OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [linux/] [linux-2.4/] [crypto/] [cipher.c] - Diff between revs 1275 and 1765

Only display areas with differences | Details | Blame | View Log

Rev 1275 Rev 1765
/*
/*
 * Cryptographic API.
 * Cryptographic API.
 *
 *
 * Cipher operations.
 * Cipher operations.
 *
 *
 * Copyright (c) 2002 James Morris <jmorris@intercode.com.au>
 * Copyright (c) 2002 James Morris <jmorris@intercode.com.au>
 *
 *
 * This program is free software; you can redistribute it and/or modify it
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by the Free
 * under the terms of the GNU General Public License as published by the Free
 * Software Foundation; either version 2 of the License, or (at your option)
 * Software Foundation; either version 2 of the License, or (at your option)
 * any later version.
 * any later version.
 *
 *
 */
 */
#include <linux/kernel.h>
#include <linux/kernel.h>
#include <linux/crypto.h>
#include <linux/crypto.h>
#include <linux/errno.h>
#include <linux/errno.h>
#include <linux/mm.h>
#include <linux/mm.h>
#include <linux/slab.h>
#include <linux/slab.h>
#include <asm/scatterlist.h>
#include <asm/scatterlist.h>
#include "internal.h"
#include "internal.h"
#include "scatterwalk.h"
#include "scatterwalk.h"
 
 
typedef void (cryptfn_t)(void *, u8 *, const u8 *);
typedef void (cryptfn_t)(void *, u8 *, const u8 *);
typedef void (procfn_t)(struct crypto_tfm *, u8 *,
typedef void (procfn_t)(struct crypto_tfm *, u8 *,
                        u8*, cryptfn_t, int enc, void *, int);
                        u8*, cryptfn_t, int enc, void *, int);
 
 
static inline void xor_64(u8 *a, const u8 *b)
static inline void xor_64(u8 *a, const u8 *b)
{
{
        ((u32 *)a)[0] ^= ((u32 *)b)[0];
        ((u32 *)a)[0] ^= ((u32 *)b)[0];
        ((u32 *)a)[1] ^= ((u32 *)b)[1];
        ((u32 *)a)[1] ^= ((u32 *)b)[1];
}
}
 
 
static inline void xor_128(u8 *a, const u8 *b)
static inline void xor_128(u8 *a, const u8 *b)
{
{
        ((u32 *)a)[0] ^= ((u32 *)b)[0];
        ((u32 *)a)[0] ^= ((u32 *)b)[0];
        ((u32 *)a)[1] ^= ((u32 *)b)[1];
        ((u32 *)a)[1] ^= ((u32 *)b)[1];
        ((u32 *)a)[2] ^= ((u32 *)b)[2];
        ((u32 *)a)[2] ^= ((u32 *)b)[2];
        ((u32 *)a)[3] ^= ((u32 *)b)[3];
        ((u32 *)a)[3] ^= ((u32 *)b)[3];
}
}
 
 
 
 
/*
/*
 * Generic encrypt/decrypt wrapper for ciphers, handles operations across
 * Generic encrypt/decrypt wrapper for ciphers, handles operations across
 * multiple page boundaries by using temporary blocks.  In user context,
 * multiple page boundaries by using temporary blocks.  In user context,
 * the kernel is given a chance to schedule us once per block.
 * the kernel is given a chance to schedule us once per block.
 */
 */
static int crypt(struct crypto_tfm *tfm,
static int crypt(struct crypto_tfm *tfm,
                 struct scatterlist *dst,
                 struct scatterlist *dst,
                 struct scatterlist *src,
                 struct scatterlist *src,
                 unsigned int nbytes, cryptfn_t crfn,
                 unsigned int nbytes, cryptfn_t crfn,
                 procfn_t prfn, int enc, void *info)
                 procfn_t prfn, int enc, void *info)
{
{
        struct scatter_walk walk_in, walk_out;
        struct scatter_walk walk_in, walk_out;
        const unsigned int bsize = crypto_tfm_alg_blocksize(tfm);
        const unsigned int bsize = crypto_tfm_alg_blocksize(tfm);
        u8 tmp_src[nbytes > src->length ? bsize : 0];
        u8 tmp_src[nbytes > src->length ? bsize : 0];
        u8 tmp_dst[nbytes > dst->length ? bsize : 0];
        u8 tmp_dst[nbytes > dst->length ? bsize : 0];
 
