OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [insight/] [gdb/] [memattr.c] - Diff between revs 578 and 1765

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 578 Rev 1765
/* Memory attributes support, for GDB.
/* Memory attributes support, for GDB.
   Copyright 2001 Free Software Foundation, Inc.
   Copyright 2001 Free Software Foundation, Inc.
 
 
   This file is part of GDB.
   This file is part of GDB.
 
 
   This program is free software; you can redistribute it and/or modify
   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2 of the License, or
   the Free Software Foundation; either version 2 of the License, or
   (at your option) any later version.
   (at your option) any later version.
 
 
   This program is distributed in the hope that it will be useful,
   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.
   GNU General Public License for more details.
 
 
   You should have received a copy of the GNU General Public License
   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   along with this program; if not, write to the Free Software
   Foundation, Inc., 59 Temple Place - Suite 330,
   Foundation, Inc., 59 Temple Place - Suite 330,
   Boston, MA 02111-1307, USA.  */
   Boston, MA 02111-1307, USA.  */
 
 
#include "defs.h"
#include "defs.h"
#include "command.h"
#include "command.h"
#include "gdbcmd.h"
#include "gdbcmd.h"
#include "memattr.h"
#include "memattr.h"
#include "target.h"
#include "target.h"
#include "value.h"
#include "value.h"
#include "language.h"
#include "language.h"
#include "gdb_string.h"
#include "gdb_string.h"
 
 
/* FIXME: While this conflicts with the enum defined in breakpoint.h,
/* FIXME: While this conflicts with the enum defined in breakpoint.h,
   I used them to be consistant with how breakpoints, tracepoints, and
   I used them to be consistant with how breakpoints, tracepoints, and
   displays are implemented.  It doesn't lose now because breakpoint.h
   displays are implemented.  It doesn't lose now because breakpoint.h
   is not included.  */
   is not included.  */
enum enable
enum enable
{
{
  disabled,
  disabled,
  enabled
  enabled
};
};
 
 
const struct mem_attrib default_mem_attrib =
const struct mem_attrib default_mem_attrib =
{
{
  MEM_RW,                       /* mode */
  MEM_RW,                       /* mode */
  MEM_WIDTH_UNSPECIFIED,
  MEM_WIDTH_UNSPECIFIED,
  false,                        /* hwbreak */
  false,                        /* hwbreak */
  false,                        /* cache */
  false,                        /* cache */
  false                         /* verify */
  false                         /* verify */
};
};
 
 
static struct mem_region *mem_region_chain = NULL;
static struct mem_region *mem_region_chain = NULL;
static int mem_number = 0;
static int mem_number = 0;
 
 
static struct mem_region *
static struct mem_region *
create_mem_region (CORE_ADDR lo, CORE_ADDR hi,
create_mem_region (CORE_ADDR lo, CORE_ADDR hi,
                   const struct mem_attrib *attrib)
                   const struct mem_attrib *attrib)
{
{
  struct mem_region *n, *new;
  struct mem_region *n, *new;
 
 
  if (lo > hi)
  if (lo > hi)
    {
    {
      printf_unfiltered ("invalid memory region\n");
      printf_unfiltered ("invalid memory region\n");
      return NULL;
      return NULL;
    }
    }
 
 
  n = mem_region_chain;
  n = mem_region_chain;
  while (n)
  while (n)
    {
    {
      /* overlapping node */
      /* overlapping node */
      if ((lo >= n->lo && lo <= n->hi) ||
      if ((lo >= n->lo && lo <= n->hi) ||
          (hi >= n->lo && hi <= n->hi))
          (hi >= n->lo && hi <= n->hi))
        {
        {
          printf_unfiltered ("overlapping memory region\n");
          printf_unfiltered ("overlapping memory region\n");
          return NULL;
          return NULL;
        }
        }
      n = n->next;
      n = n->next;
    }
    }
 
 
  new = xmalloc (sizeof (struct mem_region));
  new = xmalloc (sizeof (struct mem_region));
  new->lo = lo;
  new->lo = lo;
  new->hi = hi;
  new->hi = hi;
  new->number = ++mem_number;
  new->number = ++mem_number;
  new->status = enabled;
  new->status = enabled;
  new->attrib = *attrib;
  new->attrib = *attrib;
 
