OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [insight/] [gdb/] [rs6000-tdep.c] - Diff between revs 578 and 1765

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 578 Rev 1765
/* Target-dependent code for GDB, the GNU debugger.
/* Target-dependent code for GDB, the GNU debugger.
   Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
   Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
   1998, 1999, 2000, 2001
   1998, 1999, 2000, 2001
   Free Software Foundation, Inc.
   Free Software Foundation, Inc.
 
 
   This file is part of GDB.
   This file is part of GDB.
 
 
   This program is free software; you can redistribute it and/or modify
   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2 of the License, or
   the Free Software Foundation; either version 2 of the License, or
   (at your option) any later version.
   (at your option) any later version.
 
 
   This program is distributed in the hope that it will be useful,
   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.
   GNU General Public License for more details.
 
 
   You should have received a copy of the GNU General Public License
   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   along with this program; if not, write to the Free Software
   Foundation, Inc., 59 Temple Place - Suite 330,
   Foundation, Inc., 59 Temple Place - Suite 330,
   Boston, MA 02111-1307, USA.  */
   Boston, MA 02111-1307, USA.  */
 
 
#include "defs.h"
#include "defs.h"
#include "frame.h"
#include "frame.h"
#include "inferior.h"
#include "inferior.h"
#include "symtab.h"
#include "symtab.h"
#include "target.h"
#include "target.h"
#include "gdbcore.h"
#include "gdbcore.h"
#include "gdbcmd.h"
#include "gdbcmd.h"
#include "symfile.h"
#include "symfile.h"
#include "objfiles.h"
#include "objfiles.h"
#include "arch-utils.h"
#include "arch-utils.h"
#include "regcache.h"
#include "regcache.h"
 
 
#include "bfd/libbfd.h"         /* for bfd_default_set_arch_mach */
#include "bfd/libbfd.h"         /* for bfd_default_set_arch_mach */
#include "coff/internal.h"      /* for libcoff.h */
#include "coff/internal.h"      /* for libcoff.h */
#include "bfd/libcoff.h"        /* for xcoff_data */
#include "bfd/libcoff.h"        /* for xcoff_data */
 
 
#include "elf-bfd.h"
#include "elf-bfd.h"
 
 
#include "ppc-tdep.h"
#include "ppc-tdep.h"
 
 
/* If the kernel has to deliver a signal, it pushes a sigcontext
/* If the kernel has to deliver a signal, it pushes a sigcontext
   structure on the stack and then calls the signal handler, passing
   structure on the stack and then calls the signal handler, passing
   the address of the sigcontext in an argument register. Usually
   the address of the sigcontext in an argument register. Usually
   the signal handler doesn't save this register, so we have to
   the signal handler doesn't save this register, so we have to
   access the sigcontext structure via an offset from the signal handler
   access the sigcontext structure via an offset from the signal handler
   frame.
   frame.
   The following constants were determined by experimentation on AIX 3.2.  */
   The following constants were determined by experimentation on AIX 3.2.  */
#define SIG_FRAME_PC_OFFSET 96
#define SIG_FRAME_PC_OFFSET 96
#define SIG_FRAME_LR_OFFSET 108
#define SIG_FRAME_LR_OFFSET 108
#define SIG_FRAME_FP_OFFSET 284
#define SIG_FRAME_FP_OFFSET 284
 
 
/* To be used by skip_prologue. */
/* To be used by skip_prologue. */
 
 
struct rs6000_framedata
struct rs6000_framedata
  {
  {
    int offset;                 /* total size of frame --- the distance
    int offset;                 /* total size of frame --- the distance
                                   by which we decrement sp to allocate
                                   by which we decrement sp to allocate
                                   the frame */
                                   the frame */
    int saved_gpr;              /* smallest # of saved gpr */
    int saved_gpr;              /* smallest # of saved gpr */
    int saved_fpr;              /* smallest # of saved fpr */
    int saved_fpr;              /* smallest # of saved fpr */
    int alloca_reg;             /* alloca register number (frame ptr) */
    int alloca_reg;             /* alloca register number (frame ptr) */
    char frameless;             /* true if frameless functions. */
    char frameless;             /* true if frameless functions. */
    char nosavedpc;             /* true if pc not saved. */
    char nosavedpc;             /* true if pc not saved. */
    int gpr_offset;             /* offset of saved gprs from prev sp */
    int gpr_offset;             /* offset of saved gprs from prev sp */
    int fpr_offset;             /* offset of saved fprs from prev sp */
    int fpr_offset;             /* offset of saved fprs from prev sp */
    int lr_offset;              /* offset of saved lr */
    int lr_offset;              /* offset of saved lr */
    int cr_offset;              /* offset of saved cr */
    int cr_offset;              /* offset of saved cr */
  };
  };
 
 
/* Description of a single register. */
/* Description of a single register. */
 
 
struct reg
struct reg
  {
  {
    char *name;                 /* name of register */
    char *name;                 /* name of register */
    unsigned char sz32;         /* size on 32-bit arch, 0 if nonextant */
    unsigned char sz32;         /* size on 32-bit arch, 0 if nonextant */
    unsigned char sz64;         /* size on 64-bit arch, 0 if nonextant */
    unsigned char sz64;         /* size on 64-bit arch, 0 if nonextant */
    unsigned char fpr;          /* whether register is floating-point */
    unsigned char fpr;          /* whether register is floating-point */
  };
  };
 
 
/* Private data that this module attaches to struct gdbarch. */
/* Private data that this module attaches to struct gdbarch. */
 
 
struct gdbarch_tdep
struct gdbarch_tdep
  {
  {
    int wordsize;               /* size in bytes of fixed-point word */
    int wordsize;               /* size in bytes of fixed-point word */
    int osabi;                  /* OS / ABI from ELF header */
    int osabi;                  /* OS / ABI from ELF header */
    int *regoff;                /* byte offsets in register arrays */
    int *regoff;                /* byte offsets in register arrays */
    const struct reg *regs;     /* from current variant */
    const struct reg *regs;     /* from current variant */
  };
  };
 
 
/* Return the current architecture's gdbarch_tdep structure. */
/* Return the current architecture's gdbarch_tdep structure. */
 
 
#define TDEP    gdbarch_tdep (current_gdbarch)
#define TDEP    gdbarch_tdep (current_gdbarch)
 
 
/* Breakpoint shadows for the single step instructions will be kept here. */
/* Breakpoint shadows for the single step instructions will be kept here. */
 
 
static struct sstep_breaks
static struct sstep_breaks
  {
  {
    /* Address, or 0 if this is not in use.  */
    /* Address, or 0 if this is not in use.  */
    CORE_ADDR address;
    CORE_ADDR address;
    /* Shadow contents.  */
    /* Shadow contents.  */
    char data[4];
    char data[4];
  }
  }
stepBreaks[2];
stepBreaks[2];
 
 
/* Hook for determining the TOC address when calling functions in the
/* Hook for determining the TOC address when calling functions in the
   inferior under AIX. The initialization code in rs6000-nat.c sets
   inferior under AIX. The initialization code in rs6000-nat.c sets
   this hook to point to find_toc_address.  */
   this hook to point to find_toc_address.  */
 
 
CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
 
 
/* Hook to set the current architecture when starting a child process.
/* Hook to set the current architecture when starting a child process.
   rs6000-nat.c sets this. */
   rs6000-nat.c sets this. */
 
 
void (*rs6000_set_host_arch_hook) (int) = NULL;
void (*rs6000_set_host_arch_hook) (int) = NULL;
 
 
/* Static function prototypes */
/* Static function prototypes */
 
 
static CORE_ADDR branch_dest (int opcode, int instr, CORE_ADDR pc,
static CORE_ADDR branch_dest (int opcode, int instr, CORE_ADDR pc,
                              CORE_ADDR safety);
                              CORE_ADDR safety);
static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR,
static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR,
                                struct rs6000_framedata *);
                                struct rs6000_framedata *);
static void frame_get_saved_regs (struct frame_info * fi,
static void frame_get_saved_regs (struct frame_info * fi,
                                  struct rs6000_framedata * fdatap);
                                  struct rs6000_framedata * fdatap);
static CORE_ADDR frame_initial_stack_address (struct frame_info *);
static CORE_ADDR frame_initial_stack_address (struct frame_info *);
 
 
/* Read a LEN-byte address from debugged memory address MEMADDR. */
/* Read a LEN-byte address from debugged memory address MEMADDR. */
 
 
static CORE_ADDR
static CORE_ADDR
read_memory_addr (CORE_ADDR memaddr, int len)
read_memory_addr (CORE_ADDR memaddr, int len)
{
{
  return read_memory_unsigned_integer (memaddr, len);
  return read_memory_unsigned_integer (memaddr, len);
}
}
 
 
static CORE_ADDR
static CORE_ADDR
rs6000_skip_prologue (CORE_ADDR pc)
rs6000_skip_prologue (CORE_ADDR pc)
{
{
  struct rs6000_framedata frame;
  struct rs6000_framedata frame;
  pc = skip_prologue (pc, 0, &frame);
  pc = skip_prologue (pc, 0, &frame);
  return pc;
  return pc;
}
}
 
 
 
 
/* Fill in fi->saved_regs */
/* Fill in fi->saved_regs */
 
 
struct frame_extra_info
struct frame_extra_info
{
{
  /* Functions calling alloca() change the value of the stack
  /* Functions calling alloca() change the value of the stack
     pointer. We need to use initial stack pointer (which is saved in
     pointer. We need to use initial stack pointer (which is saved in
     r31 by gcc) in such cases. If a compiler emits traceback table,
     r31 by gcc) in such cases. If a compiler emits traceback table,
     then we should use the alloca register specified in traceback
     then we should use the alloca register specified in traceback
     table. FIXME. */
     table. FIXME. */
  CORE_ADDR initial_sp;         /* initial stack pointer. */
  CORE_ADDR initial_sp;         /* initial stack pointer. */
};
};
 
 
void
void
rs6000_init_extra_frame_info (int fromleaf, struct frame_info *fi)
rs6000_init_extra_frame_info (int fromleaf, struct frame_info *fi)
{
{
  fi->extra_info = (struct frame_extra_info *)
  fi->extra_info = (struct frame_extra_info *)
    frame_obstack_alloc (sizeof (struct frame_extra_info));
    frame_obstack_alloc (sizeof (struct frame_extra_info));
  fi->extra_info->initial_sp = 0;
  fi->extra_info->initial_sp = 0;
  if (fi->next != (CORE_ADDR) 0
  if (fi->next != (CORE_ADDR) 0
      && fi->pc < TEXT_SEGMENT_BASE)
      && fi->pc < TEXT_SEGMENT_BASE)
    /* We're in get_prev_frame */
    /* We're in get_prev_frame */
    /* and this is a special signal frame.  */
    /* and this is a special signal frame.  */
    /* (fi->pc will be some low address in the kernel, */
    /* (fi->pc will be some low address in the kernel, */
    /*  to which the signal handler returns).  */
    /*  to which the signal handler returns).  */
    fi->signal_handler_caller = 1;
    fi->signal_handler_caller = 1;
}
}
 
 
/* Put here the code to store, into a struct frame_saved_regs,
/* Put here the code to store, into a struct frame_saved_regs,
   the addresses of the saved registers of frame described by FRAME_INFO.
   the addresses of the saved registers of frame described by FRAME_INFO.
   This includes special registers such as pc and fp saved in special
   This includes special registers such as pc and fp saved in special
   ways in the stack frame.  sp is even more special:
   ways in the stack frame.  sp is even more special:
   the address we return for it IS the sp for the next frame.  */
   the address we return for it IS the sp for the next frame.  */
 
 
/* In this implementation for RS/6000, we do *not* save sp. I am
/* In this implementation for RS/6000, we do *not* save sp. I am
   not sure if it will be needed. The following function takes care of gpr's
   not sure if it will be needed. The following function takes care of gpr's
   and fpr's only. */
   and fpr's only. */
 
 
void
void
rs6000_frame_init_saved_regs (struct frame_info *fi)
rs6000_frame_init_saved_regs (struct frame_info *fi)
{
{
  frame_get_saved_regs (fi, NULL);
  frame_get_saved_regs (fi, NULL);
}
}
 
 
static CORE_ADDR
static CORE_ADDR
rs6000_frame_args_address (struct frame_info *fi)
rs6000_frame_args_address (struct frame_info *fi)
{
{
  if (fi->extra_info->initial_sp != 0)
  if (fi->extra_info->initial_sp != 0)
    return fi->extra_info->initial_sp;
    return fi->extra_info->initial_sp;
  else
  else
    return frame_initial_stack_address (fi);
    return frame_initial_stack_address (fi);
}
}
 
 
/* Immediately after a function call, return the saved pc.
/* Immediately after a function call, return the saved pc.
   Can't go through the frames for this because on some machines
   Can't go through the frames for this because on some machines
   the new frame is not set up until the new function executes
   the new frame is not set up until the new function executes
   some instructions.  */
   some instructions.  */
 
 
static CORE_ADDR
static CORE_ADDR
rs6000_saved_pc_after_call (struct frame_info *fi)
rs6000_saved_pc_after_call (struct frame_info *fi)
{
{
  return read_register (PPC_LR_REGNUM);
  return read_register (PPC_LR_REGNUM);
}
}
 
 
/* Calculate the destination of a branch/jump.  Return -1 if not a branch.  */
/* Calculate the destination of a branch/jump.  Return -1 if not a branch.  */
 
 
static CORE_ADDR
static CORE_ADDR
branch_dest (int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety)
branch_dest (int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety)
{
{
  CORE_ADDR dest;
  CORE_ADDR dest;
  int immediate;
  int immediate;
  int absolute;
  int absolute;
  int ext_op;
  int ext_op;
 
 
  absolute = (int) ((instr >> 1) & 1);
  absolute = (int) ((instr >> 1) & 1);
 
 
  switch (opcode)
  switch (opcode)
    {
    {
    case 18:
    case 18:
      immediate = ((instr & ~3) << 6) >> 6;     /* br unconditional */
      immediate = ((instr & ~3) << 6) >> 6;     /* br unconditional */
      if (absolute)
      if (absolute)
        dest = immediate;
        dest = immediate;
      else
      else
        dest = pc + immediate;
        dest = pc + immediate;
      break;
      break;
 
 
    case 16:
    case 16:
      immediate = ((instr & ~3) << 16) >> 16;   /* br conditional */
      immediate = ((instr & ~3) << 16) >> 16;   /* br conditional */
      if (absolute)
      if (absolute)
        dest = immediate;
        dest = immediate;
      else
      else
        dest = pc + immediate;
        dest = pc + immediate;
      break;
      break;
 
 
    case 19:
    case 19:
      ext_op = (instr >> 1) & 0x3ff;
      ext_op = (instr >> 1) & 0x3ff;
 
 
      if (ext_op == 16)         /* br conditional register */
      if (ext_op == 16)         /* br conditional register */
        {
        {
          dest = read_register (PPC_LR_REGNUM) & ~3;
          dest = read_register (PPC_LR_REGNUM) & ~3;
 
 
          /* If we are about to return from a signal handler, dest is
          /* If we are about to return from a signal handler, dest is
             something like 0x3c90.  The current frame is a signal handler
             something like 0x3c90.  The current frame is a signal handler
             caller frame, upon completion of the sigreturn system call
             caller frame, upon completion of the sigreturn system call
             execution will return to the saved PC in the frame.  */
             execution will return to the saved PC in the frame.  */
          if (dest < TEXT_SEGMENT_BASE)
          if (dest < TEXT_SEGMENT_BASE)
            {
            {
              struct frame_info *fi;
              struct frame_info *fi;
 
 
              fi = get_current_frame ();
              fi = get_current_frame ();
              if (fi != NULL)
              if (fi != NULL)
                dest = read_memory_addr (fi->frame + SIG_FRAME_PC_OFFSET,
                dest = read_memory_addr (fi->frame + SIG_FRAME_PC_OFFSET,
                                         TDEP->wordsize);
                                         TDEP->wordsize);
            }
            }
        }
        }
 
 
      else if (ext_op == 528)   /* br cond to count reg */
      else if (ext_op == 528)   /* br cond to count reg */
        {
        {
          dest = read_register (PPC_CTR_REGNUM) & ~3;
          dest = read_register (PPC_CTR_REGNUM) & ~3;
 
 
          /* If we are about to execute a system call, dest is something
          /* If we are about to execute a system call, dest is something
             like 0x22fc or 0x3b00.  Upon completion the system call
             like 0x22fc or 0x3b00.  Upon completion the system call
             will return to the address in the link register.  */
             will return to the address in the link register.  */
          if (dest < TEXT_SEGMENT_BASE)
          if (dest < TEXT_SEGMENT_BASE)
            dest = read_register (PPC_LR_REGNUM) & ~3;
            dest = read_register (PPC_LR_REGNUM) & ~3;
        }
        }
      else
      else
        return -1;
        return -1;
      break;
      break;
 
 
    default:
    default:
      return -1;
      return -1;
    }
    }
  return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
  return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
}
}
 
 
 
 
/* Sequence of bytes for breakpoint instruction.  */
/* Sequence of bytes for breakpoint instruction.  */
 
 
#define BIG_BREAKPOINT { 0x7d, 0x82, 0x10, 0x08 }
#define BIG_BREAKPOINT { 0x7d, 0x82, 0x10, 0x08 }
#define LITTLE_BREAKPOINT { 0x08, 0x10, 0x82, 0x7d }
#define LITTLE_BREAKPOINT { 0x08, 0x10, 0x82, 0x7d }
 
 
static unsigned char *
static unsigned char *
rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
{
{
  static unsigned char big_breakpoint[] = BIG_BREAKPOINT;
  static unsigned char big_breakpoint[] = BIG_BREAKPOINT;
  static unsigned char little_breakpoint[] = LITTLE_BREAKPOINT;
  static unsigned char little_breakpoint[] = LITTLE_BREAKPOINT;
  *bp_size = 4;
  *bp_size = 4;
  if (TARGET_BYTE_ORDER == BIG_ENDIAN)
  if (TARGET_BYTE_ORDER == BIG_ENDIAN)
    return big_breakpoint;
    return big_breakpoint;
  else
  else
    return little_breakpoint;
    return little_breakpoint;
}
}
 
 
 
 
/* AIX does not support PT_STEP. Simulate it. */
/* AIX does not support PT_STEP. Simulate it. */
 
 
void
void
rs6000_software_single_step (enum target_signal signal,
rs6000_software_single_step (enum target_signal signal,
                             int insert_breakpoints_p)
                             int insert_breakpoints_p)
{
{
#define INSNLEN(OPCODE)  4
#define INSNLEN(OPCODE)  4
 
 
  static char le_breakp[] = LITTLE_BREAKPOINT;
  static char le_breakp[] = LITTLE_BREAKPOINT;
  static char be_breakp[] = BIG_BREAKPOINT;
  static char be_breakp[] = BIG_BREAKPOINT;
  char *breakp = TARGET_BYTE_ORDER == BIG_ENDIAN ? be_breakp : le_breakp;
  char *breakp = TARGET_BYTE_ORDER == BIG_ENDIAN ? be_breakp : le_breakp;
  int ii, insn;
  int ii, insn;
  CORE_ADDR loc;
  CORE_ADDR loc;
  CORE_ADDR breaks[2];
  CORE_ADDR breaks[2];
  int opcode;
  int opcode;
 
 
  if (insert_breakpoints_p)
  if (insert_breakpoints_p)
    {
    {
 
 
      loc = read_pc ();
      loc = read_pc ();
 
 
      insn = read_memory_integer (loc, 4);
      insn = read_memory_integer (loc, 4);
 
 
      breaks[0] = loc + INSNLEN (insn);
      breaks[0] = loc + INSNLEN (insn);
      opcode = insn >> 26;
      opcode = insn >> 26;
      breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
      breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
 