 
        if (!nbytes)
        if (!nbytes)
                return 0;
                return 0;
 
 
        if (nbytes % bsize) {
        if (nbytes % bsize) {
                tfm->crt_flags |= CRYPTO_TFM_RES_BAD_BLOCK_LEN;
                tfm->crt_flags |= CRYPTO_TFM_RES_BAD_BLOCK_LEN;
                return -EINVAL;
                return -EINVAL;
        }
        }
 
 
        scatterwalk_start(&walk_in, src);
        scatterwalk_start(&walk_in, src);
        scatterwalk_start(&walk_out, dst);
        scatterwalk_start(&walk_out, dst);
 
 
        for(;;) {
        for(;;) {
                u8 *src_p, *dst_p;
                u8 *src_p, *dst_p;
 
 
                scatterwalk_map(&walk_in, 0);
                scatterwalk_map(&walk_in, 0);
                scatterwalk_map(&walk_out, 1);
                scatterwalk_map(&walk_out, 1);
                src_p = scatterwalk_whichbuf(&walk_in, bsize, tmp_src);
                src_p = scatterwalk_whichbuf(&walk_in, bsize, tmp_src);
                dst_p = scatterwalk_whichbuf(&walk_out, bsize, tmp_dst);
                dst_p = scatterwalk_whichbuf(&walk_out, bsize, tmp_dst);
 
 
                nbytes -= bsize;
                nbytes -= bsize;
 
 
                scatterwalk_copychunks(src_p, &walk_in, bsize, 0);
                scatterwalk_copychunks(src_p, &walk_in, bsize, 0);
 
 
                prfn(tfm, dst_p, src_p, crfn, enc, info,
                prfn(tfm, dst_p, src_p, crfn, enc, info,
                     scatterwalk_samebuf(&walk_in, &walk_out,
                     scatterwalk_samebuf(&walk_in, &walk_out,
                                         src_p, dst_p));
                                         src_p, dst_p));
 
 
                scatterwalk_done(&walk_in, 0, nbytes);
                scatterwalk_done(&walk_in, 0, nbytes);
 
 
                scatterwalk_copychunks(dst_p, &walk_out, bsize, 1);
                scatterwalk_copychunks(dst_p, &walk_out, bsize, 1);
                scatterwalk_done(&walk_out, 1, nbytes);
                scatterwalk_done(&walk_out, 1, nbytes);
 
 
                if (!nbytes)
                if (!nbytes)
                        return 0;
                        return 0;
 
 
                crypto_yield(tfm);
                crypto_yield(tfm);
        }
        }
}
}
 
 
static void cbc_process(struct crypto_tfm *tfm, u8 *dst, u8 *src,
static void cbc_process(struct crypto_tfm *tfm, u8 *dst, u8 *src,
                        cryptfn_t fn, int enc, void *info, int in_place)
                        cryptfn_t fn, int enc, void *info, int in_place)
{
{
        u8 *iv = info;
        u8 *iv = info;
 
 
        /* Null encryption */
        /* Null encryption */
        if (!iv)
        if (!iv)
                return;
                return;
 
 
        if (enc) {
        if (enc) {
                tfm->crt_u.cipher.cit_xor_block(iv, src);
                tfm->crt_u.cipher.cit_xor_block(iv, src);
                fn(crypto_tfm_ctx(tfm), dst, iv);
                fn(crypto_tfm_ctx(tfm), dst, iv);
                memcpy(iv, dst, crypto_tfm_alg_blocksize(tfm));
                memcpy(iv, dst, crypto_tfm_alg_blocksize(tfm));
        } else {
        } else {
                u8 stack[in_place ? crypto_tfm_alg_blocksize(tfm) : 0];
                u8 stack[in_place ? crypto_tfm_alg_blocksize(tfm) : 0];
                u8 *buf = in_place ? stack : dst;
                u8 *buf = in_place ? stack : dst;
 
