OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [insight/] [gdb/] [rs6000-nat.c] - Diff between revs 578 and 1765

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 578 Rev 1765
/* IBM RS/6000 native-dependent code for GDB, the GNU debugger.
/* IBM RS/6000 native-dependent code for GDB, the GNU debugger.
   Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
   Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
   1998, 1999, 2000, 2001
   1998, 1999, 2000, 2001
   Free Software Foundation, Inc.
   Free Software Foundation, Inc.
 
 
   This file is part of GDB.
   This file is part of GDB.
 
 
   This program is free software; you can redistribute it and/or modify
   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2 of the License, or
   the Free Software Foundation; either version 2 of the License, or
   (at your option) any later version.
   (at your option) any later version.
 
 
   This program is distributed in the hope that it will be useful,
   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.
   GNU General Public License for more details.
 
 
   You should have received a copy of the GNU General Public License
   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   along with this program; if not, write to the Free Software
   Foundation, Inc., 59 Temple Place - Suite 330,
   Foundation, Inc., 59 Temple Place - Suite 330,
   Boston, MA 02111-1307, USA.  */
   Boston, MA 02111-1307, USA.  */
 
 
#include "defs.h"
#include "defs.h"
#include "inferior.h"
#include "inferior.h"
#include "target.h"
#include "target.h"
#include "gdbcore.h"
#include "gdbcore.h"
#include "xcoffsolib.h"
#include "xcoffsolib.h"
#include "symfile.h"
#include "symfile.h"
#include "objfiles.h"
#include "objfiles.h"
#include "libbfd.h"             /* For bfd_cache_lookup (FIXME) */
#include "libbfd.h"             /* For bfd_cache_lookup (FIXME) */
#include "bfd.h"
#include "bfd.h"
#include "gdb-stabs.h"
#include "gdb-stabs.h"
#include "regcache.h"
#include "regcache.h"
 
 
#include <sys/ptrace.h>
#include <sys/ptrace.h>
#include <sys/reg.h>
#include <sys/reg.h>
 
 
#include <sys/param.h>
#include <sys/param.h>
#include <sys/dir.h>
#include <sys/dir.h>
#include <sys/user.h>
#include <sys/user.h>
#include <signal.h>
#include <signal.h>
#include <sys/ioctl.h>
#include <sys/ioctl.h>
#include <fcntl.h>
#include <fcntl.h>
#include <errno.h>
#include <errno.h>
 
 
#include <a.out.h>
#include <a.out.h>
#include <sys/file.h>
#include <sys/file.h>
#include "gdb_stat.h"
#include "gdb_stat.h"
#include <sys/core.h>
#include <sys/core.h>
#define __LDINFO_PTRACE32__     /* for __ld_info32 */
#define __LDINFO_PTRACE32__     /* for __ld_info32 */
#define __LDINFO_PTRACE64__     /* for __ld_info64 */
#define __LDINFO_PTRACE64__     /* for __ld_info64 */
#include <sys/ldr.h>
#include <sys/ldr.h>
#include <sys/systemcfg.h>
#include <sys/systemcfg.h>
 
 
/* On AIX4.3+, sys/ldr.h provides different versions of struct ld_info for
/* On AIX4.3+, sys/ldr.h provides different versions of struct ld_info for
   debugging 32-bit and 64-bit processes.  Define a typedef and macros for
   debugging 32-bit and 64-bit processes.  Define a typedef and macros for
   accessing fields in the appropriate structures. */
   accessing fields in the appropriate structures. */
 
 
/* In 32-bit compilation mode (which is the only mode from which ptrace()
/* In 32-bit compilation mode (which is the only mode from which ptrace()
   works on 4.3), __ld_info32 is #defined as equivalent to ld_info. */
   works on 4.3), __ld_info32 is #defined as equivalent to ld_info. */
 
 
#ifdef __ld_info32
#ifdef __ld_info32
# define ARCH3264
# define ARCH3264
#endif
#endif
 
 
/* Return whether the current architecture is 64-bit. */
/* Return whether the current architecture is 64-bit. */
 
 
#ifndef ARCH3264
#ifndef ARCH3264
# define ARCH64() 0
# define ARCH64() 0
#else
#else
# define ARCH64() (REGISTER_RAW_SIZE (0) == 8)
# define ARCH64() (REGISTER_RAW_SIZE (0) == 8)
#endif
#endif
 
 
/* Union of 32-bit and 64-bit ".reg" core file sections. */
/* Union of 32-bit and 64-bit ".reg" core file sections. */
 
 
typedef union {
typedef union {
#ifdef ARCH3264
#ifdef ARCH3264
  struct __context64 r64;
  struct __context64 r64;
#else
#else
  struct mstsave r64;
  struct mstsave r64;
#endif
#endif
  struct mstsave r32;
  struct mstsave r32;
} CoreRegs;
} CoreRegs;
 
 
/* Union of 32-bit and 64-bit versions of ld_info. */
/* Union of 32-bit and 64-bit versions of ld_info. */
 
 
typedef union {
typedef union {
#ifndef ARCH3264
#ifndef ARCH3264
  struct ld_info l32;
  struct ld_info l32;
  struct ld_info l64;
  struct ld_info l64;
#else
#else
  struct __ld_info32 l32;
  struct __ld_info32 l32;
  struct __ld_info64 l64;
  struct __ld_info64 l64;
#endif
#endif
} LdInfo;
} LdInfo;
 
 
/* If compiling with 32-bit and 64-bit debugging capability (e.g. AIX 4.x),
/* If compiling with 32-bit and 64-bit debugging capability (e.g. AIX 4.x),
   declare and initialize a variable named VAR suitable for use as the arch64
   declare and initialize a variable named VAR suitable for use as the arch64
   parameter to the various LDI_*() macros. */
   parameter to the various LDI_*() macros. */
 
 
#ifndef ARCH3264
#ifndef ARCH3264
# define ARCH64_DECL(var)
# define ARCH64_DECL(var)
#else
#else
# define ARCH64_DECL(var) int var = ARCH64 ()
# define ARCH64_DECL(var) int var = ARCH64 ()
#endif
#endif
 
 
/* Return LDI's FIELD for a 64-bit process if ARCH64 and for a 32-bit process
/* Return LDI's FIELD for a 64-bit process if ARCH64 and for a 32-bit process
   otherwise.  This technique only works for FIELDs with the same data type in
   otherwise.  This technique only works for FIELDs with the same data type in
   32-bit and 64-bit versions of ld_info. */
   32-bit and 64-bit versions of ld_info. */
 
 
#ifndef ARCH3264
#ifndef ARCH3264
# define LDI_FIELD(ldi, arch64, field) (ldi)->l32.ldinfo_##field
# define LDI_FIELD(ldi, arch64, field) (ldi)->l32.ldinfo_##field
#else
#else
# define LDI_FIELD(ldi, arch64, field) \
# define LDI_FIELD(ldi, arch64, field) \
  (arch64 ? (ldi)->l64.ldinfo_##field : (ldi)->l32.ldinfo_##field)
  (arch64 ? (ldi)->l64.ldinfo_##field : (ldi)->l32.ldinfo_##field)
#endif
#endif
 
 
/* Return various LDI fields for a 64-bit process if ARCH64 and for a 32-bit
/* Return various LDI fields for a 64-bit process if ARCH64 and for a 32-bit
   process otherwise. */
   process otherwise. */
 
 
#define LDI_NEXT(ldi, arch64)           LDI_FIELD(ldi, arch64, next)
#define LDI_NEXT(ldi, arch64)           LDI_FIELD(ldi, arch64, next)
#define LDI_FD(ldi, arch64)             LDI_FIELD(ldi, arch64, fd)
#define LDI_FD(ldi, arch64)             LDI_FIELD(ldi, arch64, fd)
#define LDI_FILENAME(ldi, arch64)       LDI_FIELD(ldi, arch64, filename)
#define LDI_FILENAME(ldi, arch64)       LDI_FIELD(ldi, arch64, filename)
 
 
extern struct vmap *map_vmap (bfd * bf, bfd * arch);
extern struct vmap *map_vmap (bfd * bf, bfd * arch);
 
 
extern struct target_ops exec_ops;
extern struct target_ops exec_ops;
 
 
static void vmap_exec (void);
static void vmap_exec (void);
 
 
static void vmap_ldinfo (LdInfo *);
static void vmap_ldinfo (LdInfo *);
 
 
static struct vmap *add_vmap (LdInfo *);
static struct vmap *add_vmap (LdInfo *);
 
 
static int objfile_symbol_add (void *);
static int objfile_symbol_add (void *);
 
 
static void vmap_symtab (struct vmap *);
static void vmap_symtab (struct vmap *);
 
 
static void fetch_core_registers (char *, unsigned int, int, CORE_ADDR);
static void fetch_core_registers (char *, unsigned int, int, CORE_ADDR);
 
 
static void exec_one_dummy_insn (void);
static void exec_one_dummy_insn (void);
 
 
extern void
extern void
fixup_breakpoints (CORE_ADDR low, CORE_ADDR high, CORE_ADDR delta);
fixup_breakpoints (CORE_ADDR low, CORE_ADDR high, CORE_ADDR delta);
 