 
      /* Don't put two breakpoints on the same address. */
      /* Don't put two breakpoints on the same address. */
      if (breaks[1] == breaks[0])
      if (breaks[1] == breaks[0])
        breaks[1] = -1;
        breaks[1] = -1;
 
 
      stepBreaks[1].address = 0;
      stepBreaks[1].address = 0;
 
 
      for (ii = 0; ii < 2; ++ii)
      for (ii = 0; ii < 2; ++ii)
        {
        {
 
 
          /* ignore invalid breakpoint. */
          /* ignore invalid breakpoint. */
          if (breaks[ii] == -1)
          if (breaks[ii] == -1)
            continue;
            continue;
 
 
          read_memory (breaks[ii], stepBreaks[ii].data, 4);
          read_memory (breaks[ii], stepBreaks[ii].data, 4);
 
 
          write_memory (breaks[ii], breakp, 4);
          write_memory (breaks[ii], breakp, 4);
          stepBreaks[ii].address = breaks[ii];
          stepBreaks[ii].address = breaks[ii];
        }
        }
 
 
    }
    }
  else
  else
    {
    {
 
 
      /* remove step breakpoints. */
      /* remove step breakpoints. */
      for (ii = 0; ii < 2; ++ii)
      for (ii = 0; ii < 2; ++ii)
        if (stepBreaks[ii].address != 0)
        if (stepBreaks[ii].address != 0)
          write_memory
          write_memory
            (stepBreaks[ii].address, stepBreaks[ii].data, 4);
            (stepBreaks[ii].address, stepBreaks[ii].data, 4);
 
 
    }
    }
  errno = 0;                     /* FIXME, don't ignore errors! */
  errno = 0;                     /* FIXME, don't ignore errors! */
  /* What errors?  {read,write}_memory call error().  */
  /* What errors?  {read,write}_memory call error().  */
}
}
 
 
 
 
/* return pc value after skipping a function prologue and also return
/* return pc value after skipping a function prologue and also return
   information about a function frame.
   information about a function frame.
 
 
   in struct rs6000_framedata fdata:
   in struct rs6000_framedata fdata:
   - frameless is TRUE, if function does not have a frame.
   - frameless is TRUE, if function does not have a frame.
   - nosavedpc is TRUE, if function does not save %pc value in its frame.
   - nosavedpc is TRUE, if function does not save %pc value in its frame.
   - offset is the initial size of this stack frame --- the amount by
   - offset is the initial size of this stack frame --- the amount by
   which we decrement the sp to allocate the frame.
   which we decrement the sp to allocate the frame.
   - saved_gpr is the number of the first saved gpr.
   - saved_gpr is the number of the first saved gpr.
   - saved_fpr is the number of the first saved fpr.
   - saved_fpr is the number of the first saved fpr.
   - alloca_reg is the number of the register used for alloca() handling.
   - alloca_reg is the number of the register used for alloca() handling.
   Otherwise -1.
   Otherwise -1.
   - gpr_offset is the offset of the first saved gpr from the previous frame.
   - gpr_offset is the offset of the first saved gpr from the previous frame.
   - fpr_offset is the offset of the first saved fpr from the previous frame.
   - fpr_offset is the offset of the first saved fpr from the previous frame.
   - lr_offset is the offset of the saved lr
   - lr_offset is the offset of the saved lr
   - cr_offset is the offset of the saved cr
   - cr_offset is the offset of the saved cr
 */
 */
 
 
#define SIGNED_SHORT(x)                                                 \
#define SIGNED_SHORT(x)                                                 \
  ((sizeof (short) == 2)                                                \
  ((sizeof (short) == 2)                                                \
   ? ((int)(short)(x))                                                  \
   ? ((int)(short)(x))                                                  \
   : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
   : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
 
 
#define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
#define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
 
 
/* Limit the number of skipped non-prologue instructions, as the examining
/* Limit the number of skipped non-prologue instructions, as the examining
   of the prologue is expensive.  */
   of the prologue is expensive.  */
static int max_skip_non_prologue_insns = 10;
static int max_skip_non_prologue_insns = 10;
 
 
/* Given PC representing the starting address of a function, and
/* Given PC representing the starting address of a function, and
   LIM_PC which is the (sloppy) limit to which to scan when looking
   LIM_PC which is the (sloppy) limit to which to scan when looking
   for a prologue, attempt to further refine this limit by using
   for a prologue, attempt to further refine this limit by using
   the line data in the symbol table.  If successful, a better guess
   the line data in the symbol table.  If successful, a better guess
   on where the prologue ends is returned, otherwise the previous
   on where the prologue ends is returned, otherwise the previous
   value of lim_pc is returned.  */
   value of lim_pc is returned.  */
static CORE_ADDR
static CORE_ADDR
refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc)
refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc)
{
{
  struct symtab_and_line prologue_sal;
  struct symtab_and_line prologue_sal;
 
 
  prologue_sal = find_pc_line (pc, 0);
  prologue_sal = find_pc_line (pc, 0);
  if (prologue_sal.line != 0)
  if (prologue_sal.line != 0)
    {
    {
      int i;
      int i;
      CORE_ADDR addr = prologue_sal.end;
      CORE_ADDR addr = prologue_sal.end;
 
 
      /* Handle the case in which compiler's optimizer/scheduler
      /* Handle the case in which compiler's optimizer/scheduler
         has moved instructions into the prologue.  We scan ahead
         has moved instructions into the prologue.  We scan ahead
         in the function looking for address ranges whose corresponding
         in the function looking for address ranges whose corresponding
         line number is less than or equal to the first one that we
         line number is less than or equal to the first one that we
         found for the function.  (It can be less than when the
         found for the function.  (It can be less than when the
         scheduler puts a body instruction before the first prologue
         scheduler puts a body instruction before the first prologue
         instruction.)  */
         instruction.)  */
      for (i = 2 * max_skip_non_prologue_insns;
      for (i = 2 * max_skip_non_prologue_insns;
           i > 0 && (lim_pc == 0 || addr < lim_pc);
           i > 0 && (lim_pc == 0 || addr < lim_pc);
           i--)
           i--)
        {
        {
          struct symtab_and_line sal;
          struct symtab_and_line sal;
 
 
          sal = find_pc_line (addr, 0);
          sal = find_pc_line (addr, 0);
          if (sal.line == 0)
          if (sal.line == 0)
            break;
            break;
          if (sal.line <= prologue_sal.line
          if (sal.line <= prologue_sal.line
              && sal.symtab == prologue_sal.symtab)
              && sal.symtab == prologue_sal.symtab)
            {
            {
              prologue_sal = sal;
              prologue_sal = sal;
            }
            }
          addr = sal.end;
          addr = sal.end;
        }
        }
 
 
      if (lim_pc == 0 || prologue_sal.end < lim_pc)
      if (lim_pc == 0 || prologue_sal.end < lim_pc)
        lim_pc = prologue_sal.end;
        lim_pc = prologue_sal.end;
    }
    }
  return lim_pc;
  return lim_pc;
}
}
 
 
 
 
static CORE_ADDR
static CORE_ADDR
skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
{
{
  CORE_ADDR orig_pc = pc;
  CORE_ADDR orig_pc = pc;
  CORE_ADDR last_prologue_pc = pc;
  CORE_ADDR last_prologue_pc = pc;
  char buf[4];
  char buf[4];
  unsigned long op;
  unsigned long op;
  long offset = 0;
  long offset = 0;
  int lr_reg = -1;
  int lr_reg = -1;
  int cr_reg = -1;
  int cr_reg = -1;
  int reg;
  int reg;
  int framep = 0;
  int framep = 0;
  int minimal_toc_loaded = 0;
  int minimal_toc_loaded = 0;
  int prev_insn_was_prologue_insn = 1;
  int prev_insn_was_prologue_insn = 1;
  int num_skip_non_prologue_insns = 0;
  int num_skip_non_prologue_insns = 0;
 
 
  /* Attempt to find the end of the prologue when no limit is specified.
  /* Attempt to find the end of the prologue when no limit is specified.
     Note that refine_prologue_limit() has been written so that it may
     Note that refine_prologue_limit() has been written so that it may
     be used to "refine" the limits of non-zero PC values too, but this
     be used to "refine" the limits of non-zero PC values too, but this
     is only safe if we 1) trust the line information provided by the
     is only safe if we 1) trust the line information provided by the
     compiler and 2) iterate enough to actually find the end of the
     compiler and 2) iterate enough to actually find the end of the
     prologue.
     prologue.
 
 
     It may become a good idea at some point (for both performance and
     It may become a good idea at some point (for both performance and
     accuracy) to unconditionally call refine_prologue_limit().  But,
     accuracy) to unconditionally call refine_prologue_limit().  But,
     until we can make a clear determination that this is beneficial,
     until we can make a clear determination that this is beneficial,
     we'll play it safe and only use it to obtain a limit when none
     we'll play it safe and only use it to obtain a limit when none
     has been specified.  */
     has been specified.  */
  if (lim_pc == 0)
  if (lim_pc == 0)
    lim_pc = refine_prologue_limit (pc, lim_pc);
    lim_pc = refine_prologue_limit (pc, lim_pc);
 
 
  memset (fdata, 0, sizeof (struct rs6000_framedata));
  memset (fdata, 0, sizeof (struct rs6000_framedata));
  fdata->saved_gpr = -1;
  fdata->saved_gpr = -1;
  fdata->saved_fpr = -1;
  fdata->saved_fpr = -1;
  fdata->alloca_reg = -1;
  fdata->alloca_reg = -1;
  fdata->frameless = 1;
  fdata->frameless = 1;
  fdata->nosavedpc = 1;
  fdata->nosavedpc = 1;
 
 
  for (;; pc += 4)
  for (;; pc += 4)
    {
    {
      /* Sometimes it isn't clear if an instruction is a prologue
      /* Sometimes it isn't clear if an instruction is a prologue
         instruction or not.  When we encounter one of these ambiguous
         instruction or not.  When we encounter one of these ambiguous
         cases, we'll set prev_insn_was_prologue_insn to 0 (false).
         cases, we'll set prev_insn_was_prologue_insn to 0 (false).
         Otherwise, we'll assume that it really is a prologue instruction. */
         Otherwise, we'll assume that it really is a prologue instruction. */
      if (prev_insn_was_prologue_insn)
      if (prev_insn_was_prologue_insn)
        last_prologue_pc = pc;
        last_prologue_pc = pc;
 
 
      /* Stop scanning if we've hit the limit.  */
      /* Stop scanning if we've hit the limit.  */
      if (lim_pc != 0 && pc >= lim_pc)
      if (lim_pc != 0 && pc >= lim_pc)
        break;
        break;
 
 
      prev_insn_was_prologue_insn = 1;
      prev_insn_was_prologue_insn = 1;
 
 
      /* Fetch the instruction and convert it to an integer.  */
      /* Fetch the instruction and convert it to an integer.  */
      if (target_read_memory (pc, buf, 4))
      if (target_read_memory (pc, buf, 4))
        break;
        break;
      op = extract_signed_integer (buf, 4);
      op = extract_signed_integer (buf, 4);
 
 
      if ((op & 0xfc1fffff) == 0x7c0802a6)
      if ((op & 0xfc1fffff) == 0x7c0802a6)
        {                       /* mflr Rx */
        {                       /* mflr Rx */
          lr_reg = (op & 0x03e00000) | 0x90010000;
          lr_reg = (op & 0x03e00000) | 0x90010000;
          continue;
          continue;
 
 
        }
        }
      else if ((op & 0xfc1fffff) == 0x7c000026)
      else if ((op & 0xfc1fffff) == 0x7c000026)
        {                       /* mfcr Rx */
        {                       /* mfcr Rx */
          cr_reg = (op & 0x03e00000) | 0x90010000;
          cr_reg = (op & 0x03e00000) | 0x90010000;
          continue;
          continue;
 
 
        }
        }
      else if ((op & 0xfc1f0000) == 0xd8010000)
      else if ((op & 0xfc1f0000) == 0xd8010000)
        {                       /* stfd Rx,NUM(r1) */
        {                       /* stfd Rx,NUM(r1) */
          reg = GET_SRC_REG (op);
          reg = GET_SRC_REG (op);
          if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
          if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
            {
            {
              fdata->saved_fpr = reg;
              fdata->saved_fpr = reg;
              fdata->fpr_offset = SIGNED_SHORT (op) + offset;
              fdata->fpr_offset = SIGNED_SHORT (op) + offset;
            }
            }
          continue;
          continue;
 
 
        }
        }
      else if (((op & 0xfc1f0000) == 0xbc010000) ||     /* stm Rx, NUM(r1) */
      else if (((op & 0xfc1f0000) == 0xbc010000) ||     /* stm Rx, NUM(r1) */
               (((op & 0xfc1f0000) == 0x90010000 ||     /* st rx,NUM(r1) */
               (((op & 0xfc1f0000) == 0x90010000 ||     /* st rx,NUM(r1) */
                 (op & 0xfc1f0003) == 0xf8010000) &&    /* std rx,NUM(r1) */
                 (op & 0xfc1f0003) == 0xf8010000) &&    /* std rx,NUM(r1) */
                (op & 0x03e00000) >= 0x01a00000))       /* rx >= r13 */
                (op & 0x03e00000) >= 0x01a00000))       /* rx >= r13 */
        {
        {
 
 
          reg = GET_SRC_REG (op);
          reg = GET_SRC_REG (op);
          if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
          if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
            {
            {
              fdata->saved_gpr = reg;
              fdata->saved_gpr = reg;
              if ((op & 0xfc1f0003) == 0xf8010000)
              if ((op & 0xfc1f0003) == 0xf8010000)
                op = (op >> 1) << 1;
                op = (op >> 1) << 1;
              fdata->gpr_offset = SIGNED_SHORT (op) + offset;
              fdata->gpr_offset = SIGNED_SHORT (op) + offset;
            }
            }
          continue;
          continue;
 
 
        }
        }
      else if ((op & 0xffff0000) == 0x60000000)
      else if ((op & 0xffff0000) == 0x60000000)
        {
        {
                                /* nop */
                                /* nop */
          /* Allow nops in the prologue, but do not consider them to
          /* Allow nops in the prologue, but do not consider them to
             be part of the prologue unless followed by other prologue
             be part of the prologue unless followed by other prologue
             instructions. */
             instructions. */
          prev_insn_was_prologue_insn = 0;
          prev_insn_was_prologue_insn = 0;
          continue;
          continue;
 
 
        }
        }
      else if ((op & 0xffff0000) == 0x3c000000)
      else if ((op & 0xffff0000) == 0x3c000000)
        {                       /* addis 0,0,NUM, used
        {                       /* addis 0,0,NUM, used
                                   for >= 32k frames */
                                   for >= 32k frames */
          fdata->offset = (op & 0x0000ffff) << 16;
          fdata->offset = (op & 0x0000ffff) << 16;
          fdata->frameless = 0;
          fdata->frameless = 0;
          continue;
          continue;
 
 
        }
        }
      else if ((op & 0xffff0000) == 0x60000000)
      else if ((op & 0xffff0000) == 0x60000000)
        {                       /* ori 0,0,NUM, 2nd ha
        {                       /* ori 0,0,NUM, 2nd ha
                                   lf of >= 32k frames */
                                   lf of >= 32k frames */
          fdata->offset |= (op & 0x0000ffff);
          fdata->offset |= (op & 0x0000ffff);
          fdata->frameless = 0;
          fdata->frameless = 0;
          continue;
          continue;
 
 
        }
        }
      else if (lr_reg != -1 && (op & 0xffff0000) == lr_reg)
      else if (lr_reg != -1 && (op & 0xffff0000) == lr_reg)
        {                       /* st Rx,NUM(r1)
        {                       /* st Rx,NUM(r1)
                                   where Rx == lr */
                                   where Rx == lr */
          fdata->lr_offset = SIGNED_SHORT (op) + offset;
          fdata->lr_offset = SIGNED_SHORT (op) + offset;
          fdata->nosavedpc = 0;
          fdata->nosavedpc = 0;
          lr_reg = 0;
          lr_reg = 0;
          continue;
          continue;
 
 
        }
        }
      else if (cr_reg != -1 && (op & 0xffff0000) == cr_reg)
      else if (cr_reg != -1 && (op & 0xffff0000) == cr_reg)
        {                       /* st Rx,NUM(r1)
        {                       /* st Rx,NUM(r1)
                                   where Rx == cr */
                                   where Rx == cr */
          fdata->cr_offset = SIGNED_SHORT (op) + offset;
          fdata->cr_offset = SIGNED_SHORT (op) + offset;
          cr_reg = 0;
          cr_reg = 0;
          continue;
          continue;
 
 
        }
        }
      else if (op == 0x48000005)
      else if (op == 0x48000005)
        {                       /* bl .+4 used in
        {                       /* bl .+4 used in
                                   -mrelocatable */
                                   -mrelocatable */
          continue;
          continue;
 
 
        }
        }
      else if (op == 0x48000004)
      else if (op == 0x48000004)
        {                       /* b .+4 (xlc) */
        {                       /* b .+4 (xlc) */
          break;
          break;
 
 
        }
        }
      else if (((op & 0xffff0000) == 0x801e0000 ||      /* lwz 0,NUM(r30), used
      else if (((op & 0xffff0000) == 0x801e0000 ||      /* lwz 0,NUM(r30), used
                                                           in V.4 -mrelocatable */
                                                           in V.4 -mrelocatable */
                op == 0x7fc0f214) &&    /* add r30,r0,r30, used
                op == 0x7fc0f214) &&    /* add r30,r0,r30, used
                                           in V.4 -mrelocatable */
                                           in V.4 -mrelocatable */
               lr_reg == 0x901e0000)
               lr_reg == 0x901e0000)
        {
        {
          continue;
          continue;
 
 
        }
        }
      else if ((op & 0xffff0000) == 0x3fc00000 ||       /* addis 30,0,foo@ha, used
      else if ((op & 0xffff0000) == 0x3fc00000 ||       /* addis 30,0,foo@ha, used
                                                           in V.4 -mminimal-toc */
                                                           in V.4 -mminimal-toc */
               (op & 0xffff0000) == 0x3bde0000)
               (op & 0xffff0000) == 0x3bde0000)
        {                       /* addi 30,30,foo@l */
        {                       /* addi 30,30,foo@l */
          continue;
          continue;
 
 
        }
        }
      else if ((op & 0xfc000001) == 0x48000001)
      else if ((op & 0xfc000001) == 0x48000001)
        {                       /* bl foo,
        {                       /* bl foo,
                                   to save fprs??? */
                                   to save fprs??? */
 
 
          fdata->frameless = 0;
          fdata->frameless = 0;
          /* Don't skip over the subroutine call if it is not within the first
          /* Don't skip over the subroutine call if it is not within the first
             three instructions of the prologue.  */
             three instructions of the prologue.  */
          if ((pc - orig_pc) > 8)
          if ((pc - orig_pc) > 8)
            break;
            break;
 
 
          op = read_memory_integer (pc + 4, 4);
          op = read_memory_integer (pc + 4, 4);
 
 
          /* At this point, make sure this is not a trampoline function
          /* At this point, make sure this is not a trampoline function
             (a function that simply calls another functions, and nothing else).
             (a function that simply calls another functions, and nothing else).
             If the next is not a nop, this branch was part of the function
             If the next is not a nop, this branch was part of the function
             prologue. */
             prologue. */
 
 
          if (op == 0x4def7b82 || op == 0)       /* crorc 15, 15, 15 */
          if (op == 0x4def7b82 || op == 0)       /* crorc 15, 15, 15 */
            break;              /* don't skip over
            break;              /* don't skip over
                                   this branch */
                                   this branch */
          continue;
          continue;
 