 
                fn(crypto_tfm_ctx(tfm), buf, src);
                fn(crypto_tfm_ctx(tfm), buf, src);
                tfm->crt_u.cipher.cit_xor_block(buf, iv);
                tfm->crt_u.cipher.cit_xor_block(buf, iv);
                memcpy(iv, src, crypto_tfm_alg_blocksize(tfm));
                memcpy(iv, src, crypto_tfm_alg_blocksize(tfm));
                if (buf != dst)
                if (buf != dst)
                        memcpy(dst, buf, crypto_tfm_alg_blocksize(tfm));
                        memcpy(dst, buf, crypto_tfm_alg_blocksize(tfm));
        }
        }
}
}
 
 
static void ecb_process(struct crypto_tfm *tfm, u8 *dst, u8 *src,
static void ecb_process(struct crypto_tfm *tfm, u8 *dst, u8 *src,
                        cryptfn_t fn, int enc, void *info, int in_place)
                        cryptfn_t fn, int enc, void *info, int in_place)
{
{
        fn(crypto_tfm_ctx(tfm), dst, src);
        fn(crypto_tfm_ctx(tfm), dst, src);
}
}
 
 
static int setkey(struct crypto_tfm *tfm, const u8 *key, unsigned int keylen)
static int setkey(struct crypto_tfm *tfm, const u8 *key, unsigned int keylen)
{
{
        struct cipher_alg *cia = &tfm->__crt_alg->cra_cipher;
        struct cipher_alg *cia = &tfm->__crt_alg->cra_cipher;
 
 
        if (keylen < cia->cia_min_keysize || keylen > cia->cia_max_keysize) {
        if (keylen < cia->cia_min_keysize || keylen > cia->cia_max_keysize) {
                tfm->crt_flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
                tfm->crt_flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
                return -EINVAL;
                return -EINVAL;
        } else
        } else
                return cia->cia_setkey(crypto_tfm_ctx(tfm), key, keylen,
                return cia->cia_setkey(crypto_tfm_ctx(tfm), key, keylen,
                                       &tfm->crt_flags);
                                       &tfm->crt_flags);
}
}
 
 
static int ecb_encrypt(struct crypto_tfm *tfm,
static int ecb_encrypt(struct crypto_tfm *tfm,
                       struct scatterlist *dst,
                       struct scatterlist *dst,
                       struct scatterlist *src, unsigned int nbytes)
                       struct scatterlist *src, unsigned int nbytes)
{
{
        return crypt(tfm, dst, src, nbytes,
        return crypt(tfm, dst, src, nbytes,
                     tfm->__crt_alg->cra_cipher.cia_encrypt,
                     tfm->__crt_alg->cra_cipher.cia_encrypt,
                     ecb_process, 1, NULL);
                     ecb_process, 1, NULL);
}
}
 
 
static int ecb_decrypt(struct crypto_tfm *tfm,
static int ecb_decrypt(struct crypto_tfm *tfm,
                       struct scatterlist *dst,
                       struct scatterlist *dst,
                       struct scatterlist *src,
                       struct scatterlist *src,
                       unsigned int nbytes)
                       unsigned int nbytes)
{
{
        return crypt(tfm, dst, src, nbytes,
        return crypt(tfm, dst, src, nbytes,
                     tfm->__crt_alg->cra_cipher.cia_decrypt,
                     tfm->__crt_alg->cra_cipher.cia_decrypt,
                     ecb_process, 1, NULL);
                     ecb_process, 1, NULL);
}
}
 
 
static int cbc_encrypt(struct crypto_tfm *tfm,
static int cbc_encrypt(struct crypto_tfm *tfm,
                       struct scatterlist *dst,
                       struct scatterlist *dst,
                       struct scatterlist *src,
                       struct scatterlist *src,
                       unsigned int nbytes)
                       unsigned int nbytes)
{
{
        return crypt(tfm, dst, src, nbytes,
        return crypt(tfm, dst, src, nbytes,
                     tfm->__crt_alg->cra_cipher.cia_encrypt,
                     tfm->__crt_alg->cra_cipher.cia_encrypt,
                     cbc_process, 1, tfm->crt_cipher.cit_iv);
                     cbc_process, 1, tfm->crt_cipher.cit_iv);
}
}
 
 
static int cbc_encrypt_iv(struct crypto_tfm *tfm,
static int cbc_encrypt_iv(struct crypto_tfm *tfm,
                          struct scatterlist *dst,
                          struct scatterlist *dst,
                          struct scatterlist *src,
                          struct scatterlist *src,
                          unsigned int nbytes, u8 *iv)
                          unsigned int nbytes, u8 *iv)
{
{
        return crypt(tfm, dst, src, nbytes,
        return crypt(tfm, dst, src, nbytes,
                     tfm->__crt_alg->cra_cipher.cia_encrypt,
                     tfm->__crt_alg->cra_cipher.cia_encrypt,
                     cbc_process, 1, iv);
                     cbc_process, 1, iv);
}
}
 