 
/* Conversion from gdb-to-system special purpose register numbers. */
/* Conversion from gdb-to-system special purpose register numbers. */
 
 
static int special_regs[] =
static int special_regs[] =
{
{
  IAR,                          /* PC_REGNUM    */
  IAR,                          /* PC_REGNUM    */
  MSR,                          /* PS_REGNUM    */
  MSR,                          /* PS_REGNUM    */
  CR,                           /* CR_REGNUM    */
  CR,                           /* CR_REGNUM    */
  LR,                           /* LR_REGNUM    */
  LR,                           /* LR_REGNUM    */
  CTR,                          /* CTR_REGNUM   */
  CTR,                          /* CTR_REGNUM   */
  XER,                          /* XER_REGNUM   */
  XER,                          /* XER_REGNUM   */
  MQ                            /* MQ_REGNUM    */
  MQ                            /* MQ_REGNUM    */
};
};
 
 
/* Call ptrace(REQ, ID, ADDR, DATA, BUF). */
/* Call ptrace(REQ, ID, ADDR, DATA, BUF). */
 
 
static int
static int
ptrace32 (int req, int id, int *addr, int data, int *buf)
ptrace32 (int req, int id, int *addr, int data, int *buf)
{
{
  int ret = ptrace (req, id, (int *)addr, data, buf);
  int ret = ptrace (req, id, (int *)addr, data, buf);
#if 0
#if 0
  printf ("ptrace32 (%d, %d, 0x%x, %08x, 0x%x) = 0x%x\n",
  printf ("ptrace32 (%d, %d, 0x%x, %08x, 0x%x) = 0x%x\n",
          req, id, (unsigned int)addr, data, (unsigned int)buf, ret);
          req, id, (unsigned int)addr, data, (unsigned int)buf, ret);
#endif
#endif
  return ret;
  return ret;
}
}
 
 
/* Call ptracex(REQ, ID, ADDR, DATA, BUF). */
/* Call ptracex(REQ, ID, ADDR, DATA, BUF). */
 
 
static int
static int
ptrace64 (int req, int id, long long addr, int data, int *buf)
ptrace64 (int req, int id, long long addr, int data, int *buf)
{
{
#ifdef ARCH3264
#ifdef ARCH3264
  int ret = ptracex (req, id, addr, data, buf);
  int ret = ptracex (req, id, addr, data, buf);
#else
#else
  int ret = 0;
  int ret = 0;
#endif
#endif
#if 0
#if 0
  printf ("ptrace64 (%d, %d, 0x%llx, %08x, 0x%x) = 0x%x\n",
  printf ("ptrace64 (%d, %d, 0x%llx, %08x, 0x%x) = 0x%x\n",
          req, id, addr, data, (unsigned int)buf, ret);
          req, id, addr, data, (unsigned int)buf, ret);
#endif
#endif
  return ret;
  return ret;
}
}
 
 
/* Fetch register REGNO from the inferior. */
/* Fetch register REGNO from the inferior. */
 
 
static void
static void
fetch_register (int regno)
fetch_register (int regno)
{
{
  int *addr = (int *) &registers[REGISTER_BYTE (regno)];
  int *addr = (int *) &registers[REGISTER_BYTE (regno)];
  int nr;
  int nr;
 
 
  /* Retrieved values may be -1, so infer errors from errno. */
  /* Retrieved values may be -1, so infer errors from errno. */
  errno = 0;
  errno = 0;
 
 
  /* Floating-point registers. */
  /* Floating-point registers. */
  if (regno >= FP0_REGNUM && regno <= FPLAST_REGNUM)
  if (regno >= FP0_REGNUM && regno <= FPLAST_REGNUM)
    {
    {
      nr = regno - FP0_REGNUM + FPR0;
      nr = regno - FP0_REGNUM + FPR0;
      ptrace32 (PT_READ_FPR, PIDGET (inferior_ptid), addr, nr, 0);
      ptrace32 (PT_READ_FPR, PIDGET (inferior_ptid), addr, nr, 0);
    }
    }
 
 
  /* Bogus register number. */
  /* Bogus register number. */
  else if (regno > LAST_UISA_SP_REGNUM)
  else if (regno > LAST_UISA_SP_REGNUM)
    fprintf_unfiltered (gdb_stderr,
    fprintf_unfiltered (gdb_stderr,
                        "gdb error: register no %d not implemented.\n",
                        "gdb error: register no %d not implemented.\n",
                        regno);
                        regno);
 
 
  /* Fixed-point registers. */
  /* Fixed-point registers. */
  else
  else
    {
    {
      if (regno >= FIRST_UISA_SP_REGNUM)
      if (regno >= FIRST_UISA_SP_REGNUM)
        nr = special_regs[regno - FIRST_UISA_SP_REGNUM];
        nr = special_regs[regno - FIRST_UISA_SP_REGNUM];
      else
      else
        nr = regno;
        nr = regno;
 
 
      if (!ARCH64 ())
      if (!ARCH64 ())
        *addr = ptrace32 (PT_READ_GPR, PIDGET (inferior_ptid), (int *)nr, 0, 0);
        *addr = ptrace32 (PT_READ_GPR, PIDGET (inferior_ptid), (int *)nr, 0, 0);
      else
      else
        {
        {
          /* PT_READ_GPR requires the buffer parameter to point to long long,
          /* PT_READ_GPR requires the buffer parameter to point to long long,
             even if the register is really only 32 bits. */
             even if the register is really only 32 bits. */
          long long buf;
          long long buf;
          ptrace64 (PT_READ_GPR, PIDGET (inferior_ptid), nr, 0, (int *)&buf);
          ptrace64 (PT_READ_GPR, PIDGET (inferior_ptid), nr, 0, (int *)&buf);
          if (REGISTER_RAW_SIZE (regno) == 8)
          if (REGISTER_RAW_SIZE (regno) == 8)
            memcpy (addr, &buf, 8);
            memcpy (addr, &buf, 8);
          else
          else
            *addr = buf;
            *addr = buf;
        }
        }
    }
    }
 
 
  if (!errno)
  if (!errno)
    register_valid[regno] = 1;
    register_valid[regno] = 1;
  else
  else
    {
    {
#if 0
#if 0
      /* FIXME: this happens 3 times at the start of each 64-bit program. */
      /* FIXME: this happens 3 times at the start of each 64-bit program. */
      perror ("ptrace read");
      perror ("ptrace read");
#endif
#endif
      errno = 0;
      errno = 0;
    }
    }
}
}
 
 
/* Store register REGNO back into the inferior. */
/* Store register REGNO back into the inferior. */
 
 
static void
static void
store_register (int regno)
store_register (int regno)
{
{
  int *addr = (int *) &registers[REGISTER_BYTE (regno)];
  int *addr = (int *) &registers[REGISTER_BYTE (regno)];
  int nr;
  int nr;
 
 
  /* -1 can be a successful return value, so infer errors from errno. */
  /* -1 can be a successful return value, so infer errors from errno. */
  errno = 0;
  errno = 0;
 
 
  /* Floating-point registers. */
  /* Floating-point registers. */
  if (regno >= FP0_REGNUM && regno <= FPLAST_REGNUM)
  if (regno >= FP0_REGNUM && regno <= FPLAST_REGNUM)
    {
    {
      nr = regno - FP0_REGNUM + FPR0;
      nr = regno - FP0_REGNUM + FPR0;
      ptrace32 (PT_WRITE_FPR, PIDGET (inferior_ptid), addr, nr, 0);
      ptrace32 (PT_WRITE_FPR, PIDGET (inferior_ptid), addr, nr, 0);
    }
    }
 
 
  /* Bogus register number. */
  /* Bogus register number. */
  else if (regno > LAST_UISA_SP_REGNUM)
  else if (regno > LAST_UISA_SP_REGNUM)
    {
    {
      if (regno >= NUM_REGS)
      if (regno >= NUM_REGS)
        fprintf_unfiltered (gdb_stderr,
        fprintf_unfiltered (gdb_stderr,
                            "gdb error: register no %d not implemented.\n",
                            "gdb error: register no %d not implemented.\n",
                            regno);
                            regno);
    }
    }
 