 
          /* update stack pointer */
          /* update stack pointer */
        }
        }
      else if ((op & 0xffff0000) == 0x94210000 ||       /* stu r1,NUM(r1) */
      else if ((op & 0xffff0000) == 0x94210000 ||       /* stu r1,NUM(r1) */
               (op & 0xffff0003) == 0xf8210001)         /* stdu r1,NUM(r1) */
               (op & 0xffff0003) == 0xf8210001)         /* stdu r1,NUM(r1) */
        {
        {
          fdata->frameless = 0;
          fdata->frameless = 0;
          if ((op & 0xffff0003) == 0xf8210001)
          if ((op & 0xffff0003) == 0xf8210001)
            op = (op >> 1) << 1;
            op = (op >> 1) << 1;
          fdata->offset = SIGNED_SHORT (op);
          fdata->offset = SIGNED_SHORT (op);
          offset = fdata->offset;
          offset = fdata->offset;
          continue;
          continue;
 
 
        }
        }
      else if (op == 0x7c21016e)
      else if (op == 0x7c21016e)
        {                       /* stwux 1,1,0 */
        {                       /* stwux 1,1,0 */
          fdata->frameless = 0;
          fdata->frameless = 0;
          offset = fdata->offset;
          offset = fdata->offset;
          continue;
          continue;
 
 
          /* Load up minimal toc pointer */
          /* Load up minimal toc pointer */
        }
        }
      else if ((op >> 22) == 0x20f
      else if ((op >> 22) == 0x20f
               && !minimal_toc_loaded)
               && !minimal_toc_loaded)
        {                       /* l r31,... or l r30,... */
        {                       /* l r31,... or l r30,... */
          minimal_toc_loaded = 1;
          minimal_toc_loaded = 1;
          continue;
          continue;
 
 
          /* move parameters from argument registers to local variable
          /* move parameters from argument registers to local variable
             registers */
             registers */
        }
        }
      else if ((op & 0xfc0007fe) == 0x7c000378 &&       /* mr(.)  Rx,Ry */
      else if ((op & 0xfc0007fe) == 0x7c000378 &&       /* mr(.)  Rx,Ry */
               (((op >> 21) & 31) >= 3) &&              /* R3 >= Ry >= R10 */
               (((op >> 21) & 31) >= 3) &&              /* R3 >= Ry >= R10 */
               (((op >> 21) & 31) <= 10) &&
               (((op >> 21) & 31) <= 10) &&
               (((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
               (((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
        {
        {
          continue;
          continue;
 
 
          /* store parameters in stack */
          /* store parameters in stack */
        }
        }
      else if ((op & 0xfc1f0000) == 0x90010000 ||       /* st rx,NUM(r1) */
      else if ((op & 0xfc1f0000) == 0x90010000 ||       /* st rx,NUM(r1) */
               (op & 0xfc1f0003) == 0xf8010000 ||       /* std rx,NUM(r1) */
               (op & 0xfc1f0003) == 0xf8010000 ||       /* std rx,NUM(r1) */
               (op & 0xfc1f0000) == 0xd8010000 ||       /* stfd Rx,NUM(r1) */
               (op & 0xfc1f0000) == 0xd8010000 ||       /* stfd Rx,NUM(r1) */
               (op & 0xfc1f0000) == 0xfc010000)         /* frsp, fp?,NUM(r1) */
               (op & 0xfc1f0000) == 0xfc010000)         /* frsp, fp?,NUM(r1) */
        {
        {
          continue;
          continue;
 
 
          /* store parameters in stack via frame pointer */
          /* store parameters in stack via frame pointer */
        }
        }
      else if (framep &&
      else if (framep &&
               ((op & 0xfc1f0000) == 0x901f0000 ||      /* st rx,NUM(r1) */
               ((op & 0xfc1f0000) == 0x901f0000 ||      /* st rx,NUM(r1) */
                (op & 0xfc1f0000) == 0xd81f0000 ||      /* stfd Rx,NUM(r1) */
                (op & 0xfc1f0000) == 0xd81f0000 ||      /* stfd Rx,NUM(r1) */
                (op & 0xfc1f0000) == 0xfc1f0000))
                (op & 0xfc1f0000) == 0xfc1f0000))
        {                       /* frsp, fp?,NUM(r1) */
        {                       /* frsp, fp?,NUM(r1) */
          continue;
          continue;
 
 
          /* Set up frame pointer */
          /* Set up frame pointer */
        }
        }
      else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
      else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
               || op == 0x7c3f0b78)
               || op == 0x7c3f0b78)
        {                       /* mr r31, r1 */
        {                       /* mr r31, r1 */
          fdata->frameless = 0;
          fdata->frameless = 0;
          framep = 1;
          framep = 1;
          fdata->alloca_reg = 31;
          fdata->alloca_reg = 31;
          continue;
          continue;
 
 
          /* Another way to set up the frame pointer.  */
          /* Another way to set up the frame pointer.  */
        }
        }
      else if ((op & 0xfc1fffff) == 0x38010000)
      else if ((op & 0xfc1fffff) == 0x38010000)
        {                       /* addi rX, r1, 0x0 */
        {                       /* addi rX, r1, 0x0 */
          fdata->frameless = 0;
          fdata->frameless = 0;
          framep = 1;
          framep = 1;
          fdata->alloca_reg = (op & ~0x38010000) >> 21;
          fdata->alloca_reg = (op & ~0x38010000) >> 21;
          continue;
          continue;
 
 
        }
        }
      else
      else
        {
        {
          /* Not a recognized prologue instruction.
          /* Not a recognized prologue instruction.
             Handle optimizer code motions into the prologue by continuing
             Handle optimizer code motions into the prologue by continuing
             the search if we have no valid frame yet or if the return
             the search if we have no valid frame yet or if the return
             address is not yet saved in the frame.  */
             address is not yet saved in the frame.  */
          if (fdata->frameless == 0
          if (fdata->frameless == 0
              && (lr_reg == -1 || fdata->nosavedpc == 0))
              && (lr_reg == -1 || fdata->nosavedpc == 0))
            break;
            break;
 
 
          if (op == 0x4e800020          /* blr */
          if (op == 0x4e800020          /* blr */
              || op == 0x4e800420)      /* bctr */
              || op == 0x4e800420)      /* bctr */
            /* Do not scan past epilogue in frameless functions or
            /* Do not scan past epilogue in frameless functions or
               trampolines.  */
               trampolines.  */
            break;
            break;
          if ((op & 0xf4000000) == 0x40000000) /* bxx */
          if ((op & 0xf4000000) == 0x40000000) /* bxx */
            /* Never skip branches. */
            /* Never skip branches. */
            break;
            break;
 
 
          if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
          if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
            /* Do not scan too many insns, scanning insns is expensive with
            /* Do not scan too many insns, scanning insns is expensive with
               remote targets.  */
               remote targets.  */
            break;
            break;
 
 
          /* Continue scanning.  */
          /* Continue scanning.  */
          prev_insn_was_prologue_insn = 0;
          prev_insn_was_prologue_insn = 0;
          continue;
          continue;
        }
        }
    }
    }
 
 
#if 0
#if 0
/* I have problems with skipping over __main() that I need to address
/* I have problems with skipping over __main() that I need to address
 * sometime. Previously, I used to use misc_function_vector which
 * sometime. Previously, I used to use misc_function_vector which
 * didn't work as well as I wanted to be.  -MGO */
 * didn't work as well as I wanted to be.  -MGO */
 
 
  /* If the first thing after skipping a prolog is a branch to a function,
  /* If the first thing after skipping a prolog is a branch to a function,
     this might be a call to an initializer in main(), introduced by gcc2.
     this might be a call to an initializer in main(), introduced by gcc2.
     We'd like to skip over it as well. Fortunately, xlc does some extra
     We'd like to skip over it as well. Fortunately, xlc does some extra
     work before calling a function right after a prologue, thus we can
     work before calling a function right after a prologue, thus we can
     single out such gcc2 behaviour. */
     single out such gcc2 behaviour. */
 
 
 
 
  if ((op & 0xfc000001) == 0x48000001)
  if ((op & 0xfc000001) == 0x48000001)
    {                           /* bl foo, an initializer function? */
    {                           /* bl foo, an initializer function? */
      op = read_memory_integer (pc + 4, 4);
      op = read_memory_integer (pc + 4, 4);
 
 
      if (op == 0x4def7b82)
      if (op == 0x4def7b82)
        {                       /* cror 0xf, 0xf, 0xf (nop) */
        {                       /* cror 0xf, 0xf, 0xf (nop) */
 
 
          /* check and see if we are in main. If so, skip over this initializer
          /* check and see if we are in main. If so, skip over this initializer
             function as well. */
             function as well. */
 
 
          tmp = find_pc_misc_function (pc);
          tmp = find_pc_misc_function (pc);
          if (tmp >= 0 && STREQ (misc_function_vector[tmp].name, "main"))
          if (tmp >= 0 && STREQ (misc_function_vector[tmp].name, "main"))
            return pc + 8;
            return pc + 8;
        }
        }
    }
    }
#endif /* 0 */
#endif /* 0 */
 
 
  fdata->offset = -fdata->offset;
  fdata->offset = -fdata->offset;
  return last_prologue_pc;
  return last_prologue_pc;
}
}
 
 
 
 
/*************************************************************************
/*************************************************************************
  Support for creating pushing a dummy frame into the stack, and popping
  Support for creating pushing a dummy frame into the stack, and popping
  frames, etc.
  frames, etc.
*************************************************************************/
*************************************************************************/
 
 
 
 
/* Pop the innermost frame, go back to the caller. */
/* Pop the innermost frame, go back to the caller. */
 
 
static void
static void
rs6000_pop_frame (void)
rs6000_pop_frame (void)
{
{
  CORE_ADDR pc, lr, sp, prev_sp, addr;  /* %pc, %lr, %sp */
  CORE_ADDR pc, lr, sp, prev_sp, addr;  /* %pc, %lr, %sp */
  struct rs6000_framedata fdata;
  struct rs6000_framedata fdata;
  struct frame_info *frame = get_current_frame ();
  struct frame_info *frame = get_current_frame ();
  int ii, wordsize;
  int ii, wordsize;
 
 
  pc = read_pc ();
  pc = read_pc ();
  sp = FRAME_FP (frame);
  sp = FRAME_FP (frame);
 
 
  if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
  if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
    {
    {
      generic_pop_dummy_frame ();
      generic_pop_dummy_frame ();
      flush_cached_frames ();
      flush_cached_frames ();
      return;
      return;
    }
    }
 
 
  /* Make sure that all registers are valid.  */
  /* Make sure that all registers are valid.  */
  read_register_bytes (0, NULL, REGISTER_BYTES);
  read_register_bytes (0, NULL, REGISTER_BYTES);
 
 
  /* figure out previous %pc value. If the function is frameless, it is
  /* figure out previous %pc value. If the function is frameless, it is
     still in the link register, otherwise walk the frames and retrieve the
     still in the link register, otherwise walk the frames and retrieve the
     saved %pc value in the previous frame. */
     saved %pc value in the previous frame. */
 
 
  addr = get_pc_function_start (frame->pc);
  addr = get_pc_function_start (frame->pc);
  (void) skip_prologue (addr, frame->pc, &fdata);
  (void) skip_prologue (addr, frame->pc, &fdata);
 
 
  wordsize = TDEP->wordsize;
  wordsize = TDEP->wordsize;
  if (fdata.frameless)
  if (fdata.frameless)
    prev_sp = sp;
    prev_sp = sp;
  else
  else
    prev_sp = read_memory_addr (sp, wordsize);
    prev_sp = read_memory_addr (sp, wordsize);
  if (fdata.lr_offset == 0)
  if (fdata.lr_offset == 0)
    lr = read_register (PPC_LR_REGNUM);
    lr = read_register (PPC_LR_REGNUM);
  else
  else
    lr = read_memory_addr (prev_sp + fdata.lr_offset, wordsize);
    lr = read_memory_addr (prev_sp + fdata.lr_offset, wordsize);
 
 
  /* reset %pc value. */
  /* reset %pc value. */
  write_register (PC_REGNUM, lr);
  write_register (PC_REGNUM, lr);
 
 
  /* reset register values if any was saved earlier. */
  /* reset register values if any was saved earlier. */
 
 
  if (fdata.saved_gpr != -1)
  if (fdata.saved_gpr != -1)
    {
    {
      addr = prev_sp + fdata.gpr_offset;
      addr = prev_sp + fdata.gpr_offset;
      for (ii = fdata.saved_gpr; ii <= 31; ++ii)
      for (ii = fdata.saved_gpr; ii <= 31; ++ii)
        {
        {
          read_memory (addr, &registers[REGISTER_BYTE (ii)], wordsize);
          read_memory (addr, &registers[REGISTER_BYTE (ii)], wordsize);
          addr += wordsize;
          addr += wordsize;
        }
        }
    }
    }
 
 
  if (fdata.saved_fpr != -1)
  if (fdata.saved_fpr != -1)
    {
    {
      addr = prev_sp + fdata.fpr_offset;
      addr = prev_sp + fdata.fpr_offset;
      for (ii = fdata.saved_fpr; ii <= 31; ++ii)
      for (ii = fdata.saved_fpr; ii <= 31; ++ii)
        {
        {
          read_memory (addr, &registers[REGISTER_BYTE (ii + FP0_REGNUM)], 8);
          read_memory (addr, &registers[REGISTER_BYTE (ii + FP0_REGNUM)], 8);
          addr += 8;
          addr += 8;
        }
        }
    }
    }
 
 
  write_register (SP_REGNUM, prev_sp);
  write_register (SP_REGNUM, prev_sp);
  target_store_registers (-1);
  target_store_registers (-1);
  flush_cached_frames ();
  flush_cached_frames ();
}
}
 
 
/* Fixup the call sequence of a dummy function, with the real function
/* Fixup the call sequence of a dummy function, with the real function
   address.  Its arguments will be passed by gdb. */
   address.  Its arguments will be passed by gdb. */
 
 
static void
static void
rs6000_fix_call_dummy (char *dummyname, CORE_ADDR pc, CORE_ADDR fun,
rs6000_fix_call_dummy (char *dummyname, CORE_ADDR pc, CORE_ADDR fun,
                       int nargs, value_ptr *args, struct type *type,
                       int nargs, value_ptr *args, struct type *type,
                       int gcc_p)
                       int gcc_p)
{
{
#define TOC_ADDR_OFFSET         20
#define TOC_ADDR_OFFSET         20
#define TARGET_ADDR_OFFSET      28
#define TARGET_ADDR_OFFSET      28
 
 
  int ii;
  int ii;
  CORE_ADDR target_addr;
  CORE_ADDR target_addr;
 
 
  if (rs6000_find_toc_address_hook != NULL)
  if (rs6000_find_toc_address_hook != NULL)
    {
    {
      CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (fun);
      CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (fun);
      write_register (PPC_TOC_REGNUM, tocvalue);
      write_register (PPC_TOC_REGNUM, tocvalue);
    }
    }
}
}
 
 
/* Pass the arguments in either registers, or in the stack. In RS/6000,
/* Pass the arguments in either registers, or in the stack. In RS/6000,
   the first eight words of the argument list (that might be less than
   the first eight words of the argument list (that might be less than
   eight parameters if some parameters occupy more than one word) are
   eight parameters if some parameters occupy more than one word) are
   passed in r3..r10 registers.  float and double parameters are
   passed in r3..r10 registers.  float and double parameters are
   passed in fpr's, in addition to that. Rest of the parameters if any
   passed in fpr's, in addition to that. Rest of the parameters if any
   are passed in user stack. There might be cases in which half of the
   are passed in user stack. There might be cases in which half of the
   parameter is copied into registers, the other half is pushed into
   parameter is copied into registers, the other half is pushed into
   stack.
   stack.
 
 
   Stack must be aligned on 64-bit boundaries when synthesizing
   Stack must be aligned on 64-bit boundaries when synthesizing
   function calls.
   function calls.
 
 
   If the function is returning a structure, then the return address is passed
   If the function is returning a structure, then the return address is passed
   in r3, then the first 7 words of the parameters can be passed in registers,
   in r3, then the first 7 words of the parameters can be passed in registers,
   starting from r4. */
   starting from r4. */
 
 
static CORE_ADDR
static CORE_ADDR
rs6000_push_arguments (int nargs, value_ptr *args, CORE_ADDR sp,
rs6000_push_arguments (int nargs, value_ptr *args, CORE_ADDR sp,
                       int struct_return, CORE_ADDR struct_addr)
                       int struct_return, CORE_ADDR struct_addr)
{
{
  int ii;
  int ii;
  int len = 0;
  int len = 0;
  int argno;                    /* current argument number */
  int argno;                    /* current argument number */
  int argbytes;                 /* current argument byte */
  int argbytes;                 /* current argument byte */
  char tmp_buffer[50];
  char tmp_buffer[50];
  int f_argno = 0;               /* current floating point argno */
  int f_argno = 0;               /* current floating point argno */
  int wordsize = TDEP->wordsize;
  int wordsize = TDEP->wordsize;
 
 
  value_ptr arg = 0;
  value_ptr arg = 0;
  struct type *type;
  struct type *type;
 
 
  CORE_ADDR saved_sp;
  CORE_ADDR saved_sp;
 
 
  /* The first eight words of ther arguments are passed in registers. Copy
  /* The first eight words of ther arguments are passed in registers. Copy
     them appropriately.
     them appropriately.
 
