OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [insight/] [gdb/] [values.c] - Diff between revs 578 and 1765

Only display areas with differences | Details | Blame | View Log

Rev 578 Rev 1765
/* Low level packing and unpacking of values for GDB, the GNU Debugger.
/* Low level packing and unpacking of values for GDB, the GNU Debugger.
   Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
   Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
   1996, 1997, 1998, 1999, 2000
   1996, 1997, 1998, 1999, 2000
   Free Software Foundation, Inc.
   Free Software Foundation, Inc.
 
 
   This file is part of GDB.
   This file is part of GDB.
 
 
   This program is free software; you can redistribute it and/or modify
   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2 of the License, or
   the Free Software Foundation; either version 2 of the License, or
   (at your option) any later version.
   (at your option) any later version.
 
 
   This program is distributed in the hope that it will be useful,
   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.
   GNU General Public License for more details.
 
 
   You should have received a copy of the GNU General Public License
   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   along with this program; if not, write to the Free Software
   Foundation, Inc., 59 Temple Place - Suite 330,
   Foundation, Inc., 59 Temple Place - Suite 330,
   Boston, MA 02111-1307, USA.  */
   Boston, MA 02111-1307, USA.  */
 
 
#include "defs.h"
#include "defs.h"
#include "gdb_string.h"
#include "gdb_string.h"
#include "symtab.h"
#include "symtab.h"
#include "gdbtypes.h"
#include "gdbtypes.h"
#include "value.h"
#include "value.h"
#include "gdbcore.h"
#include "gdbcore.h"
#include "command.h"
#include "command.h"
#include "gdbcmd.h"
#include "gdbcmd.h"
#include "target.h"
#include "target.h"
#include "language.h"
#include "language.h"
#include "scm-lang.h"
#include "scm-lang.h"
#include "demangle.h"
#include "demangle.h"
 
 
/* Prototypes for exported functions. */
/* Prototypes for exported functions. */
 
 
void _initialize_values (void);
void _initialize_values (void);
 
 
/* Prototypes for local functions. */
/* Prototypes for local functions. */
 
 
static value_ptr value_headof (value_ptr, struct type *, struct type *);
static value_ptr value_headof (value_ptr, struct type *, struct type *);
 
 
static void show_values (char *, int);
static void show_values (char *, int);
 
 
static void show_convenience (char *, int);
static void show_convenience (char *, int);
 
 
 
 
/* The value-history records all the values printed
/* The value-history records all the values printed
   by print commands during this session.  Each chunk
   by print commands during this session.  Each chunk
   records 60 consecutive values.  The first chunk on
   records 60 consecutive values.  The first chunk on
   the chain records the most recent values.
   the chain records the most recent values.
   The total number of values is in value_history_count.  */
   The total number of values is in value_history_count.  */
 
 
#define VALUE_HISTORY_CHUNK 60
#define VALUE_HISTORY_CHUNK 60
 
 
struct value_history_chunk
struct value_history_chunk
  {
  {
    struct value_history_chunk *next;
    struct value_history_chunk *next;
    value_ptr values[VALUE_HISTORY_CHUNK];
    value_ptr values[VALUE_HISTORY_CHUNK];
  };
  };
 
 
/* Chain of chunks now in use.  */
/* Chain of chunks now in use.  */
 
 
static struct value_history_chunk *value_history_chain;
static struct value_history_chunk *value_history_chain;
 
 
static int value_history_count; /* Abs number of last entry stored */
static int value_history_count; /* Abs number of last entry stored */


/* List of all value objects currently allocated
/* List of all value objects currently allocated
   (except for those released by calls to release_value)
   (except for those released by calls to release_value)
   This is so they can be freed after each command.  */
   This is so they can be freed after each command.  */
 
 
static value_ptr all_values;
static value_ptr all_values;
 
 
/* Allocate a  value  that has the correct length for type TYPE.  */
/* Allocate a  value  that has the correct length for type TYPE.  */
 
 
value_ptr
value_ptr
allocate_value (struct type *type)
allocate_value (struct type *type)
{
{
  register value_ptr val;
  register value_ptr val;
  struct type *atype = check_typedef (type);
  struct type *atype = check_typedef (type);
 
 
  val = (struct value *) xmalloc (sizeof (struct value) + TYPE_LENGTH (atype));
  val = (struct value *) xmalloc (sizeof (struct value) + TYPE_LENGTH (atype));
  VALUE_NEXT (val) = all_values;
  VALUE_NEXT (val) = all_values;
  all_values = val;
  all_values = val;
  VALUE_TYPE (val) = type;
  VALUE_TYPE (val) = type;
  VALUE_ENCLOSING_TYPE (val) = type;
  VALUE_ENCLOSING_TYPE (val) = type;
  VALUE_LVAL (val) = not_lval;
  VALUE_LVAL (val) = not_lval;
  VALUE_ADDRESS (val) = 0;
  VALUE_ADDRESS (val) = 0;
  VALUE_FRAME (val) = 0;
  VALUE_FRAME (val) = 0;
  VALUE_OFFSET (val) = 0;
  VALUE_OFFSET (val) = 0;
  VALUE_BITPOS (val) = 0;
  VALUE_BITPOS (val) = 0;
  VALUE_BITSIZE (val) = 0;
  VALUE_BITSIZE (val) = 0;
  VALUE_REGNO (val) = -1;
  VALUE_REGNO (val) = -1;
  VALUE_LAZY (val) = 0;
  VALUE_LAZY (val) = 0;
  VALUE_OPTIMIZED_OUT (val) = 0;
  VALUE_OPTIMIZED_OUT (val) = 0;
  VALUE_BFD_SECTION (val) = NULL;
  VALUE_BFD_SECTION (val) = NULL;
  VALUE_EMBEDDED_OFFSET (val) = 0;
  VALUE_EMBEDDED_OFFSET (val) = 0;
  VALUE_POINTED_TO_OFFSET (val) = 0;
  VALUE_POINTED_TO_OFFSET (val) = 0;
  val->modifiable = 1;
  val->modifiable = 1;
  return val;
  return val;
}
}
 
 
/* Allocate a  value  that has the correct length
/* Allocate a  value  that has the correct length
   for COUNT repetitions type TYPE.  */
   for COUNT repetitions type TYPE.  */
 
 
value_ptr
value_ptr
allocate_repeat_value (struct type *type, int count)
allocate_repeat_value (struct type *type, int count)
{
{
  int low_bound = current_language->string_lower_bound;         /* ??? */
  int low_bound = current_language->string_lower_bound;         /* ??? */
  /* FIXME-type-allocation: need a way to free this type when we are
  /* FIXME-type-allocation: need a way to free this type when we are
     done with it.  */
     done with it.  */
  struct type *range_type
  struct type *range_type
  = create_range_type ((struct type *) NULL, builtin_type_int,
  = create_range_type ((struct type *) NULL, builtin_type_int,
                       low_bound, count + low_bound - 1);
                       low_bound, count + low_bound - 1);
  /* FIXME-type-allocation: need a way to free this type when we are
  /* FIXME-type-allocation: need a way to free this type when we are
     done with it.  */
     done with it.  */
  return allocate_value (create_array_type ((struct type *) NULL,
  return allocate_value (create_array_type ((struct type *) NULL,
                                            type, range_type));
                                            type, range_type));
}
}
 
 
/* Return a mark in the value chain.  All values allocated after the
/* Return a mark in the value chain.  All values allocated after the
   mark is obtained (except for those released) are subject to being freed
   mark is obtained (except for those released) are subject to being freed
   if a subsequent value_free_to_mark is passed the mark.  */
   if a subsequent value_free_to_mark is passed the mark.  */
value_ptr
value_ptr
value_mark (void)
value_mark (void)
{
{
  return all_values;
  return all_values;
}
}
 
 
/* Free all values allocated since MARK was obtained by value_mark
/* Free all values allocated since MARK was obtained by value_mark
   (except for those released).  */
   (except for those released).  */
void
void
value_free_to_mark (value_ptr mark)
value_free_to_mark (value_ptr mark)
{
{
  value_ptr val, next;
  value_ptr val, next;
 
 
  for (val = all_values; val && val != mark; val = next)
  for (val = all_values; val && val != mark; val = next)
    {
    {
      next = VALUE_NEXT (val);
      next = VALUE_NEXT (val);
      value_free (val);
      value_free (val);
    }
    }
  all_values = val;
  all_values = val;
}
}
 
 
/* Free all the values that have been allocated (except for those released).
/* Free all the values that have been allocated (except for those released).
   Called after each command, successful or not.  */
   Called after each command, successful or not.  */
 
 
void
void
free_all_values (void)
free_all_values (void)
{
{
  register value_ptr val, next;
  register value_ptr val, next;
 
 
  for (val = all_values; val; val = next)
  for (val = all_values; val; val = next)
    {
    {
      next = VALUE_NEXT (val);
      next = VALUE_NEXT (val);
      value_free (val);
      value_free (val);
    }
    }
 
 
  all_values = 0;
  all_values = 0;
}
}
 
 
/* Remove VAL from the chain all_values
/* Remove VAL from the chain all_values
   so it will not be freed automatically.  */
   so it will not be freed automatically.  */
 
 
void
void
release_value (register value_ptr val)
release_value (register value_ptr val)
{
{
  register value_ptr v;
  register value_ptr v;
 
 
  if (all_values == val)
  if (all_values == val)
    {
    {
      all_values = val->next;
      all_values = val->next;
      return;
      return;
    }
    }
 
 
  for (v = all_values; v; v = v->next)
  for (v = all_values; v; v = v->next)
    {
    {
      if (v->next == val)
      if (v->next == val)
        {
        {
          v->next = val->next;
          v->next = val->next;
          break;
          break;
        }
        }
    }
    }
}
}
 
 
/* Release all values up to mark  */
/* Release all values up to mark  */
value_ptr
value_ptr
value_release_to_mark (value_ptr mark)
value_release_to_mark (value_ptr mark)
{
{
  value_ptr val, next;
  value_ptr val, next;
 
 
  for (val = next = all_values; next; next = VALUE_NEXT (next))
  for (val = next = all_values; next; next = VALUE_NEXT (next))
    if (VALUE_NEXT (next) == mark)
    if (VALUE_NEXT (next) == mark)
      {
      {
        all_values = VALUE_NEXT (next);
        all_values = VALUE_NEXT (next);
        VALUE_NEXT (next) = 0;
        VALUE_NEXT (next) = 0;
        return val;
        return val;
      }
      }
  all_values = 0;
  all_values = 0;
  return val;
  return val;
}
}
 