 
static int cbc_decrypt(struct crypto_tfm *tfm,
static int cbc_decrypt(struct crypto_tfm *tfm,
                       struct scatterlist *dst,
                       struct scatterlist *dst,
                       struct scatterlist *src,
                       struct scatterlist *src,
                       unsigned int nbytes)
                       unsigned int nbytes)
{
{
        return crypt(tfm, dst, src, nbytes,
        return crypt(tfm, dst, src, nbytes,
                     tfm->__crt_alg->cra_cipher.cia_decrypt,
                     tfm->__crt_alg->cra_cipher.cia_decrypt,
                     cbc_process, 0, tfm->crt_cipher.cit_iv);
                     cbc_process, 0, tfm->crt_cipher.cit_iv);
}
}
 
 
static int cbc_decrypt_iv(struct crypto_tfm *tfm,
static int cbc_decrypt_iv(struct crypto_tfm *tfm,
                          struct scatterlist *dst,
                          struct scatterlist *dst,
                          struct scatterlist *src,
                          struct scatterlist *src,
                          unsigned int nbytes, u8 *iv)
                          unsigned int nbytes, u8 *iv)
{
{
        return crypt(tfm, dst, src, nbytes,
        return crypt(tfm, dst, src, nbytes,
                     tfm->__crt_alg->cra_cipher.cia_decrypt,
                     tfm->__crt_alg->cra_cipher.cia_decrypt,
                     cbc_process, 0, iv);
                     cbc_process, 0, iv);
}
}
 
 
static int nocrypt(struct crypto_tfm *tfm,
static int nocrypt(struct crypto_tfm *tfm,
                   struct scatterlist *dst,
                   struct scatterlist *dst,
                   struct scatterlist *src,
                   struct scatterlist *src,
                   unsigned int nbytes)
                   unsigned int nbytes)
{
{
        return -ENOSYS;
        return -ENOSYS;
}
}
 
 
static int nocrypt_iv(struct crypto_tfm *tfm,
static int nocrypt_iv(struct crypto_tfm *tfm,
                      struct scatterlist *dst,
                      struct scatterlist *dst,
                      struct scatterlist *src,
                      struct scatterlist *src,
                      unsigned int nbytes, u8 *iv)
                      unsigned int nbytes, u8 *iv)
{
{
        return -ENOSYS;
        return -ENOSYS;
}
}
 
 
int crypto_init_cipher_flags(struct crypto_tfm *tfm, u32 flags)
int crypto_init_cipher_flags(struct crypto_tfm *tfm, u32 flags)
{
{
        u32 mode = flags & CRYPTO_TFM_MODE_MASK;
        u32 mode = flags & CRYPTO_TFM_MODE_MASK;
 
 
        tfm->crt_cipher.cit_mode = mode ? mode : CRYPTO_TFM_MODE_ECB;
        tfm->crt_cipher.cit_mode = mode ? mode : CRYPTO_TFM_MODE_ECB;
        if (flags & CRYPTO_TFM_REQ_WEAK_KEY)
        if (flags & CRYPTO_TFM_REQ_WEAK_KEY)
                tfm->crt_flags = CRYPTO_TFM_REQ_WEAK_KEY;
                tfm->crt_flags = CRYPTO_TFM_REQ_WEAK_KEY;
 
 
        return 0;
        return 0;
}
}
 
 
int crypto_init_cipher_ops(struct crypto_tfm *tfm)
int crypto_init_cipher_ops(struct crypto_tfm *tfm)
{
{
        int ret = 0;
        int ret = 0;
        struct cipher_tfm *ops = &tfm->crt_cipher;
        struct cipher_tfm *ops = &tfm->crt_cipher;
 
 
        ops->cit_setkey = setkey;
        ops->cit_setkey = setkey;
 