 
     If the function is returning a `struct', then the first word (which
     If the function is returning a `struct', then the first word (which
     will be passed in r3) is used for struct return address. In that
     will be passed in r3) is used for struct return address. In that
     case we should advance one word and start from r4 register to copy
     case we should advance one word and start from r4 register to copy
     parameters. */
     parameters. */
 
 
  ii = struct_return ? 1 : 0;
  ii = struct_return ? 1 : 0;
 
 
/*
/*
   effectively indirect call... gcc does...
   effectively indirect call... gcc does...
 
 
   return_val example( float, int);
   return_val example( float, int);
 
 
   eabi:
   eabi:
   float in fp0, int in r3
   float in fp0, int in r3
   offset of stack on overflow 8/16
   offset of stack on overflow 8/16
   for varargs, must go by type.
   for varargs, must go by type.
   power open:
   power open:
   float in r3&r4, int in r5
   float in r3&r4, int in r5
   offset of stack on overflow different
   offset of stack on overflow different
   both:
   both:
   return in r3 or f0.  If no float, must study how gcc emulates floats;
   return in r3 or f0.  If no float, must study how gcc emulates floats;
   pay attention to arg promotion.
   pay attention to arg promotion.
   User may have to cast\args to handle promotion correctly
   User may have to cast\args to handle promotion correctly
   since gdb won't know if prototype supplied or not.
   since gdb won't know if prototype supplied or not.
 */
 */
 
 
  for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
  for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
    {
    {
      int reg_size = REGISTER_RAW_SIZE (ii + 3);
      int reg_size = REGISTER_RAW_SIZE (ii + 3);
 
 
      arg = args[argno];
      arg = args[argno];
      type = check_typedef (VALUE_TYPE (arg));
      type = check_typedef (VALUE_TYPE (arg));
      len = TYPE_LENGTH (type);
      len = TYPE_LENGTH (type);
 
 
      if (TYPE_CODE (type) == TYPE_CODE_FLT)
      if (TYPE_CODE (type) == TYPE_CODE_FLT)
        {
        {
 
 
          /* floating point arguments are passed in fpr's, as well as gpr's.
          /* floating point arguments are passed in fpr's, as well as gpr's.
             There are 13 fpr's reserved for passing parameters. At this point
             There are 13 fpr's reserved for passing parameters. At this point
             there is no way we would run out of them. */
             there is no way we would run out of them. */
 
 
          if (len > 8)
          if (len > 8)
            printf_unfiltered (
            printf_unfiltered (
                                "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
                                "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
 
 
          memcpy (&registers[REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
          memcpy (&registers[REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
                  VALUE_CONTENTS (arg),
                  VALUE_CONTENTS (arg),
                  len);
                  len);
          ++f_argno;
          ++f_argno;
        }
        }
 
 
      if (len > reg_size)
      if (len > reg_size)
        {
        {
 
 
          /* Argument takes more than one register. */
          /* Argument takes more than one register. */
          while (argbytes < len)
          while (argbytes < len)
            {
            {
              memset (&registers[REGISTER_BYTE (ii + 3)], 0, reg_size);
              memset (&registers[REGISTER_BYTE (ii + 3)], 0, reg_size);
              memcpy (&registers[REGISTER_BYTE (ii + 3)],
              memcpy (&registers[REGISTER_BYTE (ii + 3)],
                      ((char *) VALUE_CONTENTS (arg)) + argbytes,
                      ((char *) VALUE_CONTENTS (arg)) + argbytes,
                      (len - argbytes) > reg_size
                      (len - argbytes) > reg_size
                        ? reg_size : len - argbytes);
                        ? reg_size : len - argbytes);
              ++ii, argbytes += reg_size;
              ++ii, argbytes += reg_size;
 
 
              if (ii >= 8)
              if (ii >= 8)
                goto ran_out_of_registers_for_arguments;
                goto ran_out_of_registers_for_arguments;
            }
            }
          argbytes = 0;
          argbytes = 0;
          --ii;
          --ii;
        }
        }
      else
      else
        {                       /* Argument can fit in one register. No problem. */
        {                       /* Argument can fit in one register. No problem. */
          int adj = TARGET_BYTE_ORDER == BIG_ENDIAN ? reg_size - len : 0;
          int adj = TARGET_BYTE_ORDER == BIG_ENDIAN ? reg_size - len : 0;
          memset (&registers[REGISTER_BYTE (ii + 3)], 0, reg_size);
          memset (&registers[REGISTER_BYTE (ii + 3)], 0, reg_size);
          memcpy ((char *)&registers[REGISTER_BYTE (ii + 3)] + adj,
          memcpy ((char *)&registers[REGISTER_BYTE (ii + 3)] + adj,
                  VALUE_CONTENTS (arg), len);
                  VALUE_CONTENTS (arg), len);
        }
        }
      ++argno;
      ++argno;
    }
    }
 
 
ran_out_of_registers_for_arguments:
ran_out_of_registers_for_arguments:
 
 
  saved_sp = read_sp ();
  saved_sp = read_sp ();
#ifndef ELF_OBJECT_FORMAT
#ifndef ELF_OBJECT_FORMAT
  /* location for 8 parameters are always reserved. */
  /* location for 8 parameters are always reserved. */
  sp -= wordsize * 8;
  sp -= wordsize * 8;
 
 
  /* another six words for back chain, TOC register, link register, etc. */
  /* another six words for back chain, TOC register, link register, etc. */
  sp -= wordsize * 6;
  sp -= wordsize * 6;
 
 
  /* stack pointer must be quadword aligned */
  /* stack pointer must be quadword aligned */
  sp &= -16;
  sp &= -16;
#endif
#endif
 
 
  /* if there are more arguments, allocate space for them in
  /* if there are more arguments, allocate space for them in
     the stack, then push them starting from the ninth one. */
     the stack, then push them starting from the ninth one. */
 
 
  if ((argno < nargs) || argbytes)
  if ((argno < nargs) || argbytes)
    {
    {
      int space = 0, jj;
      int space = 0, jj;
 
 
      if (argbytes)
      if (argbytes)
        {
        {
          space += ((len - argbytes + 3) & -4);
          space += ((len - argbytes + 3) & -4);
          jj = argno + 1;
          jj = argno + 1;
        }
        }
      else
      else
        jj = argno;
        jj = argno;
 
 
      for (; jj < nargs; ++jj)
      for (; jj < nargs; ++jj)
        {
        {
          value_ptr val = args[jj];
          value_ptr val = args[jj];
          space += ((TYPE_LENGTH (VALUE_TYPE (val))) + 3) & -4;
          space += ((TYPE_LENGTH (VALUE_TYPE (val))) + 3) & -4;
        }
        }
 
 
      /* add location required for the rest of the parameters */
      /* add location required for the rest of the parameters */
      space = (space + 15) & -16;
      space = (space + 15) & -16;
      sp -= space;
      sp -= space;
 
 
      /* This is another instance we need to be concerned about securing our
      /* This is another instance we need to be concerned about securing our
         stack space. If we write anything underneath %sp (r1), we might conflict
         stack space. If we write anything underneath %sp (r1), we might conflict
         with the kernel who thinks he is free to use this area. So, update %sp
         with the kernel who thinks he is free to use this area. So, update %sp
         first before doing anything else. */
         first before doing anything else. */
 
 
      write_register (SP_REGNUM, sp);
      write_register (SP_REGNUM, sp);
 
 
      /* if the last argument copied into the registers didn't fit there
      /* if the last argument copied into the registers didn't fit there
         completely, push the rest of it into stack. */
         completely, push the rest of it into stack. */
 
 
      if (argbytes)
      if (argbytes)
        {
        {
          write_memory (sp + 24 + (ii * 4),
          write_memory (sp + 24 + (ii * 4),
                        ((char *) VALUE_CONTENTS (arg)) + argbytes,
                        ((char *) VALUE_CONTENTS (arg)) + argbytes,
                        len - argbytes);
                        len - argbytes);
          ++argno;
          ++argno;
          ii += ((len - argbytes + 3) & -4) / 4;
          ii += ((len - argbytes + 3) & -4) / 4;
        }
        }
 
 
      /* push the rest of the arguments into stack. */
      /* push the rest of the arguments into stack. */
      for (; argno < nargs; ++argno)
      for (; argno < nargs; ++argno)
        {
        {
 
 
          arg = args[argno];
          arg = args[argno];
          type = check_typedef (VALUE_TYPE (arg));
          type = check_typedef (VALUE_TYPE (arg));
          len = TYPE_LENGTH (type);
          len = TYPE_LENGTH (type);
 
 
 
 
          /* float types should be passed in fpr's, as well as in the stack. */
          /* float types should be passed in fpr's, as well as in the stack. */
          if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
          if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
            {
            {
 
 
              if (len > 8)
              if (len > 8)
                printf_unfiltered (
                printf_unfiltered (
                                    "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
                                    "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
 
 
              memcpy (&registers[REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
              memcpy (&registers[REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
                      VALUE_CONTENTS (arg),
                      VALUE_CONTENTS (arg),
                      len);
                      len);
              ++f_argno;
              ++f_argno;
            }
            }
 
 
          write_memory (sp + 24 + (ii * 4), (char *) VALUE_CONTENTS (arg), len);
          write_memory (sp + 24 + (ii * 4), (char *) VALUE_CONTENTS (arg), len);
          ii += ((len + 3) & -4) / 4;
          ii += ((len + 3) & -4) / 4;
        }
        }
    }
    }
  else
  else
    /* Secure stack areas first, before doing anything else. */
    /* Secure stack areas first, before doing anything else. */
    write_register (SP_REGNUM, sp);
    write_register (SP_REGNUM, sp);
 
 
  /* set back chain properly */
  /* set back chain properly */
  store_address (tmp_buffer, 4, saved_sp);
  store_address (tmp_buffer, 4, saved_sp);
  write_memory (sp, tmp_buffer, 4);
  write_memory (sp, tmp_buffer, 4);
 
 
  target_store_registers (-1);
  target_store_registers (-1);
  return sp;
  return sp;
}
}
 
 
/* Function: ppc_push_return_address (pc, sp)
/* Function: ppc_push_return_address (pc, sp)
   Set up the return address for the inferior function call. */
   Set up the return address for the inferior function call. */
 
 
static CORE_ADDR
static CORE_ADDR
ppc_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
ppc_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
{
{
  write_register (PPC_LR_REGNUM, CALL_DUMMY_ADDRESS ());
  write_register (PPC_LR_REGNUM, CALL_DUMMY_ADDRESS ());
  return sp;
  return sp;
}
}
 
 
/* Extract a function return value of type TYPE from raw register array
/* Extract a function return value of type TYPE from raw register array
   REGBUF, and copy that return value into VALBUF in virtual format. */
   REGBUF, and copy that return value into VALBUF in virtual format. */
 
 
static void
static void
rs6000_extract_return_value (struct type *valtype, char *regbuf, char *valbuf)
rs6000_extract_return_value (struct type *valtype, char *regbuf, char *valbuf)
{
{
  int offset = 0;
  int offset = 0;
 
 
  if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
  if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
    {
    {
 
 
      double dd;
      double dd;
      float ff;
      float ff;
      /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
      /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
         We need to truncate the return value into float size (4 byte) if
         We need to truncate the return value into float size (4 byte) if
         necessary. */
         necessary. */
 
 
      if (TYPE_LENGTH (valtype) > 4)    /* this is a double */
      if (TYPE_LENGTH (valtype) > 4)    /* this is a double */
        memcpy (valbuf,
        memcpy (valbuf,
                &regbuf[REGISTER_BYTE (FP0_REGNUM + 1)],
                &regbuf[REGISTER_BYTE (FP0_REGNUM + 1)],
                TYPE_LENGTH (valtype));
                TYPE_LENGTH (valtype));
      else
      else
        {                       /* float */
        {                       /* float */
          memcpy (&dd, &regbuf[REGISTER_BYTE (FP0_REGNUM + 1)], 8);
          memcpy (&dd, &regbuf[REGISTER_BYTE (FP0_REGNUM + 1)], 8);
          ff = (float) dd;
          ff = (float) dd;
          memcpy (valbuf, &ff, sizeof (float));
          memcpy (valbuf, &ff, sizeof (float));
        }
        }
    }
    }
  else
  else
    {
    {
      /* return value is copied starting from r3. */
      /* return value is copied starting from r3. */
      if (TARGET_BYTE_ORDER == BIG_ENDIAN
      if (TARGET_BYTE_ORDER == BIG_ENDIAN
          && TYPE_LENGTH (valtype) < REGISTER_RAW_SIZE (3))
          && TYPE_LENGTH (valtype) < REGISTER_RAW_SIZE (3))
        offset = REGISTER_RAW_SIZE (3) - TYPE_LENGTH (valtype);
        offset = REGISTER_RAW_SIZE (3) - TYPE_LENGTH (valtype);
 
 
      memcpy (valbuf,
      memcpy (valbuf,
              regbuf + REGISTER_BYTE (3) + offset,
              regbuf + REGISTER_BYTE (3) + offset,
              TYPE_LENGTH (valtype));
              TYPE_LENGTH (valtype));
    }
    }
}
}
 
 
/* Keep structure return address in this variable.
/* Keep structure return address in this variable.
   FIXME:  This is a horrid kludge which should not be allowed to continue
   FIXME:  This is a horrid kludge which should not be allowed to continue
   living.  This only allows a single nested call to a structure-returning
   living.  This only allows a single nested call to a structure-returning
   function.  Come on, guys!  -- gnu@cygnus.com, Aug 92  */
   function.  Come on, guys!  -- gnu@cygnus.com, Aug 92  */
 
 
static CORE_ADDR rs6000_struct_return_address;
static CORE_ADDR rs6000_struct_return_address;
 
 
/* Return whether handle_inferior_event() should proceed through code
/* Return whether handle_inferior_event() should proceed through code
   starting at PC in function NAME when stepping.
   starting at PC in function NAME when stepping.
 
 
   The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
   The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
   handle memory references that are too distant to fit in instructions
   handle memory references that are too distant to fit in instructions
   generated by the compiler.  For example, if 'foo' in the following
   generated by the compiler.  For example, if 'foo' in the following
   instruction:
   instruction:
 
 
     lwz r9,foo(r2)
     lwz r9,foo(r2)
 
 
   is greater than 32767, the linker might replace the lwz with a branch to
   is greater than 32767, the linker might replace the lwz with a branch to
   somewhere in @FIX1 that does the load in 2 instructions and then branches
   somewhere in @FIX1 that does the load in 2 instructions and then branches
   back to where execution should continue.
   back to where execution should continue.
 
 
   GDB should silently step over @FIX code, just like AIX dbx does.
   GDB should silently step over @FIX code, just like AIX dbx does.
   Unfortunately, the linker uses the "b" instruction for the branches,
   Unfortunately, the linker uses the "b" instruction for the branches,
   meaning that the link register doesn't get set.  Therefore, GDB's usual
   meaning that the link register doesn't get set.  Therefore, GDB's usual
   step_over_function() mechanism won't work.
   step_over_function() mechanism won't work.
 
 
   Instead, use the IN_SOLIB_RETURN_TRAMPOLINE and SKIP_TRAMPOLINE_CODE hooks
   Instead, use the IN_SOLIB_RETURN_TRAMPOLINE and SKIP_TRAMPOLINE_CODE hooks
   in handle_inferior_event() to skip past @FIX code.  */
   in handle_inferior_event() to skip past @FIX code.  */
 
 
int
int
rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
{
{
  return name && !strncmp (name, "@FIX", 4);
  return name && !strncmp (name, "@FIX", 4);
}
}
 
 
/* Skip code that the user doesn't want to see when stepping:
/* Skip code that the user doesn't want to see when stepping:
 
 
   1. Indirect function calls use a piece of trampoline code to do context
   1. Indirect function calls use a piece of trampoline code to do context
   switching, i.e. to set the new TOC table.  Skip such code if we are on
   switching, i.e. to set the new TOC table.  Skip such code if we are on
   its first instruction (as when we have single-stepped to here).
   its first instruction (as when we have single-stepped to here).
 
 
   2. Skip shared library trampoline code (which is different from
   2. Skip shared library trampoline code (which is different from
   indirect function call trampolines).
   indirect function call trampolines).
 
 
   3. Skip bigtoc fixup code.
   3. Skip bigtoc fixup code.
 
 
   Result is desired PC to step until, or NULL if we are not in
   Result is desired PC to step until, or NULL if we are not in
   code that should be skipped.  */
   code that should be skipped.  */
 
 
CORE_ADDR
CORE_ADDR
rs6000_skip_trampoline_code (CORE_ADDR pc)
rs6000_skip_trampoline_code (CORE_ADDR pc)
{
{
  register unsigned int ii, op;
  register unsigned int ii, op;
  int rel;
  int rel;
  CORE_ADDR solib_target_pc;
  CORE_ADDR solib_target_pc;
  struct minimal_symbol *msymbol;
  struct minimal_symbol *msymbol;
 
 
  static unsigned trampoline_code[] =
  static unsigned trampoline_code[] =
  {
  {
    0x800b0000,                 /*     l   r0,0x0(r11)  */
    0x800b0000,                 /*     l   r0,0x0(r11)  */
    0x90410014,                 /*    st   r2,0x14(r1)  */
    0x90410014,                 /*    st   r2,0x14(r1)  */
    0x7c0903a6,                 /* mtctr   r0           */
    0x7c0903a6,                 /* mtctr   r0           */
    0x804b0004,                 /*     l   r2,0x4(r11)  */
    0x804b0004,                 /*     l   r2,0x4(r11)  */
    0x816b0008,                 /*     l  r11,0x8(r11)  */
    0x816b0008,                 /*     l  r11,0x8(r11)  */
    0x4e800420,                 /*  bctr                */
    0x4e800420,                 /*  bctr                */
    0x4e800020,                 /*    br                */
    0x4e800020,                 /*    br                */
    0
    0
  };
  };
 
 
  /* Check for bigtoc fixup code.  */
  /* Check for bigtoc fixup code.  */
  msymbol = lookup_minimal_symbol_by_pc (pc);
  msymbol = lookup_minimal_symbol_by_pc (pc);
  if (msymbol && rs6000_in_solib_return_trampoline (pc, SYMBOL_NAME (msymbol)))
  if (msymbol && rs6000_in_solib_return_trampoline (pc, SYMBOL_NAME (msymbol)))
    {
    {
      /* Double-check that the third instruction from PC is relative "b".  */
      /* Double-check that the third instruction from PC is relative "b".  */
      op = read_memory_integer (pc + 8, 4);
      op = read_memory_integer (pc + 8, 4);
      if ((op & 0xfc000003) == 0x48000000)
      if ((op & 0xfc000003) == 0x48000000)
        {
        {
          /* Extract bits 6-29 as a signed 24-bit relative word address and
          /* Extract bits 6-29 as a signed 24-bit relative word address and
             add it to the containing PC.  */
             add it to the containing PC.  */
          rel = ((int)(op << 6) >> 6);
          rel = ((int)(op << 6) >> 6);
          return pc + 8 + rel;
          return pc + 8 + rel;
        }
        }
    }
    }
 
 
  /* If pc is in a shared library trampoline, return its target.  */
  /* If pc is in a shared library trampoline, return its target.  */
  solib_target_pc = find_solib_trampoline_target (pc);
  solib_target_pc = find_solib_trampoline_target (pc);
  if (solib_target_pc)
  if (solib_target_pc)
    return solib_target_pc;
    return solib_target_pc;
 
 
  for (ii = 0; trampoline_code[ii]; ++ii)
  for (ii = 0; trampoline_code[ii]; ++ii)
    {
    {
      op = read_memory_integer (pc + (ii * 4), 4);
      op = read_memory_integer (pc + (ii * 4), 4);
      if (op != trampoline_code[ii])
      if (op != trampoline_code[ii])
        return 0;
        return 0;
    }
    }
  ii = read_register (11);      /* r11 holds destination addr   */
  ii = read_register (11);      /* r11 holds destination addr   */
  pc = read_memory_addr (ii, TDEP->wordsize); /* (r11) value */
  pc = read_memory_addr (ii, TDEP->wordsize); /* (r11) value */
  return pc;
  return pc;
}
}
 
 
/* Determines whether the function FI has a frame on the stack or not.  */
/* Determines whether the function FI has a frame on the stack or not.  */
 
 
int
int
rs6000_frameless_function_invocation (struct frame_info *fi)
rs6000_frameless_function_invocation (struct frame_info *fi)
{
{
  CORE_ADDR func_start;
  CORE_ADDR func_start;
  struct rs6000_framedata fdata;
  struct rs6000_framedata fdata;
 
 
  /* Don't even think about framelessness except on the innermost frame
  /* Don't even think about framelessness except on the innermost frame
     or if the function was interrupted by a signal.  */
     or if the function was interrupted by a signal.  */
  if (fi->next != NULL && !fi->next->signal_handler_caller)
  if (fi->next != NULL && !fi->next->signal_handler_caller)
    return 0;
    return 0;
 
 
  func_start = get_pc_function_start (fi->pc);
  func_start = get_pc_function_start (fi->pc);
 
 
  /* If we failed to find the start of the function, it is a mistake
  /* If we failed to find the start of the function, it is a mistake
     to inspect the instructions. */
     to inspect the instructions. */
 
 
  if (!func_start)
  if (!func_start)
    {
    {
      /* A frame with a zero PC is usually created by dereferencing a NULL
      /* A frame with a zero PC is usually created by dereferencing a NULL
         function pointer, normally causing an immediate core dump of the
         function pointer, normally causing an immediate core dump of the
         inferior. Mark function as frameless, as the inferior has no chance
         inferior. Mark function as frameless, as the inferior has no chance
         of setting up a stack frame.  */
         of setting up a stack frame.  */
      if (fi->pc == 0)
      if (fi->pc == 0)
        return 1;
        return 1;
      else
      else
        return 0;
        return 0;
    }
    }
 
 
  (void) skip_prologue (func_start, fi->pc, &fdata);
  (void) skip_prologue (func_start, fi->pc, &fdata);
  return fdata.frameless;
  return fdata.frameless;
}
}
 
