OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [linux/] [linux-2.4/] [crypto/] [aes.c] - Diff between revs 1275 and 1765

Only display areas with differences | Details | Blame | View Log

Rev 1275 Rev 1765
/*
/*
 * Cryptographic API.
 * Cryptographic API.
 *
 *
 * AES Cipher Algorithm.
 * AES Cipher Algorithm.
 *
 *
 * Based on Brian Gladman's code.
 * Based on Brian Gladman's code.
 *
 *
 * Linux developers:
 * Linux developers:
 *  Alexander Kjeldaas <astor@fast.no>
 *  Alexander Kjeldaas <astor@fast.no>
 *  Herbert Valerio Riedel <hvr@hvrlab.org>
 *  Herbert Valerio Riedel <hvr@hvrlab.org>
 *  Kyle McMartin <kyle@debian.org>
 *  Kyle McMartin <kyle@debian.org>
 *  Adam J. Richter <adam@yggdrasil.com> (conversion to 2.5 API).
 *  Adam J. Richter <adam@yggdrasil.com> (conversion to 2.5 API).
 *
 *
 * This program is free software; you can redistribute it and/or modify
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 * (at your option) any later version.
 *
 *
 * ---------------------------------------------------------------------------
 * ---------------------------------------------------------------------------
 * Copyright (c) 2002, Dr Brian Gladman <brg@gladman.me.uk>, Worcester, UK.
 * Copyright (c) 2002, Dr Brian Gladman <brg@gladman.me.uk>, Worcester, UK.
 * All rights reserved.
 * All rights reserved.
 *
 *
 * LICENSE TERMS
 * LICENSE TERMS
 *
 *
 * The free distribution and use of this software in both source and binary
 * The free distribution and use of this software in both source and binary
 * form is allowed (with or without changes) provided that:
 * form is allowed (with or without changes) provided that:
 *
 *
 *   1. distributions of this source code include the above copyright
 *   1. distributions of this source code include the above copyright
 *      notice, this list of conditions and the following disclaimer;
 *      notice, this list of conditions and the following disclaimer;
 *
 *
 *   2. distributions in binary form include the above copyright
 *   2. distributions in binary form include the above copyright
 *      notice, this list of conditions and the following disclaimer
 *      notice, this list of conditions and the following disclaimer
 *      in the documentation and/or other associated materials;
 *      in the documentation and/or other associated materials;
 *
 *
 *   3. the copyright holder's name is not used to endorse products
 *   3. the copyright holder's name is not used to endorse products
 *      built using this software without specific written permission.
 *      built using this software without specific written permission.
 *
 *
 * ALTERNATIVELY, provided that this notice is retained in full, this product
 * ALTERNATIVELY, provided that this notice is retained in full, this product
 * may be distributed under the terms of the GNU General Public License (GPL),
 * may be distributed under the terms of the GNU General Public License (GPL),
 * in which case the provisions of the GPL apply INSTEAD OF those given above.
 * in which case the provisions of the GPL apply INSTEAD OF those given above.
 *
 *
 * DISCLAIMER
 * DISCLAIMER
 *
 *
 * This software is provided 'as is' with no explicit or implied warranties
 * This software is provided 'as is' with no explicit or implied warranties
 * in respect of its properties, including, but not limited to, correctness
 * in respect of its properties, including, but not limited to, correctness
 * and/or fitness for purpose.
 * and/or fitness for purpose.
 * ---------------------------------------------------------------------------
 * ---------------------------------------------------------------------------
 */
 */
 
 
/* Some changes from the Gladman version:
/* Some changes from the Gladman version:
    s/RIJNDAEL(e_key)/E_KEY/g
    s/RIJNDAEL(e_key)/E_KEY/g
    s/RIJNDAEL(d_key)/D_KEY/g
    s/RIJNDAEL(d_key)/D_KEY/g
*/
*/
 
 
#include <linux/module.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/init.h>
#include <linux/types.h>
#include <linux/types.h>
#include <linux/errno.h>
#include <linux/errno.h>
#include <linux/crypto.h>
#include <linux/crypto.h>
#include <asm/byteorder.h>
#include <asm/byteorder.h>
 
 
#define AES_MIN_KEY_SIZE        16
#define AES_MIN_KEY_SIZE        16
#define AES_MAX_KEY_SIZE        32
#define AES_MAX_KEY_SIZE        32
 