 
  /* Fixed-point registers. */
  /* Fixed-point registers. */
  else
  else
    {
    {
      if (regno == SP_REGNUM)
      if (regno == SP_REGNUM)
        /* Execute one dummy instruction (which is a breakpoint) in inferior
        /* Execute one dummy instruction (which is a breakpoint) in inferior
           process to give kernel a chance to do internal housekeeping.
           process to give kernel a chance to do internal housekeeping.
           Otherwise the following ptrace(2) calls will mess up user stack
           Otherwise the following ptrace(2) calls will mess up user stack
           since kernel will get confused about the bottom of the stack
           since kernel will get confused about the bottom of the stack
           (%sp). */
           (%sp). */
        exec_one_dummy_insn ();
        exec_one_dummy_insn ();
 
 
      if (regno >= FIRST_UISA_SP_REGNUM)
      if (regno >= FIRST_UISA_SP_REGNUM)
        nr = special_regs[regno - FIRST_UISA_SP_REGNUM];
        nr = special_regs[regno - FIRST_UISA_SP_REGNUM];
      else
      else
        nr = regno;
        nr = regno;
 
 
      if (!ARCH64 ())
      if (!ARCH64 ())
        ptrace32 (PT_WRITE_GPR, PIDGET (inferior_ptid), (int *)nr, *addr, 0);
        ptrace32 (PT_WRITE_GPR, PIDGET (inferior_ptid), (int *)nr, *addr, 0);
      else
      else
        {
        {
          /* PT_WRITE_GPR requires the buffer parameter to point to an 8-byte
          /* PT_WRITE_GPR requires the buffer parameter to point to an 8-byte
             area, even if the register is really only 32 bits. */
             area, even if the register is really only 32 bits. */
          long long buf;
          long long buf;
          if (REGISTER_RAW_SIZE (regno) == 8)
          if (REGISTER_RAW_SIZE (regno) == 8)
            memcpy (&buf, addr, 8);
            memcpy (&buf, addr, 8);
          else
          else
            buf = *addr;
            buf = *addr;
          ptrace64 (PT_WRITE_GPR, PIDGET (inferior_ptid), nr, 0, (int *)&buf);
          ptrace64 (PT_WRITE_GPR, PIDGET (inferior_ptid), nr, 0, (int *)&buf);
        }
        }
    }
    }
 
 
  if (errno)
  if (errno)
    {
    {
      perror ("ptrace write");
      perror ("ptrace write");
      errno = 0;
      errno = 0;
    }
    }
}
}
 
 
/* Read from the inferior all registers if REGNO == -1 and just register
/* Read from the inferior all registers if REGNO == -1 and just register
   REGNO otherwise. */
   REGNO otherwise. */
 
 
void
void
fetch_inferior_registers (int regno)
fetch_inferior_registers (int regno)
{
{
  if (regno != -1)
  if (regno != -1)
    fetch_register (regno);
    fetch_register (regno);
 
 
  else
  else
    {
    {
      /* read 32 general purpose registers. */
      /* read 32 general purpose registers. */
      for (regno = 0; regno < 32; regno++)
      for (regno = 0; regno < 32; regno++)
        fetch_register (regno);
        fetch_register (regno);
 
 
      /* read general purpose floating point registers. */
      /* read general purpose floating point registers. */
      for (regno = FP0_REGNUM; regno <= FPLAST_REGNUM; regno++)
      for (regno = FP0_REGNUM; regno <= FPLAST_REGNUM; regno++)
        fetch_register (regno);
        fetch_register (regno);
 
 
      /* read special registers. */
      /* read special registers. */
      for (regno = FIRST_UISA_SP_REGNUM; regno <= LAST_UISA_SP_REGNUM; regno++)
      for (regno = FIRST_UISA_SP_REGNUM; regno <= LAST_UISA_SP_REGNUM; regno++)
        fetch_register (regno);
        fetch_register (regno);
    }
    }
}
}
 
 
/* Store our register values back into the inferior.
/* Store our register values back into the inferior.
   If REGNO is -1, do this for all registers.
   If REGNO is -1, do this for all registers.
   Otherwise, REGNO specifies which register (so we can save time).  */
   Otherwise, REGNO specifies which register (so we can save time).  */
 
 
void
void
store_inferior_registers (int regno)
store_inferior_registers (int regno)
{
{
  if (regno != -1)
  if (regno != -1)
    store_register (regno);
    store_register (regno);
 
 
  else
  else
    {
    {
      /* write general purpose registers first! */
      /* write general purpose registers first! */
      for (regno = GPR0; regno <= GPR31; regno++)
      for (regno = GPR0; regno <= GPR31; regno++)
        store_register (regno);
        store_register (regno);
 
 
      /* write floating point registers now. */
      /* write floating point registers now. */
      for (regno = FP0_REGNUM; regno <= FPLAST_REGNUM; regno++)
      for (regno = FP0_REGNUM; regno <= FPLAST_REGNUM; regno++)
        store_register (regno);
        store_register (regno);
 
 
      /* write special registers. */
      /* write special registers. */
 
 
      for (regno = FIRST_UISA_SP_REGNUM; regno <= LAST_UISA_SP_REGNUM; regno++)
      for (regno = FIRST_UISA_SP_REGNUM; regno <= LAST_UISA_SP_REGNUM; regno++)
        store_register (regno);
        store_register (regno);
    }
    }
}
}
 
 
/* Store in *TO the 32-bit word at 32-bit-aligned ADDR in the child
/* Store in *TO the 32-bit word at 32-bit-aligned ADDR in the child
   process, which is 64-bit if ARCH64 and 32-bit otherwise.  Return
   process, which is 64-bit if ARCH64 and 32-bit otherwise.  Return
   success. */
   success. */
 
 
static int
static int
read_word (CORE_ADDR from, int *to, int arch64)
read_word (CORE_ADDR from, int *to, int arch64)
{
{
  /* Retrieved values may be -1, so infer errors from errno. */
  /* Retrieved values may be -1, so infer errors from errno. */
  errno = 0;
  errno = 0;
 
 
  if (arch64)
  if (arch64)
    *to = ptrace64 (PT_READ_I, PIDGET (inferior_ptid), from, 0, NULL);
    *to = ptrace64 (PT_READ_I, PIDGET (inferior_ptid), from, 0, NULL);
  else
  else
    *to = ptrace32 (PT_READ_I, PIDGET (inferior_ptid), (int *)(long) from,
    *to = ptrace32 (PT_READ_I, PIDGET (inferior_ptid), (int *)(long) from,
                    0, NULL);
                    0, NULL);
 
 
  return !errno;
  return !errno;
}
}
 
 
/* Copy LEN bytes to or from inferior's memory starting at MEMADDR
/* Copy LEN bytes to or from inferior's memory starting at MEMADDR
   to debugger memory starting at MYADDR.  Copy to inferior if
   to debugger memory starting at MYADDR.  Copy to inferior if
   WRITE is nonzero.
   WRITE is nonzero.
 
 
   Returns the length copied, which is either the LEN argument or zero.
   Returns the length copied, which is either the LEN argument or zero.
   This xfer function does not do partial moves, since child_ops
   This xfer function does not do partial moves, since child_ops
   doesn't allow memory operations to cross below us in the target stack
   doesn't allow memory operations to cross below us in the target stack
   anyway.  */
   anyway.  */
 
 
int
int
child_xfer_memory (CORE_ADDR memaddr, char *myaddr, int len,
child_xfer_memory (CORE_ADDR memaddr, char *myaddr, int len,
                   int write, struct mem_attrib *attrib,
                   int write, struct mem_attrib *attrib,
                   struct target_ops *target)
                   struct target_ops *target)
{
{
  /* Round starting address down to 32-bit word boundary. */
  /* Round starting address down to 32-bit word boundary. */
  int mask = sizeof (int) - 1;
  int mask = sizeof (int) - 1;
  CORE_ADDR addr = memaddr & ~(CORE_ADDR)mask;
  CORE_ADDR addr = memaddr & ~(CORE_ADDR)mask;
 
 
  /* Round ending address up to 32-bit word boundary. */
  /* Round ending address up to 32-bit word boundary. */
  int count = ((memaddr + len - addr + mask) & ~(CORE_ADDR)mask)
  int count = ((memaddr + len - addr + mask) & ~(CORE_ADDR)mask)
    / sizeof (int);
    / sizeof (int);
 
 
  /* Allocate word transfer buffer. */
  /* Allocate word transfer buffer. */
  int *buf = (int *) alloca (count * sizeof (int));
  int *buf = (int *) alloca (count * sizeof (int));
 
 
  int arch64 = ARCH64 ();
  int arch64 = ARCH64 ();
  int i;
  int i;
 
 
  if (!write)
  if (!write)
    {
    {
      /* Retrieve memory a word at a time. */
      /* Retrieve memory a word at a time. */
      for (i = 0; i < count; i++, addr += sizeof (int))
      for (i = 0; i < count; i++, addr += sizeof (int))
        {
        {
          if (!read_word (addr, buf + i, arch64))
          if (!read_word (addr, buf + i, arch64))
            return 0;
            return 0;
          QUIT;
          QUIT;
        }
        }
 
 
      /* Copy memory to supplied buffer. */
      /* Copy memory to supplied buffer. */
      addr -= count * sizeof (int);
      addr -= count * sizeof (int);
      memcpy (myaddr, (char *)buf + (memaddr - addr), len);
      memcpy (myaddr, (char *)buf + (memaddr - addr), len);
    }
    }
  else
  else
    {
    {
      /* Fetch leading memory needed for alignment. */
      /* Fetch leading memory needed for alignment. */
      if (addr < memaddr)
      if (addr < memaddr)
        if (!read_word (addr, buf, arch64))
        if (!read_word (addr, buf, arch64))
          return 0;
          return 0;
 
 
      /* Fetch trailing memory needed for alignment. */
      /* Fetch trailing memory needed for alignment. */
      if (addr + count * sizeof (int) > memaddr + len)
      if (addr + count * sizeof (int) > memaddr + len)
        if (!read_word (addr, buf + count - 1, arch64))
        if (!read_word (addr, buf + count - 1, arch64))
          return 0;
          return 0;
 