 
/* Return a copy of the value ARG.
/* Return a copy of the value ARG.
   It contains the same contents, for same memory address,
   It contains the same contents, for same memory address,
   but it's a different block of storage.  */
   but it's a different block of storage.  */
 
 
value_ptr
value_ptr
value_copy (value_ptr arg)
value_copy (value_ptr arg)
{
{
  register struct type *encl_type = VALUE_ENCLOSING_TYPE (arg);
  register struct type *encl_type = VALUE_ENCLOSING_TYPE (arg);
  register value_ptr val = allocate_value (encl_type);
  register value_ptr val = allocate_value (encl_type);
  VALUE_TYPE (val) = VALUE_TYPE (arg);
  VALUE_TYPE (val) = VALUE_TYPE (arg);
  VALUE_LVAL (val) = VALUE_LVAL (arg);
  VALUE_LVAL (val) = VALUE_LVAL (arg);
  VALUE_ADDRESS (val) = VALUE_ADDRESS (arg);
  VALUE_ADDRESS (val) = VALUE_ADDRESS (arg);
  VALUE_OFFSET (val) = VALUE_OFFSET (arg);
  VALUE_OFFSET (val) = VALUE_OFFSET (arg);
  VALUE_BITPOS (val) = VALUE_BITPOS (arg);
  VALUE_BITPOS (val) = VALUE_BITPOS (arg);
  VALUE_BITSIZE (val) = VALUE_BITSIZE (arg);
  VALUE_BITSIZE (val) = VALUE_BITSIZE (arg);
  VALUE_FRAME (val) = VALUE_FRAME (arg);
  VALUE_FRAME (val) = VALUE_FRAME (arg);
  VALUE_REGNO (val) = VALUE_REGNO (arg);
  VALUE_REGNO (val) = VALUE_REGNO (arg);
  VALUE_LAZY (val) = VALUE_LAZY (arg);
  VALUE_LAZY (val) = VALUE_LAZY (arg);
  VALUE_OPTIMIZED_OUT (val) = VALUE_OPTIMIZED_OUT (arg);
  VALUE_OPTIMIZED_OUT (val) = VALUE_OPTIMIZED_OUT (arg);
  VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (arg);
  VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (arg);
  VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (arg);
  VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (arg);
  VALUE_BFD_SECTION (val) = VALUE_BFD_SECTION (arg);
  VALUE_BFD_SECTION (val) = VALUE_BFD_SECTION (arg);
  val->modifiable = arg->modifiable;
  val->modifiable = arg->modifiable;
  if (!VALUE_LAZY (val))
  if (!VALUE_LAZY (val))
    {
    {
      memcpy (VALUE_CONTENTS_ALL_RAW (val), VALUE_CONTENTS_ALL_RAW (arg),
      memcpy (VALUE_CONTENTS_ALL_RAW (val), VALUE_CONTENTS_ALL_RAW (arg),
              TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg)));
              TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg)));
 
 
    }
    }
  return val;
  return val;
}
}


/* Access to the value history.  */
/* Access to the value history.  */
 
 
/* Record a new value in the value history.
/* Record a new value in the value history.
   Returns the absolute history index of the entry.
   Returns the absolute history index of the entry.
   Result of -1 indicates the value was not saved; otherwise it is the
   Result of -1 indicates the value was not saved; otherwise it is the
   value history index of this new item.  */
   value history index of this new item.  */
 
 
int
int
record_latest_value (value_ptr val)
record_latest_value (value_ptr val)
{
{
  int i;
  int i;
 
 
  /* We don't want this value to have anything to do with the inferior anymore.
  /* We don't want this value to have anything to do with the inferior anymore.
     In particular, "set $1 = 50" should not affect the variable from which
     In particular, "set $1 = 50" should not affect the variable from which
     the value was taken, and fast watchpoints should be able to assume that
     the value was taken, and fast watchpoints should be able to assume that
     a value on the value history never changes.  */
     a value on the value history never changes.  */
  if (VALUE_LAZY (val))
  if (VALUE_LAZY (val))
    value_fetch_lazy (val);
    value_fetch_lazy (val);
  /* We preserve VALUE_LVAL so that the user can find out where it was fetched
  /* We preserve VALUE_LVAL so that the user can find out where it was fetched
     from.  This is a bit dubious, because then *&$1 does not just return $1
     from.  This is a bit dubious, because then *&$1 does not just return $1
     but the current contents of that location.  c'est la vie...  */
     but the current contents of that location.  c'est la vie...  */
  val->modifiable = 0;
  val->modifiable = 0;
  release_value (val);
  release_value (val);
 
 
  /* Here we treat value_history_count as origin-zero
  /* Here we treat value_history_count as origin-zero
     and applying to the value being stored now.  */
     and applying to the value being stored now.  */
 
 
  i = value_history_count % VALUE_HISTORY_CHUNK;
  i = value_history_count % VALUE_HISTORY_CHUNK;
  if (i == 0)
  if (i == 0)
    {
    {
      register struct value_history_chunk *new
      register struct value_history_chunk *new
      = (struct value_history_chunk *)
      = (struct value_history_chunk *)
      xmalloc (sizeof (struct value_history_chunk));
      xmalloc (sizeof (struct value_history_chunk));
      memset (new->values, 0, sizeof new->values);
      memset (new->values, 0, sizeof new->values);
      new->next = value_history_chain;
      new->next = value_history_chain;
      value_history_chain = new;
      value_history_chain = new;
    }
    }
 
 
  value_history_chain->values[i] = val;
  value_history_chain->values[i] = val;
 
 
  /* Now we regard value_history_count as origin-one
  /* Now we regard value_history_count as origin-one
     and applying to the value just stored.  */
     and applying to the value just stored.  */
 
 
  return ++value_history_count;
  return ++value_history_count;
}
}
 
 
/* Return a copy of the value in the history with sequence number NUM.  */
/* Return a copy of the value in the history with sequence number NUM.  */
 
 
value_ptr
value_ptr
access_value_history (int num)
access_value_history (int num)
{
{
  register struct value_history_chunk *chunk;
  register struct value_history_chunk *chunk;
  register int i;
  register int i;
  register int absnum = num;
  register int absnum = num;
 
 
  if (absnum <= 0)
  if (absnum <= 0)
    absnum += value_history_count;
    absnum += value_history_count;
 
 
  if (absnum <= 0)
  if (absnum <= 0)
    {
    {
      if (num == 0)
      if (num == 0)
        error ("The history is empty.");
        error ("The history is empty.");
      else if (num == 1)
      else if (num == 1)
        error ("There is only one value in the history.");
        error ("There is only one value in the history.");
      else
      else
        error ("History does not go back to $$%d.", -num);
        error ("History does not go back to $$%d.", -num);
    }
    }
  if (absnum > value_history_count)
  if (absnum > value_history_count)
    error ("History has not yet reached $%d.", absnum);
    error ("History has not yet reached $%d.", absnum);
 
 
  absnum--;
  absnum--;
 
 
  /* Now absnum is always absolute and origin zero.  */
  /* Now absnum is always absolute and origin zero.  */
 
 
  chunk = value_history_chain;
  chunk = value_history_chain;
  for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
  for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
       i > 0; i--)
       i > 0; i--)
    chunk = chunk->next;
    chunk = chunk->next;
 
 
  return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
  return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
}
}
 
 
/* Clear the value history entirely.
/* Clear the value history entirely.
   Must be done when new symbol tables are loaded,
   Must be done when new symbol tables are loaded,
   because the type pointers become invalid.  */
   because the type pointers become invalid.  */
 
 
void
void
clear_value_history (void)
clear_value_history (void)
{
{
  register struct value_history_chunk *next;
  register struct value_history_chunk *next;
  register int i;
  register int i;
  register value_ptr val;
  register value_ptr val;
 
 
  while (value_history_chain)
  while (value_history_chain)
    {
    {
      for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
      for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
        if ((val = value_history_chain->values[i]) != NULL)
        if ((val = value_history_chain->values[i]) != NULL)
          xfree (val);
          xfree (val);
      next = value_history_chain->next;
      next = value_history_chain->next;
      xfree (value_history_chain);
      xfree (value_history_chain);
      value_history_chain = next;
      value_history_chain = next;
    }
    }
  value_history_count = 0;
  value_history_count = 0;
}
}
 
 
static void
static void
show_values (char *num_exp, int from_tty)
show_values (char *num_exp, int from_tty)
{
{
  register int i;
  register int i;
  register value_ptr val;
  register value_ptr val;
  static int num = 1;
  static int num = 1;
 
 
  if (num_exp)
  if (num_exp)
    {
    {
      /* "info history +" should print from the stored position.
      /* "info history +" should print from the stored position.
         "info history <exp>" should print around value number <exp>.  */
         "info history <exp>" should print around value number <exp>.  */
      if (num_exp[0] != '+' || num_exp[1] != '\0')
      if (num_exp[0] != '+' || num_exp[1] != '\0')
        num = parse_and_eval_long (num_exp) - 5;
        num = parse_and_eval_long (num_exp) - 5;
    }
    }
  else
  else
    {
    {
      /* "info history" means print the last 10 values.  */
      /* "info history" means print the last 10 values.  */
      num = value_history_count - 9;
      num = value_history_count - 9;
    }
    }
 
 
  if (num <= 0)
  if (num <= 0)
    num = 1;
    num = 1;
 
 
  for (i = num; i < num + 10 && i <= value_history_count; i++)
  for (i = num; i < num + 10 && i <= value_history_count; i++)
    {
    {
      val = access_value_history (i);
      val = access_value_history (i);
      printf_filtered ("$%d = ", i);
      printf_filtered ("$%d = ", i);
      value_print (val, gdb_stdout, 0, Val_pretty_default);
      value_print (val, gdb_stdout, 0, Val_pretty_default);
      printf_filtered ("\n");
      printf_filtered ("\n");
    }
    }
 
 
  /* The next "info history +" should start after what we just printed.  */
  /* The next "info history +" should start after what we just printed.  */
  num += 10;
  num += 10;
 
 
  /* Hitting just return after this command should do the same thing as
  /* Hitting just return after this command should do the same thing as
     "info history +".  If num_exp is null, this is unnecessary, since
     "info history +".  If num_exp is null, this is unnecessary, since
     "info history +" is not useful after "info history".  */
     "info history +" is not useful after "info history".  */
  if (from_tty && num_exp)
  if (from_tty && num_exp)
    {
    {
      num_exp[0] = '+';
      num_exp[0] = '+';
      num_exp[1] = '\0';
      num_exp[1] = '\0';
    }
    }
}
}


/* Internal variables.  These are variables within the debugger
/* Internal variables.  These are variables within the debugger
   that hold values assigned by debugger commands.
   that hold values assigned by debugger commands.
   The user refers to them with a '$' prefix
   The user refers to them with a '$' prefix
   that does not appear in the variable names stored internally.  */
   that does not appear in the variable names stored internally.  */
 
 
static struct internalvar *internalvars;
static struct internalvar *internalvars;
 
 
/* Look up an internal variable with name NAME.  NAME should not
/* Look up an internal variable with name NAME.  NAME should not
   normally include a dollar sign.
   normally include a dollar sign.
 