 
#define AES_BLOCK_SIZE          16
#define AES_BLOCK_SIZE          16
 
 
static inline
static inline
u32 generic_rotr32 (const u32 x, const unsigned bits)
u32 generic_rotr32 (const u32 x, const unsigned bits)
{
{
        const unsigned n = bits % 32;
        const unsigned n = bits % 32;
        return (x >> n) | (x << (32 - n));
        return (x >> n) | (x << (32 - n));
}
}
 
 
static inline
static inline
u32 generic_rotl32 (const u32 x, const unsigned bits)
u32 generic_rotl32 (const u32 x, const unsigned bits)
{
{
        const unsigned n = bits % 32;
        const unsigned n = bits % 32;
        return (x << n) | (x >> (32 - n));
        return (x << n) | (x >> (32 - n));
}
}
 
 
#define rotl generic_rotl32
#define rotl generic_rotl32
#define rotr generic_rotr32
#define rotr generic_rotr32
 
 
/*
/*
 * #define byte(x, nr) ((unsigned char)((x) >> (nr*8)))
 * #define byte(x, nr) ((unsigned char)((x) >> (nr*8)))
 */
 */
inline static u8
inline static u8
byte(const u32 x, const unsigned n)
byte(const u32 x, const unsigned n)
{
{
        return x >> (n << 3);
        return x >> (n << 3);
}
}
 
 
#define u32_in(x) le32_to_cpu(*(const u32 *)(x))
#define u32_in(x) le32_to_cpu(*(const u32 *)(x))
#define u32_out(to, from) (*(u32 *)(to) = cpu_to_le32(from))
#define u32_out(to, from) (*(u32 *)(to) = cpu_to_le32(from))
 
 
struct aes_ctx {
struct aes_ctx {
        int key_length;
        int key_length;
        u32 E[60];
        u32 E[60];
        u32 D[60];
        u32 D[60];
};
};
 
 
#define E_KEY ctx->E
#define E_KEY ctx->E
#define D_KEY ctx->D
#define D_KEY ctx->D
 
 
static u8 pow_tab[256];
static u8 pow_tab[256];
static u8 log_tab[256];
static u8 log_tab[256];
static u8 sbx_tab[256];
static u8 sbx_tab[256];
static u8 isb_tab[256];
static u8 isb_tab[256];
static u32 rco_tab[10];
static u32 rco_tab[10];
static u32 ft_tab[4][256];
static u32 ft_tab[4][256];
static u32 it_tab[4][256];
static u32 it_tab[4][256];
 
 
static u32 fl_tab[4][256];
static u32 fl_tab[4][256];
static u32 il_tab[4][256];
static u32 il_tab[4][256];
 
 
static inline u8
static inline u8
f_mult (u8 a, u8 b)
f_mult (u8 a, u8 b)
{
{
        u8 aa = log_tab[a], cc = aa + log_tab[b];
        u8 aa = log_tab[a], cc = aa + log_tab[b];
 
 
        return pow_tab[cc + (cc < aa ? 1 : 0)];
        return pow_tab[cc + (cc < aa ? 1 : 0)];
}
}
 
 
#define ff_mult(a,b)    (a && b ? f_mult(a, b) : 0)
#define ff_mult(a,b)    (a && b ? f_mult(a, b) : 0)
 
 
#define f_rn(bo, bi, n, k)                                      \
#define f_rn(bo, bi, n, k)                                      \
    bo[n] =  ft_tab[0][byte(bi[n],0)] ^                           \
    bo[n] =  ft_tab[0][byte(bi[n],0)] ^                           \
             ft_tab[1][byte(bi[(n + 1) & 3],1)] ^               \
             ft_tab[1][byte(bi[(n + 1) & 3],1)] ^               \
             ft_tab[2][byte(bi[(n + 2) & 3],2)] ^               \
             ft_tab[2][byte(bi[(n + 2) & 3],2)] ^               \
             ft_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n)
             ft_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n)
 
 
#define i_rn(bo, bi, n, k)                                      \
#define i_rn(bo, bi, n, k)                                      \
    bo[n] =  it_tab[0][byte(bi[n],0)] ^                           \
    bo[n] =  it_tab[0][byte(bi[n],0)] ^                           \
             it_tab[1][byte(bi[(n + 3) & 3],1)] ^               \
             it_tab[1][byte(bi[(n + 3) & 3],1)] ^               \
             it_tab[2][byte(bi[(n + 2) & 3],2)] ^               \
             it_tab[2][byte(bi[(n + 2) & 3],2)] ^               \
             it_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n)
             it_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n)
 