 
  /* link in new node */
  /* link in new node */
  new->next = mem_region_chain;
  new->next = mem_region_chain;
  mem_region_chain = new;
  mem_region_chain = new;
 
 
  return new;
  return new;
}
}
 
 
static void
static void
delete_mem_region (struct mem_region *m)
delete_mem_region (struct mem_region *m)
{
{
  xfree (m);
  xfree (m);
}
}
 
 
/*
/*
 * Look up the memory region cooresponding to ADDR.
 * Look up the memory region cooresponding to ADDR.
 */
 */
struct mem_region *
struct mem_region *
lookup_mem_region (CORE_ADDR addr)
lookup_mem_region (CORE_ADDR addr)
{
{
  static struct mem_region region;
  static struct mem_region region;
  struct mem_region *m;
  struct mem_region *m;
  CORE_ADDR lo;
  CORE_ADDR lo;
  CORE_ADDR hi;
  CORE_ADDR hi;
 
 
  /* First we initialize LO and HI so that they describe the entire
  /* First we initialize LO and HI so that they describe the entire
     memory space.  As we process the memory region chain, they are
     memory space.  As we process the memory region chain, they are
     redefined to describe the minimal region containing ADDR.  LO
     redefined to describe the minimal region containing ADDR.  LO
     and HI are used in the case where no memory region is defined
     and HI are used in the case where no memory region is defined
     that contains ADDR.  If a memory region is disabled, it is
     that contains ADDR.  If a memory region is disabled, it is
     treated as if it does not exist.  */
     treated as if it does not exist.  */
 
 
  lo = (CORE_ADDR) 0;
  lo = (CORE_ADDR) 0;
  hi = (CORE_ADDR) ~ 0;
  hi = (CORE_ADDR) ~ 0;
 
 
  for (m = mem_region_chain; m; m = m->next)
  for (m = mem_region_chain; m; m = m->next)
    {
    {
      if (m->status == enabled)
      if (m->status == enabled)
        {
        {
          if (addr >= m->lo && addr < m->hi)
          if (addr >= m->lo && addr < m->hi)
            return m;
            return m;
 
 
          if (addr >= m->hi && lo < m->hi)
          if (addr >= m->hi && lo < m->hi)
            lo = m->hi;
            lo = m->hi;
 
 
          if (addr <= m->lo && hi > m->lo)
          if (addr <= m->lo && hi > m->lo)
            hi = m->lo;
            hi = m->lo;
        }
        }
    }
    }
 
 
  /* Because no region was found, we must cons up one based on what
  /* Because no region was found, we must cons up one based on what
     was learned above.  */
     was learned above.  */
  region.lo = lo;
  region.lo = lo;
  region.hi = hi;
  region.hi = hi;
  region.attrib = default_mem_attrib;
  region.attrib = default_mem_attrib;
  return &region;
  return &region;
}
}


 
 
static void
static void
mem_command (char *args, int from_tty)
mem_command (char *args, int from_tty)
{
{
  CORE_ADDR lo, hi;
  CORE_ADDR lo, hi;
  char *tok;
  char *tok;
  struct mem_attrib attrib;
  struct mem_attrib attrib;
 
 
  if (!args)
  if (!args)
    error_no_arg ("No mem");
    error_no_arg ("No mem");
 
 
  tok = strtok (args, " \t");
  tok = strtok (args, " \t");
  if (!tok)
  if (!tok)
    error ("no lo address");
    error ("no lo address");
  lo = parse_and_eval_address (tok);
  lo = parse_and_eval_address (tok);
 
 
  tok = strtok (NULL, " \t");
  tok = strtok (NULL, " \t");
  if (!tok)
  if (!tok)
    error ("no hi address");
    error ("no hi address");
  hi = parse_and_eval_address (tok);
  hi = parse_and_eval_address (tok);
 
 
  attrib = default_mem_attrib;
  attrib = default_mem_attrib;
  while ((tok = strtok (NULL, " \t")) != NULL)
  while ((tok = strtok (NULL, " \t")) != NULL)
    {
    {
      if (strcmp (tok, "rw") == 0)
      if (strcmp (tok, "rw") == 0)
        attrib.mode = MEM_RW;
        attrib.mode = MEM_RW;
      else if (strcmp (tok, "ro") == 0)
      else if (strcmp (tok, "ro") == 0)
        attrib.mode = MEM_RO;
        attrib.mode = MEM_RO;
      else if (strcmp (tok, "wo") == 0)
      else if (strcmp (tok, "wo") == 0)
        attrib.mode = MEM_WO;
        attrib.mode = MEM_WO;
 