 
      /* Copy supplied data into memory buffer. */
      /* Copy supplied data into memory buffer. */
      memcpy ((char *)buf + (memaddr - addr), myaddr, len);
      memcpy ((char *)buf + (memaddr - addr), myaddr, len);
 
 
      /* Store memory one word at a time. */
      /* Store memory one word at a time. */
      for (i = 0, errno = 0; i < count; i++, addr += sizeof (int))
      for (i = 0, errno = 0; i < count; i++, addr += sizeof (int))
        {
        {
          if (arch64)
          if (arch64)
            ptrace64 (PT_WRITE_D, PIDGET (inferior_ptid), addr, buf[i], NULL);
            ptrace64 (PT_WRITE_D, PIDGET (inferior_ptid), addr, buf[i], NULL);
          else
          else
            ptrace32 (PT_WRITE_D, PIDGET (inferior_ptid), (int *)(long) addr,
            ptrace32 (PT_WRITE_D, PIDGET (inferior_ptid), (int *)(long) addr,
                      buf[i], NULL);
                      buf[i], NULL);
 
 
          if (errno)
          if (errno)
            return 0;
            return 0;
          QUIT;
          QUIT;
        }
        }
    }
    }
 
 
  return len;
  return len;
}
}
 
 
/* Execute one dummy breakpoint instruction.  This way we give the kernel
/* Execute one dummy breakpoint instruction.  This way we give the kernel
   a chance to do some housekeeping and update inferior's internal data,
   a chance to do some housekeeping and update inferior's internal data,
   including u_area. */
   including u_area. */
 
 
static void
static void
exec_one_dummy_insn (void)
exec_one_dummy_insn (void)
{
{
#define DUMMY_INSN_ADDR (TEXT_SEGMENT_BASE)+0x200
#define DUMMY_INSN_ADDR (TEXT_SEGMENT_BASE)+0x200
 
 
  char shadow_contents[BREAKPOINT_MAX];         /* Stash old bkpt addr contents */
  char shadow_contents[BREAKPOINT_MAX];         /* Stash old bkpt addr contents */
  int ret, status, pid;
  int ret, status, pid;
  CORE_ADDR prev_pc;
  CORE_ADDR prev_pc;
 
 
  /* We plant one dummy breakpoint into DUMMY_INSN_ADDR address. We
  /* We plant one dummy breakpoint into DUMMY_INSN_ADDR address. We
     assume that this address will never be executed again by the real
     assume that this address will never be executed again by the real
     code. */
     code. */
 
 
  target_insert_breakpoint (DUMMY_INSN_ADDR, shadow_contents);
  target_insert_breakpoint (DUMMY_INSN_ADDR, shadow_contents);
 
 
  /* You might think this could be done with a single ptrace call, and
  /* You might think this could be done with a single ptrace call, and
     you'd be correct for just about every platform I've ever worked
     you'd be correct for just about every platform I've ever worked
     on.  However, rs6000-ibm-aix4.1.3 seems to have screwed this up --
     on.  However, rs6000-ibm-aix4.1.3 seems to have screwed this up --
     the inferior never hits the breakpoint (it's also worth noting
     the inferior never hits the breakpoint (it's also worth noting
     powerpc-ibm-aix4.1.3 works correctly).  */
     powerpc-ibm-aix4.1.3 works correctly).  */
  prev_pc = read_pc ();
  prev_pc = read_pc ();
  write_pc (DUMMY_INSN_ADDR);
  write_pc (DUMMY_INSN_ADDR);
  if (ARCH64 ())
  if (ARCH64 ())
    ret = ptrace64 (PT_CONTINUE, PIDGET (inferior_ptid), 1, 0, NULL);
    ret = ptrace64 (PT_CONTINUE, PIDGET (inferior_ptid), 1, 0, NULL);
  else
  else
    ret = ptrace32 (PT_CONTINUE, PIDGET (inferior_ptid), (int *)1, 0, NULL);
    ret = ptrace32 (PT_CONTINUE, PIDGET (inferior_ptid), (int *)1, 0, NULL);
 
 
  if (ret != 0)
  if (ret != 0)
    perror ("pt_continue");
    perror ("pt_continue");
 
 
  do
  do
    {
    {
      pid = wait (&status);
      pid = wait (&status);
    }
    }
  while (pid != PIDGET (inferior_ptid));
  while (pid != PIDGET (inferior_ptid));
 
 
  write_pc (prev_pc);
  write_pc (prev_pc);
  target_remove_breakpoint (DUMMY_INSN_ADDR, shadow_contents);
  target_remove_breakpoint (DUMMY_INSN_ADDR, shadow_contents);
}
}
 
 
/* Fetch registers from the register section in core bfd. */
/* Fetch registers from the register section in core bfd. */
 
 
static void
static void
fetch_core_registers (char *core_reg_sect, unsigned core_reg_size,
fetch_core_registers (char *core_reg_sect, unsigned core_reg_size,
                      int which, CORE_ADDR reg_addr)
                      int which, CORE_ADDR reg_addr)
{
{
  CoreRegs *regs;
  CoreRegs *regs;
  double *fprs;
  double *fprs;
  int arch64, i, size;
  int arch64, i, size;
  void *gprs, *sprs[7];
  void *gprs, *sprs[7];
 
 
  if (which != 0)
  if (which != 0)
    {
    {
      fprintf_unfiltered
      fprintf_unfiltered
        (gdb_stderr,
        (gdb_stderr,
         "Gdb error: unknown parameter to fetch_core_registers().\n");
         "Gdb error: unknown parameter to fetch_core_registers().\n");
      return;
      return;
    }
    }
 
 
  arch64 = ARCH64 ();
  arch64 = ARCH64 ();
  regs = (CoreRegs *) core_reg_sect;
  regs = (CoreRegs *) core_reg_sect;
 
 
  /* Retrieve register pointers. */
  /* Retrieve register pointers. */
 
 
  if (arch64)
  if (arch64)
    {
    {
      gprs = regs->r64.gpr;
      gprs = regs->r64.gpr;
      fprs = regs->r64.fpr;
      fprs = regs->r64.fpr;
      sprs[0] = &regs->r64.iar;
      sprs[0] = &regs->r64.iar;
      sprs[1] = &regs->r64.msr;
      sprs[1] = &regs->r64.msr;
      sprs[2] = &regs->r64.cr;
      sprs[2] = &regs->r64.cr;
      sprs[3] = &regs->r64.lr;
      sprs[3] = &regs->r64.lr;
      sprs[4] = &regs->r64.ctr;
      sprs[4] = &regs->r64.ctr;
      sprs[5] = &regs->r64.xer;
      sprs[5] = &regs->r64.xer;
    }
    }
  else
  else
    {
    {
      gprs = regs->r32.gpr;
      gprs = regs->r32.gpr;
      fprs = regs->r32.fpr;
      fprs = regs->r32.fpr;
      sprs[0] = &regs->r32.iar;
      sprs[0] = &regs->r32.iar;
      sprs[1] = &regs->r32.msr;
      sprs[1] = &regs->r32.msr;
      sprs[2] = &regs->r32.cr;
      sprs[2] = &regs->r32.cr;
      sprs[3] = &regs->r32.lr;
      sprs[3] = &regs->r32.lr;
      sprs[4] = &regs->r32.ctr;
      sprs[4] = &regs->r32.ctr;
      sprs[5] = &regs->r32.xer;
      sprs[5] = &regs->r32.xer;
      sprs[6] = &regs->r32.mq;
      sprs[6] = &regs->r32.mq;
    }
    }
 
 
  /* Copy from pointers to registers[]. */
  /* Copy from pointers to registers[]. */
 
 
  memcpy (registers, gprs, 32 * (arch64 ? 8 : 4));
  memcpy (registers, gprs, 32 * (arch64 ? 8 : 4));
  memcpy (registers + REGISTER_BYTE (FP0_REGNUM), fprs, 32 * 8);
  memcpy (registers + REGISTER_BYTE (FP0_REGNUM), fprs, 32 * 8);
  for (i = FIRST_UISA_SP_REGNUM; i <= LAST_UISA_SP_REGNUM; i++)
  for (i = FIRST_UISA_SP_REGNUM; i <= LAST_UISA_SP_REGNUM; i++)
    {
    {
      size = REGISTER_RAW_SIZE (i);
      size = REGISTER_RAW_SIZE (i);
      if (size)
      if (size)
        memcpy (registers + REGISTER_BYTE (i),
        memcpy (registers + REGISTER_BYTE (i),
                sprs[i - FIRST_UISA_SP_REGNUM], size);
                sprs[i - FIRST_UISA_SP_REGNUM], size);
    }
    }
}
}


 
 