 
   If the specified internal variable does not exist,
   If the specified internal variable does not exist,
   one is created, with a void value.  */
   one is created, with a void value.  */
 
 
struct internalvar *
struct internalvar *
lookup_internalvar (char *name)
lookup_internalvar (char *name)
{
{
  register struct internalvar *var;
  register struct internalvar *var;
 
 
  for (var = internalvars; var; var = var->next)
  for (var = internalvars; var; var = var->next)
    if (STREQ (var->name, name))
    if (STREQ (var->name, name))
      return var;
      return var;
 
 
  var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
  var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
  var->name = concat (name, NULL);
  var->name = concat (name, NULL);
  var->value = allocate_value (builtin_type_void);
  var->value = allocate_value (builtin_type_void);
  release_value (var->value);
  release_value (var->value);
  var->next = internalvars;
  var->next = internalvars;
  internalvars = var;
  internalvars = var;
  return var;
  return var;
}
}
 
 
value_ptr
value_ptr
value_of_internalvar (struct internalvar *var)
value_of_internalvar (struct internalvar *var)
{
{
  register value_ptr val;
  register value_ptr val;
 
 
#ifdef IS_TRAPPED_INTERNALVAR
#ifdef IS_TRAPPED_INTERNALVAR
  if (IS_TRAPPED_INTERNALVAR (var->name))
  if (IS_TRAPPED_INTERNALVAR (var->name))
    return VALUE_OF_TRAPPED_INTERNALVAR (var);
    return VALUE_OF_TRAPPED_INTERNALVAR (var);
#endif
#endif
 
 
  val = value_copy (var->value);
  val = value_copy (var->value);
  if (VALUE_LAZY (val))
  if (VALUE_LAZY (val))
    value_fetch_lazy (val);
    value_fetch_lazy (val);
  VALUE_LVAL (val) = lval_internalvar;
  VALUE_LVAL (val) = lval_internalvar;
  VALUE_INTERNALVAR (val) = var;
  VALUE_INTERNALVAR (val) = var;
  return val;
  return val;
}
}
 
 
void
void
set_internalvar_component (struct internalvar *var, int offset, int bitpos,
set_internalvar_component (struct internalvar *var, int offset, int bitpos,
                           int bitsize, value_ptr newval)
                           int bitsize, value_ptr newval)
{
{
  register char *addr = VALUE_CONTENTS (var->value) + offset;
  register char *addr = VALUE_CONTENTS (var->value) + offset;
 
 
#ifdef IS_TRAPPED_INTERNALVAR
#ifdef IS_TRAPPED_INTERNALVAR
  if (IS_TRAPPED_INTERNALVAR (var->name))
  if (IS_TRAPPED_INTERNALVAR (var->name))
    SET_TRAPPED_INTERNALVAR (var, newval, bitpos, bitsize, offset);
    SET_TRAPPED_INTERNALVAR (var, newval, bitpos, bitsize, offset);
#endif
#endif
 
 
  if (bitsize)
  if (bitsize)
    modify_field (addr, value_as_long (newval),
    modify_field (addr, value_as_long (newval),
                  bitpos, bitsize);
                  bitpos, bitsize);
  else
  else
    memcpy (addr, VALUE_CONTENTS (newval), TYPE_LENGTH (VALUE_TYPE (newval)));
    memcpy (addr, VALUE_CONTENTS (newval), TYPE_LENGTH (VALUE_TYPE (newval)));
}
}
 
 
void
void
set_internalvar (struct internalvar *var, value_ptr val)
set_internalvar (struct internalvar *var, value_ptr val)
{
{
  value_ptr newval;
  value_ptr newval;
 
 
#ifdef IS_TRAPPED_INTERNALVAR
#ifdef IS_TRAPPED_INTERNALVAR
  if (IS_TRAPPED_INTERNALVAR (var->name))
  if (IS_TRAPPED_INTERNALVAR (var->name))
    SET_TRAPPED_INTERNALVAR (var, val, 0, 0, 0);
    SET_TRAPPED_INTERNALVAR (var, val, 0, 0, 0);
#endif
#endif
 
 
  newval = value_copy (val);
  newval = value_copy (val);
  newval->modifiable = 1;
  newval->modifiable = 1;
 
 
  /* Force the value to be fetched from the target now, to avoid problems
  /* Force the value to be fetched from the target now, to avoid problems
     later when this internalvar is referenced and the target is gone or
     later when this internalvar is referenced and the target is gone or
     has changed.  */
     has changed.  */
  if (VALUE_LAZY (newval))
  if (VALUE_LAZY (newval))
    value_fetch_lazy (newval);
    value_fetch_lazy (newval);
 
 
  /* Begin code which must not call error().  If var->value points to
  /* Begin code which must not call error().  If var->value points to
     something free'd, an error() obviously leaves a dangling pointer.
     something free'd, an error() obviously leaves a dangling pointer.
     But we also get a danling pointer if var->value points to
     But we also get a danling pointer if var->value points to
     something in the value chain (i.e., before release_value is
     something in the value chain (i.e., before release_value is
     called), because after the error free_all_values will get called before
     called), because after the error free_all_values will get called before
     long.  */
     long.  */
  xfree (var->value);
  xfree (var->value);
  var->value = newval;
  var->value = newval;
  release_value (newval);
  release_value (newval);
  /* End code which must not call error().  */
  /* End code which must not call error().  */
}
}
 
 
char *
char *
internalvar_name (struct internalvar *var)
internalvar_name (struct internalvar *var)
{
{
  return var->name;
  return var->name;
}
}
 
 
/* Free all internalvars.  Done when new symtabs are loaded,
/* Free all internalvars.  Done when new symtabs are loaded,
   because that makes the values invalid.  */
   because that makes the values invalid.  */
 
 
void
void
clear_internalvars (void)
clear_internalvars (void)
{
{
  register struct internalvar *var;
  register struct internalvar *var;
 
 
  while (internalvars)
  while (internalvars)
    {
    {
      var = internalvars;
      var = internalvars;
      internalvars = var->next;
      internalvars = var->next;
      xfree (var->name);
      xfree (var->name);
      xfree (var->value);
      xfree (var->value);
      xfree (var);
      xfree (var);
    }
    }
}
}
 
 
static void
static void
show_convenience (char *ignore, int from_tty)
show_convenience (char *ignore, int from_tty)
{
{
  register struct internalvar *var;
  register struct internalvar *var;
  int varseen = 0;
  int varseen = 0;
 
 
  for (var = internalvars; var; var = var->next)
  for (var = internalvars; var; var = var->next)
    {
    {
#ifdef IS_TRAPPED_INTERNALVAR
#ifdef IS_TRAPPED_INTERNALVAR
      if (IS_TRAPPED_INTERNALVAR (var->name))
      if (IS_TRAPPED_INTERNALVAR (var->name))
        continue;
        continue;
#endif
#endif
      if (!varseen)
      if (!varseen)
        {
        {
          varseen = 1;
          varseen = 1;
        }
        }
      printf_filtered ("$%s = ", var->name);
      printf_filtered ("$%s = ", var->name);
      value_print (var->value, gdb_stdout, 0, Val_pretty_default);
      value_print (var->value, gdb_stdout, 0, Val_pretty_default);
      printf_filtered ("\n");
      printf_filtered ("\n");
    }
    }
  if (!varseen)
  if (!varseen)
    printf_unfiltered ("No debugger convenience variables now defined.\n\
    printf_unfiltered ("No debugger convenience variables now defined.\n\
Convenience variables have names starting with \"$\";\n\
Convenience variables have names starting with \"$\";\n\
use \"set\" as in \"set $foo = 5\" to define them.\n");
use \"set\" as in \"set $foo = 5\" to define them.\n");
}
}


/* Extract a value as a C number (either long or double).
/* Extract a value as a C number (either long or double).
   Knows how to convert fixed values to double, or
   Knows how to convert fixed values to double, or
   floating values to long.
   floating values to long.
   Does not deallocate the value.  */
   Does not deallocate the value.  */
 
 
LONGEST
LONGEST
value_as_long (register value_ptr val)
value_as_long (register value_ptr val)
{
{
  /* This coerces arrays and functions, which is necessary (e.g.
  /* This coerces arrays and functions, which is necessary (e.g.
     in disassemble_command).  It also dereferences references, which
     in disassemble_command).  It also dereferences references, which
     I suspect is the most logical thing to do.  */
     I suspect is the most logical thing to do.  */
  COERCE_ARRAY (val);
  COERCE_ARRAY (val);
  return unpack_long (VALUE_TYPE (val), VALUE_CONTENTS (val));
  return unpack_long (VALUE_TYPE (val), VALUE_CONTENTS (val));
}
}
 
 
DOUBLEST
DOUBLEST
value_as_double (register value_ptr val)
value_as_double (register value_ptr val)
{
{
  DOUBLEST foo;
  DOUBLEST foo;
  int inv;
  int inv;
 
 
  foo = unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &inv);
  foo = unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &inv);
  if (inv)
  if (inv)
    error ("Invalid floating value found in program.");
    error ("Invalid floating value found in program.");
  return foo;
  return foo;
}
}
/* Extract a value as a C pointer. Does not deallocate the value.
/* Extract a value as a C pointer. Does not deallocate the value.
   Note that val's type may not actually be a pointer; value_as_long
   Note that val's type may not actually be a pointer; value_as_long
   handles all the cases.  */
   handles all the cases.  */
CORE_ADDR
CORE_ADDR
value_as_pointer (value_ptr val)
value_as_pointer (value_ptr val)
{
{
  /* Assume a CORE_ADDR can fit in a LONGEST (for now).  Not sure
  /* Assume a CORE_ADDR can fit in a LONGEST (for now).  Not sure
     whether we want this to be true eventually.  */
     whether we want this to be true eventually.  */
#if 0
#if 0
  /* ADDR_BITS_REMOVE is wrong if we are being called for a
  /* ADDR_BITS_REMOVE is wrong if we are being called for a
     non-address (e.g. argument to "signal", "info break", etc.), or
     non-address (e.g. argument to "signal", "info break", etc.), or
     for pointers to char, in which the low bits *are* significant.  */
     for pointers to char, in which the low bits *are* significant.  */
  return ADDR_BITS_REMOVE (value_as_long (val));
  return ADDR_BITS_REMOVE (value_as_long (val));
#else
#else
  COERCE_ARRAY (val);
  COERCE_ARRAY (val);
  /* In converting VAL to an address (CORE_ADDR), any small integers
  /* In converting VAL to an address (CORE_ADDR), any small integers
     are first cast to a generic pointer.  The function unpack_long
     are first cast to a generic pointer.  The function unpack_long
     will then correctly convert that pointer into a canonical address
     will then correctly convert that pointer into a canonical address
     (using POINTER_TO_ADDRESS).
     (using POINTER_TO_ADDRESS).
 
 
     Without the cast, the MIPS gets: 0xa0000000 -> (unsigned int)
     Without the cast, the MIPS gets: 0xa0000000 -> (unsigned int)
     0xa0000000 -> (LONGEST) 0x00000000a0000000
     0xa0000000 -> (LONGEST) 0x00000000a0000000
 
 
     With the cast, the MIPS gets: 0xa0000000 -> (unsigned int)
     With the cast, the MIPS gets: 0xa0000000 -> (unsigned int)
     0xa0000000 -> (void*) 0xa0000000 -> (LONGEST) 0xffffffffa0000000.
     0xa0000000 -> (void*) 0xa0000000 -> (LONGEST) 0xffffffffa0000000.
 
 
     If the user specifies an integer that is larger than the target
     If the user specifies an integer that is larger than the target
     pointer type, it is assumed that it was intentional and the value
     pointer type, it is assumed that it was intentional and the value
     is converted directly into an ADDRESS.  This ensures that no
     is converted directly into an ADDRESS.  This ensures that no
     information is discarded.
     information is discarded.
 
 
     NOTE: The cast operation may eventualy be converted into a TARGET
     NOTE: The cast operation may eventualy be converted into a TARGET
     method (see POINTER_TO_ADDRESS() and ADDRESS_TO_POINTER()) so
     method (see POINTER_TO_ADDRESS() and ADDRESS_TO_POINTER()) so
     that the TARGET ISA/ABI can apply an arbitrary conversion.
     that the TARGET ISA/ABI can apply an arbitrary conversion.
 