 
/* Return the PC saved in a frame */
/* Return the PC saved in a frame */
 
 
CORE_ADDR
CORE_ADDR
rs6000_frame_saved_pc (struct frame_info *fi)
rs6000_frame_saved_pc (struct frame_info *fi)
{
{
  CORE_ADDR func_start;
  CORE_ADDR func_start;
  struct rs6000_framedata fdata;
  struct rs6000_framedata fdata;
  int wordsize = TDEP->wordsize;
  int wordsize = TDEP->wordsize;
 
 
  if (fi->signal_handler_caller)
  if (fi->signal_handler_caller)
    return read_memory_addr (fi->frame + SIG_FRAME_PC_OFFSET, wordsize);
    return read_memory_addr (fi->frame + SIG_FRAME_PC_OFFSET, wordsize);
 
 
  if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
  if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
    return generic_read_register_dummy (fi->pc, fi->frame, PC_REGNUM);
    return generic_read_register_dummy (fi->pc, fi->frame, PC_REGNUM);
 
 
  func_start = get_pc_function_start (fi->pc);
  func_start = get_pc_function_start (fi->pc);
 
 
  /* If we failed to find the start of the function, it is a mistake
  /* If we failed to find the start of the function, it is a mistake
     to inspect the instructions. */
     to inspect the instructions. */
  if (!func_start)
  if (!func_start)
    return 0;
    return 0;
 
 
  (void) skip_prologue (func_start, fi->pc, &fdata);
  (void) skip_prologue (func_start, fi->pc, &fdata);
 
 
  if (fdata.lr_offset == 0 && fi->next != NULL)
  if (fdata.lr_offset == 0 && fi->next != NULL)
    {
    {
      if (fi->next->signal_handler_caller)
      if (fi->next->signal_handler_caller)
        return read_memory_addr (fi->next->frame + SIG_FRAME_LR_OFFSET,
        return read_memory_addr (fi->next->frame + SIG_FRAME_LR_OFFSET,
                                 wordsize);
                                 wordsize);
      else
      else
        return read_memory_addr (FRAME_CHAIN (fi) + DEFAULT_LR_SAVE,
        return read_memory_addr (FRAME_CHAIN (fi) + DEFAULT_LR_SAVE,
                                 wordsize);
                                 wordsize);
    }
    }
 
 
  if (fdata.lr_offset == 0)
  if (fdata.lr_offset == 0)
    return read_register (PPC_LR_REGNUM);
    return read_register (PPC_LR_REGNUM);
 
 
  return read_memory_addr (FRAME_CHAIN (fi) + fdata.lr_offset, wordsize);
  return read_memory_addr (FRAME_CHAIN (fi) + fdata.lr_offset, wordsize);
}
}
 
 
/* If saved registers of frame FI are not known yet, read and cache them.
/* If saved registers of frame FI are not known yet, read and cache them.
   &FDATAP contains rs6000_framedata; TDATAP can be NULL,
   &FDATAP contains rs6000_framedata; TDATAP can be NULL,
   in which case the framedata are read.  */
   in which case the framedata are read.  */
 
 
static void
static void
frame_get_saved_regs (struct frame_info *fi, struct rs6000_framedata *fdatap)
frame_get_saved_regs (struct frame_info *fi, struct rs6000_framedata *fdatap)
{
{
  CORE_ADDR frame_addr;
  CORE_ADDR frame_addr;
  struct rs6000_framedata work_fdata;
  struct rs6000_framedata work_fdata;
  int wordsize = TDEP->wordsize;
  int wordsize = TDEP->wordsize;
 
 
  if (fi->saved_regs)
  if (fi->saved_regs)
    return;
    return;
 
 
  if (fdatap == NULL)
  if (fdatap == NULL)
    {
    {
      fdatap = &work_fdata;
      fdatap = &work_fdata;
      (void) skip_prologue (get_pc_function_start (fi->pc), fi->pc, fdatap);
      (void) skip_prologue (get_pc_function_start (fi->pc), fi->pc, fdatap);
    }
    }
 
 
  frame_saved_regs_zalloc (fi);
  frame_saved_regs_zalloc (fi);
 
 
  /* If there were any saved registers, figure out parent's stack
  /* If there were any saved registers, figure out parent's stack
     pointer. */
     pointer. */
  /* The following is true only if the frame doesn't have a call to
  /* The following is true only if the frame doesn't have a call to
     alloca(), FIXME. */
     alloca(), FIXME. */
 
 
  if (fdatap->saved_fpr == 0 && fdatap->saved_gpr == 0
  if (fdatap->saved_fpr == 0 && fdatap->saved_gpr == 0
      && fdatap->lr_offset == 0 && fdatap->cr_offset == 0)
      && fdatap->lr_offset == 0 && fdatap->cr_offset == 0)
    frame_addr = 0;
    frame_addr = 0;
  else if (fi->prev && fi->prev->frame)
  else if (fi->prev && fi->prev->frame)
    frame_addr = fi->prev->frame;
    frame_addr = fi->prev->frame;
  else
  else
    frame_addr = read_memory_addr (fi->frame, wordsize);
    frame_addr = read_memory_addr (fi->frame, wordsize);
 
 
  /* if != -1, fdatap->saved_fpr is the smallest number of saved_fpr.
  /* if != -1, fdatap->saved_fpr is the smallest number of saved_fpr.
     All fpr's from saved_fpr to fp31 are saved.  */
     All fpr's from saved_fpr to fp31 are saved.  */
 
 
  if (fdatap->saved_fpr >= 0)
  if (fdatap->saved_fpr >= 0)
    {
    {
      int i;
      int i;
      CORE_ADDR fpr_addr = frame_addr + fdatap->fpr_offset;
      CORE_ADDR fpr_addr = frame_addr + fdatap->fpr_offset;
      for (i = fdatap->saved_fpr; i < 32; i++)
      for (i = fdatap->saved_fpr; i < 32; i++)
        {
        {
          fi->saved_regs[FP0_REGNUM + i] = fpr_addr;
          fi->saved_regs[FP0_REGNUM + i] = fpr_addr;
          fpr_addr += 8;
          fpr_addr += 8;
        }
        }
    }
    }
 
 
  /* if != -1, fdatap->saved_gpr is the smallest number of saved_gpr.
  /* if != -1, fdatap->saved_gpr is the smallest number of saved_gpr.
     All gpr's from saved_gpr to gpr31 are saved.  */
     All gpr's from saved_gpr to gpr31 are saved.  */
 
 
  if (fdatap->saved_gpr >= 0)
  if (fdatap->saved_gpr >= 0)
    {
    {
      int i;
      int i;
      CORE_ADDR gpr_addr = frame_addr + fdatap->gpr_offset;
      CORE_ADDR gpr_addr = frame_addr + fdatap->gpr_offset;
      for (i = fdatap->saved_gpr; i < 32; i++)
      for (i = fdatap->saved_gpr; i < 32; i++)
        {
        {
          fi->saved_regs[i] = gpr_addr;
          fi->saved_regs[i] = gpr_addr;
          gpr_addr += wordsize;
          gpr_addr += wordsize;
        }
        }
    }
    }
 
 
  /* If != 0, fdatap->cr_offset is the offset from the frame that holds
  /* If != 0, fdatap->cr_offset is the offset from the frame that holds
     the CR.  */
     the CR.  */
  if (fdatap->cr_offset != 0)
  if (fdatap->cr_offset != 0)
    fi->saved_regs[PPC_CR_REGNUM] = frame_addr + fdatap->cr_offset;
    fi->saved_regs[PPC_CR_REGNUM] = frame_addr + fdatap->cr_offset;
 
 
  /* If != 0, fdatap->lr_offset is the offset from the frame that holds
  /* If != 0, fdatap->lr_offset is the offset from the frame that holds
     the LR.  */
     the LR.  */
  if (fdatap->lr_offset != 0)
  if (fdatap->lr_offset != 0)
    fi->saved_regs[PPC_LR_REGNUM] = frame_addr + fdatap->lr_offset;
    fi->saved_regs[PPC_LR_REGNUM] = frame_addr + fdatap->lr_offset;
}
}
 
 
/* Return the address of a frame. This is the inital %sp value when the frame
/* Return the address of a frame. This is the inital %sp value when the frame
   was first allocated. For functions calling alloca(), it might be saved in
   was first allocated. For functions calling alloca(), it might be saved in
   an alloca register. */
   an alloca register. */
 
 
static CORE_ADDR
static CORE_ADDR
frame_initial_stack_address (struct frame_info *fi)
frame_initial_stack_address (struct frame_info *fi)
{
{
  CORE_ADDR tmpaddr;
  CORE_ADDR tmpaddr;
  struct rs6000_framedata fdata;
  struct rs6000_framedata fdata;
  struct frame_info *callee_fi;
  struct frame_info *callee_fi;
 
 
  /* if the initial stack pointer (frame address) of this frame is known,
  /* if the initial stack pointer (frame address) of this frame is known,
     just return it. */
     just return it. */
 
 
  if (fi->extra_info->initial_sp)
  if (fi->extra_info->initial_sp)
    return fi->extra_info->initial_sp;
    return fi->extra_info->initial_sp;
 
 
  /* find out if this function is using an alloca register.. */
  /* find out if this function is using an alloca register.. */
 
 
  (void) skip_prologue (get_pc_function_start (fi->pc), fi->pc, &fdata);
  (void) skip_prologue (get_pc_function_start (fi->pc), fi->pc, &fdata);
 
 
  /* if saved registers of this frame are not known yet, read and cache them. */
  /* if saved registers of this frame are not known yet, read and cache them. */
 
 
  if (!fi->saved_regs)
  if (!fi->saved_regs)
    frame_get_saved_regs (fi, &fdata);
    frame_get_saved_regs (fi, &fdata);
 
 
  /* If no alloca register used, then fi->frame is the value of the %sp for
  /* If no alloca register used, then fi->frame is the value of the %sp for
     this frame, and it is good enough. */
     this frame, and it is good enough. */
 
 
  if (fdata.alloca_reg < 0)
  if (fdata.alloca_reg < 0)
    {
    {
      fi->extra_info->initial_sp = fi->frame;
      fi->extra_info->initial_sp = fi->frame;
      return fi->extra_info->initial_sp;
      return fi->extra_info->initial_sp;
    }
    }
 
 
  /* This function has an alloca register. If this is the top-most frame
  /* This function has an alloca register. If this is the top-most frame
     (with the lowest address), the value in alloca register is good. */
     (with the lowest address), the value in alloca register is good. */
 
 
  if (!fi->next)
  if (!fi->next)
    return fi->extra_info->initial_sp = read_register (fdata.alloca_reg);
    return fi->extra_info->initial_sp = read_register (fdata.alloca_reg);
 
 
  /* Otherwise, this is a caller frame. Callee has usually already saved
  /* Otherwise, this is a caller frame. Callee has usually already saved
     registers, but there are exceptions (such as when the callee
     registers, but there are exceptions (such as when the callee
     has no parameters). Find the address in which caller's alloca
     has no parameters). Find the address in which caller's alloca
     register is saved. */
     register is saved. */
 
 
  for (callee_fi = fi->next; callee_fi; callee_fi = callee_fi->next)
  for (callee_fi = fi->next; callee_fi; callee_fi = callee_fi->next)
    {
    {
 
 
      if (!callee_fi->saved_regs)
      if (!callee_fi->saved_regs)
        frame_get_saved_regs (callee_fi, NULL);
        frame_get_saved_regs (callee_fi, NULL);
 
 
      /* this is the address in which alloca register is saved. */
      /* this is the address in which alloca register is saved. */
 
 
      tmpaddr = callee_fi->saved_regs[fdata.alloca_reg];
      tmpaddr = callee_fi->saved_regs[fdata.alloca_reg];
      if (tmpaddr)
      if (tmpaddr)
        {
        {
          fi->extra_info->initial_sp =
          fi->extra_info->initial_sp =
            read_memory_addr (tmpaddr, TDEP->wordsize);
            read_memory_addr (tmpaddr, TDEP->wordsize);
          return fi->extra_info->initial_sp;
          return fi->extra_info->initial_sp;
        }
        }
 
 
      /* Go look into deeper levels of the frame chain to see if any one of
      /* Go look into deeper levels of the frame chain to see if any one of
         the callees has saved alloca register. */
         the callees has saved alloca register. */
    }
    }
 
 
  /* If alloca register was not saved, by the callee (or any of its callees)
  /* If alloca register was not saved, by the callee (or any of its callees)
     then the value in the register is still good. */
     then the value in the register is still good. */
 
 
  fi->extra_info->initial_sp = read_register (fdata.alloca_reg);
  fi->extra_info->initial_sp = read_register (fdata.alloca_reg);
  return fi->extra_info->initial_sp;
  return fi->extra_info->initial_sp;
}
}
 
 
/* Describe the pointer in each stack frame to the previous stack frame
/* Describe the pointer in each stack frame to the previous stack frame
   (its caller).  */
   (its caller).  */
 
 
/* FRAME_CHAIN takes a frame's nominal address
/* FRAME_CHAIN takes a frame's nominal address
   and produces the frame's chain-pointer. */
   and produces the frame's chain-pointer. */
 
 
/* In the case of the RS/6000, the frame's nominal address
/* In the case of the RS/6000, the frame's nominal address
   is the address of a 4-byte word containing the calling frame's address.  */
   is the address of a 4-byte word containing the calling frame's address.  */
 
 
CORE_ADDR
CORE_ADDR
rs6000_frame_chain (struct frame_info *thisframe)
rs6000_frame_chain (struct frame_info *thisframe)
{
{
  CORE_ADDR fp, fpp, lr;
  CORE_ADDR fp, fpp, lr;
  int wordsize = TDEP->wordsize;
  int wordsize = TDEP->wordsize;
 
 
  if (PC_IN_CALL_DUMMY (thisframe->pc, thisframe->frame, thisframe->frame))
  if (PC_IN_CALL_DUMMY (thisframe->pc, thisframe->frame, thisframe->frame))
    return thisframe->frame;    /* dummy frame same as caller's frame */
    return thisframe->frame;    /* dummy frame same as caller's frame */
 
 
  if (inside_entry_file (thisframe->pc) ||
  if (inside_entry_file (thisframe->pc) ||
      thisframe->pc == entry_point_address ())
      thisframe->pc == entry_point_address ())
    return 0;
    return 0;
 
 
  if (thisframe->signal_handler_caller)
  if (thisframe->signal_handler_caller)
    fp = read_memory_addr (thisframe->frame + SIG_FRAME_FP_OFFSET,
    fp = read_memory_addr (thisframe->frame + SIG_FRAME_FP_OFFSET,
                              wordsize);
                              wordsize);
  else if (thisframe->next != NULL
  else if (thisframe->next != NULL
           && thisframe->next->signal_handler_caller
           && thisframe->next->signal_handler_caller
           && FRAMELESS_FUNCTION_INVOCATION (thisframe))
           && FRAMELESS_FUNCTION_INVOCATION (thisframe))
    /* A frameless function interrupted by a signal did not change the
    /* A frameless function interrupted by a signal did not change the
       frame pointer.  */
       frame pointer.  */
    fp = FRAME_FP (thisframe);
    fp = FRAME_FP (thisframe);
  else
  else
    fp = read_memory_addr ((thisframe)->frame, wordsize);
    fp = read_memory_addr ((thisframe)->frame, wordsize);
 
 
  lr = read_register (PPC_LR_REGNUM);
  lr = read_register (PPC_LR_REGNUM);
  if (lr == entry_point_address ())
  if (lr == entry_point_address ())
    if (fp != 0 && (fpp = read_memory_addr (fp, wordsize)) != 0)
    if (fp != 0 && (fpp = read_memory_addr (fp, wordsize)) != 0)
      if (PC_IN_CALL_DUMMY (lr, fpp, fpp))
      if (PC_IN_CALL_DUMMY (lr, fpp, fpp))
        return fpp;
        return fpp;
 
 
  return fp;
  return fp;
}
}
 
 
/* Return the size of register REG when words are WORDSIZE bytes long.  If REG
/* Return the size of register REG when words are WORDSIZE bytes long.  If REG
   isn't available with that word size, return 0. */
   isn't available with that word size, return 0. */
 
 
static int
static int
regsize (const struct reg *reg, int wordsize)
regsize (const struct reg *reg, int wordsize)
{
{
  return wordsize == 8 ? reg->sz64 : reg->sz32;
  return wordsize == 8 ? reg->sz64 : reg->sz32;
}
}
 
 
/* Return the name of register number N, or null if no such register exists
/* Return the name of register number N, or null if no such register exists
   in the current architecture. */
   in the current architecture. */
 
 
static char *
static char *
rs6000_register_name (int n)
rs6000_register_name (int n)
{
{
  struct gdbarch_tdep *tdep = TDEP;
  struct gdbarch_tdep *tdep = TDEP;
  const struct reg *reg = tdep->regs + n;
  const struct reg *reg = tdep->regs + n;
 
 
  if (!regsize (reg, tdep->wordsize))
  if (!regsize (reg, tdep->wordsize))
    return NULL;
    return NULL;
  return reg->name;
  return reg->name;
}
}
 
 
/* Index within `registers' of the first byte of the space for
/* Index within `registers' of the first byte of the space for
   register N.  */
   register N.  */
 
 
static int
static int
rs6000_register_byte (int n)
rs6000_register_byte (int n)
{
{
  return TDEP->regoff[n];
  return TDEP->regoff[n];
}
}
 
 
/* Return the number of bytes of storage in the actual machine representation
/* Return the number of bytes of storage in the actual machine representation
   for register N if that register is available, else return 0. */
   for register N if that register is available, else return 0. */
 
 
static int
static int
rs6000_register_raw_size (int n)
rs6000_register_raw_size (int n)
{
{
  struct gdbarch_tdep *tdep = TDEP;
  struct gdbarch_tdep *tdep = TDEP;
  const struct reg *reg = tdep->regs + n;
  const struct reg *reg = tdep->regs + n;
  return regsize (reg, tdep->wordsize);
  return regsize (reg, tdep->wordsize);
}
}
 
 
/* Number of bytes of storage in the program's representation
/* Number of bytes of storage in the program's representation
   for register N.  */
   for register N.  */
 
 
static int
static int
rs6000_register_virtual_size (int n)
rs6000_register_virtual_size (int n)
{
{
  return TYPE_LENGTH (REGISTER_VIRTUAL_TYPE (n));
  return TYPE_LENGTH (REGISTER_VIRTUAL_TYPE (n));
}
}
 
 
/* Return the GDB type object for the "standard" data type
/* Return the GDB type object for the "standard" data type
   of data in register N.  */
   of data in register N.  */
 
 
static struct type *
static struct type *
rs6000_register_virtual_type (int n)
rs6000_register_virtual_type (int n)
{
{
  struct gdbarch_tdep *tdep = TDEP;
  struct gdbarch_tdep *tdep = TDEP;
  const struct reg *reg = tdep->regs + n;
  const struct reg *reg = tdep->regs + n;
 
 
  return reg->fpr ? builtin_type_double :
  return reg->fpr ? builtin_type_double :
    regsize (reg, tdep->wordsize) == 8 ? builtin_type_int64 :
    regsize (reg, tdep->wordsize) == 8 ? builtin_type_int64 :
      builtin_type_int32;
      builtin_type_int32;
}
}
 
 
/* For the PowerPC, it appears that the debug info marks float parameters as
/* For the PowerPC, it appears that the debug info marks float parameters as
   floats regardless of whether the function is prototyped, but the actual
   floats regardless of whether the function is prototyped, but the actual
   values are always passed in as doubles.  Tell gdb to always assume that
   values are always passed in as doubles.  Tell gdb to always assume that
   floats are passed as doubles and then converted in the callee. */
   floats are passed as doubles and then converted in the callee. */
 
 
static int
static int
rs6000_coerce_float_to_double (struct type *formal, struct type *actual)
rs6000_coerce_float_to_double (struct type *formal, struct type *actual)
{
{
  return 1;
  return 1;
}
}
 
 
/* Return whether register N requires conversion when moving from raw format
/* Return whether register N requires conversion when moving from raw format
   to virtual format.
   to virtual format.
 
