couldn't read floating-point and SSE registers");
    }
    }
 
 
  fill_fpxregset (&fpxregs, regno);
  fill_fpxregset (&fpxregs, regno);
 
 
  if (ptrace (PTRACE_SETFPXREGS, tid, 0, &fpxregs) == -1)
  if (ptrace (PTRACE_SETFPXREGS, tid, 0, &fpxregs) == -1)
    perror_with_name ("Couldn't write floating-point and SSE registers");
    perror_with_name ("Couldn't write floating-point and SSE registers");
 
 
  return 1;
  return 1;
}
}
 
 
/* Fill the XMM registers in the register array with dummy values.  For
/* Fill the XMM registers in the register array with dummy values.  For
   cases where we don't have access to the XMM registers.  I think
   cases where we don't have access to the XMM registers.  I think
   this is cleaner than printing a warning.  For a cleaner solution,
   this is cleaner than printing a warning.  For a cleaner solution,
   we should gdbarchify the i386 family.  */
   we should gdbarchify the i386 family.  */
 
 
static void
static void
dummy_sse_values (void)
dummy_sse_values (void)
{
{
  /* C doesn't have a syntax for NaN's, so write it out as an array of
  /* C doesn't have a syntax for NaN's, so write it out as an array of
     longs.  */
     longs.  */
  static long dummy[4] = { 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff };
  static long dummy[4] = { 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff };
  static long mxcsr = 0x1f80;
  static long mxcsr = 0x1f80;
  int reg;
  int reg;
 
 
  for (reg = 0; reg < 8; reg++)
  for (reg = 0; reg < 8; reg++)
    supply_register (XMM0_REGNUM + reg, (char *) dummy);
    supply_register (XMM0_REGNUM + reg, (char *) dummy);
  supply_register (MXCSR_REGNUM, (char *) &mxcsr);
  supply_register (MXCSR_REGNUM, (char *) &mxcsr);
}
}
 
 
#else
#else
 
 
static int fetch_fpxregs (int tid) { return 0; }
static int fetch_fpxregs (int tid) { return 0; }
static int store_fpxregs (int tid, int regno) { return 0; }
static int store_fpxregs (int tid, int regno) { return 0; }
static void dummy_sse_values (void) {}
static void dummy_sse_values (void) {}
 
 
#endif /* HAVE_PTRACE_GETFPXREGS */
#endif /* HAVE_PTRACE_GETFPXREGS */


 
 
/* Transferring arbitrary registers between GDB and inferior.  */
/* Transferring arbitrary registers between GDB and inferior.  */
 
 
/* Check if register REGNO in the child process is accessible.
/* Check if register REGNO in the child process is accessible.
   If we are accessing registers directly via the U area, only the
   If we are accessing registers directly via the U area, only the
   general-purpose registers are available.
   general-purpose registers are available.
   All registers should be accessible if we have GETREGS support.  */
   All registers should be accessible if we have GETREGS support.  */
 
 
int
int
cannot_fetch_register (int regno)
cannot_fetch_register (int regno)
{
{
  if (! have_ptrace_getregs)
  if (! have_ptrace_getregs)
    return OLD_CANNOT_FETCH_REGISTER (regno);
    return OLD_CANNOT_FETCH_REGISTER (regno);
  return 0;
  return 0;
}
}
int
int
cannot_store_register (int regno)
cannot_store_register (int regno)
{
{
  if (! have_ptrace_getregs)
  if (! have_ptrace_getregs)
    return OLD_CANNOT_STORE_REGISTER (regno);
    return OLD_CANNOT_STORE_REGISTER (regno);
  return 0;
  return 0;
}
}
 
 
/* Fetch register REGNO from the child process.  If REGNO is -1, do
/* Fetch register REGNO from the child process.  If REGNO is -1, do
   this for all registers (including the floating point and SSE
   this for all registers (including the floating point and SSE
   registers).  */
   registers).  */
 
 
void
void
fetch_inferior_registers (int regno)
fetch_inferior_registers (int regno)
{
{
  int tid;
  int tid;
 
 
  /* Use the old method of peeking around in `struct user' if the
  /* Use the old method of peeking around in `struct user' if the
     GETREGS request isn't available.  */
     GETREGS request isn't available.  */
  if (! have_ptrace_getregs)
  if (! have_ptrace_getregs)
    {
    {
      old_fetch_inferior_registers (regno);
      old_fetch_inferior_registers (regno);
      return;
      return;
    }
    }
 