 
     NOTE: In pure harvard architectures function and data pointers
     NOTE: In pure harvard architectures function and data pointers
     can be different and may require different integer to pointer
     can be different and may require different integer to pointer
     conversions. */
     conversions. */
  if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_INT
  if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_INT
      && TYPE_LENGTH (VALUE_TYPE (val)) <= TYPE_LENGTH (builtin_type_ptr))
      && TYPE_LENGTH (VALUE_TYPE (val)) <= TYPE_LENGTH (builtin_type_ptr))
    {
    {
      val = value_cast (builtin_type_ptr, val);
      val = value_cast (builtin_type_ptr, val);
    }
    }
  return unpack_long (VALUE_TYPE (val), VALUE_CONTENTS (val));
  return unpack_long (VALUE_TYPE (val), VALUE_CONTENTS (val));
#endif
#endif
}
}


/* Unpack raw data (copied from debugee, target byte order) at VALADDR
/* Unpack raw data (copied from debugee, target byte order) at VALADDR
   as a long, or as a double, assuming the raw data is described
   as a long, or as a double, assuming the raw data is described
   by type TYPE.  Knows how to convert different sizes of values
   by type TYPE.  Knows how to convert different sizes of values
   and can convert between fixed and floating point.  We don't assume
   and can convert between fixed and floating point.  We don't assume
   any alignment for the raw data.  Return value is in host byte order.
   any alignment for the raw data.  Return value is in host byte order.
 
 
   If you want functions and arrays to be coerced to pointers, and
   If you want functions and arrays to be coerced to pointers, and
   references to be dereferenced, call value_as_long() instead.
   references to be dereferenced, call value_as_long() instead.
 
 
   C++: It is assumed that the front-end has taken care of
   C++: It is assumed that the front-end has taken care of
   all matters concerning pointers to members.  A pointer
   all matters concerning pointers to members.  A pointer
   to member which reaches here is considered to be equivalent
   to member which reaches here is considered to be equivalent
   to an INT (or some size).  After all, it is only an offset.  */
   to an INT (or some size).  After all, it is only an offset.  */
 
 
LONGEST
LONGEST
unpack_long (struct type *type, char *valaddr)
unpack_long (struct type *type, char *valaddr)
{
{
  register enum type_code code = TYPE_CODE (type);
  register enum type_code code = TYPE_CODE (type);
  register int len = TYPE_LENGTH (type);
  register int len = TYPE_LENGTH (type);
  register int nosign = TYPE_UNSIGNED (type);
  register int nosign = TYPE_UNSIGNED (type);
 
 
  if (current_language->la_language == language_scm
  if (current_language->la_language == language_scm
      && is_scmvalue_type (type))
      && is_scmvalue_type (type))
    return scm_unpack (type, valaddr, TYPE_CODE_INT);
    return scm_unpack (type, valaddr, TYPE_CODE_INT);
 
 
  switch (code)
  switch (code)
    {
    {
    case TYPE_CODE_TYPEDEF:
    case TYPE_CODE_TYPEDEF:
      return unpack_long (check_typedef (type), valaddr);
      return unpack_long (check_typedef (type), valaddr);
    case TYPE_CODE_ENUM:
    case TYPE_CODE_ENUM:
    case TYPE_CODE_BOOL:
    case TYPE_CODE_BOOL:
    case TYPE_CODE_INT:
    case TYPE_CODE_INT:
    case TYPE_CODE_CHAR:
    case TYPE_CODE_CHAR:
    case TYPE_CODE_RANGE:
    case TYPE_CODE_RANGE:
      if (nosign)
      if (nosign)
        return extract_unsigned_integer (valaddr, len);
        return extract_unsigned_integer (valaddr, len);
      else
      else
        return extract_signed_integer (valaddr, len);
        return extract_signed_integer (valaddr, len);
 
 
    case TYPE_CODE_FLT:
    case TYPE_CODE_FLT:
      return extract_floating (valaddr, len);
      return extract_floating (valaddr, len);
 
 
    case TYPE_CODE_PTR:
    case TYPE_CODE_PTR:
    case TYPE_CODE_REF:
    case TYPE_CODE_REF:
      /* Assume a CORE_ADDR can fit in a LONGEST (for now).  Not sure
      /* Assume a CORE_ADDR can fit in a LONGEST (for now).  Not sure
         whether we want this to be true eventually.  */
         whether we want this to be true eventually.  */
      if (GDB_TARGET_IS_D10V
      if (GDB_TARGET_IS_D10V
          && len == 2)
          && len == 2)
        return D10V_MAKE_DADDR (extract_address (valaddr, len));
        return D10V_MAKE_DADDR (extract_address (valaddr, len));
      return extract_typed_address (valaddr, type);
      return extract_typed_address (valaddr, type);
 
 
    case TYPE_CODE_MEMBER:
    case TYPE_CODE_MEMBER:
      error ("not implemented: member types in unpack_long");
      error ("not implemented: member types in unpack_long");
 
 
    default:
    default:
      error ("Value can't be converted to integer.");
      error ("Value can't be converted to integer.");
    }
    }
  return 0;                      /* Placate lint.  */
  return 0;                      /* Placate lint.  */
}
}
 
 
/* Return a double value from the specified type and address.
/* Return a double value from the specified type and address.
   INVP points to an int which is set to 0 for valid value,
   INVP points to an int which is set to 0 for valid value,
   1 for invalid value (bad float format).  In either case,
   1 for invalid value (bad float format).  In either case,
   the returned double is OK to use.  Argument is in target
   the returned double is OK to use.  Argument is in target
   format, result is in host format.  */
   format, result is in host format.  */
 
 
DOUBLEST
DOUBLEST
unpack_double (struct type *type, char *valaddr, int *invp)
unpack_double (struct type *type, char *valaddr, int *invp)
{
{
  enum type_code code;
  enum type_code code;
  int len;
  int len;
  int nosign;
  int nosign;
 
 
  *invp = 0;                     /* Assume valid.   */
  *invp = 0;                     /* Assume valid.   */
  CHECK_TYPEDEF (type);
  CHECK_TYPEDEF (type);
  code = TYPE_CODE (type);
  code = TYPE_CODE (type);
  len = TYPE_LENGTH (type);
  len = TYPE_LENGTH (type);
  nosign = TYPE_UNSIGNED (type);
  nosign = TYPE_UNSIGNED (type);
  if (code == TYPE_CODE_FLT)
  if (code == TYPE_CODE_FLT)
    {
    {
#ifdef INVALID_FLOAT
#ifdef INVALID_FLOAT
      if (INVALID_FLOAT (valaddr, len))
      if (INVALID_FLOAT (valaddr, len))
        {
        {
          *invp = 1;
          *invp = 1;
          return 1.234567891011121314;
          return 1.234567891011121314;
        }
        }
#endif
#endif
      return extract_floating (valaddr, len);
      return extract_floating (valaddr, len);
    }
    }
  else if (nosign)
  else if (nosign)
    {
    {
      /* Unsigned -- be sure we compensate for signed LONGEST.  */
      /* Unsigned -- be sure we compensate for signed LONGEST.  */
      return (ULONGEST) unpack_long (type, valaddr);
      return (ULONGEST) unpack_long (type, valaddr);
    }
    }
  else
  else
    {
    {
      /* Signed -- we are OK with unpack_long.  */
      /* Signed -- we are OK with unpack_long.  */
      return unpack_long (type, valaddr);
      return unpack_long (type, valaddr);
    }
    }
}
}
 
 
/* Unpack raw data (copied from debugee, target byte order) at VALADDR
/* Unpack raw data (copied from debugee, target byte order) at VALADDR
   as a CORE_ADDR, assuming the raw data is described by type TYPE.
   as a CORE_ADDR, assuming the raw data is described by type TYPE.
   We don't assume any alignment for the raw data.  Return value is in
   We don't assume any alignment for the raw data.  Return value is in
   host byte order.
   host byte order.
 
 
   If you want functions and arrays to be coerced to pointers, and
   If you want functions and arrays to be coerced to pointers, and
   references to be dereferenced, call value_as_pointer() instead.
   references to be dereferenced, call value_as_pointer() instead.
 
 
   C++: It is assumed that the front-end has taken care of
   C++: It is assumed that the front-end has taken care of
   all matters concerning pointers to members.  A pointer
   all matters concerning pointers to members.  A pointer
   to member which reaches here is considered to be equivalent
   to member which reaches here is considered to be equivalent
   to an INT (or some size).  After all, it is only an offset.  */
   to an INT (or some size).  After all, it is only an offset.  */
 
 
CORE_ADDR
CORE_ADDR
unpack_pointer (struct type *type, char *valaddr)
unpack_pointer (struct type *type, char *valaddr)
{
{
  /* Assume a CORE_ADDR can fit in a LONGEST (for now).  Not sure
  /* Assume a CORE_ADDR can fit in a LONGEST (for now).  Not sure
     whether we want this to be true eventually.  */
     whether we want this to be true eventually.  */
  return unpack_long (type, valaddr);
  return unpack_long (type, valaddr);
}
}
 
 


/* Get the value of the FIELDN'th field (which must be static) of TYPE. */
/* Get the value of the FIELDN'th field (which must be static) of TYPE. */
 
 
value_ptr
value_ptr
value_static_field (struct type *type, int fieldno)
value_static_field (struct type *type, int fieldno)
{
{
  CORE_ADDR addr;
  CORE_ADDR addr;
  asection *sect;
  asection *sect;
  if (TYPE_FIELD_STATIC_HAS_ADDR (type, fieldno))
  if (TYPE_FIELD_STATIC_HAS_ADDR (type, fieldno))
    {
    {
      addr = TYPE_FIELD_STATIC_PHYSADDR (type, fieldno);
      addr = TYPE_FIELD_STATIC_PHYSADDR (type, fieldno);
      sect = NULL;
      sect = NULL;
    }
    }
  else
  else
    {
    {
      char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
      char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
      struct symbol *sym = lookup_symbol (phys_name, 0, VAR_NAMESPACE, 0, NULL);
      struct symbol *sym = lookup_symbol (phys_name, 0, VAR_NAMESPACE, 0, NULL);
      if (sym == NULL)
      if (sym == NULL)
        {
        {
          /* With some compilers, e.g. HP aCC, static data members are reported
          /* With some compilers, e.g. HP aCC, static data members are reported
             as non-debuggable symbols */
             as non-debuggable symbols */
          struct minimal_symbol *msym = lookup_minimal_symbol (phys_name, NULL, NULL);
          struct minimal_symbol *msym = lookup_minimal_symbol (phys_name, NULL, NULL);
          if (!msym)
          if (!msym)
            return NULL;
            return NULL;
          else
          else
            {
            {
              addr = SYMBOL_VALUE_ADDRESS (msym);
              addr = SYMBOL_VALUE_ADDRESS (msym);
              sect = SYMBOL_BFD_SECTION (msym);
              sect = SYMBOL_BFD_SECTION (msym);
            }
            }
        }
        }
      else
      else
        {
        {
          /* Anything static that isn't a constant, has an address */
          /* Anything static that isn't a constant, has an address */
          if (SYMBOL_CLASS (sym) != LOC_CONST)
          if (SYMBOL_CLASS (sym) != LOC_CONST)
            {
            {
              addr = SYMBOL_VALUE_ADDRESS (sym);
              addr = SYMBOL_VALUE_ADDRESS (sym);
              sect = SYMBOL_BFD_SECTION (sym);
              sect = SYMBOL_BFD_SECTION (sym);
            }
            }
          /* However, static const's do not, the value is already known.  */
          /* However, static const's do not, the value is already known.  */
          else
          else
            {
            {
              return value_from_longest (TYPE_FIELD_TYPE (type, fieldno), SYMBOL_VALUE (sym));
              return value_from_longest (TYPE_FIELD_TYPE (type, fieldno), SYMBOL_VALUE (sym));
            }
            }
        }
        }
      SET_FIELD_PHYSADDR (TYPE_FIELD (type, fieldno), addr);
      SET_FIELD_PHYSADDR (TYPE_FIELD (type, fieldno), addr);
    }
    }
  return value_at (TYPE_FIELD_TYPE (type, fieldno), addr, sect);
  return value_at (TYPE_FIELD_TYPE (type, fieldno), addr, sect);
}
}
 