 
#define ls_box(x)                               \
#define ls_box(x)                               \
    ( fl_tab[0][byte(x, 0)] ^                     \
    ( fl_tab[0][byte(x, 0)] ^                     \
      fl_tab[1][byte(x, 1)] ^                   \
      fl_tab[1][byte(x, 1)] ^                   \
      fl_tab[2][byte(x, 2)] ^                   \
      fl_tab[2][byte(x, 2)] ^                   \
      fl_tab[3][byte(x, 3)] )
      fl_tab[3][byte(x, 3)] )
 
 
#define f_rl(bo, bi, n, k)                                      \
#define f_rl(bo, bi, n, k)                                      \
    bo[n] =  fl_tab[0][byte(bi[n],0)] ^                           \
    bo[n] =  fl_tab[0][byte(bi[n],0)] ^                           \
             fl_tab[1][byte(bi[(n + 1) & 3],1)] ^               \
             fl_tab[1][byte(bi[(n + 1) & 3],1)] ^               \
             fl_tab[2][byte(bi[(n + 2) & 3],2)] ^               \
             fl_tab[2][byte(bi[(n + 2) & 3],2)] ^               \
             fl_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n)
             fl_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n)
 
 
#define i_rl(bo, bi, n, k)                                      \
#define i_rl(bo, bi, n, k)                                      \
    bo[n] =  il_tab[0][byte(bi[n],0)] ^                           \
    bo[n] =  il_tab[0][byte(bi[n],0)] ^                           \
             il_tab[1][byte(bi[(n + 3) & 3],1)] ^               \
             il_tab[1][byte(bi[(n + 3) & 3],1)] ^               \
             il_tab[2][byte(bi[(n + 2) & 3],2)] ^               \
             il_tab[2][byte(bi[(n + 2) & 3],2)] ^               \
             il_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n)
             il_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n)
 
 
static void
static void
gen_tabs (void)
gen_tabs (void)
{
{
        u32 i, t;
        u32 i, t;
        u8 p, q;
        u8 p, q;
 
 
        /* log and power tables for GF(2**8) finite field with
        /* log and power tables for GF(2**8) finite field with
           0x011b as modular polynomial - the simplest prmitive
           0x011b as modular polynomial - the simplest prmitive
           root is 0x03, used here to generate the tables */
           root is 0x03, used here to generate the tables */
 
 
        for (i = 0, p = 1; i < 256; ++i) {
        for (i = 0, p = 1; i < 256; ++i) {
                pow_tab[i] = (u8) p;
                pow_tab[i] = (u8) p;
                log_tab[p] = (u8) i;
                log_tab[p] = (u8) i;
 
 
                p ^= (p << 1) ^ (p & 0x80 ? 0x01b : 0);
                p ^= (p << 1) ^ (p & 0x80 ? 0x01b : 0);
        }
        }
 
 
        log_tab[1] = 0;
        log_tab[1] = 0;
 
 
        for (i = 0, p = 1; i < 10; ++i) {
        for (i = 0, p = 1; i < 10; ++i) {
                rco_tab[i] = p;
                rco_tab[i] = p;
 
 
                p = (p << 1) ^ (p & 0x80 ? 0x01b : 0);
                p = (p << 1) ^ (p & 0x80 ? 0x01b : 0);
        }
        }
 
 
        for (i = 0; i < 256; ++i) {
        for (i = 0; i < 256; ++i) {
                p = (i ? pow_tab[255 - log_tab[i]] : 0);
                p = (i ? pow_tab[255 - log_tab[i]] : 0);
                q = ((p >> 7) | (p << 1)) ^ ((p >> 6) | (p << 2));
                q = ((p >> 7) | (p << 1)) ^ ((p >> 6) | (p << 2));
                p ^= 0x63 ^ q ^ ((q >> 6) | (q << 2));
                p ^= 0x63 ^ q ^ ((q >> 6) | (q << 2));
                sbx_tab[i] = p;
                sbx_tab[i] = p;
                isb_tab[p] = (u8) i;
                isb_tab[p] = (u8) i;
        }
        }
 
 
        for (i = 0; i < 256; ++i) {
        for (i = 0; i < 256; ++i) {
                p = sbx_tab[i];
                p = sbx_tab[i];
 