 
  /* Linux LWP ID's are process ID's.  */
  /* Linux LWP ID's are process ID's.  */
  if ((tid = TIDGET (inferior_ptid)) == 0)
  if ((tid = TIDGET (inferior_ptid)) == 0)
    tid = PIDGET (inferior_ptid);               /* Not a threaded program.  */
    tid = PIDGET (inferior_ptid);               /* Not a threaded program.  */
 
 
  /* Use the PTRACE_GETFPXREGS request whenever possible, since it
  /* Use the PTRACE_GETFPXREGS request whenever possible, since it
     transfers more registers in one system call, and we'll cache the
     transfers more registers in one system call, and we'll cache the
     results.  But remember that fetch_fpxregs can fail, and return
     results.  But remember that fetch_fpxregs can fail, and return
     zero.  */
     zero.  */
  if (regno == -1)
  if (regno == -1)
    {
    {
      fetch_regs (tid);
      fetch_regs (tid);
 
 
      /* The call above might reset `have_ptrace_getregs'.  */
      /* The call above might reset `have_ptrace_getregs'.  */
      if (! have_ptrace_getregs)
      if (! have_ptrace_getregs)
        {
        {
          old_fetch_inferior_registers (-1);
          old_fetch_inferior_registers (-1);
          return;
          return;
        }
        }
 
 
      if (fetch_fpxregs (tid))
      if (fetch_fpxregs (tid))
        return;
        return;
      fetch_fpregs (tid);
      fetch_fpregs (tid);
      return;
      return;
    }
    }
 
 
  if (GETREGS_SUPPLIES (regno))
  if (GETREGS_SUPPLIES (regno))
    {
    {
      fetch_regs (tid);
      fetch_regs (tid);
      return;
      return;
    }
    }
 
 
  if (GETFPXREGS_SUPPLIES (regno))
  if (GETFPXREGS_SUPPLIES (regno))
    {
    {
      if (fetch_fpxregs (tid))
      if (fetch_fpxregs (tid))
        return;
        return;
 
 
      /* Either our processor or our kernel doesn't support the SSE
      /* Either our processor or our kernel doesn't support the SSE
         registers, so read the FP registers in the traditional way,
         registers, so read the FP registers in the traditional way,
         and fill the SSE registers with dummy values.  It would be
         and fill the SSE registers with dummy values.  It would be
         more graceful to handle differences in the register set using
         more graceful to handle differences in the register set using
         gdbarch.  Until then, this will at least make things work
         gdbarch.  Until then, this will at least make things work
         plausibly.  */
         plausibly.  */
      fetch_fpregs (tid);
      fetch_fpregs (tid);
      return;
      return;
    }
    }
 
 
  internal_error (__FILE__, __LINE__,
  internal_error (__FILE__, __LINE__,
                  "Got request for bad register number %d.", regno);
                  "Got request for bad register number %d.", regno);
}
}
 
 
/* Store register REGNO back into the child process.  If REGNO is -1,
/* Store register REGNO back into the child process.  If REGNO is -1,
   do this for all registers (including the floating point and SSE
   do this for all registers (including the floating point and SSE
   registers).  */
   registers).  */
void
void
store_inferior_registers (int regno)
store_inferior_registers (int regno)
{
{
  int tid;
  int tid;
 
 
  /* Use the old method of poking around in `struct user' if the
  /* Use the old method of poking around in `struct user' if the
     SETREGS request isn't available.  */
     SETREGS request isn't available.  */
  if (! have_ptrace_getregs)
  if (! have_ptrace_getregs)
    {
    {
      old_store_inferior_registers (regno);
      old_store_inferior_registers (regno);
      return;
      return;
    }
    }
 
 
  /* Linux LWP ID's are process ID's.  */
  /* Linux LWP ID's are process ID's.  */
  if ((tid = TIDGET (inferior_ptid)) == 0)
  if ((tid = TIDGET (inferior_ptid)) == 0)
    tid = PIDGET (inferior_ptid);       /* Not a threaded program.  */
    tid = PIDGET (inferior_ptid);       /* Not a threaded program.  */
 