 
      else if (strcmp (tok, "8") == 0)
      else if (strcmp (tok, "8") == 0)
        attrib.width = MEM_WIDTH_8;
        attrib.width = MEM_WIDTH_8;
      else if (strcmp (tok, "16") == 0)
      else if (strcmp (tok, "16") == 0)
        {
        {
          if ((lo % 2 != 0) || (hi % 2 != 0))
          if ((lo % 2 != 0) || (hi % 2 != 0))
            error ("region bounds not 16 bit aligned");
            error ("region bounds not 16 bit aligned");
          attrib.width = MEM_WIDTH_16;
          attrib.width = MEM_WIDTH_16;
        }
        }
      else if (strcmp (tok, "32") == 0)
      else if (strcmp (tok, "32") == 0)
        {
        {
          if ((lo % 4 != 0) || (hi % 4 != 0))
          if ((lo % 4 != 0) || (hi % 4 != 0))
            error ("region bounds not 32 bit aligned");
            error ("region bounds not 32 bit aligned");
          attrib.width = MEM_WIDTH_32;
          attrib.width = MEM_WIDTH_32;
        }
        }
      else if (strcmp (tok, "64") == 0)
      else if (strcmp (tok, "64") == 0)
        {
        {
          if ((lo % 8 != 0) || (hi % 8 != 0))
          if ((lo % 8 != 0) || (hi % 8 != 0))
            error ("region bounds not 64 bit aligned");
            error ("region bounds not 64 bit aligned");
          attrib.width = MEM_WIDTH_64;
          attrib.width = MEM_WIDTH_64;
        }
        }
 
 
#if 0
#if 0
      else if (strcmp (tok, "hwbreak") == 0)
      else if (strcmp (tok, "hwbreak") == 0)
        attrib.hwbreak = true;
        attrib.hwbreak = true;
      else if (strcmp (tok, "swbreak") == 0)
      else if (strcmp (tok, "swbreak") == 0)
        attrib.hwbreak = false;
        attrib.hwbreak = false;
#endif
#endif
 
 
      else if (strcmp (tok, "cache") == 0)
      else if (strcmp (tok, "cache") == 0)
        attrib.cache = true;
        attrib.cache = true;
      else if (strcmp (tok, "nocache") == 0)
      else if (strcmp (tok, "nocache") == 0)
        attrib.cache = false;
        attrib.cache = false;
 
 
#if 0
#if 0
      else if (strcmp (tok, "verify") == 0)
      else if (strcmp (tok, "verify") == 0)
        attrib.verify = true;
        attrib.verify = true;
      else if (strcmp (tok, "noverify") == 0)
      else if (strcmp (tok, "noverify") == 0)
        attrib.verify = false;
        attrib.verify = false;
#endif
#endif
 
 
      else
      else
        error ("unknown attribute: %s", tok);
        error ("unknown attribute: %s", tok);
    }
    }
 
 
  create_mem_region (lo, hi, &attrib);
  create_mem_region (lo, hi, &attrib);
}
}


 
 
static void
static void
mem_info_command (char *args, int from_tty)
mem_info_command (char *args, int from_tty)
{
{
  struct mem_region *m;
  struct mem_region *m;
  struct mem_attrib *attrib;
  struct mem_attrib *attrib;
 
 
  if (!mem_region_chain)
  if (!mem_region_chain)
    {
    {
      printf_unfiltered ("There are no memory regions defined.\n");
      printf_unfiltered ("There are no memory regions defined.\n");
      return;
      return;
    }
    }
 
 
  printf_filtered ("Memory regions now in effect:\n");
  printf_filtered ("Memory regions now in effect:\n");
  for (m = mem_region_chain; m; m = m->next)
  for (m = mem_region_chain; m; m = m->next)
    {
    {
      printf_filtered ("%d: %c\t",
      printf_filtered ("%d: %c\t",
                       m->number,
                       m->number,
                       m->status ? 'y' : 'n');
                       m->status ? 'y' : 'n');
      printf_filtered ("%s - ",
      printf_filtered ("%s - ",
                    local_hex_string_custom ((unsigned long) m->lo, "08l"));
                    local_hex_string_custom ((unsigned long) m->lo, "08l"));
      printf_filtered ("%s\t",
      printf_filtered ("%s\t",
                    local_hex_string_custom ((unsigned long) m->hi, "08l"));
                    local_hex_string_custom ((unsigned long) m->hi, "08l"));
 
 
      /* Print a token for each attribute.
      /* Print a token for each attribute.
 