 
                t = p;
                t = p;
                fl_tab[0][i] = t;
                fl_tab[0][i] = t;
                fl_tab[1][i] = rotl (t, 8);
                fl_tab[1][i] = rotl (t, 8);
                fl_tab[2][i] = rotl (t, 16);
                fl_tab[2][i] = rotl (t, 16);
                fl_tab[3][i] = rotl (t, 24);
                fl_tab[3][i] = rotl (t, 24);
 
 
                t = ((u32) ff_mult (2, p)) |
                t = ((u32) ff_mult (2, p)) |
                    ((u32) p << 8) |
                    ((u32) p << 8) |
                    ((u32) p << 16) | ((u32) ff_mult (3, p) << 24);
                    ((u32) p << 16) | ((u32) ff_mult (3, p) << 24);
 
 
                ft_tab[0][i] = t;
                ft_tab[0][i] = t;
                ft_tab[1][i] = rotl (t, 8);
                ft_tab[1][i] = rotl (t, 8);
                ft_tab[2][i] = rotl (t, 16);
                ft_tab[2][i] = rotl (t, 16);
                ft_tab[3][i] = rotl (t, 24);
                ft_tab[3][i] = rotl (t, 24);
 
 
                p = isb_tab[i];
                p = isb_tab[i];
 
 
                t = p;
                t = p;
                il_tab[0][i] = t;
                il_tab[0][i] = t;
                il_tab[1][i] = rotl (t, 8);
                il_tab[1][i] = rotl (t, 8);
                il_tab[2][i] = rotl (t, 16);
                il_tab[2][i] = rotl (t, 16);
                il_tab[3][i] = rotl (t, 24);
                il_tab[3][i] = rotl (t, 24);
 
 
                t = ((u32) ff_mult (14, p)) |
                t = ((u32) ff_mult (14, p)) |
                    ((u32) ff_mult (9, p) << 8) |
                    ((u32) ff_mult (9, p) << 8) |
                    ((u32) ff_mult (13, p) << 16) |
                    ((u32) ff_mult (13, p) << 16) |
                    ((u32) ff_mult (11, p) << 24);
                    ((u32) ff_mult (11, p) << 24);
 
 
                it_tab[0][i] = t;
                it_tab[0][i] = t;
                it_tab[1][i] = rotl (t, 8);
                it_tab[1][i] = rotl (t, 8);
                it_tab[2][i] = rotl (t, 16);
                it_tab[2][i] = rotl (t, 16);
                it_tab[3][i] = rotl (t, 24);
                it_tab[3][i] = rotl (t, 24);
        }
        }
}
}
 
 
#define star_x(x) (((x) & 0x7f7f7f7f) << 1) ^ ((((x) & 0x80808080) >> 7) * 0x1b)
#define star_x(x) (((x) & 0x7f7f7f7f) << 1) ^ ((((x) & 0x80808080) >> 7) * 0x1b)
 
 
#define imix_col(y,x)       \
#define imix_col(y,x)       \
    u   = star_x(x);        \
    u   = star_x(x);        \
    v   = star_x(u);        \
    v   = star_x(u);        \
    w   = star_x(v);        \
    w   = star_x(v);        \
    t   = w ^ (x);          \
    t   = w ^ (x);          \
   (y)  = u ^ v ^ w;        \
   (y)  = u ^ v ^ w;        \
   (y) ^= rotr(u ^ t,  8) ^ \
   (y) ^= rotr(u ^ t,  8) ^ \
          rotr(v ^ t, 16) ^ \
          rotr(v ^ t, 16) ^ \
          rotr(t,24)
          rotr(t,24)
 
 
/* initialise the key schedule from the user supplied key */
/* initialise the key schedule from the user supplied key */
 
 
#define loop4(i)                                    \
#define loop4(i)                                    \
{   t = rotr(t,  8); t = ls_box(t) ^ rco_tab[i];    \
{   t = rotr(t,  8); t = ls_box(t) ^ rco_tab[i];    \
    t ^= E_KEY[4 * i];     E_KEY[4 * i + 4] = t;    \
    t ^= E_KEY[4 * i];     E_KEY[4 * i + 4] = t;    \
    t ^= E_KEY[4 * i + 1]; E_KEY[4 * i + 5] = t;    \
    t ^= E_KEY[4 * i + 1]; E_KEY[4 * i + 5] = t;    \
    t ^= E_KEY[4 * i + 2]; E_KEY[4 * i + 6] = t;    \
    t ^= E_KEY[4 * i + 2]; E_KEY[4 * i + 6] = t;    \
    t ^= E_KEY[4 * i + 3]; E_KEY[4 * i + 7] = t;    \
    t ^= E_KEY[4 * i + 3]; E_KEY[4 * i + 7] = t;    \
}
}
 