/* Copy information about text and data sections from LDI to VP for a 64-bit
/* Copy information about text and data sections from LDI to VP for a 64-bit
   process if ARCH64 and for a 32-bit process otherwise. */
   process if ARCH64 and for a 32-bit process otherwise. */
 
 
static void
static void
vmap_secs (struct vmap *vp, LdInfo *ldi, int arch64)
vmap_secs (struct vmap *vp, LdInfo *ldi, int arch64)
{
{
  if (arch64)
  if (arch64)
    {
    {
      vp->tstart = (CORE_ADDR) ldi->l64.ldinfo_textorg;
      vp->tstart = (CORE_ADDR) ldi->l64.ldinfo_textorg;
      vp->tend = vp->tstart + ldi->l64.ldinfo_textsize;
      vp->tend = vp->tstart + ldi->l64.ldinfo_textsize;
      vp->dstart = (CORE_ADDR) ldi->l64.ldinfo_dataorg;
      vp->dstart = (CORE_ADDR) ldi->l64.ldinfo_dataorg;
      vp->dend = vp->dstart + ldi->l64.ldinfo_datasize;
      vp->dend = vp->dstart + ldi->l64.ldinfo_datasize;
    }
    }
  else
  else
    {
    {
      vp->tstart = (unsigned long) ldi->l32.ldinfo_textorg;
      vp->tstart = (unsigned long) ldi->l32.ldinfo_textorg;
      vp->tend = vp->tstart + ldi->l32.ldinfo_textsize;
      vp->tend = vp->tstart + ldi->l32.ldinfo_textsize;
      vp->dstart = (unsigned long) ldi->l32.ldinfo_dataorg;
      vp->dstart = (unsigned long) ldi->l32.ldinfo_dataorg;
      vp->dend = vp->dstart + ldi->l32.ldinfo_datasize;
      vp->dend = vp->dstart + ldi->l32.ldinfo_datasize;
    }
    }
 
 
  /* The run time loader maps the file header in addition to the text
  /* The run time loader maps the file header in addition to the text
     section and returns a pointer to the header in ldinfo_textorg.
     section and returns a pointer to the header in ldinfo_textorg.
     Adjust the text start address to point to the real start address
     Adjust the text start address to point to the real start address
     of the text section.  */
     of the text section.  */
  vp->tstart += vp->toffs;
  vp->tstart += vp->toffs;
}
}
 
 
/* handle symbol translation on vmapping */
/* handle symbol translation on vmapping */
 
 
static void
static void
vmap_symtab (struct vmap *vp)
vmap_symtab (struct vmap *vp)
{
{
  register struct objfile *objfile;
  register struct objfile *objfile;
  struct section_offsets *new_offsets;
  struct section_offsets *new_offsets;
  int i;
  int i;
 
 
  objfile = vp->objfile;
  objfile = vp->objfile;
  if (objfile == NULL)
  if (objfile == NULL)
    {
    {
      /* OK, it's not an objfile we opened ourselves.
      /* OK, it's not an objfile we opened ourselves.
         Currently, that can only happen with the exec file, so
         Currently, that can only happen with the exec file, so
         relocate the symbols for the symfile.  */
         relocate the symbols for the symfile.  */
      if (symfile_objfile == NULL)
      if (symfile_objfile == NULL)
        return;
        return;
      objfile = symfile_objfile;
      objfile = symfile_objfile;
    }
    }
  else if (!vp->loaded)
  else if (!vp->loaded)
    /* If symbols are not yet loaded, offsets are not yet valid. */
    /* If symbols are not yet loaded, offsets are not yet valid. */
    return;
    return;
 
 
  new_offsets = (struct section_offsets *) alloca (SIZEOF_SECTION_OFFSETS);
  new_offsets = (struct section_offsets *) alloca (SIZEOF_SECTION_OFFSETS);
 
 
  for (i = 0; i < objfile->num_sections; ++i)
  for (i = 0; i < objfile->num_sections; ++i)
    new_offsets->offsets[i] = ANOFFSET (objfile->section_offsets, i);
    new_offsets->offsets[i] = ANOFFSET (objfile->section_offsets, i);
 
 
  /* The symbols in the object file are linked to the VMA of the section,
  /* The symbols in the object file are linked to the VMA of the section,
     relocate them VMA relative.  */
     relocate them VMA relative.  */
  new_offsets->offsets[SECT_OFF_TEXT (objfile)] = vp->tstart - vp->tvma;
  new_offsets->offsets[SECT_OFF_TEXT (objfile)] = vp->tstart - vp->tvma;
  new_offsets->offsets[SECT_OFF_DATA (objfile)] = vp->dstart - vp->dvma;
  new_offsets->offsets[SECT_OFF_DATA (objfile)] = vp->dstart - vp->dvma;
  new_offsets->offsets[SECT_OFF_BSS (objfile)] = vp->dstart - vp->dvma;
  new_offsets->offsets[SECT_OFF_BSS (objfile)] = vp->dstart - vp->dvma;
 
 
  objfile_relocate (objfile, new_offsets);
  objfile_relocate (objfile, new_offsets);
}
}


/* Add symbols for an objfile.  */
/* Add symbols for an objfile.  */
 
 
static int
static int
objfile_symbol_add (void *arg)
objfile_symbol_add (void *arg)
{
{
  struct objfile *obj = (struct objfile *) arg;
  struct objfile *obj = (struct objfile *) arg;
 
 
  syms_from_objfile (obj, NULL, 0, 0);
  syms_from_objfile (obj, NULL, 0, 0);
  new_symfile_objfile (obj, 0, 0);
  new_symfile_objfile (obj, 0, 0);
  return 1;
  return 1;
}
}
 
 
/* Add symbols for a vmap. Return zero upon error.  */
/* Add symbols for a vmap. Return zero upon error.  */
 
 
int
int
vmap_add_symbols (struct vmap *vp)
vmap_add_symbols (struct vmap *vp)
{
{
  if (catch_errors (objfile_symbol_add, vp->objfile,
  if (catch_errors (objfile_symbol_add, vp->objfile,
                    "Error while reading shared library symbols:\n",
                    "Error while reading shared library symbols:\n",
                    RETURN_MASK_ALL))
                    RETURN_MASK_ALL))
    {
    {
      /* Note this is only done if symbol reading was successful.  */
      /* Note this is only done if symbol reading was successful.  */
      vp->loaded = 1;
      vp->loaded = 1;
      vmap_symtab (vp);
      vmap_symtab (vp);
      return 1;
      return 1;
    }
    }
  return 0;
  return 0;
}
}
 
 
/* Add a new vmap entry based on ldinfo() information.
/* Add a new vmap entry based on ldinfo() information.
 
 
   If ldi->ldinfo_fd is not valid (e.g. this struct ld_info is from a
   If ldi->ldinfo_fd is not valid (e.g. this struct ld_info is from a
   core file), the caller should set it to -1, and we will open the file.
   core file), the caller should set it to -1, and we will open the file.
 
 
   Return the vmap new entry.  */
   Return the vmap new entry.  */
 
 
static struct vmap *
static struct vmap *
add_vmap (LdInfo *ldi)
add_vmap (LdInfo *ldi)
{
{
  bfd *abfd, *last;
  bfd *abfd, *last;
  register char *mem, *objname, *filename;
  register char *mem, *objname, *filename;
  struct objfile *obj;
  struct objfile *obj;
  struct vmap *vp;
  struct vmap *vp;
  int fd;
  int fd;
  ARCH64_DECL (arch64);
  ARCH64_DECL (arch64);
 
 
  /* This ldi structure was allocated using alloca() in
  /* This ldi structure was allocated using alloca() in
     xcoff_relocate_symtab(). Now we need to have persistent object
     xcoff_relocate_symtab(). Now we need to have persistent object
     and member names, so we should save them. */
     and member names, so we should save them. */
 
 
  filename = LDI_FILENAME (ldi, arch64);
  filename = LDI_FILENAME (ldi, arch64);
  mem = filename + strlen (filename) + 1;
  mem = filename + strlen (filename) + 1;
  mem = savestring (mem, strlen (mem));
  mem = savestring (mem, strlen (mem));
  objname = savestring (filename, strlen (filename));
  objname = savestring (filename, strlen (filename));
 
 
  fd = LDI_FD (ldi, arch64);
  fd = LDI_FD (ldi, arch64);
  if (fd < 0)
  if (fd < 0)
    /* Note that this opens it once for every member; a possible
    /* Note that this opens it once for every member; a possible
       enhancement would be to only open it once for every object.  */
       enhancement would be to only open it once for every object.  */
    abfd = bfd_openr (objname, gnutarget);
    abfd = bfd_openr (objname, gnutarget);
  else
  else
    abfd = bfd_fdopenr (objname, gnutarget, fd);
    abfd = bfd_fdopenr (objname, gnutarget, fd);
  if (!abfd)
  if (!abfd)
    {
    {
      warning ("Could not open `%s' as an executable file: %s",
      warning ("Could not open `%s' as an executable file: %s",
               objname, bfd_errmsg (bfd_get_error ()));
               objname, bfd_errmsg (bfd_get_error ()));
      return NULL;
      return NULL;
    }
    }
 