 
/* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
/* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
   You have to be careful here, since the size of the data area for the value
   You have to be careful here, since the size of the data area for the value
   is set by the length of the enclosing type.  So if NEW_ENCL_TYPE is bigger
   is set by the length of the enclosing type.  So if NEW_ENCL_TYPE is bigger
   than the old enclosing type, you have to allocate more space for the data.
   than the old enclosing type, you have to allocate more space for the data.
   The return value is a pointer to the new version of this value structure. */
   The return value is a pointer to the new version of this value structure. */
 
 
value_ptr
value_ptr
value_change_enclosing_type (value_ptr val, struct type *new_encl_type)
value_change_enclosing_type (value_ptr val, struct type *new_encl_type)
{
{
  if (TYPE_LENGTH (new_encl_type) <= TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val)))
  if (TYPE_LENGTH (new_encl_type) <= TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val)))
    {
    {
      VALUE_ENCLOSING_TYPE (val) = new_encl_type;
      VALUE_ENCLOSING_TYPE (val) = new_encl_type;
      return val;
      return val;
    }
    }
  else
  else
    {
    {
      value_ptr new_val;
      value_ptr new_val;
      register value_ptr prev;
      register value_ptr prev;
 
 
      new_val = (value_ptr) xrealloc (val, sizeof (struct value) + TYPE_LENGTH (new_encl_type));
      new_val = (value_ptr) xrealloc (val, sizeof (struct value) + TYPE_LENGTH (new_encl_type));
 
 
      /* We have to make sure this ends up in the same place in the value
      /* We have to make sure this ends up in the same place in the value
         chain as the original copy, so it's clean-up behavior is the same.
         chain as the original copy, so it's clean-up behavior is the same.
         If the value has been released, this is a waste of time, but there
         If the value has been released, this is a waste of time, but there
         is no way to tell that in advance, so... */
         is no way to tell that in advance, so... */
 
 
      if (val != all_values)
      if (val != all_values)
        {
        {
          for (prev = all_values; prev != NULL; prev = prev->next)
          for (prev = all_values; prev != NULL; prev = prev->next)
            {
            {
              if (prev->next == val)
              if (prev->next == val)
                {
                {
                  prev->next = new_val;
                  prev->next = new_val;
                  break;
                  break;
                }
                }
            }
            }
        }
        }
 
 
      return new_val;
      return new_val;
    }
    }
}
}
 
 
/* Given a value ARG1 (offset by OFFSET bytes)
/* Given a value ARG1 (offset by OFFSET bytes)
   of a struct or union type ARG_TYPE,
   of a struct or union type ARG_TYPE,
   extract and return the value of one of its (non-static) fields.
   extract and return the value of one of its (non-static) fields.
   FIELDNO says which field. */
   FIELDNO says which field. */
 
 
value_ptr
value_ptr
value_primitive_field (register value_ptr arg1, int offset,
value_primitive_field (register value_ptr arg1, int offset,
                       register int fieldno, register struct type *arg_type)
                       register int fieldno, register struct type *arg_type)
{
{
  register value_ptr v;
  register value_ptr v;
  register struct type *type;
  register struct type *type;
 
 
  CHECK_TYPEDEF (arg_type);
  CHECK_TYPEDEF (arg_type);
  type = TYPE_FIELD_TYPE (arg_type, fieldno);
  type = TYPE_FIELD_TYPE (arg_type, fieldno);
 
 
  /* Handle packed fields */
  /* Handle packed fields */
 
 
  if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
  if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
    {
    {
      v = value_from_longest (type,
      v = value_from_longest (type,
                              unpack_field_as_long (arg_type,
                              unpack_field_as_long (arg_type,
                                                    VALUE_CONTENTS (arg1)
                                                    VALUE_CONTENTS (arg1)
                                                    + offset,
                                                    + offset,
                                                    fieldno));
                                                    fieldno));
      VALUE_BITPOS (v) = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8;
      VALUE_BITPOS (v) = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8;
      VALUE_BITSIZE (v) = TYPE_FIELD_BITSIZE (arg_type, fieldno);
      VALUE_BITSIZE (v) = TYPE_FIELD_BITSIZE (arg_type, fieldno);
      VALUE_OFFSET (v) = VALUE_OFFSET (arg1) + offset
      VALUE_OFFSET (v) = VALUE_OFFSET (arg1) + offset
        + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
        + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
    }
    }
  else if (fieldno < TYPE_N_BASECLASSES (arg_type))
  else if (fieldno < TYPE_N_BASECLASSES (arg_type))
    {
    {
      /* This field is actually a base subobject, so preserve the
      /* This field is actually a base subobject, so preserve the
         entire object's contents for later references to virtual
         entire object's contents for later references to virtual
         bases, etc.  */
         bases, etc.  */
      v = allocate_value (VALUE_ENCLOSING_TYPE (arg1));
      v = allocate_value (VALUE_ENCLOSING_TYPE (arg1));
      VALUE_TYPE (v) = type;
      VALUE_TYPE (v) = type;
      if (VALUE_LAZY (arg1))
      if (VALUE_LAZY (arg1))
        VALUE_LAZY (v) = 1;
        VALUE_LAZY (v) = 1;
      else
      else
        memcpy (VALUE_CONTENTS_ALL_RAW (v), VALUE_CONTENTS_ALL_RAW (arg1),
        memcpy (VALUE_CONTENTS_ALL_RAW (v), VALUE_CONTENTS_ALL_RAW (arg1),
                TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg1)));
                TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg1)));
      VALUE_OFFSET (v) = VALUE_OFFSET (arg1);
      VALUE_OFFSET (v) = VALUE_OFFSET (arg1);
      VALUE_EMBEDDED_OFFSET (v)
      VALUE_EMBEDDED_OFFSET (v)
        = offset +
        = offset +
        VALUE_EMBEDDED_OFFSET (arg1) +
        VALUE_EMBEDDED_OFFSET (arg1) +
        TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
        TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
    }
    }
  else
  else
    {
    {
      /* Plain old data member */
      /* Plain old data member */
      offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
      offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
      v = allocate_value (type);
      v = allocate_value (type);
      if (VALUE_LAZY (arg1))
      if (VALUE_LAZY (arg1))
        VALUE_LAZY (v) = 1;
        VALUE_LAZY (v) = 1;
      else
      else
        memcpy (VALUE_CONTENTS_RAW (v),
        memcpy (VALUE_CONTENTS_RAW (v),
                VALUE_CONTENTS_RAW (arg1) + offset,
                VALUE_CONTENTS_RAW (arg1) + offset,
                TYPE_LENGTH (type));
                TYPE_LENGTH (type));
      VALUE_OFFSET (v) = VALUE_OFFSET (arg1) + offset;
      VALUE_OFFSET (v) = VALUE_OFFSET (arg1) + offset;
    }
    }
  VALUE_LVAL (v) = VALUE_LVAL (arg1);
  VALUE_LVAL (v) = VALUE_LVAL (arg1);
  if (VALUE_LVAL (arg1) == lval_internalvar)
  if (VALUE_LVAL (arg1) == lval_internalvar)
    VALUE_LVAL (v) = lval_internalvar_component;
    VALUE_LVAL (v) = lval_internalvar_component;
  VALUE_ADDRESS (v) = VALUE_ADDRESS (arg1);
  VALUE_ADDRESS (v) = VALUE_ADDRESS (arg1);
  VALUE_REGNO (v) = VALUE_REGNO (arg1);
  VALUE_REGNO (v) = VALUE_REGNO (arg1);
/*  VALUE_OFFSET (v) = VALUE_OFFSET (arg1) + offset
/*  VALUE_OFFSET (v) = VALUE_OFFSET (arg1) + offset
   + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8; */
   + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8; */
  return v;
  return v;
}
}
 
 
/* Given a value ARG1 of a struct or union type,
/* Given a value ARG1 of a struct or union type,
   extract and return the value of one of its (non-static) fields.
   extract and return the value of one of its (non-static) fields.
   FIELDNO says which field. */
   FIELDNO says which field. */
 
 
value_ptr
value_ptr
value_field (register value_ptr arg1, register int fieldno)
value_field (register value_ptr arg1, register int fieldno)
{
{
  return value_primitive_field (arg1, 0, fieldno, VALUE_TYPE (arg1));
  return value_primitive_field (arg1, 0, fieldno, VALUE_TYPE (arg1));
}
}
 
 
/* Return a non-virtual function as a value.
/* Return a non-virtual function as a value.
   F is the list of member functions which contains the desired method.
   F is the list of member functions which contains the desired method.
   J is an index into F which provides the desired method. */
   J is an index into F which provides the desired method. */
 
 
value_ptr
value_ptr
value_fn_field (value_ptr *arg1p, struct fn_field *f, int j, struct type *type,
value_fn_field (value_ptr *arg1p, struct fn_field *f, int j, struct type *type,
                int offset)
                int offset)
{
{
  register value_ptr v;
  register value_ptr v;
  register struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
  register struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
  struct symbol *sym;
  struct symbol *sym;
 
 
  sym = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
  sym = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
                       0, VAR_NAMESPACE, 0, NULL);
                       0, VAR_NAMESPACE, 0, NULL);
  if (!sym)
  if (!sym)
    return NULL;
    return NULL;
/*
/*
   error ("Internal error: could not find physical method named %s",
   error ("Internal error: could not find physical method named %s",
   TYPE_FN_FIELD_PHYSNAME (f, j));
   TYPE_FN_FIELD_PHYSNAME (f, j));
 */
 */
 
 
  v = allocate_value (ftype);
  v = allocate_value (ftype);
  VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
  VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
  VALUE_TYPE (v) = ftype;
  VALUE_TYPE (v) = ftype;
 
 
  if (arg1p)
  if (arg1p)
    {
    {
      if (type != VALUE_TYPE (*arg1p))
      if (type != VALUE_TYPE (*arg1p))
        *arg1p = value_ind (value_cast (lookup_pointer_type (type),
        *arg1p = value_ind (value_cast (lookup_pointer_type (type),
                                        value_addr (*arg1p)));
                                        value_addr (*arg1p)));
 
 
      /* Move the `this' pointer according to the offset.
      /* Move the `this' pointer according to the offset.
         VALUE_OFFSET (*arg1p) += offset;
         VALUE_OFFSET (*arg1p) += offset;
       */
       */
    }
    }
 
 
  return v;
  return v;
}
}
 
 
/* ARG is a pointer to an object we know to be at least
/* ARG is a pointer to an object we know to be at least
   a DTYPE.  BTYPE is the most derived basetype that has
   a DTYPE.  BTYPE is the most derived basetype that has
   already been searched (and need not be searched again).
   already been searched (and need not be searched again).
   After looking at the vtables between BTYPE and DTYPE,
   After looking at the vtables between BTYPE and DTYPE,
   return the most derived type we find.  The caller must
   return the most derived type we find.  The caller must
   be satisfied when the return value == DTYPE.
   be satisfied when the return value == DTYPE.
 