 
  /* Use the PTRACE_SETFPXREGS requests whenever possible, since it
  /* Use the PTRACE_SETFPXREGS requests whenever possible, since it
     transfers more registers in one system call.  But remember that
     transfers more registers in one system call.  But remember that
     store_fpxregs can fail, and return zero.  */
     store_fpxregs can fail, and return zero.  */
  if (regno == -1)
  if (regno == -1)
    {
    {
      store_regs (tid, regno);
      store_regs (tid, regno);
      if (store_fpxregs (tid, regno))
      if (store_fpxregs (tid, regno))
        return;
        return;
      store_fpregs (tid, regno);
      store_fpregs (tid, regno);
      return;
      return;
    }
    }
 
 
  if (GETREGS_SUPPLIES (regno))
  if (GETREGS_SUPPLIES (regno))
    {
    {
      store_regs (tid, regno);
      store_regs (tid, regno);
      return;
      return;
    }
    }
 
 
  if (GETFPXREGS_SUPPLIES (regno))
  if (GETFPXREGS_SUPPLIES (regno))
    {
    {
      if (store_fpxregs (tid, regno))
      if (store_fpxregs (tid, regno))
        return;
        return;
 
 
      /* Either our processor or our kernel doesn't support the SSE
      /* Either our processor or our kernel doesn't support the SSE
         registers, so just write the FP registers in the traditional
         registers, so just write the FP registers in the traditional
         way.  */
         way.  */
      store_fpregs (tid, regno);
      store_fpregs (tid, regno);
      return;
      return;
    }
    }
 
 
  internal_error (__FILE__, __LINE__,
  internal_error (__FILE__, __LINE__,
                  "Got request to store bad register number %d.", regno);
                  "Got request to store bad register number %d.", regno);
}
}


 
 
static unsigned long
static unsigned long
i386_linux_dr_get (int regnum)
i386_linux_dr_get (int regnum)
{
{
  int tid;
  int tid;
  unsigned long value;
  unsigned long value;
 
 
  /* FIXME: kettenis/2001-01-29: It's not clear what we should do with
  /* FIXME: kettenis/2001-01-29: It's not clear what we should do with
     multi-threaded processes here.  For now, pretend there is just
     multi-threaded processes here.  For now, pretend there is just
     one thread.  */
     one thread.  */
  tid = PIDGET (inferior_ptid);
  tid = PIDGET (inferior_ptid);
 
 
  /* FIXME: kettenis/2001-03-27: Calling perror_with_name if the
  /* FIXME: kettenis/2001-03-27: Calling perror_with_name if the
     ptrace call fails breaks debugging remote targets.  The correct
     ptrace call fails breaks debugging remote targets.  The correct
     way to fix this is to add the hardware breakpoint and watchpoint
     way to fix this is to add the hardware breakpoint and watchpoint
     stuff to the target vectore.  For now, just return zero if the
     stuff to the target vectore.  For now, just return zero if the
     ptrace call fails.  */
     ptrace call fails.  */
  errno = 0;
  errno = 0;
  value = ptrace (PT_READ_U, tid,
  value = ptrace (PT_READ_U, tid,
                  offsetof (struct user, u_debugreg[regnum]), 0);
                  offsetof (struct user, u_debugreg[regnum]), 0);
  if (errno != 0)
  if (errno != 0)
#if 0
#if 0
    perror_with_name ("Couldn't read debug register");
    perror_with_name ("Couldn't read debug register");
#else
#else
    return 0;
    return 0;
#endif
#endif
 
 
  return value;
  return value;
}
}
 
 
static void
static void
i386_linux_dr_set (int regnum, unsigned long value)
i386_linux_dr_set (int regnum, unsigned long value)
{
{
  int tid;
  int tid;
 
 
  /* FIXME: kettenis/2001-01-29: It's not clear what we should do with
  /* FIXME: kettenis/2001-01-29: It's not clear what we should do with
     multi-threaded processes here.  For now, pretend there is just
     multi-threaded processes here.  For now, pretend there is just
     one thread.  */
     one thread.  */
  tid = PIDGET (inferior_ptid);
  tid = PIDGET (inferior_ptid);
 
 
  errno = 0;
  errno = 0;
  ptrace (PT_WRITE_U, tid,
  ptrace (PT_WRITE_U, tid,
          offsetof (struct user, u_debugreg[regnum]), value);
          offsetof (struct user, u_debugreg[regnum]), value);
  if (errno != 0)
  if (errno != 0)
    perror_with_name ("Couldn't write debug register");
    perror_with_name ("Couldn't write debug register");
}
}
 