 
  /* make sure we have an object file */
  /* make sure we have an object file */
 
 
  if (bfd_check_format (abfd, bfd_object))
  if (bfd_check_format (abfd, bfd_object))
    vp = map_vmap (abfd, 0);
    vp = map_vmap (abfd, 0);
 
 
  else if (bfd_check_format (abfd, bfd_archive))
  else if (bfd_check_format (abfd, bfd_archive))
    {
    {
      last = 0;
      last = 0;
      /* FIXME??? am I tossing BFDs?  bfd? */
      /* FIXME??? am I tossing BFDs?  bfd? */
      while ((last = bfd_openr_next_archived_file (abfd, last)))
      while ((last = bfd_openr_next_archived_file (abfd, last)))
        if (STREQ (mem, last->filename))
        if (STREQ (mem, last->filename))
          break;
          break;
 
 
      if (!last)
      if (!last)
        {
        {
          warning ("\"%s\": member \"%s\" missing.", objname, mem);
          warning ("\"%s\": member \"%s\" missing.", objname, mem);
          bfd_close (abfd);
          bfd_close (abfd);
          return NULL;
          return NULL;
        }
        }
 
 
      if (!bfd_check_format (last, bfd_object))
      if (!bfd_check_format (last, bfd_object))
        {
        {
          warning ("\"%s\": member \"%s\" not in executable format: %s.",
          warning ("\"%s\": member \"%s\" not in executable format: %s.",
                   objname, mem, bfd_errmsg (bfd_get_error ()));
                   objname, mem, bfd_errmsg (bfd_get_error ()));
          bfd_close (last);
          bfd_close (last);
          bfd_close (abfd);
          bfd_close (abfd);
          return NULL;
          return NULL;
        }
        }
 
 
      vp = map_vmap (last, abfd);
      vp = map_vmap (last, abfd);
    }
    }
  else
  else
    {
    {
      warning ("\"%s\": not in executable format: %s.",
      warning ("\"%s\": not in executable format: %s.",
               objname, bfd_errmsg (bfd_get_error ()));
               objname, bfd_errmsg (bfd_get_error ()));
      bfd_close (abfd);
      bfd_close (abfd);
      return NULL;
      return NULL;
    }
    }
  obj = allocate_objfile (vp->bfd, 0);
  obj = allocate_objfile (vp->bfd, 0);
  vp->objfile = obj;
  vp->objfile = obj;
 
 
  /* Always add symbols for the main objfile.  */
  /* Always add symbols for the main objfile.  */
  if (vp == vmap || auto_solib_add)
  if (vp == vmap || auto_solib_add)
    vmap_add_symbols (vp);
    vmap_add_symbols (vp);
  return vp;
  return vp;
}
}


/* update VMAP info with ldinfo() information
/* update VMAP info with ldinfo() information
   Input is ptr to ldinfo() results.  */
   Input is ptr to ldinfo() results.  */
 
 
static void
static void
vmap_ldinfo (LdInfo *ldi)
vmap_ldinfo (LdInfo *ldi)
{
{
  struct stat ii, vi;
  struct stat ii, vi;
  register struct vmap *vp;
  register struct vmap *vp;
  int got_one, retried;
  int got_one, retried;
  int got_exec_file = 0;
  int got_exec_file = 0;
  uint next;
  uint next;
  int arch64 = ARCH64 ();
  int arch64 = ARCH64 ();
 
 
  /* For each *ldi, see if we have a corresponding *vp.
  /* For each *ldi, see if we have a corresponding *vp.
     If so, update the mapping, and symbol table.
     If so, update the mapping, and symbol table.
     If not, add an entry and symbol table.  */
     If not, add an entry and symbol table.  */
 
 
  do
  do
    {
    {
      char *name = LDI_FILENAME (ldi, arch64);
      char *name = LDI_FILENAME (ldi, arch64);
      char *memb = name + strlen (name) + 1;
      char *memb = name + strlen (name) + 1;
      int fd = LDI_FD (ldi, arch64);
      int fd = LDI_FD (ldi, arch64);
 
 
      retried = 0;
      retried = 0;
 
 
      if (fstat (fd, &ii) < 0)
      if (fstat (fd, &ii) < 0)
        {
        {
          /* The kernel sets ld_info to -1, if the process is still using the
          /* The kernel sets ld_info to -1, if the process is still using the
             object, and the object is removed. Keep the symbol info for the
             object, and the object is removed. Keep the symbol info for the
             removed object and issue a warning.  */
             removed object and issue a warning.  */
          warning ("%s (fd=%d) has disappeared, keeping its symbols",
          warning ("%s (fd=%d) has disappeared, keeping its symbols",
                   name, fd);
                   name, fd);
          continue;
          continue;
        }
        }
    retry:
    retry:
      for (got_one = 0, vp = vmap; vp; vp = vp->nxt)
      for (got_one = 0, vp = vmap; vp; vp = vp->nxt)
        {
        {
          struct objfile *objfile;
          struct objfile *objfile;
 
 
          /* First try to find a `vp', which is the same as in ldinfo.
          /* First try to find a `vp', which is the same as in ldinfo.
             If not the same, just continue and grep the next `vp'. If same,
             If not the same, just continue and grep the next `vp'. If same,
             relocate its tstart, tend, dstart, dend values. If no such `vp'
             relocate its tstart, tend, dstart, dend values. If no such `vp'
             found, get out of this for loop, add this ldi entry as a new vmap
             found, get out of this for loop, add this ldi entry as a new vmap
             (add_vmap) and come back, find its `vp' and so on... */
             (add_vmap) and come back, find its `vp' and so on... */
 
 
          /* The filenames are not always sufficient to match on. */
          /* The filenames are not always sufficient to match on. */
 
 
          if ((name[0] == '/' && !STREQ (name, vp->name))
          if ((name[0] == '/' && !STREQ (name, vp->name))
              || (memb[0] && !STREQ (memb, vp->member)))
              || (memb[0] && !STREQ (memb, vp->member)))
            continue;
            continue;
 
 
          /* See if we are referring to the same file.
          /* See if we are referring to the same file.
             We have to check objfile->obfd, symfile.c:reread_symbols might
             We have to check objfile->obfd, symfile.c:reread_symbols might
             have updated the obfd after a change.  */
             have updated the obfd after a change.  */
          objfile = vp->objfile == NULL ? symfile_objfile : vp->objfile;
          objfile = vp->objfile == NULL ? symfile_objfile : vp->objfile;
          if (objfile == NULL
          if (objfile == NULL
              || objfile->obfd == NULL
              || objfile->obfd == NULL
              || bfd_stat (objfile->obfd, &vi) < 0)
              || bfd_stat (objfile->obfd, &vi) < 0)
            {
            {
              warning ("Unable to stat %s, keeping its symbols", name);
              warning ("Unable to stat %s, keeping its symbols", name);
              continue;
              continue;
            }
            }
 
 
          if (ii.st_dev != vi.st_dev || ii.st_ino != vi.st_ino)
          if (ii.st_dev != vi.st_dev || ii.st_ino != vi.st_ino)
            continue;
            continue;
 
 
          if (!retried)
          if (!retried)
            close (fd);
            close (fd);
 
 
          ++got_one;
          ++got_one;
 
 
          /* Found a corresponding VMAP.  Remap!  */
          /* Found a corresponding VMAP.  Remap!  */
 
 
          vmap_secs (vp, ldi, arch64);
          vmap_secs (vp, ldi, arch64);
 
 
          /* The objfile is only NULL for the exec file.  */
          /* The objfile is only NULL for the exec file.  */
          if (vp->objfile == NULL)
          if (vp->objfile == NULL)
            got_exec_file = 1;
            got_exec_file = 1;
 
 
          /* relocate symbol table(s). */
          /* relocate symbol table(s). */
          vmap_symtab (vp);
          vmap_symtab (vp);
 
 
          /* There may be more, so we don't break out of the loop.  */
          /* There may be more, so we don't break out of the loop.  */
        }
        }
 
 
      /* if there was no matching *vp, we must perforce create the sucker(s) */
      /* if there was no matching *vp, we must perforce create the sucker(s) */
      if (!got_one && !retried)
      if (!got_one && !retried)
        {
        {
          add_vmap (ldi);
          add_vmap (ldi);
          ++retried;
          ++retried;
          goto retry;
          goto retry;
        }
        }
    }
    }
  while ((next = LDI_NEXT (ldi, arch64))
  while ((next = LDI_NEXT (ldi, arch64))
         && (ldi = (void *) (next + (char *) ldi)));
         && (ldi = (void *) (next + (char *) ldi)));
 
 
  /* If we don't find the symfile_objfile anywhere in the ldinfo, it
  /* If we don't find the symfile_objfile anywhere in the ldinfo, it
     is unlikely that the symbol file is relocated to the proper
     is unlikely that the symbol file is relocated to the proper
     address.  And we might have attached to a process which is
     address.  And we might have attached to a process which is
     running a different copy of the same executable.  */
     running a different copy of the same executable.  */
  if (symfile_objfile != NULL && !got_exec_file)
  if (symfile_objfile != NULL && !got_exec_file)
    {
    {
      warning_begin ();
      warning_begin ();
      fputs_unfiltered ("Symbol file ", gdb_stderr);
      fputs_unfiltered ("Symbol file ", gdb_stderr);
      fputs_unfiltered (symfile_objfile->name, gdb_stderr);
      fputs_unfiltered (symfile_objfile->name, gdb_stderr);
      fputs_unfiltered ("\nis not mapped; discarding it.\n\
      fputs_unfiltered ("\nis not mapped; discarding it.\n\
If in fact that file has symbols which the mapped files listed by\n\
If in fact that file has symbols which the mapped files listed by\n\
\"info files\" lack, you can load symbols with the \"symbol-file\" or\n\
\"info files\" lack, you can load symbols with the \"symbol-file\" or\n\
\"add-symbol-file\" commands (note that you must take care of relocating\n\
\"add-symbol-file\" commands (note that you must take care of relocating\n\
symbols to the proper address).\n", gdb_stderr);
symbols to the proper address).\n", gdb_stderr);
      free_objfile (symfile_objfile);
      free_objfile (symfile_objfile);
      symfile_objfile = NULL;
      symfile_objfile = NULL;
    }
    }
  breakpoint_re_set ();
  breakpoint_re_set ();
}
}


/* As well as symbol tables, exec_sections need relocation. After
/* As well as symbol tables, exec_sections need relocation. After
   the inferior process' termination, there will be a relocated symbol
   the inferior process' termination, there will be a relocated symbol
   table exist with no corresponding inferior process. At that time, we
   table exist with no corresponding inferior process. At that time, we
   need to use `exec' bfd, rather than the inferior process's memory space
   need to use `exec' bfd, rather than the inferior process's memory space
   to look up symbols.
   to look up symbols.
 