 
#define loop6(i)                                    \
#define loop6(i)                                    \
{   t = rotr(t,  8); t = ls_box(t) ^ rco_tab[i];    \
{   t = rotr(t,  8); t = ls_box(t) ^ rco_tab[i];    \
    t ^= E_KEY[6 * i];     E_KEY[6 * i + 6] = t;    \
    t ^= E_KEY[6 * i];     E_KEY[6 * i + 6] = t;    \
    t ^= E_KEY[6 * i + 1]; E_KEY[6 * i + 7] = t;    \
    t ^= E_KEY[6 * i + 1]; E_KEY[6 * i + 7] = t;    \
    t ^= E_KEY[6 * i + 2]; E_KEY[6 * i + 8] = t;    \
    t ^= E_KEY[6 * i + 2]; E_KEY[6 * i + 8] = t;    \
    t ^= E_KEY[6 * i + 3]; E_KEY[6 * i + 9] = t;    \
    t ^= E_KEY[6 * i + 3]; E_KEY[6 * i + 9] = t;    \
    t ^= E_KEY[6 * i + 4]; E_KEY[6 * i + 10] = t;   \
    t ^= E_KEY[6 * i + 4]; E_KEY[6 * i + 10] = t;   \
    t ^= E_KEY[6 * i + 5]; E_KEY[6 * i + 11] = t;   \
    t ^= E_KEY[6 * i + 5]; E_KEY[6 * i + 11] = t;   \
}
}
 
 
#define loop8(i)                                    \
#define loop8(i)                                    \
{   t = rotr(t,  8); ; t = ls_box(t) ^ rco_tab[i];  \
{   t = rotr(t,  8); ; t = ls_box(t) ^ rco_tab[i];  \
    t ^= E_KEY[8 * i];     E_KEY[8 * i + 8] = t;    \
    t ^= E_KEY[8 * i];     E_KEY[8 * i + 8] = t;    \
    t ^= E_KEY[8 * i + 1]; E_KEY[8 * i + 9] = t;    \
    t ^= E_KEY[8 * i + 1]; E_KEY[8 * i + 9] = t;    \
    t ^= E_KEY[8 * i + 2]; E_KEY[8 * i + 10] = t;   \
    t ^= E_KEY[8 * i + 2]; E_KEY[8 * i + 10] = t;   \
    t ^= E_KEY[8 * i + 3]; E_KEY[8 * i + 11] = t;   \
    t ^= E_KEY[8 * i + 3]; E_KEY[8 * i + 11] = t;   \
    t  = E_KEY[8 * i + 4] ^ ls_box(t);    \
    t  = E_KEY[8 * i + 4] ^ ls_box(t);    \
    E_KEY[8 * i + 12] = t;                \
    E_KEY[8 * i + 12] = t;                \
    t ^= E_KEY[8 * i + 5]; E_KEY[8 * i + 13] = t;   \
    t ^= E_KEY[8 * i + 5]; E_KEY[8 * i + 13] = t;   \
    t ^= E_KEY[8 * i + 6]; E_KEY[8 * i + 14] = t;   \
    t ^= E_KEY[8 * i + 6]; E_KEY[8 * i + 14] = t;   \
    t ^= E_KEY[8 * i + 7]; E_KEY[8 * i + 15] = t;   \
    t ^= E_KEY[8 * i + 7]; E_KEY[8 * i + 15] = t;   \
}
}
 
 
static int
static int
aes_set_key(void *ctx_arg, const u8 *in_key, unsigned int key_len, u32 *flags)
aes_set_key(void *ctx_arg, const u8 *in_key, unsigned int key_len, u32 *flags)
{
{
        struct aes_ctx *ctx = ctx_arg;
        struct aes_ctx *ctx = ctx_arg;
        u32 i, t, u, v, w;
        u32 i, t, u, v, w;
 
 
        if (key_len != 16 && key_len != 24 && key_len != 32) {
        if (key_len != 16 && key_len != 24 && key_len != 32) {
                *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
                *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
                return -EINVAL;
                return -EINVAL;
        }
        }
 
 
        ctx->key_length = key_len;
        ctx->key_length = key_len;
 