 
   The register format for RS/6000 floating point registers is always
   The register format for RS/6000 floating point registers is always
   double, we need a conversion if the memory format is float. */
   double, we need a conversion if the memory format is float. */
 
 
static int
static int
rs6000_register_convertible (int n)
rs6000_register_convertible (int n)
{
{
  const struct reg *reg = TDEP->regs + n;
  const struct reg *reg = TDEP->regs + n;
  return reg->fpr;
  return reg->fpr;
}
}
 
 
/* Convert data from raw format for register N in buffer FROM
/* Convert data from raw format for register N in buffer FROM
   to virtual format with type TYPE in buffer TO. */
   to virtual format with type TYPE in buffer TO. */
 
 
static void
static void
rs6000_register_convert_to_virtual (int n, struct type *type,
rs6000_register_convert_to_virtual (int n, struct type *type,
                                    char *from, char *to)
                                    char *from, char *to)
{
{
  if (TYPE_LENGTH (type) != REGISTER_RAW_SIZE (n))
  if (TYPE_LENGTH (type) != REGISTER_RAW_SIZE (n))
    {
    {
      double val = extract_floating (from, REGISTER_RAW_SIZE (n));
      double val = extract_floating (from, REGISTER_RAW_SIZE (n));
      store_floating (to, TYPE_LENGTH (type), val);
      store_floating (to, TYPE_LENGTH (type), val);
    }
    }
  else
  else
    memcpy (to, from, REGISTER_RAW_SIZE (n));
    memcpy (to, from, REGISTER_RAW_SIZE (n));
}
}
 
 
/* Convert data from virtual format with type TYPE in buffer FROM
/* Convert data from virtual format with type TYPE in buffer FROM
   to raw format for register N in buffer TO. */
   to raw format for register N in buffer TO. */
 
 
static void
static void
rs6000_register_convert_to_raw (struct type *type, int n,
rs6000_register_convert_to_raw (struct type *type, int n,
                                char *from, char *to)
                                char *from, char *to)
{
{
  if (TYPE_LENGTH (type) != REGISTER_RAW_SIZE (n))
  if (TYPE_LENGTH (type) != REGISTER_RAW_SIZE (n))
    {
    {
      double val = extract_floating (from, TYPE_LENGTH (type));
      double val = extract_floating (from, TYPE_LENGTH (type));
      store_floating (to, REGISTER_RAW_SIZE (n), val);
      store_floating (to, REGISTER_RAW_SIZE (n), val);
    }
    }
  else
  else
    memcpy (to, from, REGISTER_RAW_SIZE (n));
    memcpy (to, from, REGISTER_RAW_SIZE (n));
}
}
 
 
/* Store the address of the place in which to copy the structure the
/* Store the address of the place in which to copy the structure the
   subroutine will return.  This is called from call_function.
   subroutine will return.  This is called from call_function.
 
 
   In RS/6000, struct return addresses are passed as an extra parameter in r3.
   In RS/6000, struct return addresses are passed as an extra parameter in r3.
   In function return, callee is not responsible of returning this address
   In function return, callee is not responsible of returning this address
   back.  Since gdb needs to find it, we will store in a designated variable
   back.  Since gdb needs to find it, we will store in a designated variable
   `rs6000_struct_return_address'. */
   `rs6000_struct_return_address'. */
 
 
static void
static void
rs6000_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
rs6000_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
{
{
  write_register (3, addr);
  write_register (3, addr);
  rs6000_struct_return_address = addr;
  rs6000_struct_return_address = addr;
}
}
 
 
/* Write into appropriate registers a function return value
/* Write into appropriate registers a function return value
   of type TYPE, given in virtual format.  */
   of type TYPE, given in virtual format.  */
 
 
static void
static void
rs6000_store_return_value (struct type *type, char *valbuf)
rs6000_store_return_value (struct type *type, char *valbuf)
{
{
  if (TYPE_CODE (type) == TYPE_CODE_FLT)
  if (TYPE_CODE (type) == TYPE_CODE_FLT)
 
 
    /* Floating point values are returned starting from FPR1 and up.
    /* Floating point values are returned starting from FPR1 and up.
       Say a double_double_double type could be returned in
       Say a double_double_double type could be returned in
       FPR1/FPR2/FPR3 triple. */
       FPR1/FPR2/FPR3 triple. */
 
 
    write_register_bytes (REGISTER_BYTE (FP0_REGNUM + 1), valbuf,
    write_register_bytes (REGISTER_BYTE (FP0_REGNUM + 1), valbuf,
                          TYPE_LENGTH (type));
                          TYPE_LENGTH (type));
  else
  else
    /* Everything else is returned in GPR3 and up. */
    /* Everything else is returned in GPR3 and up. */
    write_register_bytes (REGISTER_BYTE (PPC_GP0_REGNUM + 3), valbuf,
    write_register_bytes (REGISTER_BYTE (PPC_GP0_REGNUM + 3), valbuf,
                          TYPE_LENGTH (type));
                          TYPE_LENGTH (type));
}
}
 
 
/* Extract from an array REGBUF containing the (raw) register state
/* Extract from an array REGBUF containing the (raw) register state
   the address in which a function should return its structure value,
   the address in which a function should return its structure value,
   as a CORE_ADDR (or an expression that can be used as one).  */
   as a CORE_ADDR (or an expression that can be used as one).  */
 
 
static CORE_ADDR
static CORE_ADDR
rs6000_extract_struct_value_address (char *regbuf)
rs6000_extract_struct_value_address (char *regbuf)
{
{
  return rs6000_struct_return_address;
  return rs6000_struct_return_address;
}
}
 
 
/* Return whether PC is in a dummy function call.
/* Return whether PC is in a dummy function call.
 
 
   FIXME: This just checks for the end of the stack, which is broken
   FIXME: This just checks for the end of the stack, which is broken
   for things like stepping through gcc nested function stubs. */
   for things like stepping through gcc nested function stubs. */
 
 
static int
static int
rs6000_pc_in_call_dummy (CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR fp)
rs6000_pc_in_call_dummy (CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR fp)
{
{
  return sp < pc && pc < fp;
  return sp < pc && pc < fp;
}
}
 
 
/* Hook called when a new child process is started. */
/* Hook called when a new child process is started. */
 
 
void
void
rs6000_create_inferior (int pid)
rs6000_create_inferior (int pid)
{
{
  if (rs6000_set_host_arch_hook)
  if (rs6000_set_host_arch_hook)
    rs6000_set_host_arch_hook (pid);
    rs6000_set_host_arch_hook (pid);
}
}


/* Support for CONVERT_FROM_FUNC_PTR_ADDR(ADDR).
/* Support for CONVERT_FROM_FUNC_PTR_ADDR(ADDR).
 
 
   Usually a function pointer's representation is simply the address
   Usually a function pointer's representation is simply the address
   of the function. On the RS/6000 however, a function pointer is
   of the function. On the RS/6000 however, a function pointer is
   represented by a pointer to a TOC entry. This TOC entry contains
   represented by a pointer to a TOC entry. This TOC entry contains
   three words, the first word is the address of the function, the
   three words, the first word is the address of the function, the
   second word is the TOC pointer (r2), and the third word is the
   second word is the TOC pointer (r2), and the third word is the
   static chain value.  Throughout GDB it is currently assumed that a
   static chain value.  Throughout GDB it is currently assumed that a
   function pointer contains the address of the function, which is not
   function pointer contains the address of the function, which is not
   easy to fix.  In addition, the conversion of a function address to
   easy to fix.  In addition, the conversion of a function address to
   a function pointer would require allocation of a TOC entry in the
   a function pointer would require allocation of a TOC entry in the
   inferior's memory space, with all its drawbacks.  To be able to
   inferior's memory space, with all its drawbacks.  To be able to
   call C++ virtual methods in the inferior (which are called via
   call C++ virtual methods in the inferior (which are called via
   function pointers), find_function_addr uses this function to get the
   function pointers), find_function_addr uses this function to get the
   function address from a function pointer.  */
   function address from a function pointer.  */
 
 
/* Return real function address if ADDR (a function pointer) is in the data
/* Return real function address if ADDR (a function pointer) is in the data
   space and is therefore a special function pointer.  */
   space and is therefore a special function pointer.  */
 
 
CORE_ADDR
CORE_ADDR
rs6000_convert_from_func_ptr_addr (CORE_ADDR addr)
rs6000_convert_from_func_ptr_addr (CORE_ADDR addr)
{
{
  struct obj_section *s;
  struct obj_section *s;
 
 
  s = find_pc_section (addr);
  s = find_pc_section (addr);
  if (s && s->the_bfd_section->flags & SEC_CODE)
  if (s && s->the_bfd_section->flags & SEC_CODE)
    return addr;
    return addr;
 
 
  /* ADDR is in the data space, so it's a special function pointer. */
  /* ADDR is in the data space, so it's a special function pointer. */
  return read_memory_addr (addr, TDEP->wordsize);
  return read_memory_addr (addr, TDEP->wordsize);
}
}


 
 
/* Handling the various POWER/PowerPC variants.  */
/* Handling the various POWER/PowerPC variants.  */
 
 
 
 
/* The arrays here called registers_MUMBLE hold information about available
/* The arrays here called registers_MUMBLE hold information about available
   registers.
   registers.
 
 
   For each family of PPC variants, I've tried to isolate out the
   For each family of PPC variants, I've tried to isolate out the
   common registers and put them up front, so that as long as you get
   common registers and put them up front, so that as long as you get
   the general family right, GDB will correctly identify the registers
   the general family right, GDB will correctly identify the registers
   common to that family.  The common register sets are:
   common to that family.  The common register sets are:
 
 
   For the 60x family: hid0 hid1 iabr dabr pir
   For the 60x family: hid0 hid1 iabr dabr pir
 
 
   For the 505 and 860 family: eie eid nri
   For the 505 and 860 family: eie eid nri
 
 
   For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi
   For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi
   tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1
   tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1
   pbu1 pbl2 pbu2
   pbu1 pbl2 pbu2
 
 
   Most of these register groups aren't anything formal.  I arrived at
   Most of these register groups aren't anything formal.  I arrived at
   them by looking at the registers that occurred in more than one
   them by looking at the registers that occurred in more than one
   processor. */
   processor. */
 
 
/* Convenience macros for populating register arrays. */
/* Convenience macros for populating register arrays. */
 
 
/* Within another macro, convert S to a string. */
/* Within another macro, convert S to a string. */
 
 
#define STR(s)  #s
#define STR(s)  #s
 
 
/* Return a struct reg defining register NAME that's 32 bits on 32-bit systems
/* Return a struct reg defining register NAME that's 32 bits on 32-bit systems
   and 64 bits on 64-bit systems. */
   and 64 bits on 64-bit systems. */
#define R(name)         { STR(name), 4, 8, 0 }
#define R(name)         { STR(name), 4, 8, 0 }
 
 
/* Return a struct reg defining register NAME that's 32 bits on all
/* Return a struct reg defining register NAME that's 32 bits on all
   systems. */
   systems. */
#define R4(name)        { STR(name), 4, 4, 0 }
#define R4(name)        { STR(name), 4, 4, 0 }
 
 
/* Return a struct reg defining register NAME that's 64 bits on all
/* Return a struct reg defining register NAME that's 64 bits on all
   systems. */
   systems. */
#define R8(name)        { STR(name), 8, 8, 0 }
#define R8(name)        { STR(name), 8, 8, 0 }
 
 
/* Return a struct reg defining floating-point register NAME. */
/* Return a struct reg defining floating-point register NAME. */
#define F(name)         { STR(name), 8, 8, 1 }
#define F(name)         { STR(name), 8, 8, 1 }
 
 
/* Return a struct reg defining register NAME that's 32 bits on 32-bit
/* Return a struct reg defining register NAME that's 32 bits on 32-bit
   systems and that doesn't exist on 64-bit systems. */
   systems and that doesn't exist on 64-bit systems. */
#define R32(name)       { STR(name), 4, 0, 0 }
#define R32(name)       { STR(name), 4, 0, 0 }
 
 
/* Return a struct reg defining register NAME that's 64 bits on 64-bit
/* Return a struct reg defining register NAME that's 64 bits on 64-bit
   systems and that doesn't exist on 32-bit systems. */
   systems and that doesn't exist on 32-bit systems. */
#define R64(name)       { STR(name), 0, 8, 0 }
#define R64(name)       { STR(name), 0, 8, 0 }
 
 
/* Return a struct reg placeholder for a register that doesn't exist. */
/* Return a struct reg placeholder for a register that doesn't exist. */
#define R0              { 0, 0, 0, 0 }
#define R0              { 0, 0, 0, 0 }
 
 
/* UISA registers common across all architectures, including POWER.  */
/* UISA registers common across all architectures, including POWER.  */
 
 
#define COMMON_UISA_REGS \
#define COMMON_UISA_REGS \
  /*  0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7),  \
  /*  0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7),  \
  /*  8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
  /*  8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
  /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
  /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
  /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
  /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
  /* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7),  \
  /* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7),  \
  /* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \
  /* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \
  /* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \
  /* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \
  /* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \
  /* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \
  /* 64 */ R(pc), R(ps)
  /* 64 */ R(pc), R(ps)
 
 
/* UISA-level SPRs for PowerPC.  */
/* UISA-level SPRs for PowerPC.  */
#define PPC_UISA_SPRS \
#define PPC_UISA_SPRS \
  /* 66 */ R4(cr),  R(lr), R(ctr), R4(xer), R0
  /* 66 */ R4(cr),  R(lr), R(ctr), R4(xer), R0
 
 
/* Segment registers, for PowerPC.  */
/* Segment registers, for PowerPC.  */
#define PPC_SEGMENT_REGS \
#define PPC_SEGMENT_REGS \
  /* 71 */ R32(sr0),  R32(sr1),  R32(sr2),  R32(sr3),  \
  /* 71 */ R32(sr0),  R32(sr1),  R32(sr2),  R32(sr3),  \
  /* 75 */ R32(sr4),  R32(sr5),  R32(sr6),  R32(sr7),  \
  /* 75 */ R32(sr4),  R32(sr5),  R32(sr6),  R32(sr7),  \
  /* 79 */ R32(sr8),  R32(sr9),  R32(sr10), R32(sr11), \
  /* 79 */ R32(sr8),  R32(sr9),  R32(sr10), R32(sr11), \
  /* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15)
  /* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15)
 
 
/* OEA SPRs for PowerPC.  */
/* OEA SPRs for PowerPC.  */
#define PPC_OEA_SPRS \
#define PPC_OEA_SPRS \
  /*  87 */ R4(pvr), \
  /*  87 */ R4(pvr), \
  /*  88 */ R(ibat0u), R(ibat0l), R(ibat1u), R(ibat1l), \
  /*  88 */ R(ibat0u), R(ibat0l), R(ibat1u), R(ibat1l), \
  /*  92 */ R(ibat2u), R(ibat2l), R(ibat3u), R(ibat3l), \
  /*  92 */ R(ibat2u), R(ibat2l), R(ibat3u), R(ibat3l), \
  /*  96 */ R(dbat0u), R(dbat0l), R(dbat1u), R(dbat1l), \
  /*  96 */ R(dbat0u), R(dbat0l), R(dbat1u), R(dbat1l), \
  /* 100 */ R(dbat2u), R(dbat2l), R(dbat3u), R(dbat3l), \
  /* 100 */ R(dbat2u), R(dbat2l), R(dbat3u), R(dbat3l), \
  /* 104 */ R(sdr1),   R64(asr),  R(dar),    R4(dsisr), \
  /* 104 */ R(sdr1),   R64(asr),  R(dar),    R4(dsisr), \
  /* 108 */ R(sprg0),  R(sprg1),  R(sprg2),  R(sprg3),  \
  /* 108 */ R(sprg0),  R(sprg1),  R(sprg2),  R(sprg3),  \
  /* 112 */ R(srr0),   R(srr1),   R(tbl),    R(tbu),    \
  /* 112 */ R(srr0),   R(srr1),   R(tbl),    R(tbu),    \
  /* 116 */ R4(dec),   R(dabr),   R4(ear)
  /* 116 */ R4(dec),   R(dabr),   R4(ear)
 
 
/* IBM POWER (pre-PowerPC) architecture, user-level view.  We only cover
/* IBM POWER (pre-PowerPC) architecture, user-level view.  We only cover
   user-level SPR's. */
   user-level SPR's. */
static const struct reg registers_power[] =
static const struct reg registers_power[] =
{
{
  COMMON_UISA_REGS,
  COMMON_UISA_REGS,
  /* 66 */ R4(cnd), R(lr), R(cnt), R4(xer), R4(mq)
  /* 66 */ R4(cnd), R(lr), R(cnt), R4(xer), R4(mq)
};
};
 
 
/* PowerPC UISA - a PPC processor as viewed by user-level code.  A UISA-only
/* PowerPC UISA - a PPC processor as viewed by user-level code.  A UISA-only
   view of the PowerPC. */
   view of the PowerPC. */
static const struct reg registers_powerpc[] =
static const struct reg registers_powerpc[] =
{
{
  COMMON_UISA_REGS,
  COMMON_UISA_REGS,
  PPC_UISA_SPRS
  PPC_UISA_SPRS
};
};
 
 
/* IBM PowerPC 403. */
/* IBM PowerPC 403. */
static const struct reg registers_403[] =
static const struct reg registers_403[] =
{
{
  COMMON_UISA_REGS,
  COMMON_UISA_REGS,
  PPC_UISA_SPRS,
  PPC_UISA_SPRS,
  PPC_SEGMENT_REGS,
  PPC_SEGMENT_REGS,
  PPC_OEA_SPRS,
  PPC_OEA_SPRS,
  /* 119 */ R(icdbdr), R(esr),  R(dear), R(evpr),
  /* 119 */ R(icdbdr), R(esr),  R(dear), R(evpr),
  /* 123 */ R(cdbcr),  R(tsr),  R(tcr),  R(pit),
  /* 123 */ R(cdbcr),  R(tsr),  R(tcr),  R(pit),
  /* 127 */ R(tbhi),   R(tblo), R(srr2), R(srr3),
  /* 127 */ R(tbhi),   R(tblo), R(srr2), R(srr3),
  /* 131 */ R(dbsr),   R(dbcr), R(iac1), R(iac2),
  /* 131 */ R(dbsr),   R(dbcr), R(iac1), R(iac2),
  /* 135 */ R(dac1),   R(dac2), R(dccr), R(iccr),
  /* 135 */ R(dac1),   R(dac2), R(dccr), R(iccr),
  /* 139 */ R(pbl1),   R(pbu1), R(pbl2), R(pbu2)
  /* 139 */ R(pbl1),   R(pbu1), R(pbl2), R(pbu2)
};
};
 