 
void
void
i386_linux_dr_set_control (unsigned long control)
i386_linux_dr_set_control (unsigned long control)
{
{
  i386_linux_dr_set (DR_CONTROL, control);
  i386_linux_dr_set (DR_CONTROL, control);
}
}
 
 
void
void
i386_linux_dr_set_addr (int regnum, CORE_ADDR addr)
i386_linux_dr_set_addr (int regnum, CORE_ADDR addr)
{
{
  gdb_assert (regnum >= 0 && regnum <= DR_LASTADDR - DR_FIRSTADDR);
  gdb_assert (regnum >= 0 && regnum <= DR_LASTADDR - DR_FIRSTADDR);
 
 
  i386_linux_dr_set (DR_FIRSTADDR + regnum, addr);
  i386_linux_dr_set (DR_FIRSTADDR + regnum, addr);
}
}
 
 
void
void
i386_linux_dr_reset_addr (int regnum)
i386_linux_dr_reset_addr (int regnum)
{
{
  gdb_assert (regnum >= 0 && regnum <= DR_LASTADDR - DR_FIRSTADDR);
  gdb_assert (regnum >= 0 && regnum <= DR_LASTADDR - DR_FIRSTADDR);
 
 
  i386_linux_dr_set (DR_FIRSTADDR + regnum, 0L);
  i386_linux_dr_set (DR_FIRSTADDR + regnum, 0L);
}
}
 
 
unsigned long
unsigned long
i386_linux_dr_get_status (void)
i386_linux_dr_get_status (void)
{
{
  return i386_linux_dr_get (DR_STATUS);
  return i386_linux_dr_get (DR_STATUS);
}
}


 
 
/* Interpreting register set info found in core files.  */
/* Interpreting register set info found in core files.  */
 
 
/* Provide registers to GDB from a core file.
/* Provide registers to GDB from a core file.
 
 
   (We can't use the generic version of this function in
   (We can't use the generic version of this function in
   core-regset.c, because Linux has *three* different kinds of
   core-regset.c, because Linux has *three* different kinds of
   register set notes.  core-regset.c would have to call
   register set notes.  core-regset.c would have to call
   supply_fpxregset, which most platforms don't have.)
   supply_fpxregset, which most platforms don't have.)
 
 
   CORE_REG_SECT points to an array of bytes, which are the contents
   CORE_REG_SECT points to an array of bytes, which are the contents
   of a `note' from a core file which BFD thinks might contain
   of a `note' from a core file which BFD thinks might contain
   register contents.  CORE_REG_SIZE is its size.
   register contents.  CORE_REG_SIZE is its size.
 
 
   WHICH says which register set corelow suspects this is:
   WHICH says which register set corelow suspects this is:
     0 --- the general-purpose register set, in elf_gregset_t format
     0 --- the general-purpose register set, in elf_gregset_t format
     2 --- the floating-point register set, in elf_fpregset_t format
     2 --- the floating-point register set, in elf_fpregset_t format
     3 --- the extended floating-point register set, in elf_fpxregset_t format
     3 --- the extended floating-point register set, in elf_fpxregset_t format
 
 
   REG_ADDR isn't used on Linux.  */
   REG_ADDR isn't used on Linux.  */
 
 
static void
static void
fetch_core_registers (char *core_reg_sect, unsigned core_reg_size,
fetch_core_registers (char *core_reg_sect, unsigned core_reg_size,
                      int which, CORE_ADDR reg_addr)
                      int which, CORE_ADDR reg_addr)
{
{
  elf_gregset_t gregset;
  elf_gregset_t gregset;
  elf_fpregset_t fpregset;
  elf_fpregset_t fpregset;
 
 
  switch (which)
  switch (which)
    {
    {
    case 0:
    case 0:
      if (core_reg_size != sizeof (gregset))
      if (core_reg_size != sizeof (gregset))
        warning ("Wrong size gregset in core file.");
        warning ("Wrong size gregset in core file.");
      else
      else
        {
        {
          memcpy (&gregset, core_reg_sect, sizeof (gregset));
          memcpy (&gregset, core_reg_sect, sizeof (gregset));
          supply_gregset (&gregset);
          supply_gregset (&gregset);
        }
        }
      break;
      break;
 
 
    case 2:
    case 2:
      if (core_reg_size != sizeof (fpregset))
      if (core_reg_size != sizeof (fpregset))
        warning ("Wrong size fpregset in core file.");
        warning ("Wrong size fpregset in core file.");
      else
      else
        {
        {
          memcpy (&fpregset, core_reg_sect, sizeof (fpregset));
          memcpy (&fpregset, core_reg_sect, sizeof (fpregset));
          supply_fpregset (&fpregset);
          supply_fpregset (&fpregset);
        }
        }
      break;
      break;
 