 
        E_KEY[0] = u32_in (in_key);
        E_KEY[0] = u32_in (in_key);
        E_KEY[1] = u32_in (in_key + 4);
        E_KEY[1] = u32_in (in_key + 4);
        E_KEY[2] = u32_in (in_key + 8);
        E_KEY[2] = u32_in (in_key + 8);
        E_KEY[3] = u32_in (in_key + 12);
        E_KEY[3] = u32_in (in_key + 12);
 
 
        switch (key_len) {
        switch (key_len) {
        case 16:
        case 16:
                t = E_KEY[3];
                t = E_KEY[3];
                for (i = 0; i < 10; ++i)
                for (i = 0; i < 10; ++i)
                        loop4 (i);
                        loop4 (i);
                break;
                break;
 
 
        case 24:
        case 24:
                E_KEY[4] = u32_in (in_key + 16);
                E_KEY[4] = u32_in (in_key + 16);
                t = E_KEY[5] = u32_in (in_key + 20);
                t = E_KEY[5] = u32_in (in_key + 20);
                for (i = 0; i < 8; ++i)
                for (i = 0; i < 8; ++i)
                        loop6 (i);
                        loop6 (i);
                break;
                break;
 
 
        case 32:
        case 32:
                E_KEY[4] = u32_in (in_key + 16);
                E_KEY[4] = u32_in (in_key + 16);
                E_KEY[5] = u32_in (in_key + 20);
                E_KEY[5] = u32_in (in_key + 20);
                E_KEY[6] = u32_in (in_key + 24);
                E_KEY[6] = u32_in (in_key + 24);
                t = E_KEY[7] = u32_in (in_key + 28);
                t = E_KEY[7] = u32_in (in_key + 28);
                for (i = 0; i < 7; ++i)
                for (i = 0; i < 7; ++i)
                        loop8 (i);
                        loop8 (i);
                break;
                break;
        }
        }
 
 
        D_KEY[0] = E_KEY[0];
        D_KEY[0] = E_KEY[0];
        D_KEY[1] = E_KEY[1];
        D_KEY[1] = E_KEY[1];
        D_KEY[2] = E_KEY[2];
        D_KEY[2] = E_KEY[2];
        D_KEY[3] = E_KEY[3];
        D_KEY[3] = E_KEY[3];
 
 
        for (i = 4; i < key_len + 24; ++i) {
        for (i = 4; i < key_len + 24; ++i) {
                imix_col (D_KEY[i], E_KEY[i]);
                imix_col (D_KEY[i], E_KEY[i]);
        }
        }
 
 
        return 0;
        return 0;
}
}
 
 
/* encrypt a block of text */
/* encrypt a block of text */
 
 
#define f_nround(bo, bi, k) \
#define f_nround(bo, bi, k) \
    f_rn(bo, bi, 0, k);     \
    f_rn(bo, bi, 0, k);     \
    f_rn(bo, bi, 1, k);     \
    f_rn(bo, bi, 1, k);     \
    f_rn(bo, bi, 2, k);     \
    f_rn(bo, bi, 2, k);     \
    f_rn(bo, bi, 3, k);     \
    f_rn(bo, bi, 3, k);     \
    k += 4
    k += 4
 
 
#define f_lround(bo, bi, k) \
#define f_lround(bo, bi, k) \
    f_rl(bo, bi, 0, k);     \
    f_rl(bo, bi, 0, k);     \
    f_rl(bo, bi, 1, k);     \
    f_rl(bo, bi, 1, k);     \
    f_rl(bo, bi, 2, k);     \
    f_rl(bo, bi, 2, k);     \
    f_rl(bo, bi, 3, k)
    f_rl(bo, bi, 3, k)
 
 
static void aes_encrypt(void *ctx_arg, u8 *out, const u8 *in)
static void aes_encrypt(void *ctx_arg, u8 *out, const u8 *in)
{
{
        const struct aes_ctx *ctx = ctx_arg;
        const struct aes_ctx *ctx = ctx_arg;
        u32 b0[4], b1[4];
        u32 b0[4], b1[4];
        const u32 *kp = E_KEY + 4;
        const u32 *kp = E_KEY + 4;
 