 
   FIXME-tiemann: should work with dossier entries as well.
   FIXME-tiemann: should work with dossier entries as well.
   NOTICE - djb: I see no good reason at all to keep this function now that
   NOTICE - djb: I see no good reason at all to keep this function now that
   we have RTTI support. It's used in literally one place, and it's
   we have RTTI support. It's used in literally one place, and it's
   hard to keep this function up to date when it's purpose is served
   hard to keep this function up to date when it's purpose is served
   by value_rtti_type efficiently.
   by value_rtti_type efficiently.
   Consider it gone for 5.1. */
   Consider it gone for 5.1. */
 
 
static value_ptr
static value_ptr
value_headof (value_ptr in_arg, struct type *btype, struct type *dtype)
value_headof (value_ptr in_arg, struct type *btype, struct type *dtype)
{
{
  /* First collect the vtables we must look at for this object.  */
  /* First collect the vtables we must look at for this object.  */
  value_ptr arg, vtbl;
  value_ptr arg, vtbl;
  struct symbol *sym;
  struct symbol *sym;
  char *demangled_name;
  char *demangled_name;
  struct minimal_symbol *msymbol;
  struct minimal_symbol *msymbol;
 
 
  btype = TYPE_VPTR_BASETYPE (dtype);
  btype = TYPE_VPTR_BASETYPE (dtype);
  CHECK_TYPEDEF (btype);
  CHECK_TYPEDEF (btype);
  arg = in_arg;
  arg = in_arg;
  if (btype != dtype)
  if (btype != dtype)
      arg = value_cast (lookup_pointer_type (btype), arg);
      arg = value_cast (lookup_pointer_type (btype), arg);
  if (TYPE_CODE (VALUE_TYPE (arg)) == TYPE_CODE_REF)
  if (TYPE_CODE (VALUE_TYPE (arg)) == TYPE_CODE_REF)
      {
      {
          /*
          /*
           * Copy the value, but change the type from (T&) to (T*).
           * Copy the value, but change the type from (T&) to (T*).
           * We keep the same location information, which is efficient,
           * We keep the same location information, which is efficient,
           * and allows &(&X) to get the location containing the reference.
           * and allows &(&X) to get the location containing the reference.
           */
           */
          arg = value_copy (arg);
          arg = value_copy (arg);
          VALUE_TYPE (arg) = lookup_pointer_type (TYPE_TARGET_TYPE (VALUE_TYPE (arg)));
          VALUE_TYPE (arg) = lookup_pointer_type (TYPE_TARGET_TYPE (VALUE_TYPE (arg)));
      }
      }
  if (VALUE_ADDRESS(value_field (value_ind(arg), TYPE_VPTR_FIELDNO (btype)))==0)
  if (VALUE_ADDRESS(value_field (value_ind(arg), TYPE_VPTR_FIELDNO (btype)))==0)
      return arg;
      return arg;
 
 
  vtbl = value_ind (value_field (value_ind (arg), TYPE_VPTR_FIELDNO (btype)));
  vtbl = value_ind (value_field (value_ind (arg), TYPE_VPTR_FIELDNO (btype)));
  /* Turn vtable into typeinfo function */
  /* Turn vtable into typeinfo function */
  VALUE_OFFSET(vtbl)+=4;
  VALUE_OFFSET(vtbl)+=4;
 
 
  msymbol = lookup_minimal_symbol_by_pc ( value_as_pointer(value_ind(vtbl)) );
  msymbol = lookup_minimal_symbol_by_pc ( value_as_pointer(value_ind(vtbl)) );
  if (msymbol == NULL
  if (msymbol == NULL
      || (demangled_name = SYMBOL_NAME (msymbol)) == NULL)
      || (demangled_name = SYMBOL_NAME (msymbol)) == NULL)
      {
      {
          /* If we expected to find a vtable, but did not, let the user
          /* If we expected to find a vtable, but did not, let the user
             know that we aren't happy, but don't throw an error.
             know that we aren't happy, but don't throw an error.
             FIXME: there has to be a better way to do this.  */
             FIXME: there has to be a better way to do this.  */
          struct type *error_type = (struct type *) xmalloc (sizeof (struct type));
          struct type *error_type = (struct type *) xmalloc (sizeof (struct type));
          memcpy (error_type, VALUE_TYPE (in_arg), sizeof (struct type));
          memcpy (error_type, VALUE_TYPE (in_arg), sizeof (struct type));
          TYPE_NAME (error_type) = savestring ("suspicious *", sizeof ("suspicious *"));
          TYPE_NAME (error_type) = savestring ("suspicious *", sizeof ("suspicious *"));
          VALUE_TYPE (in_arg) = error_type;
          VALUE_TYPE (in_arg) = error_type;
          return in_arg;
          return in_arg;
      }
      }
  demangled_name = cplus_demangle(demangled_name,DMGL_ANSI);
  demangled_name = cplus_demangle(demangled_name,DMGL_ANSI);
  *(strchr (demangled_name, ' ')) = '\0';
  *(strchr (demangled_name, ' ')) = '\0';
 
 
  sym = lookup_symbol (demangled_name, 0, VAR_NAMESPACE, 0, 0);
  sym = lookup_symbol (demangled_name, 0, VAR_NAMESPACE, 0, 0);
  if (sym == NULL)
  if (sym == NULL)
      error ("could not find type declaration for `%s'", demangled_name);
      error ("could not find type declaration for `%s'", demangled_name);
 
 
  arg = in_arg;
  arg = in_arg;
  VALUE_TYPE (arg) = lookup_pointer_type (SYMBOL_TYPE (sym));
  VALUE_TYPE (arg) = lookup_pointer_type (SYMBOL_TYPE (sym));
  return arg;
  return arg;
}
}
 
 
/* ARG is a pointer object of type TYPE.  If TYPE has virtual
/* ARG is a pointer object of type TYPE.  If TYPE has virtual
   function tables, probe ARG's tables (including the vtables
   function tables, probe ARG's tables (including the vtables
   of its baseclasses) to figure out the most derived type that ARG
   of its baseclasses) to figure out the most derived type that ARG
   could actually be a pointer to.  */
   could actually be a pointer to.  */
 
 
value_ptr
value_ptr
value_from_vtable_info (value_ptr arg, struct type *type)
value_from_vtable_info (value_ptr arg, struct type *type)
{
{
  /* Take care of preliminaries.  */
  /* Take care of preliminaries.  */
  if (TYPE_VPTR_FIELDNO (type) < 0)
  if (TYPE_VPTR_FIELDNO (type) < 0)
    fill_in_vptr_fieldno (type);
    fill_in_vptr_fieldno (type);
  if (TYPE_VPTR_FIELDNO (type) < 0)
  if (TYPE_VPTR_FIELDNO (type) < 0)
    return 0;
    return 0;
 
 
  return value_headof (arg, 0, type);
  return value_headof (arg, 0, type);
}
}
 
 
/* Return true if the INDEXth field of TYPE is a virtual baseclass
/* Return true if the INDEXth field of TYPE is a virtual baseclass
   pointer which is for the base class whose type is BASECLASS.  */
   pointer which is for the base class whose type is BASECLASS.  */
 
 
static int
static int
vb_match (struct type *type, int index, struct type *basetype)
vb_match (struct type *type, int index, struct type *basetype)
{
{
  struct type *fieldtype;
  struct type *fieldtype;
  char *name = TYPE_FIELD_NAME (type, index);
  char *name = TYPE_FIELD_NAME (type, index);
  char *field_class_name = NULL;
  char *field_class_name = NULL;
 
 
  if (*name != '_')
  if (*name != '_')
    return 0;
    return 0;
  /* gcc 2.4 uses _vb$.  */
  /* gcc 2.4 uses _vb$.  */
  if (name[1] == 'v' && name[2] == 'b' && is_cplus_marker (name[3]))
  if (name[1] == 'v' && name[2] == 'b' && is_cplus_marker (name[3]))
    field_class_name = name + 4;
    field_class_name = name + 4;
  /* gcc 2.5 will use __vb_.  */
  /* gcc 2.5 will use __vb_.  */
  if (name[1] == '_' && name[2] == 'v' && name[3] == 'b' && name[4] == '_')
  if (name[1] == '_' && name[2] == 'v' && name[3] == 'b' && name[4] == '_')
    field_class_name = name + 5;
    field_class_name = name + 5;
 
 
  if (field_class_name == NULL)
  if (field_class_name == NULL)
    /* This field is not a virtual base class pointer.  */
    /* This field is not a virtual base class pointer.  */
    return 0;
    return 0;
 
 
  /* It's a virtual baseclass pointer, now we just need to find out whether
  /* It's a virtual baseclass pointer, now we just need to find out whether
     it is for this baseclass.  */
     it is for this baseclass.  */
  fieldtype = TYPE_FIELD_TYPE (type, index);
  fieldtype = TYPE_FIELD_TYPE (type, index);
  if (fieldtype == NULL
  if (fieldtype == NULL
      || TYPE_CODE (fieldtype) != TYPE_CODE_PTR)
      || TYPE_CODE (fieldtype) != TYPE_CODE_PTR)
    /* "Can't happen".  */
    /* "Can't happen".  */
    return 0;
    return 0;
 
 
  /* What we check for is that either the types are equal (needed for
  /* What we check for is that either the types are equal (needed for
     nameless types) or have the same name.  This is ugly, and a more
     nameless types) or have the same name.  This is ugly, and a more
     elegant solution should be devised (which would probably just push
     elegant solution should be devised (which would probably just push
     the ugliness into symbol reading unless we change the stabs format).  */
     the ugliness into symbol reading unless we change the stabs format).  */
  if (TYPE_TARGET_TYPE (fieldtype) == basetype)
  if (TYPE_TARGET_TYPE (fieldtype) == basetype)
    return 1;
    return 1;
 
 
  if (TYPE_NAME (basetype) != NULL
  if (TYPE_NAME (basetype) != NULL
      && TYPE_NAME (TYPE_TARGET_TYPE (fieldtype)) != NULL
      && TYPE_NAME (TYPE_TARGET_TYPE (fieldtype)) != NULL
      && STREQ (TYPE_NAME (basetype),
      && STREQ (TYPE_NAME (basetype),
                TYPE_NAME (TYPE_TARGET_TYPE (fieldtype))))
                TYPE_NAME (TYPE_TARGET_TYPE (fieldtype))))
    return 1;
    return 1;
  return 0;
  return 0;
}
}
 
 
/* Compute the offset of the baseclass which is
/* Compute the offset of the baseclass which is
   the INDEXth baseclass of class TYPE,
   the INDEXth baseclass of class TYPE,
   for value at VALADDR (in host) at ADDRESS (in target).
   for value at VALADDR (in host) at ADDRESS (in target).
   The result is the offset of the baseclass value relative
   The result is the offset of the baseclass value relative
   to (the address of)(ARG) + OFFSET.
   to (the address of)(ARG) + OFFSET.
 