 
/* IBM PowerPC 403GC. */
/* IBM PowerPC 403GC. */
static const struct reg registers_403GC[] =
static const struct reg registers_403GC[] =
{
{
  COMMON_UISA_REGS,
  COMMON_UISA_REGS,
  PPC_UISA_SPRS,
  PPC_UISA_SPRS,
  PPC_SEGMENT_REGS,
  PPC_SEGMENT_REGS,
  PPC_OEA_SPRS,
  PPC_OEA_SPRS,
  /* 119 */ R(icdbdr), R(esr),  R(dear), R(evpr),
  /* 119 */ R(icdbdr), R(esr),  R(dear), R(evpr),
  /* 123 */ R(cdbcr),  R(tsr),  R(tcr),  R(pit),
  /* 123 */ R(cdbcr),  R(tsr),  R(tcr),  R(pit),
  /* 127 */ R(tbhi),   R(tblo), R(srr2), R(srr3),
  /* 127 */ R(tbhi),   R(tblo), R(srr2), R(srr3),
  /* 131 */ R(dbsr),   R(dbcr), R(iac1), R(iac2),
  /* 131 */ R(dbsr),   R(dbcr), R(iac1), R(iac2),
  /* 135 */ R(dac1),   R(dac2), R(dccr), R(iccr),
  /* 135 */ R(dac1),   R(dac2), R(dccr), R(iccr),
  /* 139 */ R(pbl1),   R(pbu1), R(pbl2), R(pbu2),
  /* 139 */ R(pbl1),   R(pbu1), R(pbl2), R(pbu2),
  /* 143 */ R(zpr),    R(pid),  R(sgr),  R(dcwr),
  /* 143 */ R(zpr),    R(pid),  R(sgr),  R(dcwr),
  /* 147 */ R(tbhu),   R(tblu)
  /* 147 */ R(tbhu),   R(tblu)
};
};
 
 
/* Motorola PowerPC 505. */
/* Motorola PowerPC 505. */
static const struct reg registers_505[] =
static const struct reg registers_505[] =
{
{
  COMMON_UISA_REGS,
  COMMON_UISA_REGS,
  PPC_UISA_SPRS,
  PPC_UISA_SPRS,
  PPC_SEGMENT_REGS,
  PPC_SEGMENT_REGS,
  PPC_OEA_SPRS,
  PPC_OEA_SPRS,
  /* 119 */ R(eie), R(eid), R(nri)
  /* 119 */ R(eie), R(eid), R(nri)
};
};
 
 
/* Motorola PowerPC 860 or 850. */
/* Motorola PowerPC 860 or 850. */
static const struct reg registers_860[] =
static const struct reg registers_860[] =
{
{
  COMMON_UISA_REGS,
  COMMON_UISA_REGS,
  PPC_UISA_SPRS,
  PPC_UISA_SPRS,
  PPC_SEGMENT_REGS,
  PPC_SEGMENT_REGS,
  PPC_OEA_SPRS,
  PPC_OEA_SPRS,
  /* 119 */ R(eie), R(eid), R(nri), R(cmpa),
  /* 119 */ R(eie), R(eid), R(nri), R(cmpa),
  /* 123 */ R(cmpb), R(cmpc), R(cmpd), R(icr),
  /* 123 */ R(cmpb), R(cmpc), R(cmpd), R(icr),
  /* 127 */ R(der), R(counta), R(countb), R(cmpe),
  /* 127 */ R(der), R(counta), R(countb), R(cmpe),
  /* 131 */ R(cmpf), R(cmpg), R(cmph), R(lctrl1),
  /* 131 */ R(cmpf), R(cmpg), R(cmph), R(lctrl1),
  /* 135 */ R(lctrl2), R(ictrl), R(bar), R(ic_cst),
  /* 135 */ R(lctrl2), R(ictrl), R(bar), R(ic_cst),
  /* 139 */ R(ic_adr), R(ic_dat), R(dc_cst), R(dc_adr),
  /* 139 */ R(ic_adr), R(ic_dat), R(dc_cst), R(dc_adr),
  /* 143 */ R(dc_dat), R(dpdr), R(dpir), R(immr),
  /* 143 */ R(dc_dat), R(dpdr), R(dpir), R(immr),
  /* 147 */ R(mi_ctr), R(mi_ap), R(mi_epn), R(mi_twc),
  /* 147 */ R(mi_ctr), R(mi_ap), R(mi_epn), R(mi_twc),
  /* 151 */ R(mi_rpn), R(md_ctr), R(m_casid), R(md_ap),
  /* 151 */ R(mi_rpn), R(md_ctr), R(m_casid), R(md_ap),
  /* 155 */ R(md_epn), R(md_twb), R(md_twc), R(md_rpn),
  /* 155 */ R(md_epn), R(md_twb), R(md_twc), R(md_rpn),
  /* 159 */ R(m_tw), R(mi_dbcam), R(mi_dbram0), R(mi_dbram1),
  /* 159 */ R(m_tw), R(mi_dbcam), R(mi_dbram0), R(mi_dbram1),
  /* 163 */ R(md_dbcam), R(md_dbram0), R(md_dbram1)
  /* 163 */ R(md_dbcam), R(md_dbram0), R(md_dbram1)
};
};
 
 
/* Motorola PowerPC 601.  Note that the 601 has different register numbers
/* Motorola PowerPC 601.  Note that the 601 has different register numbers
   for reading and writing RTCU and RTCL.  However, how one reads and writes a
   for reading and writing RTCU and RTCL.  However, how one reads and writes a
   register is the stub's problem.  */
   register is the stub's problem.  */
static const struct reg registers_601[] =
static const struct reg registers_601[] =
{
{
  COMMON_UISA_REGS,
  COMMON_UISA_REGS,
  PPC_UISA_SPRS,
  PPC_UISA_SPRS,
  PPC_SEGMENT_REGS,
  PPC_SEGMENT_REGS,
  PPC_OEA_SPRS,
  PPC_OEA_SPRS,
  /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
  /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
  /* 123 */ R(pir), R(mq), R(rtcu), R(rtcl)
  /* 123 */ R(pir), R(mq), R(rtcu), R(rtcl)
};
};
 
 
/* Motorola PowerPC 602. */
/* Motorola PowerPC 602. */
static const struct reg registers_602[] =
static const struct reg registers_602[] =
{
{
  COMMON_UISA_REGS,
  COMMON_UISA_REGS,
  PPC_UISA_SPRS,
  PPC_UISA_SPRS,
  PPC_SEGMENT_REGS,
  PPC_SEGMENT_REGS,
  PPC_OEA_SPRS,
  PPC_OEA_SPRS,
  /* 119 */ R(hid0), R(hid1), R(iabr), R0,
  /* 119 */ R(hid0), R(hid1), R(iabr), R0,
  /* 123 */ R0, R(tcr), R(ibr), R(esassr),
  /* 123 */ R0, R(tcr), R(ibr), R(esassr),
  /* 127 */ R(sebr), R(ser), R(sp), R(lt)
  /* 127 */ R(sebr), R(ser), R(sp), R(lt)
};
};
 
 
/* Motorola/IBM PowerPC 603 or 603e. */
/* Motorola/IBM PowerPC 603 or 603e. */
static const struct reg registers_603[] =
static const struct reg registers_603[] =
{
{
  COMMON_UISA_REGS,
  COMMON_UISA_REGS,
  PPC_UISA_SPRS,
  PPC_UISA_SPRS,
  PPC_SEGMENT_REGS,
  PPC_SEGMENT_REGS,
  PPC_OEA_SPRS,
  PPC_OEA_SPRS,
  /* 119 */ R(hid0), R(hid1), R(iabr), R0,
  /* 119 */ R(hid0), R(hid1), R(iabr), R0,
  /* 123 */ R0, R(dmiss), R(dcmp), R(hash1),
  /* 123 */ R0, R(dmiss), R(dcmp), R(hash1),
  /* 127 */ R(hash2), R(imiss), R(icmp), R(rpa)
  /* 127 */ R(hash2), R(imiss), R(icmp), R(rpa)
};
};
 
 
/* Motorola PowerPC 604 or 604e. */
/* Motorola PowerPC 604 or 604e. */
static const struct reg registers_604[] =
static const struct reg registers_604[] =
{
{
  COMMON_UISA_REGS,
  COMMON_UISA_REGS,
  PPC_UISA_SPRS,
  PPC_UISA_SPRS,
  PPC_SEGMENT_REGS,
  PPC_SEGMENT_REGS,
  PPC_OEA_SPRS,
  PPC_OEA_SPRS,
  /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
  /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
  /* 123 */ R(pir), R(mmcr0), R(pmc1), R(pmc2),
  /* 123 */ R(pir), R(mmcr0), R(pmc1), R(pmc2),
  /* 127 */ R(sia), R(sda)
  /* 127 */ R(sia), R(sda)
};
};
 
 
/* Motorola/IBM PowerPC 750 or 740. */
/* Motorola/IBM PowerPC 750 or 740. */
static const struct reg registers_750[] =
static const struct reg registers_750[] =
{
{
  COMMON_UISA_REGS,
  COMMON_UISA_REGS,
  PPC_UISA_SPRS,
  PPC_UISA_SPRS,
  PPC_SEGMENT_REGS,
  PPC_SEGMENT_REGS,
  PPC_OEA_SPRS,
  PPC_OEA_SPRS,
  /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
  /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
  /* 123 */ R0, R(ummcr0), R(upmc1), R(upmc2),
  /* 123 */ R0, R(ummcr0), R(upmc1), R(upmc2),
  /* 127 */ R(usia), R(ummcr1), R(upmc3), R(upmc4),
  /* 127 */ R(usia), R(ummcr1), R(upmc3), R(upmc4),
  /* 131 */ R(mmcr0), R(pmc1), R(pmc2), R(sia),
  /* 131 */ R(mmcr0), R(pmc1), R(pmc2), R(sia),
  /* 135 */ R(mmcr1), R(pmc3), R(pmc4), R(l2cr),
  /* 135 */ R(mmcr1), R(pmc3), R(pmc4), R(l2cr),
  /* 139 */ R(ictc), R(thrm1), R(thrm2), R(thrm3)
  /* 139 */ R(ictc), R(thrm1), R(thrm2), R(thrm3)
};
};
 
 
 
 
/* Information about a particular processor variant.  */
/* Information about a particular processor variant.  */
 
 
struct variant
struct variant
  {
  {
    /* Name of this variant.  */
    /* Name of this variant.  */
    char *name;
    char *name;
 
 
    /* English description of the variant.  */
    /* English description of the variant.  */
    char *description;
    char *description;
 
 
    /* bfd_arch_info.arch corresponding to variant. */
    /* bfd_arch_info.arch corresponding to variant. */
    enum bfd_architecture arch;
    enum bfd_architecture arch;
 
 
    /* bfd_arch_info.mach corresponding to variant. */
    /* bfd_arch_info.mach corresponding to variant. */
    unsigned long mach;
    unsigned long mach;
 
 
    /* Table of register names; registers[R] is the name of the register
    /* Table of register names; registers[R] is the name of the register
       number R.  */
       number R.  */
    int nregs;
    int nregs;
    const struct reg *regs;
    const struct reg *regs;
  };
  };
 
 
#define num_registers(list) (sizeof (list) / sizeof((list)[0]))
#define num_registers(list) (sizeof (list) / sizeof((list)[0]))
 
 
 
 
/* Information in this table comes from the following web sites:
/* Information in this table comes from the following web sites:
   IBM:       http://www.chips.ibm.com:80/products/embedded/
   IBM:       http://www.chips.ibm.com:80/products/embedded/
   Motorola:  http://www.mot.com/SPS/PowerPC/
   Motorola:  http://www.mot.com/SPS/PowerPC/
 
 
   I'm sure I've got some of the variant descriptions not quite right.
   I'm sure I've got some of the variant descriptions not quite right.
   Please report any inaccuracies you find to GDB's maintainer.
   Please report any inaccuracies you find to GDB's maintainer.
 
 
   If you add entries to this table, please be sure to allow the new
   If you add entries to this table, please be sure to allow the new
   value as an argument to the --with-cpu flag, in configure.in.  */
   value as an argument to the --with-cpu flag, in configure.in.  */
 
 
static const struct variant variants[] =
static const struct variant variants[] =
{
{
  {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
  {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
   bfd_mach_ppc, num_registers (registers_powerpc), registers_powerpc},
   bfd_mach_ppc, num_registers (registers_powerpc), registers_powerpc},
  {"power", "POWER user-level", bfd_arch_rs6000,
  {"power", "POWER user-level", bfd_arch_rs6000,
   bfd_mach_rs6k, num_registers (registers_power), registers_power},
   bfd_mach_rs6k, num_registers (registers_power), registers_power},
  {"403", "IBM PowerPC 403", bfd_arch_powerpc,
  {"403", "IBM PowerPC 403", bfd_arch_powerpc,
   bfd_mach_ppc_403, num_registers (registers_403), registers_403},
   bfd_mach_ppc_403, num_registers (registers_403), registers_403},
  {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
  {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
   bfd_mach_ppc_601, num_registers (registers_601), registers_601},
   bfd_mach_ppc_601, num_registers (registers_601), registers_601},
  {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
  {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
   bfd_mach_ppc_602, num_registers (registers_602), registers_602},
   bfd_mach_ppc_602, num_registers (registers_602), registers_602},
  {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
  {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
   bfd_mach_ppc_603, num_registers (registers_603), registers_603},
   bfd_mach_ppc_603, num_registers (registers_603), registers_603},
  {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
  {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
   604, num_registers (registers_604), registers_604},
   604, num_registers (registers_604), registers_604},
  {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
  {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
   bfd_mach_ppc_403gc, num_registers (registers_403GC), registers_403GC},
   bfd_mach_ppc_403gc, num_registers (registers_403GC), registers_403GC},
  {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
  {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
   bfd_mach_ppc_505, num_registers (registers_505), registers_505},
   bfd_mach_ppc_505, num_registers (registers_505), registers_505},
  {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
  {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
   bfd_mach_ppc_860, num_registers (registers_860), registers_860},
   bfd_mach_ppc_860, num_registers (registers_860), registers_860},
  {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
  {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
   bfd_mach_ppc_750, num_registers (registers_750), registers_750},
   bfd_mach_ppc_750, num_registers (registers_750), registers_750},
 
 
  /* FIXME: I haven't checked the register sets of the following. */
  /* FIXME: I haven't checked the register sets of the following. */
  {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
  {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
   bfd_mach_ppc_620, num_registers (registers_powerpc), registers_powerpc},
   bfd_mach_ppc_620, num_registers (registers_powerpc), registers_powerpc},
  {"a35", "PowerPC A35", bfd_arch_powerpc,
  {"a35", "PowerPC A35", bfd_arch_powerpc,
   bfd_mach_ppc_a35, num_registers (registers_powerpc), registers_powerpc},
   bfd_mach_ppc_a35, num_registers (registers_powerpc), registers_powerpc},
  {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
  {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
   bfd_mach_rs6k_rs1, num_registers (registers_power), registers_power},
   bfd_mach_rs6k_rs1, num_registers (registers_power), registers_power},
  {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
  {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
   bfd_mach_rs6k_rsc, num_registers (registers_power), registers_power},
   bfd_mach_rs6k_rsc, num_registers (registers_power), registers_power},
  {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
  {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
   bfd_mach_rs6k_rs2, num_registers (registers_power), registers_power},
   bfd_mach_rs6k_rs2, num_registers (registers_power), registers_power},
 
 
  {0, 0, 0, 0}
  {0, 0, 0, 0}
};
};
 
 
#undef num_registers
#undef num_registers
 
 
/* Look up the variant named NAME in the `variants' table.  Return a
/* Look up the variant named NAME in the `variants' table.  Return a
   pointer to the struct variant, or null if we couldn't find it.  */
   pointer to the struct variant, or null if we couldn't find it.  */
 
 
static const struct variant *
static const struct variant *
find_variant_by_name (char *name)
find_variant_by_name (char *name)
{
{
  const struct variant *v;
  const struct variant *v;
 
 
  for (v = variants; v->name; v++)
  for (v = variants; v->name; v++)
    if (!strcmp (name, v->name))
    if (!strcmp (name, v->name))
      return v;
      return v;
 
 
  return NULL;
  return NULL;
}
}
 
 
/* Return the variant corresponding to architecture ARCH and machine number
/* Return the variant corresponding to architecture ARCH and machine number
   MACH.  If no such variant exists, return null. */
   MACH.  If no such variant exists, return null. */
 
 
static const struct variant *
static const struct variant *
find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
{
{
  const struct variant *v;
  const struct variant *v;
 
 
  for (v = variants; v->name; v++)
  for (v = variants; v->name; v++)
    if (arch == v->arch && mach == v->mach)
    if (arch == v->arch && mach == v->mach)
      return v;
      return v;
 
 
  return NULL;
  return NULL;
}
}
 
 
 
 
 
 


static void
static void
process_note_abi_tag_sections (bfd *abfd, asection *sect, void *obj)
process_note_abi_tag_sections (bfd *abfd, asection *sect, void *obj)
{
{
  int *os_ident_ptr = obj;
  int *os_ident_ptr = obj;
  const char *name;
  const char *name;
  unsigned int sectsize;
  unsigned int sectsize;
 
 
  name = bfd_get_section_name (abfd, sect);
  name = bfd_get_section_name (abfd, sect);
  sectsize = bfd_section_size (abfd, sect);
  sectsize = bfd_section_size (abfd, sect);
  if (strcmp (name, ".note.ABI-tag") == 0 && sectsize > 0)
  if (strcmp (name, ".note.ABI-tag") == 0 && sectsize > 0)
    {
    {
      unsigned int name_length, data_length, note_type;
      unsigned int name_length, data_length, note_type;
      char *note = alloca (sectsize);
      char *note = alloca (sectsize);
 
 
      bfd_get_section_contents (abfd, sect, note,
      bfd_get_section_contents (abfd, sect, note,
                                (file_ptr) 0, (bfd_size_type) sectsize);
                                (file_ptr) 0, (bfd_size_type) sectsize);
 
 
      name_length = bfd_h_get_32 (abfd, note);
      name_length = bfd_h_get_32 (abfd, note);
      data_length = bfd_h_get_32 (abfd, note + 4);
      data_length = bfd_h_get_32 (abfd, note + 4);
      note_type   = bfd_h_get_32 (abfd, note + 8);
      note_type   = bfd_h_get_32 (abfd, note + 8);
 
 
      if (name_length == 4 && data_length == 16 && note_type == 1
      if (name_length == 4 && data_length == 16 && note_type == 1
          && strcmp (note + 12, "GNU") == 0)
          && strcmp (note + 12, "GNU") == 0)
        {
        {
          int os_number = bfd_h_get_32 (abfd, note + 16);
          int os_number = bfd_h_get_32 (abfd, note + 16);
 
 
          /* The case numbers are from abi-tags in glibc */
          /* The case numbers are from abi-tags in glibc */
          switch (os_number)
          switch (os_number)
            {
            {
            case 0 :
            case 0 :
              *os_ident_ptr = ELFOSABI_LINUX;
              *os_ident_ptr = ELFOSABI_LINUX;
              break;
              break;
            case 1 :
            case 1 :
              *os_ident_ptr = ELFOSABI_HURD;
              *os_ident_ptr = ELFOSABI_HURD;
              break;
              break;
            case 2 :
            case 2 :
              *os_ident_ptr = ELFOSABI_SOLARIS;
              *os_ident_ptr = ELFOSABI_SOLARIS;
              break;
              break;
            default :
            default :
              internal_error (__FILE__, __LINE__,
              internal_error (__FILE__, __LINE__,
                              "process_note_abi_sections: unknown OS number %d",
                              "process_note_abi_sections: unknown OS number %d",
                              os_number);
                              os_number);
              break;
              break;
            }
            }
        }
        }
    }
    }
}
}
 
 
/* Return one of the ELFOSABI_ constants for BFDs representing ELF
/* Return one of the ELFOSABI_ constants for BFDs representing ELF
   executables.  If it's not an ELF executable or if the OS/ABI couldn't
   executables.  If it's not an ELF executable or if the OS/ABI couldn't
   be determined, simply return -1. */
   be determined, simply return -1. */
 
 
static int
static int
get_elfosabi (bfd *abfd)
get_elfosabi (bfd *abfd)
{
{
  int elfosabi = -1;
  int elfosabi = -1;
 
 
  if (abfd != NULL && bfd_get_flavour (abfd) == bfd_target_elf_flavour)
  if (abfd != NULL && bfd_get_flavour (abfd) == bfd_target_elf_flavour)
    {
    {
      elfosabi = elf_elfheader (abfd)->e_ident[EI_OSABI];
      elfosabi = elf_elfheader (abfd)->e_ident[EI_OSABI];
 
 
      /* When elfosabi is 0 (ELFOSABI_NONE), this is supposed to indicate
      /* When elfosabi is 0 (ELFOSABI_NONE), this is supposed to indicate
         that we're on a SYSV system.  However, GNU/Linux uses a note section
         that we're on a SYSV system.  However, GNU/Linux uses a note section
         to record OS/ABI info, but leaves e_ident[EI_OSABI] zero.  So we
         to record OS/ABI info, but leaves e_ident[EI_OSABI] zero.  So we
         have to check the note sections too. */
         have to check the note sections too. */
      if (elfosabi == 0)
      if (elfosabi == 0)
        {
        {
          bfd_map_over_sections (abfd,
          bfd_map_over_sections (abfd,
                                 process_note_abi_tag_sections,
                                 process_note_abi_tag_sections,
                                 &elfosabi);
                                 &elfosabi);
        }
        }
    }
    }
 
 
  return elfosabi;
  return elfosabi;
}
}
 
 


 
 
/* Initialize the current architecture based on INFO.  If possible, re-use an
/* Initialize the current architecture based on INFO.  If possible, re-use an
   architecture from ARCHES, which is a list of architectures already created
   architecture from ARCHES, which is a list of architectures already created
   during this debugging session.
   during this debugging session.
 