 
       * FIXME: Should we output a comma after each token?  It may
       * FIXME: Should we output a comma after each token?  It may
       * make it easier for users to read, but we'd lose the ability
       * make it easier for users to read, but we'd lose the ability
       * to cut-and-paste the list of attributes when defining a new
       * to cut-and-paste the list of attributes when defining a new
       * region.  Perhaps that is not important.
       * region.  Perhaps that is not important.
       *
       *
       * FIXME: If more attributes are added to GDB, the output may
       * FIXME: If more attributes are added to GDB, the output may
       * become cluttered and difficult for users to read.  At that
       * become cluttered and difficult for users to read.  At that
       * time, we may want to consider printing tokens only if they
       * time, we may want to consider printing tokens only if they
       * are different from the default attribute.  */
       * are different from the default attribute.  */
 
 
      attrib = &m->attrib;
      attrib = &m->attrib;
      switch (attrib->mode)
      switch (attrib->mode)
        {
        {
        case MEM_RW:
        case MEM_RW:
          printf_filtered ("rw ");
          printf_filtered ("rw ");
          break;
          break;
        case MEM_RO:
        case MEM_RO:
          printf_filtered ("ro ");
          printf_filtered ("ro ");
          break;
          break;
        case MEM_WO:
        case MEM_WO:
          printf_filtered ("wo ");
          printf_filtered ("wo ");
          break;
          break;
        }
        }
 
 
      switch (attrib->width)
      switch (attrib->width)
        {
        {
        case MEM_WIDTH_8:
        case MEM_WIDTH_8:
          printf_filtered ("8 ");
          printf_filtered ("8 ");
          break;
          break;
        case MEM_WIDTH_16:
        case MEM_WIDTH_16:
          printf_filtered ("16 ");
          printf_filtered ("16 ");
          break;
          break;
        case MEM_WIDTH_32:
        case MEM_WIDTH_32:
          printf_filtered ("32 ");
          printf_filtered ("32 ");
          break;
          break;
        case MEM_WIDTH_64:
        case MEM_WIDTH_64:
          printf_filtered ("64 ");
          printf_filtered ("64 ");
          break;
          break;
        case MEM_WIDTH_UNSPECIFIED:
        case MEM_WIDTH_UNSPECIFIED:
          break;
          break;
        }
        }
 
 
#if 0
#if 0
      if (attrib->hwbreak)
      if (attrib->hwbreak)
        printf_filtered ("hwbreak");
        printf_filtered ("hwbreak");
      else
      else
        printf_filtered ("swbreak");
        printf_filtered ("swbreak");
#endif
#endif
 
 
      if (attrib->cache)
      if (attrib->cache)
        printf_filtered ("cache ");
        printf_filtered ("cache ");
      else
      else
        printf_filtered ("nocache ");
        printf_filtered ("nocache ");
 
 
#if 0
#if 0
      if (attrib->verify)
      if (attrib->verify)
        printf_filtered ("verify ");
        printf_filtered ("verify ");
      else
      else
        printf_filtered ("noverify ");
        printf_filtered ("noverify ");
#endif
#endif
 
 
      printf_filtered ("\n");
      printf_filtered ("\n");
 
 
      gdb_flush (gdb_stdout);
      gdb_flush (gdb_stdout);
    }
    }
}
}


 
 