 
   -1 is returned on error. */
   -1 is returned on error. */
 
 
int
int
baseclass_offset (struct type *type, int index, char *valaddr,
baseclass_offset (struct type *type, int index, char *valaddr,
                  CORE_ADDR address)
                  CORE_ADDR address)
{
{
  struct type *basetype = TYPE_BASECLASS (type, index);
  struct type *basetype = TYPE_BASECLASS (type, index);
 
 
  if (BASETYPE_VIA_VIRTUAL (type, index))
  if (BASETYPE_VIA_VIRTUAL (type, index))
    {
    {
      /* Must hunt for the pointer to this virtual baseclass.  */
      /* Must hunt for the pointer to this virtual baseclass.  */
      register int i, len = TYPE_NFIELDS (type);
      register int i, len = TYPE_NFIELDS (type);
      register int n_baseclasses = TYPE_N_BASECLASSES (type);
      register int n_baseclasses = TYPE_N_BASECLASSES (type);
 
 
      /* First look for the virtual baseclass pointer
      /* First look for the virtual baseclass pointer
         in the fields.  */
         in the fields.  */
      for (i = n_baseclasses; i < len; i++)
      for (i = n_baseclasses; i < len; i++)
        {
        {
          if (vb_match (type, i, basetype))
          if (vb_match (type, i, basetype))
            {
            {
              CORE_ADDR addr
              CORE_ADDR addr
              = unpack_pointer (TYPE_FIELD_TYPE (type, i),
              = unpack_pointer (TYPE_FIELD_TYPE (type, i),
                                valaddr + (TYPE_FIELD_BITPOS (type, i) / 8));
                                valaddr + (TYPE_FIELD_BITPOS (type, i) / 8));
 
 
              return addr - (LONGEST) address;
              return addr - (LONGEST) address;
            }
            }
        }
        }
      /* Not in the fields, so try looking through the baseclasses.  */
      /* Not in the fields, so try looking through the baseclasses.  */
      for (i = index + 1; i < n_baseclasses; i++)
      for (i = index + 1; i < n_baseclasses; i++)
        {
        {
          int boffset =
          int boffset =
          baseclass_offset (type, i, valaddr, address);
          baseclass_offset (type, i, valaddr, address);
          if (boffset)
          if (boffset)
            return boffset;
            return boffset;
        }
        }
      /* Not found.  */
      /* Not found.  */
      return -1;
      return -1;
    }
    }
 
 
  /* Baseclass is easily computed.  */
  /* Baseclass is easily computed.  */
  return TYPE_BASECLASS_BITPOS (type, index) / 8;
  return TYPE_BASECLASS_BITPOS (type, index) / 8;
}
}


/* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
/* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
   VALADDR.
   VALADDR.
 
 
   Extracting bits depends on endianness of the machine.  Compute the
   Extracting bits depends on endianness of the machine.  Compute the
   number of least significant bits to discard.  For big endian machines,
   number of least significant bits to discard.  For big endian machines,
   we compute the total number of bits in the anonymous object, subtract
   we compute the total number of bits in the anonymous object, subtract
   off the bit count from the MSB of the object to the MSB of the
   off the bit count from the MSB of the object to the MSB of the
   bitfield, then the size of the bitfield, which leaves the LSB discard
   bitfield, then the size of the bitfield, which leaves the LSB discard
   count.  For little endian machines, the discard count is simply the
   count.  For little endian machines, the discard count is simply the
   number of bits from the LSB of the anonymous object to the LSB of the
   number of bits from the LSB of the anonymous object to the LSB of the
   bitfield.
   bitfield.
 
 
   If the field is signed, we also do sign extension. */
   If the field is signed, we also do sign extension. */
 
 
LONGEST
LONGEST
unpack_field_as_long (struct type *type, char *valaddr, int fieldno)
unpack_field_as_long (struct type *type, char *valaddr, int fieldno)
{
{
  ULONGEST val;
  ULONGEST val;
  ULONGEST valmask;
  ULONGEST valmask;
  int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
  int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
  int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
  int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
  int lsbcount;
  int lsbcount;
  struct type *field_type;
  struct type *field_type;
 
 
  val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val));
  val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val));
  field_type = TYPE_FIELD_TYPE (type, fieldno);
  field_type = TYPE_FIELD_TYPE (type, fieldno);
  CHECK_TYPEDEF (field_type);
  CHECK_TYPEDEF (field_type);
 
 
  /* Extract bits.  See comment above. */
  /* Extract bits.  See comment above. */
 
 
  if (BITS_BIG_ENDIAN)
  if (BITS_BIG_ENDIAN)
    lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize);
    lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize);
  else
  else
    lsbcount = (bitpos % 8);
    lsbcount = (bitpos % 8);
  val >>= lsbcount;
  val >>= lsbcount;
 
 
  /* If the field does not entirely fill a LONGEST, then zero the sign bits.
  /* If the field does not entirely fill a LONGEST, then zero the sign bits.
     If the field is signed, and is negative, then sign extend. */
     If the field is signed, and is negative, then sign extend. */
 
 
  if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
  if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
    {
    {
      valmask = (((ULONGEST) 1) << bitsize) - 1;
      valmask = (((ULONGEST) 1) << bitsize) - 1;
      val &= valmask;
      val &= valmask;
      if (!TYPE_UNSIGNED (field_type))
      if (!TYPE_UNSIGNED (field_type))
        {
        {
          if (val & (valmask ^ (valmask >> 1)))
          if (val & (valmask ^ (valmask >> 1)))
            {
            {
              val |= ~valmask;
              val |= ~valmask;
            }
            }
        }
        }
    }
    }
  return (val);
  return (val);
}
}
 
 
/* Modify the value of a bitfield.  ADDR points to a block of memory in
/* Modify the value of a bitfield.  ADDR points to a block of memory in
   target byte order; the bitfield starts in the byte pointed to.  FIELDVAL
   target byte order; the bitfield starts in the byte pointed to.  FIELDVAL
   is the desired value of the field, in host byte order.  BITPOS and BITSIZE
   is the desired value of the field, in host byte order.  BITPOS and BITSIZE
   indicate which bits (in target bit order) comprise the bitfield.  */
   indicate which bits (in target bit order) comprise the bitfield.  */
 
 
void
void
modify_field (char *addr, LONGEST fieldval, int bitpos, int bitsize)
modify_field (char *addr, LONGEST fieldval, int bitpos, int bitsize)
{
{
  LONGEST oword;
  LONGEST oword;
 
 
  /* If a negative fieldval fits in the field in question, chop
  /* If a negative fieldval fits in the field in question, chop
     off the sign extension bits.  */
     off the sign extension bits.  */
  if (bitsize < (8 * (int) sizeof (fieldval))
  if (bitsize < (8 * (int) sizeof (fieldval))
      && (~fieldval & ~((1 << (bitsize - 1)) - 1)) == 0)
      && (~fieldval & ~((1 << (bitsize - 1)) - 1)) == 0)
    fieldval = fieldval & ((1 << bitsize) - 1);
    fieldval = fieldval & ((1 << bitsize) - 1);
 
 
  /* Warn if value is too big to fit in the field in question.  */
  /* Warn if value is too big to fit in the field in question.  */
  if (bitsize < (8 * (int) sizeof (fieldval))
  if (bitsize < (8 * (int) sizeof (fieldval))
      && 0 != (fieldval & ~((1 << bitsize) - 1)))
      && 0 != (fieldval & ~((1 << bitsize) - 1)))
    {
    {
      /* FIXME: would like to include fieldval in the message, but
      /* FIXME: would like to include fieldval in the message, but
         we don't have a sprintf_longest.  */
         we don't have a sprintf_longest.  */
      warning ("Value does not fit in %d bits.", bitsize);
      warning ("Value does not fit in %d bits.", bitsize);
 
 
      /* Truncate it, otherwise adjoining fields may be corrupted.  */
      /* Truncate it, otherwise adjoining fields may be corrupted.  */
      fieldval = fieldval & ((1 << bitsize) - 1);
      fieldval = fieldval & ((1 << bitsize) - 1);
    }
    }
 
 
  oword = extract_signed_integer (addr, sizeof oword);
  oword = extract_signed_integer (addr, sizeof oword);
 
 
  /* Shifting for bit field depends on endianness of the target machine.  */
  /* Shifting for bit field depends on endianness of the target machine.  */
  if (BITS_BIG_ENDIAN)
  if (BITS_BIG_ENDIAN)
    bitpos = sizeof (oword) * 8 - bitpos - bitsize;
    bitpos = sizeof (oword) * 8 - bitpos - bitsize;
 
 
  /* Mask out old value, while avoiding shifts >= size of oword */
  /* Mask out old value, while avoiding shifts >= size of oword */
  if (bitsize < 8 * (int) sizeof (oword))
  if (bitsize < 8 * (int) sizeof (oword))
    oword &= ~(((((ULONGEST) 1) << bitsize) - 1) << bitpos);
    oword &= ~(((((ULONGEST) 1) << bitsize) - 1) << bitpos);
  else
  else
    oword &= ~((~(ULONGEST) 0) << bitpos);
    oword &= ~((~(ULONGEST) 0) << bitpos);
  oword |= fieldval << bitpos;
  oword |= fieldval << bitpos;
 
 
  store_signed_integer (addr, sizeof oword, oword);
  store_signed_integer (addr, sizeof oword, oword);
}
}


/* Convert C numbers into newly allocated values */
/* Convert C numbers into newly allocated values */
 
 
value_ptr
value_ptr
value_from_longest (struct type *type, register LONGEST num)
value_from_longest (struct type *type, register LONGEST num)
{
{
  register value_ptr val = allocate_value (type);
  register value_ptr val = allocate_value (type);
  register enum type_code code;
  register enum type_code code;
  register int len;
  register int len;
retry:
retry:
  code = TYPE_CODE (type);
  code = TYPE_CODE (type);
  len = TYPE_LENGTH (type);
  len = TYPE_LENGTH (type);
 
 
  switch (code)
  switch (code)
    {
    {
    case TYPE_CODE_TYPEDEF:
    case TYPE_CODE_TYPEDEF:
      type = check_typedef (type);
      type = check_typedef (type);
      goto retry;
      goto retry;
    case TYPE_CODE_INT:
    case TYPE_CODE_INT:
    case TYPE_CODE_CHAR:
    case TYPE_CODE_CHAR:
    case TYPE_CODE_ENUM:
    case TYPE_CODE_ENUM:
    case TYPE_CODE_BOOL:
    case TYPE_CODE_BOOL:
    case TYPE_CODE_RANGE:
    case TYPE_CODE_RANGE:
      store_signed_integer (VALUE_CONTENTS_RAW (val), len, num);
      store_signed_integer (VALUE_CONTENTS_RAW (val), len, num);
      break;
      break;
 
 
    case TYPE_CODE_REF:
    case TYPE_CODE_REF:
    case TYPE_CODE_PTR:
    case TYPE_CODE_PTR:
      store_typed_address (VALUE_CONTENTS_RAW (val), type, (CORE_ADDR) num);
      store_typed_address (VALUE_CONTENTS_RAW (val), type, (CORE_ADDR) num);
      break;
      break;
 
 
    default:
    default:
      error ("Unexpected type (%d) encountered for integer constant.", code);
      error ("Unexpected type (%d) encountered for integer constant.", code);
    }
    }
  return val;
  return val;
}
}
 
 
 
 
/* Create a value representing a pointer of type TYPE to the address
/* Create a value representing a pointer of type TYPE to the address
   ADDR.  */
   ADDR.  */
value_ptr
value_ptr
value_from_pointer (struct type *type, CORE_ADDR addr)
value_from_pointer (struct type *type, CORE_ADDR addr)
{
{
  value_ptr val = allocate_value (type);
  value_ptr val = allocate_value (type);
  store_typed_address (VALUE_CONTENTS_RAW (val), type, addr);
  store_typed_address (VALUE_CONTENTS_RAW (val), type, addr);
  return val;
  return val;
}
}
 
 
 