 
        switch (tfm->crt_cipher.cit_mode) {
        switch (tfm->crt_cipher.cit_mode) {
        case CRYPTO_TFM_MODE_ECB:
        case CRYPTO_TFM_MODE_ECB:
                ops->cit_encrypt = ecb_encrypt;
                ops->cit_encrypt = ecb_encrypt;
                ops->cit_decrypt = ecb_decrypt;
                ops->cit_decrypt = ecb_decrypt;
                break;
                break;
 
 
        case CRYPTO_TFM_MODE_CBC:
        case CRYPTO_TFM_MODE_CBC:
                ops->cit_encrypt = cbc_encrypt;
                ops->cit_encrypt = cbc_encrypt;
                ops->cit_decrypt = cbc_decrypt;
                ops->cit_decrypt = cbc_decrypt;
                ops->cit_encrypt_iv = cbc_encrypt_iv;
                ops->cit_encrypt_iv = cbc_encrypt_iv;
                ops->cit_decrypt_iv = cbc_decrypt_iv;
                ops->cit_decrypt_iv = cbc_decrypt_iv;
                break;
                break;
 
 
        case CRYPTO_TFM_MODE_CFB:
        case CRYPTO_TFM_MODE_CFB:
                ops->cit_encrypt = nocrypt;
                ops->cit_encrypt = nocrypt;
                ops->cit_decrypt = nocrypt;
                ops->cit_decrypt = nocrypt;
                ops->cit_encrypt_iv = nocrypt_iv;
                ops->cit_encrypt_iv = nocrypt_iv;
                ops->cit_decrypt_iv = nocrypt_iv;
                ops->cit_decrypt_iv = nocrypt_iv;
                break;
                break;
 
 
        case CRYPTO_TFM_MODE_CTR:
        case CRYPTO_TFM_MODE_CTR:
                ops->cit_encrypt = nocrypt;
                ops->cit_encrypt = nocrypt;
                ops->cit_decrypt = nocrypt;
                ops->cit_decrypt = nocrypt;
                ops->cit_encrypt_iv = nocrypt_iv;
                ops->cit_encrypt_iv = nocrypt_iv;
                ops->cit_decrypt_iv = nocrypt_iv;
                ops->cit_decrypt_iv = nocrypt_iv;
                break;
                break;
 
 
        default:
        default:
                BUG();
                BUG();
        }
        }
 
 
        if (ops->cit_mode == CRYPTO_TFM_MODE_CBC) {
        if (ops->cit_mode == CRYPTO_TFM_MODE_CBC) {
 
 
                switch (crypto_tfm_alg_blocksize(tfm)) {
                switch (crypto_tfm_alg_blocksize(tfm)) {
                case 8:
                case 8:
                        ops->cit_xor_block = xor_64;
                        ops->cit_xor_block = xor_64;
                        break;
                        break;
 
 
                case 16:
                case 16:
                        ops->cit_xor_block = xor_128;
                        ops->cit_xor_block = xor_128;
                        break;
                        break;
 
 
                default:
                default:
                        printk(KERN_WARNING "%s: block size %u not supported\n",
                        printk(KERN_WARNING "%s: block size %u not supported\n",
                               crypto_tfm_alg_name(tfm),
                               crypto_tfm_alg_name(tfm),
                               crypto_tfm_alg_blocksize(tfm));
                               crypto_tfm_alg_blocksize(tfm));
                        ret = -EINVAL;
                        ret = -EINVAL;
                        goto out;
                        goto out;
                }
                }
 
 
                ops->cit_ivsize = crypto_tfm_alg_blocksize(tfm);
                ops->cit_ivsize = crypto_tfm_alg_blocksize(tfm);
                ops->cit_iv = kmalloc(ops->cit_ivsize, GFP_KERNEL);
                ops->cit_iv = kmalloc(ops->cit_ivsize, GFP_KERNEL);
                if (ops->cit_iv == NULL)
                if (ops->cit_iv == NULL)
                        ret = -ENOMEM;
                        ret = -ENOMEM;
        }
        }
 
 
out:
out:
        return ret;
        return ret;
}
}
 
 
void crypto_exit_cipher_ops(struct crypto_tfm *tfm)
void crypto_exit_cipher_ops(struct crypto_tfm *tfm)
{
{
        if (tfm->crt_cipher.cit_iv)
        if (tfm->crt_cipher.cit_iv)
                kfree(tfm->crt_cipher.cit_iv);
                kfree(tfm->crt_cipher.cit_iv);
}
}
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.