 
   `exec_sections' need to be relocated only once, as long as the exec
   `exec_sections' need to be relocated only once, as long as the exec
   file remains unchanged.
   file remains unchanged.
 */
 */
 
 
static void
static void
vmap_exec (void)
vmap_exec (void)
{
{
  static bfd *execbfd;
  static bfd *execbfd;
  int i;
  int i;
 
 
  if (execbfd == exec_bfd)
  if (execbfd == exec_bfd)
    return;
    return;
 
 
  execbfd = exec_bfd;
  execbfd = exec_bfd;
 
 
  if (!vmap || !exec_ops.to_sections)
  if (!vmap || !exec_ops.to_sections)
    error ("vmap_exec: vmap or exec_ops.to_sections == 0\n");
    error ("vmap_exec: vmap or exec_ops.to_sections == 0\n");
 
 
  for (i = 0; &exec_ops.to_sections[i] < exec_ops.to_sections_end; i++)
  for (i = 0; &exec_ops.to_sections[i] < exec_ops.to_sections_end; i++)
    {
    {
      if (STREQ (".text", exec_ops.to_sections[i].the_bfd_section->name))
      if (STREQ (".text", exec_ops.to_sections[i].the_bfd_section->name))
        {
        {
          exec_ops.to_sections[i].addr += vmap->tstart - vmap->tvma;
          exec_ops.to_sections[i].addr += vmap->tstart - vmap->tvma;
          exec_ops.to_sections[i].endaddr += vmap->tstart - vmap->tvma;
          exec_ops.to_sections[i].endaddr += vmap->tstart - vmap->tvma;
        }
        }
      else if (STREQ (".data", exec_ops.to_sections[i].the_bfd_section->name))
      else if (STREQ (".data", exec_ops.to_sections[i].the_bfd_section->name))
        {
        {
          exec_ops.to_sections[i].addr += vmap->dstart - vmap->dvma;
          exec_ops.to_sections[i].addr += vmap->dstart - vmap->dvma;
          exec_ops.to_sections[i].endaddr += vmap->dstart - vmap->dvma;
          exec_ops.to_sections[i].endaddr += vmap->dstart - vmap->dvma;
        }
        }
      else if (STREQ (".bss", exec_ops.to_sections[i].the_bfd_section->name))
      else if (STREQ (".bss", exec_ops.to_sections[i].the_bfd_section->name))
        {
        {
          exec_ops.to_sections[i].addr += vmap->dstart - vmap->dvma;
          exec_ops.to_sections[i].addr += vmap->dstart - vmap->dvma;
          exec_ops.to_sections[i].endaddr += vmap->dstart - vmap->dvma;
          exec_ops.to_sections[i].endaddr += vmap->dstart - vmap->dvma;
        }
        }
    }
    }
}
}
 
 
/* Set the current architecture from the host running GDB.  Called when
/* Set the current architecture from the host running GDB.  Called when
   starting a child process. */
   starting a child process. */
 
 
static void
static void
set_host_arch (int pid)
set_host_arch (int pid)
{
{
  enum bfd_architecture arch;
  enum bfd_architecture arch;
  unsigned long mach;
  unsigned long mach;
  bfd abfd;
  bfd abfd;
  struct gdbarch_info info;
  struct gdbarch_info info;
 
 
  if (__power_rs ())
  if (__power_rs ())
    {
    {
      arch = bfd_arch_rs6000;
      arch = bfd_arch_rs6000;
      mach = bfd_mach_rs6k;
      mach = bfd_mach_rs6k;
    }
    }
  else
  else
    {
    {
      arch = bfd_arch_powerpc;
      arch = bfd_arch_powerpc;
      mach = bfd_mach_ppc;
      mach = bfd_mach_ppc;
    }
    }
  bfd_default_set_arch_mach (&abfd, arch, mach);
  bfd_default_set_arch_mach (&abfd, arch, mach);
 
 
  memset (&info, 0, sizeof info);
  memset (&info, 0, sizeof info);
  info.bfd_arch_info = bfd_get_arch_info (&abfd);
  info.bfd_arch_info = bfd_get_arch_info (&abfd);
 
 
  if (!gdbarch_update_p (info))
  if (!gdbarch_update_p (info))
    {
    {
      internal_error (__FILE__, __LINE__,
      internal_error (__FILE__, __LINE__,
                      "set_host_arch: failed to select architecture");
                      "set_host_arch: failed to select architecture");
    }
    }
}
}
 
 


/* xcoff_relocate_symtab -      hook for symbol table relocation.
/* xcoff_relocate_symtab -      hook for symbol table relocation.
   also reads shared libraries.. */
   also reads shared libraries.. */
 
 
void
void
xcoff_relocate_symtab (unsigned int pid)
xcoff_relocate_symtab (unsigned int pid)
{
{
  int load_segs = 64; /* number of load segments */
  int load_segs = 64; /* number of load segments */
  int rc;
  int rc;
  LdInfo *ldi = NULL;
  LdInfo *ldi = NULL;
  int arch64 = ARCH64 ();
  int arch64 = ARCH64 ();
  int ldisize = arch64 ? sizeof (ldi->l64) : sizeof (ldi->l32);
  int ldisize = arch64 ? sizeof (ldi->l64) : sizeof (ldi->l32);
  int size;
  int size;
 
 
  do
  do
    {
    {
      size = load_segs * ldisize;
      size = load_segs * ldisize;
      ldi = (void *) xrealloc (ldi, size);
      ldi = (void *) xrealloc (ldi, size);
 
 
#if 0
#if 0
      /* According to my humble theory, AIX has some timing problems and
      /* According to my humble theory, AIX has some timing problems and
         when the user stack grows, kernel doesn't update stack info in time
         when the user stack grows, kernel doesn't update stack info in time
         and ptrace calls step on user stack. That is why we sleep here a
         and ptrace calls step on user stack. That is why we sleep here a
         little, and give kernel to update its internals. */
         little, and give kernel to update its internals. */
      usleep (36000);
      usleep (36000);
#endif
#endif
 
 
      if (arch64)
      if (arch64)
        rc = ptrace64 (PT_LDINFO, pid, (unsigned long) ldi, size, NULL);
        rc = ptrace64 (PT_LDINFO, pid, (unsigned long) ldi, size, NULL);
      else
      else
        rc = ptrace32 (PT_LDINFO, pid, (int *) ldi, size, NULL);
        rc = ptrace32 (PT_LDINFO, pid, (int *) ldi, size, NULL);
 
 
      if (rc == -1)
      if (rc == -1)
        {
        {
          if (errno == ENOMEM)
          if (errno == ENOMEM)
            load_segs *= 2;
            load_segs *= 2;
          else
          else
            perror_with_name ("ptrace ldinfo");
            perror_with_name ("ptrace ldinfo");
        }
        }
      else
      else
        {
        {
          vmap_ldinfo (ldi);
          vmap_ldinfo (ldi);
          vmap_exec (); /* relocate the exec and core sections as well. */
          vmap_exec (); /* relocate the exec and core sections as well. */
        }
        }
    } while (rc == -1);
    } while (rc == -1);
  if (ldi)
  if (ldi)
    xfree (ldi);
    xfree (ldi);
}
}


/* Core file stuff.  */
/* Core file stuff.  */
 
 
/* Relocate symtabs and read in shared library info, based on symbols
/* Relocate symtabs and read in shared library info, based on symbols
   from the core file.  */
   from the core file.  */
 
 
void
void
xcoff_relocate_core (struct target_ops *target)
xcoff_relocate_core (struct target_ops *target)
{
{
  sec_ptr ldinfo_sec;
  sec_ptr ldinfo_sec;
  int offset = 0;
  int offset = 0;
  LdInfo *ldi;
  LdInfo *ldi;
  struct vmap *vp;
  struct vmap *vp;
  int arch64 = ARCH64 ();
  int arch64 = ARCH64 ();
 