 
/* Create a value for a string constant to be stored locally
/* Create a value for a string constant to be stored locally
   (not in the inferior's memory space, but in GDB memory).
   (not in the inferior's memory space, but in GDB memory).
   This is analogous to value_from_longest, which also does not
   This is analogous to value_from_longest, which also does not
   use inferior memory.  String shall NOT contain embedded nulls.  */
   use inferior memory.  String shall NOT contain embedded nulls.  */
 
 
value_ptr
value_ptr
value_from_string (char *ptr)
value_from_string (char *ptr)
{
{
  value_ptr val;
  value_ptr val;
  int len = strlen (ptr);
  int len = strlen (ptr);
  int lowbound = current_language->string_lower_bound;
  int lowbound = current_language->string_lower_bound;
  struct type *rangetype =
  struct type *rangetype =
  create_range_type ((struct type *) NULL,
  create_range_type ((struct type *) NULL,
                     builtin_type_int,
                     builtin_type_int,
                     lowbound, len + lowbound - 1);
                     lowbound, len + lowbound - 1);
  struct type *stringtype =
  struct type *stringtype =
  create_array_type ((struct type *) NULL,
  create_array_type ((struct type *) NULL,
                     *current_language->string_char_type,
                     *current_language->string_char_type,
                     rangetype);
                     rangetype);
 
 
  val = allocate_value (stringtype);
  val = allocate_value (stringtype);
  memcpy (VALUE_CONTENTS_RAW (val), ptr, len);
  memcpy (VALUE_CONTENTS_RAW (val), ptr, len);
  return val;
  return val;
}
}
 
 
value_ptr
value_ptr
value_from_double (struct type *type, DOUBLEST num)
value_from_double (struct type *type, DOUBLEST num)
{
{
  register value_ptr val = allocate_value (type);
  register value_ptr val = allocate_value (type);
  struct type *base_type = check_typedef (type);
  struct type *base_type = check_typedef (type);
  register enum type_code code = TYPE_CODE (base_type);
  register enum type_code code = TYPE_CODE (base_type);
  register int len = TYPE_LENGTH (base_type);
  register int len = TYPE_LENGTH (base_type);
 
 
  if (code == TYPE_CODE_FLT)
  if (code == TYPE_CODE_FLT)
    {
    {
      store_floating (VALUE_CONTENTS_RAW (val), len, num);
      store_floating (VALUE_CONTENTS_RAW (val), len, num);
    }
    }
  else
  else
    error ("Unexpected type encountered for floating constant.");
    error ("Unexpected type encountered for floating constant.");
 
 
  return val;
  return val;
}
}


/* Deal with the value that is "about to be returned".  */
/* Deal with the value that is "about to be returned".  */
 
 
/* Return the value that a function returning now
/* Return the value that a function returning now
   would be returning to its caller, assuming its type is VALTYPE.
   would be returning to its caller, assuming its type is VALTYPE.
   RETBUF is where we look for what ought to be the contents
   RETBUF is where we look for what ought to be the contents
   of the registers (in raw form).  This is because it is often
   of the registers (in raw form).  This is because it is often
   desirable to restore old values to those registers
   desirable to restore old values to those registers
   after saving the contents of interest, and then call
   after saving the contents of interest, and then call
   this function using the saved values.
   this function using the saved values.
   struct_return is non-zero when the function in question is
   struct_return is non-zero when the function in question is
   using the structure return conventions on the machine in question;
   using the structure return conventions on the machine in question;
   0 when it is using the value returning conventions (this often
   0 when it is using the value returning conventions (this often
   means returning pointer to where structure is vs. returning value). */
   means returning pointer to where structure is vs. returning value). */
 
 
/* ARGSUSED */
/* ARGSUSED */
value_ptr
value_ptr
value_being_returned (struct type *valtype, char *retbuf, int struct_return)
value_being_returned (struct type *valtype, char *retbuf, int struct_return)
{
{
  register value_ptr val;
  register value_ptr val;
  CORE_ADDR addr;
  CORE_ADDR addr;
 
 
  /* If this is not defined, just use EXTRACT_RETURN_VALUE instead.  */
  /* If this is not defined, just use EXTRACT_RETURN_VALUE instead.  */
  if (EXTRACT_STRUCT_VALUE_ADDRESS_P ())
  if (EXTRACT_STRUCT_VALUE_ADDRESS_P ())
    if (struct_return)
    if (struct_return)
      {
      {
        addr = EXTRACT_STRUCT_VALUE_ADDRESS (retbuf);
        addr = EXTRACT_STRUCT_VALUE_ADDRESS (retbuf);
        if (!addr)
        if (!addr)
          error ("Function return value unknown");
          error ("Function return value unknown");
        return value_at (valtype, addr, NULL);
        return value_at (valtype, addr, NULL);
      }
      }
 
 
  val = allocate_value (valtype);
  val = allocate_value (valtype);
  CHECK_TYPEDEF (valtype);
  CHECK_TYPEDEF (valtype);
  EXTRACT_RETURN_VALUE (valtype, retbuf, VALUE_CONTENTS_RAW (val));
  EXTRACT_RETURN_VALUE (valtype, retbuf, VALUE_CONTENTS_RAW (val));
 
 
  return val;
  return val;
}
}
 
 
/* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of
/* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of
   EXTRACT_RETURN_VALUE?  GCC_P is true if compiled with gcc
   EXTRACT_RETURN_VALUE?  GCC_P is true if compiled with gcc
   and TYPE is the type (which is known to be struct, union or array).
   and TYPE is the type (which is known to be struct, union or array).
 
 
   On most machines, the struct convention is used unless we are
   On most machines, the struct convention is used unless we are
   using gcc and the type is of a special size.  */
   using gcc and the type is of a special size.  */
/* As of about 31 Mar 93, GCC was changed to be compatible with the
/* As of about 31 Mar 93, GCC was changed to be compatible with the
   native compiler.  GCC 2.3.3 was the last release that did it the
   native compiler.  GCC 2.3.3 was the last release that did it the
   old way.  Since gcc2_compiled was not changed, we have no
   old way.  Since gcc2_compiled was not changed, we have no
   way to correctly win in all cases, so we just do the right thing
   way to correctly win in all cases, so we just do the right thing
   for gcc1 and for gcc2 after this change.  Thus it loses for gcc
   for gcc1 and for gcc2 after this change.  Thus it loses for gcc
   2.0-2.3.3.  This is somewhat unfortunate, but changing gcc2_compiled
   2.0-2.3.3.  This is somewhat unfortunate, but changing gcc2_compiled
   would cause more chaos than dealing with some struct returns being
   would cause more chaos than dealing with some struct returns being
   handled wrong.  */
   handled wrong.  */
 
 
int
int
generic_use_struct_convention (int gcc_p, struct type *value_type)
generic_use_struct_convention (int gcc_p, struct type *value_type)
{
{
  return !((gcc_p == 1)
  return !((gcc_p == 1)
           && (TYPE_LENGTH (value_type) == 1
           && (TYPE_LENGTH (value_type) == 1
               || TYPE_LENGTH (value_type) == 2
               || TYPE_LENGTH (value_type) == 2
               || TYPE_LENGTH (value_type) == 4
               || TYPE_LENGTH (value_type) == 4
               || TYPE_LENGTH (value_type) == 8));
               || TYPE_LENGTH (value_type) == 8));
}
}
 
 
#ifndef USE_STRUCT_CONVENTION
#ifndef USE_STRUCT_CONVENTION
#define USE_STRUCT_CONVENTION(gcc_p,type) generic_use_struct_convention (gcc_p, type)
#define USE_STRUCT_CONVENTION(gcc_p,type) generic_use_struct_convention (gcc_p, type)
#endif
#endif
 
 
 
 
/* Return true if the function specified is using the structure returning
/* Return true if the function specified is using the structure returning
   convention on this machine to return arguments, or 0 if it is using
   convention on this machine to return arguments, or 0 if it is using
   the value returning convention.  FUNCTION is the value representing
   the value returning convention.  FUNCTION is the value representing
   the function, FUNCADDR is the address of the function, and VALUE_TYPE
   the function, FUNCADDR is the address of the function, and VALUE_TYPE
   is the type returned by the function.  GCC_P is nonzero if compiled
   is the type returned by the function.  GCC_P is nonzero if compiled
   with GCC.  */
   with GCC.  */
 
 
/* ARGSUSED */
/* ARGSUSED */
int
int
using_struct_return (value_ptr function, CORE_ADDR funcaddr,
using_struct_return (value_ptr function, CORE_ADDR funcaddr,
                     struct type *value_type, int gcc_p)
                     struct type *value_type, int gcc_p)
{
{
  register enum type_code code = TYPE_CODE (value_type);
  register enum type_code code = TYPE_CODE (value_type);
 
 
  if (code == TYPE_CODE_ERROR)
  if (code == TYPE_CODE_ERROR)
    error ("Function return type unknown.");
    error ("Function return type unknown.");
 
 
  if (code == TYPE_CODE_STRUCT
  if (code == TYPE_CODE_STRUCT
      || code == TYPE_CODE_UNION
      || code == TYPE_CODE_UNION
      || code == TYPE_CODE_ARRAY
      || code == TYPE_CODE_ARRAY
      || RETURN_VALUE_ON_STACK (value_type))
      || RETURN_VALUE_ON_STACK (value_type))
    return USE_STRUCT_CONVENTION (gcc_p, value_type);
    return USE_STRUCT_CONVENTION (gcc_p, value_type);
 
 
  return 0;
  return 0;
}
}
 
 
/* Store VAL so it will be returned if a function returns now.
/* Store VAL so it will be returned if a function returns now.
   Does not verify that VAL's type matches what the current
   Does not verify that VAL's type matches what the current
   function wants to return.  */
   function wants to return.  */
 
 
void
void
set_return_value (value_ptr val)
set_return_value (value_ptr val)
{
{
  struct type *type = check_typedef (VALUE_TYPE (val));
  struct type *type = check_typedef (VALUE_TYPE (val));
  register enum type_code code = TYPE_CODE (type);
  register enum type_code code = TYPE_CODE (type);
 
 
  if (code == TYPE_CODE_ERROR)
  if (code == TYPE_CODE_ERROR)
    error ("Function return type unknown.");
    error ("Function return type unknown.");
 
 
  if (code == TYPE_CODE_STRUCT
  if (code == TYPE_CODE_STRUCT
      || code == TYPE_CODE_UNION)       /* FIXME, implement struct return.  */
      || code == TYPE_CODE_UNION)       /* FIXME, implement struct return.  */
    error ("GDB does not support specifying a struct or union return value.");
    error ("GDB does not support specifying a struct or union return value.");
 
 
  STORE_RETURN_VALUE (type, VALUE_CONTENTS (val));
  STORE_RETURN_VALUE (type, VALUE_CONTENTS (val));
}
}


void
void
_initialize_values (void)
_initialize_values (void)
{
{
  add_cmd ("convenience", no_class, show_convenience,
  add_cmd ("convenience", no_class, show_convenience,
           "Debugger convenience (\"$foo\") variables.\n\
           "Debugger convenience (\"$foo\") variables.\n\
These variables are created when you assign them values;\n\
These variables are created when you assign them values;\n\
thus, \"print $foo=1\" gives \"$foo\" the value 1.  Values may be any type.\n\n\
thus, \"print $foo=1\" gives \"$foo\" the value 1.  Values may be any type.\n\n\
A few convenience variables are given values automatically:\n\
A few convenience variables are given values automatically:\n\
\"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
\"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
\"$__\" holds the contents of the last address examined with \"x\".",
\"$__\" holds the contents of the last address examined with \"x\".",
           &showlist);
           &showlist);
 
 
  add_cmd ("values", no_class, show_values,
  add_cmd ("values", no_class, show_values,
           "Elements of value history around item number IDX (or last ten).",
           "Elements of value history around item number IDX (or last ten).",
           &showlist);
           &showlist);
}
}
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.