 
   Called e.g. at program startup, when reading a core file, and when reading
   Called e.g. at program startup, when reading a core file, and when reading
   a binary file. */
   a binary file. */
 
 
static struct gdbarch *
static struct gdbarch *
rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
{
{
  struct gdbarch *gdbarch;
  struct gdbarch *gdbarch;
  struct gdbarch_tdep *tdep;
  struct gdbarch_tdep *tdep;
  int wordsize, from_xcoff_exec, from_elf_exec, power, i, off;
  int wordsize, from_xcoff_exec, from_elf_exec, power, i, off;
  struct reg *regs;
  struct reg *regs;
  const struct variant *v;
  const struct variant *v;
  enum bfd_architecture arch;
  enum bfd_architecture arch;
  unsigned long mach;
  unsigned long mach;
  bfd abfd;
  bfd abfd;
  int osabi, sysv_abi;
  int osabi, sysv_abi;
 
 
  from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
  from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
    bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
    bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
 
 
  from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
  from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
    bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
    bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
 
 
  sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
  sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
 
 
  osabi = get_elfosabi (info.abfd);
  osabi = get_elfosabi (info.abfd);
 
 
  /* Check word size.  If INFO is from a binary file, infer it from that,
  /* Check word size.  If INFO is from a binary file, infer it from that,
     else use the previously-inferred size. */
     else use the previously-inferred size. */
  if (from_xcoff_exec)
  if (from_xcoff_exec)
    {
    {
      if (xcoff_data (info.abfd)->xcoff64)
      if (xcoff_data (info.abfd)->xcoff64)
        wordsize = 8;
        wordsize = 8;
      else
      else
        wordsize = 4;
        wordsize = 4;
    }
    }
  else if (from_elf_exec)
  else if (from_elf_exec)
    {
    {
      if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
      if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
        wordsize = 8;
        wordsize = 8;
      else
      else
        wordsize = 4;
        wordsize = 4;
    }
    }
  else
  else
    {
    {
      tdep = TDEP;
      tdep = TDEP;
      if (tdep)
      if (tdep)
        wordsize = tdep->wordsize;
        wordsize = tdep->wordsize;
      else
      else
        wordsize = 4;
        wordsize = 4;
    }
    }
 
 
  /* Find a candidate among extant architectures. */
  /* Find a candidate among extant architectures. */
  for (arches = gdbarch_list_lookup_by_info (arches, &info);
  for (arches = gdbarch_list_lookup_by_info (arches, &info);
       arches != NULL;
       arches != NULL;
       arches = gdbarch_list_lookup_by_info (arches->next, &info))
       arches = gdbarch_list_lookup_by_info (arches->next, &info))
    {
    {
      /* Word size in the various PowerPC bfd_arch_info structs isn't
      /* Word size in the various PowerPC bfd_arch_info structs isn't
         meaningful, because 64-bit CPUs can run in 32-bit mode.  So, perform
         meaningful, because 64-bit CPUs can run in 32-bit mode.  So, perform
         separate word size check. */
         separate word size check. */
      tdep = gdbarch_tdep (arches->gdbarch);
      tdep = gdbarch_tdep (arches->gdbarch);
      if (tdep && tdep->wordsize == wordsize && tdep->osabi == osabi)
      if (tdep && tdep->wordsize == wordsize && tdep->osabi == osabi)
        return arches->gdbarch;
        return arches->gdbarch;
    }
    }
 
 
  /* None found, create a new architecture from INFO, whose bfd_arch_info
  /* None found, create a new architecture from INFO, whose bfd_arch_info
     validity depends on the source:
     validity depends on the source:
       - executable             useless
       - executable             useless
       - rs6000_host_arch()     good
       - rs6000_host_arch()     good
       - core file              good
       - core file              good
       - "set arch"             trust blindly
       - "set arch"             trust blindly
       - GDB startup            useless but harmless */
       - GDB startup            useless but harmless */
 
 
  if (!from_xcoff_exec)
  if (!from_xcoff_exec)
    {
    {
      arch = info.bfd_arch_info->arch;
      arch = info.bfd_arch_info->arch;
      mach = info.bfd_arch_info->mach;
      mach = info.bfd_arch_info->mach;
    }
    }
  else
  else
    {
    {
      arch = bfd_arch_powerpc;
      arch = bfd_arch_powerpc;
      mach = 0;
      mach = 0;
      bfd_default_set_arch_mach (&abfd, arch, mach);
      bfd_default_set_arch_mach (&abfd, arch, mach);
      info.bfd_arch_info = bfd_get_arch_info (&abfd);
      info.bfd_arch_info = bfd_get_arch_info (&abfd);
    }
    }
  tdep = xmalloc (sizeof (struct gdbarch_tdep));
  tdep = xmalloc (sizeof (struct gdbarch_tdep));
  tdep->wordsize = wordsize;
  tdep->wordsize = wordsize;
  tdep->osabi = osabi;
  tdep->osabi = osabi;
  gdbarch = gdbarch_alloc (&info, tdep);
  gdbarch = gdbarch_alloc (&info, tdep);
  power = arch == bfd_arch_rs6000;
  power = arch == bfd_arch_rs6000;
 
 
  /* Select instruction printer. */
  /* Select instruction printer. */
  tm_print_insn = arch == power ? print_insn_rs6000 :
  tm_print_insn = arch == power ? print_insn_rs6000 :
    info.byte_order == BIG_ENDIAN ? print_insn_big_powerpc :
    info.byte_order == BIG_ENDIAN ? print_insn_big_powerpc :
      print_insn_little_powerpc;
      print_insn_little_powerpc;
 
 
  /* Choose variant. */
  /* Choose variant. */
  v = find_variant_by_arch (arch, mach);
  v = find_variant_by_arch (arch, mach);
  if (!v)
  if (!v)
    v = find_variant_by_name (power ? "power" : "powerpc");
    v = find_variant_by_name (power ? "power" : "powerpc");
  tdep->regs = v->regs;
  tdep->regs = v->regs;
 
 
  /* Calculate byte offsets in raw register array. */
  /* Calculate byte offsets in raw register array. */
  tdep->regoff = xmalloc (v->nregs * sizeof (int));
  tdep->regoff = xmalloc (v->nregs * sizeof (int));
  for (i = off = 0; i < v->nregs; i++)
  for (i = off = 0; i < v->nregs; i++)
    {
    {
      tdep->regoff[i] = off;
      tdep->regoff[i] = off;
      off += regsize (v->regs + i, wordsize);
      off += regsize (v->regs + i, wordsize);
    }
    }
 
 
  set_gdbarch_read_pc (gdbarch, generic_target_read_pc);
  set_gdbarch_read_pc (gdbarch, generic_target_read_pc);
  set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
  set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
  set_gdbarch_read_fp (gdbarch, generic_target_read_fp);
  set_gdbarch_read_fp (gdbarch, generic_target_read_fp);
  set_gdbarch_write_fp (gdbarch, generic_target_write_fp);
  set_gdbarch_write_fp (gdbarch, generic_target_write_fp);
  set_gdbarch_read_sp (gdbarch, generic_target_read_sp);
  set_gdbarch_read_sp (gdbarch, generic_target_read_sp);
  set_gdbarch_write_sp (gdbarch, generic_target_write_sp);
  set_gdbarch_write_sp (gdbarch, generic_target_write_sp);
 
 
  set_gdbarch_num_regs (gdbarch, v->nregs);
  set_gdbarch_num_regs (gdbarch, v->nregs);
  set_gdbarch_sp_regnum (gdbarch, 1);
  set_gdbarch_sp_regnum (gdbarch, 1);
  set_gdbarch_fp_regnum (gdbarch, 1);
  set_gdbarch_fp_regnum (gdbarch, 1);
  set_gdbarch_pc_regnum (gdbarch, 64);
  set_gdbarch_pc_regnum (gdbarch, 64);
  set_gdbarch_register_name (gdbarch, rs6000_register_name);
  set_gdbarch_register_name (gdbarch, rs6000_register_name);
  set_gdbarch_register_size (gdbarch, wordsize);
  set_gdbarch_register_size (gdbarch, wordsize);
  set_gdbarch_register_bytes (gdbarch, off);
  set_gdbarch_register_bytes (gdbarch, off);
  set_gdbarch_register_byte (gdbarch, rs6000_register_byte);
  set_gdbarch_register_byte (gdbarch, rs6000_register_byte);
  set_gdbarch_register_raw_size (gdbarch, rs6000_register_raw_size);
  set_gdbarch_register_raw_size (gdbarch, rs6000_register_raw_size);
  set_gdbarch_max_register_raw_size (gdbarch, 8);
  set_gdbarch_max_register_raw_size (gdbarch, 8);
  set_gdbarch_register_virtual_size (gdbarch, rs6000_register_virtual_size);
  set_gdbarch_register_virtual_size (gdbarch, rs6000_register_virtual_size);
  set_gdbarch_max_register_virtual_size (gdbarch, 8);
  set_gdbarch_max_register_virtual_size (gdbarch, 8);
  set_gdbarch_register_virtual_type (gdbarch, rs6000_register_virtual_type);
  set_gdbarch_register_virtual_type (gdbarch, rs6000_register_virtual_type);
 
 
  set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
  set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
  set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
  set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
  set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
  set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
  set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
  set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
  set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
  set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
  set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
  set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
  set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
  set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
  set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
  set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
 
 
  set_gdbarch_use_generic_dummy_frames (gdbarch, 1);
  set_gdbarch_use_generic_dummy_frames (gdbarch, 1);
  set_gdbarch_call_dummy_length (gdbarch, 0);
  set_gdbarch_call_dummy_length (gdbarch, 0);
  set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
  set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
  set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
  set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
  set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
  set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
  set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
  set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
  set_gdbarch_call_dummy_start_offset (gdbarch, 0);
  set_gdbarch_call_dummy_start_offset (gdbarch, 0);
  set_gdbarch_pc_in_call_dummy (gdbarch, generic_pc_in_call_dummy);
  set_gdbarch_pc_in_call_dummy (gdbarch, generic_pc_in_call_dummy);
  set_gdbarch_call_dummy_p (gdbarch, 1);
  set_gdbarch_call_dummy_p (gdbarch, 1);
  set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
  set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
  set_gdbarch_get_saved_register (gdbarch, generic_get_saved_register);
  set_gdbarch_get_saved_register (gdbarch, generic_get_saved_register);
  set_gdbarch_fix_call_dummy (gdbarch, rs6000_fix_call_dummy);
  set_gdbarch_fix_call_dummy (gdbarch, rs6000_fix_call_dummy);
  set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
  set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
  set_gdbarch_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
  set_gdbarch_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
  set_gdbarch_push_return_address (gdbarch, ppc_push_return_address);
  set_gdbarch_push_return_address (gdbarch, ppc_push_return_address);
  set_gdbarch_believe_pcc_promotion (gdbarch, 1);
  set_gdbarch_believe_pcc_promotion (gdbarch, 1);
  set_gdbarch_coerce_float_to_double (gdbarch, rs6000_coerce_float_to_double);
  set_gdbarch_coerce_float_to_double (gdbarch, rs6000_coerce_float_to_double);
 
 
  set_gdbarch_register_convertible (gdbarch, rs6000_register_convertible);
  set_gdbarch_register_convertible (gdbarch, rs6000_register_convertible);
  set_gdbarch_register_convert_to_virtual (gdbarch, rs6000_register_convert_to_virtual);
  set_gdbarch_register_convert_to_virtual (gdbarch, rs6000_register_convert_to_virtual);
  set_gdbarch_register_convert_to_raw (gdbarch, rs6000_register_convert_to_raw);
  set_gdbarch_register_convert_to_raw (gdbarch, rs6000_register_convert_to_raw);
 
 
  set_gdbarch_extract_return_value (gdbarch, rs6000_extract_return_value);
  set_gdbarch_extract_return_value (gdbarch, rs6000_extract_return_value);
 
 
  if (sysv_abi)
  if (sysv_abi)
    set_gdbarch_push_arguments (gdbarch, ppc_sysv_abi_push_arguments);
    set_gdbarch_push_arguments (gdbarch, ppc_sysv_abi_push_arguments);
  else
  else
    set_gdbarch_push_arguments (gdbarch, rs6000_push_arguments);
    set_gdbarch_push_arguments (gdbarch, rs6000_push_arguments);
 
 
  set_gdbarch_store_struct_return (gdbarch, rs6000_store_struct_return);
  set_gdbarch_store_struct_return (gdbarch, rs6000_store_struct_return);
  set_gdbarch_store_return_value (gdbarch, rs6000_store_return_value);
  set_gdbarch_store_return_value (gdbarch, rs6000_store_return_value);
  set_gdbarch_extract_struct_value_address (gdbarch, rs6000_extract_struct_value_address);
  set_gdbarch_extract_struct_value_address (gdbarch, rs6000_extract_struct_value_address);
  set_gdbarch_use_struct_convention (gdbarch, generic_use_struct_convention);
  set_gdbarch_use_struct_convention (gdbarch, generic_use_struct_convention);
 
 
  set_gdbarch_pop_frame (gdbarch, rs6000_pop_frame);
  set_gdbarch_pop_frame (gdbarch, rs6000_pop_frame);
 
 
  set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
  set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
  set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
  set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
  set_gdbarch_decr_pc_after_break (gdbarch, 0);
  set_gdbarch_decr_pc_after_break (gdbarch, 0);
  set_gdbarch_function_start_offset (gdbarch, 0);
  set_gdbarch_function_start_offset (gdbarch, 0);
  set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
  set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
 
 
  /* Not sure on this. FIXMEmgo */
  /* Not sure on this. FIXMEmgo */
  set_gdbarch_frame_args_skip (gdbarch, 8);
  set_gdbarch_frame_args_skip (gdbarch, 8);
 
 
  set_gdbarch_frame_chain_valid (gdbarch, file_frame_chain_valid);
  set_gdbarch_frame_chain_valid (gdbarch, file_frame_chain_valid);
  if (osabi == ELFOSABI_LINUX)
  if (osabi == ELFOSABI_LINUX)
    {
    {
      set_gdbarch_frameless_function_invocation (gdbarch,
      set_gdbarch_frameless_function_invocation (gdbarch,
        ppc_linux_frameless_function_invocation);
        ppc_linux_frameless_function_invocation);
      set_gdbarch_frame_chain (gdbarch, ppc_linux_frame_chain);
      set_gdbarch_frame_chain (gdbarch, ppc_linux_frame_chain);
      set_gdbarch_frame_saved_pc (gdbarch, ppc_linux_frame_saved_pc);
      set_gdbarch_frame_saved_pc (gdbarch, ppc_linux_frame_saved_pc);
 
 
      set_gdbarch_frame_init_saved_regs (gdbarch,
      set_gdbarch_frame_init_saved_regs (gdbarch,
                                         ppc_linux_frame_init_saved_regs);
                                         ppc_linux_frame_init_saved_regs);
      set_gdbarch_init_extra_frame_info (gdbarch,
      set_gdbarch_init_extra_frame_info (gdbarch,
                                         ppc_linux_init_extra_frame_info);
                                         ppc_linux_init_extra_frame_info);
 
 
      set_gdbarch_memory_remove_breakpoint (gdbarch,
      set_gdbarch_memory_remove_breakpoint (gdbarch,
                                            ppc_linux_memory_remove_breakpoint);
                                            ppc_linux_memory_remove_breakpoint);
    }
    }
  else
  else
    {
    {
      set_gdbarch_frameless_function_invocation (gdbarch,
      set_gdbarch_frameless_function_invocation (gdbarch,
        rs6000_frameless_function_invocation);
        rs6000_frameless_function_invocation);
      set_gdbarch_frame_chain (gdbarch, rs6000_frame_chain);
      set_gdbarch_frame_chain (gdbarch, rs6000_frame_chain);
      set_gdbarch_frame_saved_pc (gdbarch, rs6000_frame_saved_pc);
      set_gdbarch_frame_saved_pc (gdbarch, rs6000_frame_saved_pc);
 
 
      set_gdbarch_frame_init_saved_regs (gdbarch, rs6000_frame_init_saved_regs);
      set_gdbarch_frame_init_saved_regs (gdbarch, rs6000_frame_init_saved_regs);
      set_gdbarch_init_extra_frame_info (gdbarch, rs6000_init_extra_frame_info);
      set_gdbarch_init_extra_frame_info (gdbarch, rs6000_init_extra_frame_info);
 
 
      /* Handle RS/6000 function pointers.  */
      /* Handle RS/6000 function pointers.  */
      set_gdbarch_convert_from_func_ptr_addr (gdbarch,
      set_gdbarch_convert_from_func_ptr_addr (gdbarch,
        rs6000_convert_from_func_ptr_addr);
        rs6000_convert_from_func_ptr_addr);
    }
    }
  set_gdbarch_frame_args_address (gdbarch, rs6000_frame_args_address);
  set_gdbarch_frame_args_address (gdbarch, rs6000_frame_args_address);
  set_gdbarch_frame_locals_address (gdbarch, rs6000_frame_args_address);
  set_gdbarch_frame_locals_address (gdbarch, rs6000_frame_args_address);
  set_gdbarch_saved_pc_after_call (gdbarch, rs6000_saved_pc_after_call);
  set_gdbarch_saved_pc_after_call (gdbarch, rs6000_saved_pc_after_call);
 
 
  /* We can't tell how many args there are
  /* We can't tell how many args there are
     now that the C compiler delays popping them.  */
     now that the C compiler delays popping them.  */
  set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
  set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
 
 
  return gdbarch;
  return gdbarch;
}
}
 
 
/* Initialization code.  */
/* Initialization code.  */
 
 
void
void
_initialize_rs6000_tdep (void)
_initialize_rs6000_tdep (void)
{
{
  register_gdbarch_init (bfd_arch_rs6000, rs6000_gdbarch_init);
  register_gdbarch_init (bfd_arch_rs6000, rs6000_gdbarch_init);
  register_gdbarch_init (bfd_arch_powerpc, rs6000_gdbarch_init);
  register_gdbarch_init (bfd_arch_powerpc, rs6000_gdbarch_init);
}
}
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.