 
#ifdef HAVE_PTRACE_GETFPXREGS
#ifdef HAVE_PTRACE_GETFPXREGS
      {
      {
        elf_fpxregset_t fpxregset;
        elf_fpxregset_t fpxregset;
 
 
      case 3:
      case 3:
        if (core_reg_size != sizeof (fpxregset))
        if (core_reg_size != sizeof (fpxregset))
          warning ("Wrong size fpxregset in core file.");
          warning ("Wrong size fpxregset in core file.");
        else
        else
          {
          {
            memcpy (&fpxregset, core_reg_sect, sizeof (fpxregset));
            memcpy (&fpxregset, core_reg_sect, sizeof (fpxregset));
            supply_fpxregset (&fpxregset);
            supply_fpxregset (&fpxregset);
          }
          }
        break;
        break;
      }
      }
#endif
#endif
 
 
    default:
    default:
      /* We've covered all the kinds of registers we know about here,
      /* We've covered all the kinds of registers we know about here,
         so this must be something we wouldn't know what to do with
         so this must be something we wouldn't know what to do with
         anyway.  Just ignore it.  */
         anyway.  Just ignore it.  */
      break;
      break;
    }
    }
}
}


 
 
/* The instruction for a Linux system call is:
/* The instruction for a Linux system call is:
       int $0x80
       int $0x80
   or 0xcd 0x80.  */
   or 0xcd 0x80.  */
 
 
static const unsigned char linux_syscall[] = { 0xcd, 0x80 };
static const unsigned char linux_syscall[] = { 0xcd, 0x80 };
 
 
#define LINUX_SYSCALL_LEN (sizeof linux_syscall)
#define LINUX_SYSCALL_LEN (sizeof linux_syscall)
 
 
/* The system call number is stored in the %eax register.  */
/* The system call number is stored in the %eax register.  */
#define LINUX_SYSCALL_REGNUM 0  /* %eax */
#define LINUX_SYSCALL_REGNUM 0  /* %eax */
 
 
/* We are specifically interested in the sigreturn and rt_sigreturn
/* We are specifically interested in the sigreturn and rt_sigreturn
   system calls.  */
   system calls.  */
 
 
#ifndef SYS_sigreturn
#ifndef SYS_sigreturn
#define SYS_sigreturn           0x77
#define SYS_sigreturn           0x77
#endif
#endif
#ifndef SYS_rt_sigreturn
#ifndef SYS_rt_sigreturn
#define SYS_rt_sigreturn        0xad
#define SYS_rt_sigreturn        0xad
#endif
#endif
 
 
/* Offset to saved processor flags, from <asm/sigcontext.h>.  */
/* Offset to saved processor flags, from <asm/sigcontext.h>.  */
#define LINUX_SIGCONTEXT_EFLAGS_OFFSET (64)
#define LINUX_SIGCONTEXT_EFLAGS_OFFSET (64)
 
 
/* Resume execution of the inferior process.
/* Resume execution of the inferior process.
   If STEP is nonzero, single-step it.
   If STEP is nonzero, single-step it.
   If SIGNAL is nonzero, give it that signal.  */
   If SIGNAL is nonzero, give it that signal.  */
 
 
void
void
child_resume (ptid_t ptid, int step, enum target_signal signal)
child_resume (ptid_t ptid, int step, enum target_signal signal)
{
{
  int pid = PIDGET (ptid);
  int pid = PIDGET (ptid);
 
 
  int request = PTRACE_CONT;
  int request = PTRACE_CONT;
 
 
  if (pid == -1)
  if (pid == -1)
    /* Resume all threads.  */
    /* Resume all threads.  */
    /* I think this only gets used in the non-threaded case, where "resume
    /* I think this only gets used in the non-threaded case, where "resume
       all threads" and "resume inferior_ptid" are the same.  */
       all threads" and "resume inferior_ptid" are the same.  */
    pid = PIDGET (inferior_ptid);
    pid = PIDGET (inferior_ptid);
 
 
  if (step)
  if (step)
    {
    {
      CORE_ADDR pc = read_pc_pid (pid_to_ptid (pid));
      CORE_ADDR pc = read_pc_pid (pid_to_ptid (pid));
      unsigned char buf[LINUX_SYSCALL_LEN];
      unsigned char buf[LINUX_SYSCALL_LEN];
 
 
      request = PTRACE_SINGLESTEP;
      request = PTRACE_SINGLESTEP;
 