 
        b0[0] = u32_in (in) ^ E_KEY[0];
        b0[0] = u32_in (in) ^ E_KEY[0];
        b0[1] = u32_in (in + 4) ^ E_KEY[1];
        b0[1] = u32_in (in + 4) ^ E_KEY[1];
        b0[2] = u32_in (in + 8) ^ E_KEY[2];
        b0[2] = u32_in (in + 8) ^ E_KEY[2];
        b0[3] = u32_in (in + 12) ^ E_KEY[3];
        b0[3] = u32_in (in + 12) ^ E_KEY[3];
 
 
        if (ctx->key_length > 24) {
        if (ctx->key_length > 24) {
                f_nround (b1, b0, kp);
                f_nround (b1, b0, kp);
                f_nround (b0, b1, kp);
                f_nround (b0, b1, kp);
        }
        }
 
 
        if (ctx->key_length > 16) {
        if (ctx->key_length > 16) {
                f_nround (b1, b0, kp);
                f_nround (b1, b0, kp);
                f_nround (b0, b1, kp);
                f_nround (b0, b1, kp);
        }
        }
 
 
        f_nround (b1, b0, kp);
        f_nround (b1, b0, kp);
        f_nround (b0, b1, kp);
        f_nround (b0, b1, kp);
        f_nround (b1, b0, kp);
        f_nround (b1, b0, kp);
        f_nround (b0, b1, kp);
        f_nround (b0, b1, kp);
        f_nround (b1, b0, kp);
        f_nround (b1, b0, kp);
        f_nround (b0, b1, kp);
        f_nround (b0, b1, kp);
        f_nround (b1, b0, kp);
        f_nround (b1, b0, kp);
        f_nround (b0, b1, kp);
        f_nround (b0, b1, kp);
        f_nround (b1, b0, kp);
        f_nround (b1, b0, kp);
        f_lround (b0, b1, kp);
        f_lround (b0, b1, kp);
 
 
        u32_out (out, b0[0]);
        u32_out (out, b0[0]);
        u32_out (out + 4, b0[1]);
        u32_out (out + 4, b0[1]);
        u32_out (out + 8, b0[2]);
        u32_out (out + 8, b0[2]);
        u32_out (out + 12, b0[3]);
        u32_out (out + 12, b0[3]);
}
}
 
 
/* decrypt a block of text */
/* decrypt a block of text */
 
 
#define i_nround(bo, bi, k) \
#define i_nround(bo, bi, k) \
    i_rn(bo, bi, 0, k);     \
    i_rn(bo, bi, 0, k);     \
    i_rn(bo, bi, 1, k);     \
    i_rn(bo, bi, 1, k);     \
    i_rn(bo, bi, 2, k);     \
    i_rn(bo, bi, 2, k);     \
    i_rn(bo, bi, 3, k);     \
    i_rn(bo, bi, 3, k);     \
    k -= 4
    k -= 4
 
 
#define i_lround(bo, bi, k) \
#define i_lround(bo, bi, k) \
    i_rl(bo, bi, 0, k);     \
    i_rl(bo, bi, 0, k);     \
    i_rl(bo, bi, 1, k);     \
    i_rl(bo, bi, 1, k);     \
    i_rl(bo, bi, 2, k);     \
    i_rl(bo, bi, 2, k);     \
    i_rl(bo, bi, 3, k)
    i_rl(bo, bi, 3, k)
 
 
static void aes_decrypt(void *ctx_arg, u8 *out, const u8 *in)
static void aes_decrypt(void *ctx_arg, u8 *out, const u8 *in)
{
{
        const struct aes_ctx *ctx = ctx_arg;
        const struct aes_ctx *ctx = ctx_arg;
        u32 b0[4], b1[4];
        u32 b0[4], b1[4];
        const int key_len = ctx->key_length;
        const int key_len = ctx->key_length;
        const u32 *kp = D_KEY + key_len + 20;
        const u32 *kp = D_KEY + key_len + 20;
 
 
        b0[0] = u32_in (in) ^ E_KEY[key_len + 24];
        b0[0] = u32_in (in) ^ E_KEY[key_len + 24];
        b0[1] = u32_in (in + 4) ^ E_KEY[key_len + 25];
        b0[1] = u32_in (in + 4) ^ E_KEY[key_len + 25];
        b0[2] = u32_in (in + 8) ^ E_KEY[key_len + 26];
        b0[2] = u32_in (in + 8) ^ E_KEY[key_len + 26];
        b0[3] = u32_in (in + 12) ^ E_KEY[key_len + 27];
        b0[3] = u32_in (in + 12) ^ E_KEY[key_len + 27];
 