 
  /* Size of a struct ld_info except for the variable-length filename. */
  /* Size of a struct ld_info except for the variable-length filename. */
  int nonfilesz = (int)LDI_FILENAME ((LdInfo *)0, arch64);
  int nonfilesz = (int)LDI_FILENAME ((LdInfo *)0, arch64);
 
 
  /* Allocated size of buffer.  */
  /* Allocated size of buffer.  */
  int buffer_size = nonfilesz;
  int buffer_size = nonfilesz;
  char *buffer = xmalloc (buffer_size);
  char *buffer = xmalloc (buffer_size);
  struct cleanup *old = make_cleanup (free_current_contents, &buffer);
  struct cleanup *old = make_cleanup (free_current_contents, &buffer);
 
 
  ldinfo_sec = bfd_get_section_by_name (core_bfd, ".ldinfo");
  ldinfo_sec = bfd_get_section_by_name (core_bfd, ".ldinfo");
  if (ldinfo_sec == NULL)
  if (ldinfo_sec == NULL)
    {
    {
    bfd_err:
    bfd_err:
      fprintf_filtered (gdb_stderr, "Couldn't get ldinfo from core file: %s\n",
      fprintf_filtered (gdb_stderr, "Couldn't get ldinfo from core file: %s\n",
                        bfd_errmsg (bfd_get_error ()));
                        bfd_errmsg (bfd_get_error ()));
      do_cleanups (old);
      do_cleanups (old);
      return;
      return;
    }
    }
  do
  do
    {
    {
      int i;
      int i;
      int names_found = 0;
      int names_found = 0;
 
 
      /* Read in everything but the name.  */
      /* Read in everything but the name.  */
      if (bfd_get_section_contents (core_bfd, ldinfo_sec, buffer,
      if (bfd_get_section_contents (core_bfd, ldinfo_sec, buffer,
                                    offset, nonfilesz) == 0)
                                    offset, nonfilesz) == 0)
        goto bfd_err;
        goto bfd_err;
 
 
      /* Now the name.  */
      /* Now the name.  */
      i = nonfilesz;
      i = nonfilesz;
      do
      do
        {
        {
          if (i == buffer_size)
          if (i == buffer_size)
            {
            {
              buffer_size *= 2;
              buffer_size *= 2;
              buffer = xrealloc (buffer, buffer_size);
              buffer = xrealloc (buffer, buffer_size);
            }
            }
          if (bfd_get_section_contents (core_bfd, ldinfo_sec, &buffer[i],
          if (bfd_get_section_contents (core_bfd, ldinfo_sec, &buffer[i],
                                        offset + i, 1) == 0)
                                        offset + i, 1) == 0)
            goto bfd_err;
            goto bfd_err;
          if (buffer[i++] == '\0')
          if (buffer[i++] == '\0')
            ++names_found;
            ++names_found;
        }
        }
      while (names_found < 2);
      while (names_found < 2);
 
 
      ldi = (LdInfo *) buffer;
      ldi = (LdInfo *) buffer;
 
 
      /* Can't use a file descriptor from the core file; need to open it.  */
      /* Can't use a file descriptor from the core file; need to open it.  */
      if (arch64)
      if (arch64)
        ldi->l64.ldinfo_fd = -1;
        ldi->l64.ldinfo_fd = -1;
      else
      else
        ldi->l32.ldinfo_fd = -1;
        ldi->l32.ldinfo_fd = -1;
 
 
      /* The first ldinfo is for the exec file, allocated elsewhere.  */
      /* The first ldinfo is for the exec file, allocated elsewhere.  */
      if (offset == 0 && vmap != NULL)
      if (offset == 0 && vmap != NULL)
        vp = vmap;
        vp = vmap;
      else
      else
        vp = add_vmap (ldi);
        vp = add_vmap (ldi);
 
 
      /* Process next shared library upon error. */
      /* Process next shared library upon error. */
      offset += LDI_NEXT (ldi, arch64);
      offset += LDI_NEXT (ldi, arch64);
      if (vp == NULL)
      if (vp == NULL)
        continue;
        continue;
 
 
      vmap_secs (vp, ldi, arch64);
      vmap_secs (vp, ldi, arch64);
 
 
      /* Unless this is the exec file,
      /* Unless this is the exec file,
         add our sections to the section table for the core target.  */
         add our sections to the section table for the core target.  */
      if (vp != vmap)
      if (vp != vmap)
        {
        {
          struct section_table *stp;
          struct section_table *stp;
 
 
          target_resize_to_sections (target, 2);
          target_resize_to_sections (target, 2);
          stp = target->to_sections_end - 2;
          stp = target->to_sections_end - 2;
 
 
          stp->bfd = vp->bfd;
          stp->bfd = vp->bfd;
          stp->the_bfd_section = bfd_get_section_by_name (stp->bfd, ".text");
          stp->the_bfd_section = bfd_get_section_by_name (stp->bfd, ".text");
          stp->addr = vp->tstart;
          stp->addr = vp->tstart;
          stp->endaddr = vp->tend;
          stp->endaddr = vp->tend;
          stp++;
          stp++;
 
 
          stp->bfd = vp->bfd;
          stp->bfd = vp->bfd;
          stp->the_bfd_section = bfd_get_section_by_name (stp->bfd, ".data");
          stp->the_bfd_section = bfd_get_section_by_name (stp->bfd, ".data");
          stp->addr = vp->dstart;
          stp->addr = vp->dstart;
          stp->endaddr = vp->dend;
          stp->endaddr = vp->dend;
        }
        }
 
 
      vmap_symtab (vp);
      vmap_symtab (vp);
    }
    }
  while (LDI_NEXT (ldi, arch64) != 0);
  while (LDI_NEXT (ldi, arch64) != 0);
  vmap_exec ();
  vmap_exec ();
  breakpoint_re_set ();
  breakpoint_re_set ();
  do_cleanups (old);
  do_cleanups (old);
}
}
 
 
int
int
kernel_u_size (void)
kernel_u_size (void)
{
{
  return (sizeof (struct user));
  return (sizeof (struct user));
}
}


/* Under AIX, we have to pass the correct TOC pointer to a function
/* Under AIX, we have to pass the correct TOC pointer to a function
   when calling functions in the inferior.
   when calling functions in the inferior.
   We try to find the relative toc offset of the objfile containing PC
   We try to find the relative toc offset of the objfile containing PC
   and add the current load address of the data segment from the vmap.  */
   and add the current load address of the data segment from the vmap.  */
 
 
static CORE_ADDR
static CORE_ADDR
find_toc_address (CORE_ADDR pc)
find_toc_address (CORE_ADDR pc)
{
{
  struct vmap *vp;
  struct vmap *vp;
  extern CORE_ADDR get_toc_offset (struct objfile *);   /* xcoffread.c */
  extern CORE_ADDR get_toc_offset (struct objfile *);   /* xcoffread.c */
 
 
  for (vp = vmap; vp; vp = vp->nxt)
  for (vp = vmap; vp; vp = vp->nxt)
    {
    {
      if (pc >= vp->tstart && pc < vp->tend)
      if (pc >= vp->tstart && pc < vp->tend)
        {
        {
          /* vp->objfile is only NULL for the exec file.  */
          /* vp->objfile is only NULL for the exec file.  */
          return vp->dstart + get_toc_offset (vp->objfile == NULL
          return vp->dstart + get_toc_offset (vp->objfile == NULL
                                              ? symfile_objfile
                                              ? symfile_objfile
                                              : vp->objfile);
                                              : vp->objfile);
        }
        }
    }
    }
  error ("Unable to find TOC entry for pc 0x%x\n", pc);
  error ("Unable to find TOC entry for pc 0x%x\n", pc);
}
}


/* Register that we are able to handle rs6000 core file formats. */
/* Register that we are able to handle rs6000 core file formats. */
 
 
static struct core_fns rs6000_core_fns =
static struct core_fns rs6000_core_fns =
{
{
  bfd_target_xcoff_flavour,             /* core_flavour */
  bfd_target_xcoff_flavour,             /* core_flavour */
  default_check_format,                 /* check_format */
  default_check_format,                 /* check_format */
  default_core_sniffer,                 /* core_sniffer */
  default_core_sniffer,                 /* core_sniffer */
  fetch_core_registers,                 /* core_read_registers */
  fetch_core_registers,                 /* core_read_registers */
  NULL                                  /* next */
  NULL                                  /* next */
};
};
 
 
void
void
_initialize_core_rs6000 (void)
_initialize_core_rs6000 (void)
{
{
  /* Initialize hook in rs6000-tdep.c for determining the TOC address when
  /* Initialize hook in rs6000-tdep.c for determining the TOC address when
     calling functions in the inferior.  */
     calling functions in the inferior.  */
  rs6000_find_toc_address_hook = find_toc_address;
  rs6000_find_toc_address_hook = find_toc_address;
 
 
  /* Initialize hook in rs6000-tdep.c to set the current architecture when
  /* Initialize hook in rs6000-tdep.c to set the current architecture when
     starting a child process. */
     starting a child process. */
  rs6000_set_host_arch_hook = set_host_arch;
  rs6000_set_host_arch_hook = set_host_arch;
 
 
  add_core_fns (&rs6000_core_fns);
  add_core_fns (&rs6000_core_fns);
}
}
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.