/* Enable the memory region number NUM. */
/* Enable the memory region number NUM. */
 
 
static void
static void
mem_enable (int num)
mem_enable (int num)
{
{
  struct mem_region *m;
  struct mem_region *m;
 
 
  for (m = mem_region_chain; m; m = m->next)
  for (m = mem_region_chain; m; m = m->next)
    if (m->number == num)
    if (m->number == num)
      {
      {
        m->status = enabled;
        m->status = enabled;
        return;
        return;
      }
      }
  printf_unfiltered ("No memory region number %d.\n", num);
  printf_unfiltered ("No memory region number %d.\n", num);
}
}
 
 
static void
static void
mem_enable_command (char *args, int from_tty)
mem_enable_command (char *args, int from_tty)
{
{
  char *p = args;
  char *p = args;
  char *p1;
  char *p1;
  int num;
  int num;
  struct mem_region *m;
  struct mem_region *m;
 
 
  dcache_invalidate (target_dcache);
  dcache_invalidate (target_dcache);
 
 
  if (p == 0)
  if (p == 0)
    {
    {
      for (m = mem_region_chain; m; m = m->next)
      for (m = mem_region_chain; m; m = m->next)
        m->status = enabled;
        m->status = enabled;
    }
    }
  else
  else
    while (*p)
    while (*p)
      {
      {
        p1 = p;
        p1 = p;
        while (*p1 >= '0' && *p1 <= '9')
        while (*p1 >= '0' && *p1 <= '9')
          p1++;
          p1++;
        if (*p1 && *p1 != ' ' && *p1 != '\t')
        if (*p1 && *p1 != ' ' && *p1 != '\t')
          error ("Arguments must be memory region numbers.");
          error ("Arguments must be memory region numbers.");
 
 
        num = atoi (p);
        num = atoi (p);
        mem_enable (num);
        mem_enable (num);
 
 
        p = p1;
        p = p1;
        while (*p == ' ' || *p == '\t')
        while (*p == ' ' || *p == '\t')
          p++;
          p++;
      }
      }
}
}


 
 
/* Disable the memory region number NUM. */
/* Disable the memory region number NUM. */
 
 
static void
static void
mem_disable (int num)
mem_disable (int num)
{
{
  struct mem_region *m;
  struct mem_region *m;
 
 
  for (m = mem_region_chain; m; m = m->next)
  for (m = mem_region_chain; m; m = m->next)
    if (m->number == num)
    if (m->number == num)
      {
      {
        m->status = disabled;
        m->status = disabled;
        return;
        return;
      }
      }
  printf_unfiltered ("No memory region number %d.\n", num);
  printf_unfiltered ("No memory region number %d.\n", num);
}
}
 
 
static void
static void
mem_disable_command (char *args, int from_tty)
mem_disable_command (char *args, int from_tty)
{
{
  char *p = args;
  char *p = args;
  char *p1;
  char *p1;
  int num;
  int num;
  struct mem_region *m;
  struct mem_region *m;
 
 
  dcache_invalidate (target_dcache);
  dcache_invalidate (target_dcache);
 
 
  if (p == 0)
  if (p == 0)
    {
    {
      for (m = mem_region_chain; m; m = m->next)
      for (m = mem_region_chain; m; m = m->next)
        m->status = disabled;
        m->status = disabled;
    }
    }
  else
  else
    while (*p)
    while (*p)
      {
      {
        p1 = p;
        p1 = p;
        while (*p1 >= '0' && *p1 <= '9')
        while (*p1 >= '0' && *p1 <= '9')
          p1++;
          p1++;
        if (*p1 && *p1 != ' ' && *p1 != '\t')
        if (*p1 && *p1 != ' ' && *p1 != '\t')
          error ("Arguments must be memory region numbers.");
          error ("Arguments must be memory region numbers.");
 
 
        num = atoi (p);
        num = atoi (p);
        mem_disable (num);
        mem_disable (num);
 
 
        p = p1;
        p = p1;
        while (*p == ' ' || *p == '\t')
        while (*p == ' ' || *p == '\t')
          p++;
          p++;
      }
      }
}
}
 
 
/* Clear memory region list */
/* Clear memory region list */
 
 
static void
static void
mem_clear (void)
mem_clear (void)
{
{
  struct mem_region *m;
  struct mem_region *m;
 
 
  while ((m = mem_region_chain) != 0)
  while ((m = mem_region_chain) != 0)
    {
    {
      mem_region_chain = m->next;
      mem_region_chain = m->next;
      delete_mem_region (m);
      delete_mem_region (m);
    }
    }
}
}
 