 
        if (key_len > 24) {
        if (key_len > 24) {
                i_nround (b1, b0, kp);
                i_nround (b1, b0, kp);
                i_nround (b0, b1, kp);
                i_nround (b0, b1, kp);
        }
        }
 
 
        if (key_len > 16) {
        if (key_len > 16) {
                i_nround (b1, b0, kp);
                i_nround (b1, b0, kp);
                i_nround (b0, b1, kp);
                i_nround (b0, b1, kp);
        }
        }
 
 
        i_nround (b1, b0, kp);
        i_nround (b1, b0, kp);
        i_nround (b0, b1, kp);
        i_nround (b0, b1, kp);
        i_nround (b1, b0, kp);
        i_nround (b1, b0, kp);
        i_nround (b0, b1, kp);
        i_nround (b0, b1, kp);
        i_nround (b1, b0, kp);
        i_nround (b1, b0, kp);
        i_nround (b0, b1, kp);
        i_nround (b0, b1, kp);
        i_nround (b1, b0, kp);
        i_nround (b1, b0, kp);
        i_nround (b0, b1, kp);
        i_nround (b0, b1, kp);
        i_nround (b1, b0, kp);
        i_nround (b1, b0, kp);
        i_lround (b0, b1, kp);
        i_lround (b0, b1, kp);
 
 
        u32_out (out, b0[0]);
        u32_out (out, b0[0]);
        u32_out (out + 4, b0[1]);
        u32_out (out + 4, b0[1]);
        u32_out (out + 8, b0[2]);
        u32_out (out + 8, b0[2]);
        u32_out (out + 12, b0[3]);
        u32_out (out + 12, b0[3]);
}
}
 
 
 
 
static struct crypto_alg aes_alg = {
static struct crypto_alg aes_alg = {
        .cra_name               =       "aes",
        .cra_name               =       "aes",
        .cra_flags              =       CRYPTO_ALG_TYPE_CIPHER,
        .cra_flags              =       CRYPTO_ALG_TYPE_CIPHER,
        .cra_blocksize          =       AES_BLOCK_SIZE,
        .cra_blocksize          =       AES_BLOCK_SIZE,
        .cra_ctxsize            =       sizeof(struct aes_ctx),
        .cra_ctxsize            =       sizeof(struct aes_ctx),
        .cra_module             =       THIS_MODULE,
        .cra_module             =       THIS_MODULE,
        .cra_list               =       LIST_HEAD_INIT(aes_alg.cra_list),
        .cra_list               =       LIST_HEAD_INIT(aes_alg.cra_list),
        .cra_u                  =       {
        .cra_u                  =       {
                .cipher = {
                .cipher = {
                        .cia_min_keysize        =       AES_MIN_KEY_SIZE,
                        .cia_min_keysize        =       AES_MIN_KEY_SIZE,
                        .cia_max_keysize        =       AES_MAX_KEY_SIZE,
                        .cia_max_keysize        =       AES_MAX_KEY_SIZE,
                        .cia_setkey             =       aes_set_key,
                        .cia_setkey             =       aes_set_key,
                        .cia_encrypt            =       aes_encrypt,
                        .cia_encrypt            =       aes_encrypt,
                        .cia_decrypt            =       aes_decrypt
                        .cia_decrypt            =       aes_decrypt
                }
                }
        }
        }
};
};
 
 
static int __init aes_init(void)
static int __init aes_init(void)
{
{
        gen_tabs();
        gen_tabs();
        return crypto_register_alg(&aes_alg);
        return crypto_register_alg(&aes_alg);
}
}
 
 
static void __exit aes_fini(void)
static void __exit aes_fini(void)
{
{
        crypto_unregister_alg(&aes_alg);
        crypto_unregister_alg(&aes_alg);
}
}
 
 
module_init(aes_init);
module_init(aes_init);
module_exit(aes_fini);
module_exit(aes_fini);
 
 
MODULE_DESCRIPTION("Rijndael (AES) Cipher Algorithm");
MODULE_DESCRIPTION("Rijndael (AES) Cipher Algorithm");
MODULE_LICENSE("Dual BSD/GPL");
MODULE_LICENSE("Dual BSD/GPL");
 
 
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.