 
      /* Returning from a signal trampoline is done by calling a
      /* Returning from a signal trampoline is done by calling a
         special system call (sigreturn or rt_sigreturn, see
         special system call (sigreturn or rt_sigreturn, see
         i386-linux-tdep.c for more information).  This system call
         i386-linux-tdep.c for more information).  This system call
         restores the registers that were saved when the signal was
         restores the registers that were saved when the signal was
         raised, including %eflags.  That means that single-stepping
         raised, including %eflags.  That means that single-stepping
         won't work.  Instead, we'll have to modify the signal context
         won't work.  Instead, we'll have to modify the signal context
         that's about to be restored, and set the trace flag there.  */
         that's about to be restored, and set the trace flag there.  */
 
 
      /* First check if PC is at a system call.  */
      /* First check if PC is at a system call.  */
      if (read_memory_nobpt (pc, (char *) buf, LINUX_SYSCALL_LEN) == 0
      if (read_memory_nobpt (pc, (char *) buf, LINUX_SYSCALL_LEN) == 0
          && memcmp (buf, linux_syscall, LINUX_SYSCALL_LEN) == 0)
          && memcmp (buf, linux_syscall, LINUX_SYSCALL_LEN) == 0)
        {
        {
          int syscall = read_register_pid (LINUX_SYSCALL_REGNUM,
          int syscall = read_register_pid (LINUX_SYSCALL_REGNUM,
                                           pid_to_ptid (pid));
                                           pid_to_ptid (pid));
 
 
          /* Then check the system call number.  */
          /* Then check the system call number.  */
          if (syscall == SYS_sigreturn || syscall == SYS_rt_sigreturn)
          if (syscall == SYS_sigreturn || syscall == SYS_rt_sigreturn)
            {
            {
              CORE_ADDR sp = read_register (SP_REGNUM);
              CORE_ADDR sp = read_register (SP_REGNUM);
              CORE_ADDR addr = sp;
              CORE_ADDR addr = sp;
              unsigned long int eflags;
              unsigned long int eflags;
 
 
              if (syscall == SYS_rt_sigreturn)
              if (syscall == SYS_rt_sigreturn)
                addr = read_memory_integer (sp + 8, 4) + 20;
                addr = read_memory_integer (sp + 8, 4) + 20;
 
 
              /* Set the trace flag in the context that's about to be
              /* Set the trace flag in the context that's about to be
                 restored.  */
                 restored.  */
              addr += LINUX_SIGCONTEXT_EFLAGS_OFFSET;
              addr += LINUX_SIGCONTEXT_EFLAGS_OFFSET;
              read_memory (addr, (char *) &eflags, 4);
              read_memory (addr, (char *) &eflags, 4);
              eflags |= 0x0100;
              eflags |= 0x0100;
              write_memory (addr, (char *) &eflags, 4);
              write_memory (addr, (char *) &eflags, 4);
            }
            }
        }
        }
    }
    }
 
 
  if (ptrace (request, pid, 0, target_signal_to_host (signal)) == -1)
  if (ptrace (request, pid, 0, target_signal_to_host (signal)) == -1)
    perror_with_name ("ptrace");
    perror_with_name ("ptrace");
}
}


 
 
/* Register that we are able to handle Linux ELF core file formats.  */
/* Register that we are able to handle Linux ELF core file formats.  */
 
 
static struct core_fns linux_elf_core_fns =
static struct core_fns linux_elf_core_fns =
{
{
  bfd_target_elf_flavour,               /* core_flavour */
  bfd_target_elf_flavour,               /* core_flavour */
  default_check_format,                 /* check_format */
  default_check_format,                 /* check_format */
  default_core_sniffer,                 /* core_sniffer */
  default_core_sniffer,                 /* core_sniffer */
  fetch_core_registers,                 /* core_read_registers */
  fetch_core_registers,                 /* core_read_registers */
  NULL                                  /* next */
  NULL                                  /* next */
};
};
 
 
void
void
_initialize_i386_linux_nat (void)
_initialize_i386_linux_nat (void)
{
{
  add_core_fns (&linux_elf_core_fns);
  add_core_fns (&linux_elf_core_fns);
}
}
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.