 
/* Delete the memory region number NUM. */
/* Delete the memory region number NUM. */
 
 
static void
static void
mem_delete (int num)
mem_delete (int num)
{
{
  struct mem_region *m1, *m;
  struct mem_region *m1, *m;
 
 
  if (!mem_region_chain)
  if (!mem_region_chain)
    {
    {
      printf_unfiltered ("No memory region number %d.\n", num);
      printf_unfiltered ("No memory region number %d.\n", num);
      return;
      return;
    }
    }
 
 
  if (mem_region_chain->number == num)
  if (mem_region_chain->number == num)
    {
    {
      m1 = mem_region_chain;
      m1 = mem_region_chain;
      mem_region_chain = m1->next;
      mem_region_chain = m1->next;
      delete_mem_region (m1);
      delete_mem_region (m1);
    }
    }
  else
  else
    for (m = mem_region_chain; m->next; m = m->next)
    for (m = mem_region_chain; m->next; m = m->next)
      {
      {
        if (m->next->number == num)
        if (m->next->number == num)
          {
          {
            m1 = m->next;
            m1 = m->next;
            m->next = m1->next;
            m->next = m1->next;
            delete_mem_region (m1);
            delete_mem_region (m1);
            break;
            break;
          }
          }
      }
      }
}
}
 
 
static void
static void
mem_delete_command (char *args, int from_tty)
mem_delete_command (char *args, int from_tty)
{
{
  char *p = args;
  char *p = args;
  char *p1;
  char *p1;
  int num;
  int num;
 
 
  dcache_invalidate (target_dcache);
  dcache_invalidate (target_dcache);
 
 
  if (p == 0)
  if (p == 0)
    {
    {
      if (query ("Delete all memory regions? "))
      if (query ("Delete all memory regions? "))
        mem_clear ();
        mem_clear ();
      dont_repeat ();
      dont_repeat ();
      return;
      return;
    }
    }
 
 
  while (*p)
  while (*p)
    {
    {
      p1 = p;
      p1 = p;
      while (*p1 >= '0' && *p1 <= '9')
      while (*p1 >= '0' && *p1 <= '9')
        p1++;
        p1++;
      if (*p1 && *p1 != ' ' && *p1 != '\t')
      if (*p1 && *p1 != ' ' && *p1 != '\t')
        error ("Arguments must be memory region numbers.");
        error ("Arguments must be memory region numbers.");
 
 
      num = atoi (p);
      num = atoi (p);
      mem_delete (num);
      mem_delete (num);
 
 
      p = p1;
      p = p1;
      while (*p == ' ' || *p == '\t')
      while (*p == ' ' || *p == '\t')
        p++;
        p++;
    }
    }
 
 
  dont_repeat ();
  dont_repeat ();
}
}


void
void
_initialize_mem ()
_initialize_mem ()
{
{
  add_com ("mem", class_vars, mem_command,
  add_com ("mem", class_vars, mem_command,
           "Define attributes for memory region.");
           "Define attributes for memory region.");
 
 
  add_cmd ("mem", class_vars, mem_enable_command,
  add_cmd ("mem", class_vars, mem_enable_command,
           "Enable memory region.\n\
           "Enable memory region.\n\
Arguments are the code numbers of the memory regions to enable.\n\
Arguments are the code numbers of the memory regions to enable.\n\
Do \"info mem\" to see current list of code numbers.", &enablelist);
Do \"info mem\" to see current list of code numbers.", &enablelist);
 
 
  add_cmd ("mem", class_vars, mem_disable_command,
  add_cmd ("mem", class_vars, mem_disable_command,
           "Disable memory region.\n\
           "Disable memory region.\n\
Arguments are the code numbers of the memory regions to disable.\n\
Arguments are the code numbers of the memory regions to disable.\n\
Do \"info mem\" to see current list of code numbers.", &disablelist);
Do \"info mem\" to see current list of code numbers.", &disablelist);
 
 
  add_cmd ("mem", class_vars, mem_delete_command,
  add_cmd ("mem", class_vars, mem_delete_command,
           "Delete memory region.\n\
           "Delete memory region.\n\
Arguments are the code numbers of the memory regions to delete.\n\
Arguments are the code numbers of the memory regions to delete.\n\
Do \"info mem\" to see current list of code numbers.", &deletelist);
Do \"info mem\" to see current list of code numbers.", &deletelist);
 
 
  add_info ("mem", mem_info_command,
  add_info ("mem", mem_info_command,
            "Memory region attributes");
            "Memory region attributes");
}
}
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.