OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [linux/] [linux-2.4/] [crypto/] [tcrypt.c] - Diff between revs 1275 and 1765

Only display areas with differences | Details | Blame | View Log

Rev 1275 Rev 1765
/*
/*
 * Quick & dirty crypto testing module.
 * Quick & dirty crypto testing module.
 *
 *
 * This will only exist until we have a better testing mechanism
 * This will only exist until we have a better testing mechanism
 * (e.g. a char device).
 * (e.g. a char device).
 *
 *
 * Copyright (c) 2002 James Morris <jmorris@intercode.com.au>
 * Copyright (c) 2002 James Morris <jmorris@intercode.com.au>
 * Copyright (c) 2002 Jean-Francois Dive <jef@linuxbe.org>
 * Copyright (c) 2002 Jean-Francois Dive <jef@linuxbe.org>
 *
 *
 * This program is free software; you can redistribute it and/or modify it
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by the Free
 * under the terms of the GNU General Public License as published by the Free
 * Software Foundation; either version 2 of the License, or (at your option)
 * Software Foundation; either version 2 of the License, or (at your option)
 * any later version.
 * any later version.
 *
 *
 * 14 - 09 - 2003
 * 14 - 09 - 2003
 *      Rewritten by Kartikey Mahendra Bhatt
 *      Rewritten by Kartikey Mahendra Bhatt
 */
 */
 
 
#include <linux/init.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/module.h>
#include <linux/mm.h>
#include <linux/mm.h>
#include <linux/slab.h>
#include <linux/slab.h>
#include <asm/scatterlist.h>
#include <asm/scatterlist.h>
#include <linux/string.h>
#include <linux/string.h>
#include <linux/crypto.h>
#include <linux/crypto.h>
#include <linux/highmem.h>
#include <linux/highmem.h>
#include "tcrypt.h"
#include "tcrypt.h"
 
 
#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
 
 
/*
/*
 * Need to kmalloc() memory for testing kmap().
 * Need to kmalloc() memory for testing kmap().
 */
 */
#define TVMEMSIZE       4096
#define TVMEMSIZE       4096
#define XBUFSIZE        32768
#define XBUFSIZE        32768
 
 
/*
/*
 * Indexes into the xbuf to simulate cross-page access.
 * Indexes into the xbuf to simulate cross-page access.
 */
 */
#define IDX1            37
#define IDX1            37
#define IDX2            32400
#define IDX2            32400
#define IDX3            1
#define IDX3            1
#define IDX4            8193
#define IDX4            8193
#define IDX5            22222
#define IDX5            22222
#define IDX6            17101
#define IDX6            17101
#define IDX7            27333
#define IDX7            27333
#define IDX8            3000
#define IDX8            3000
 
 
/*
/*
* Used by test_cipher()
* Used by test_cipher()
*/
*/
#define ENCRYPT 1
#define ENCRYPT 1
#define DECRYPT 0
#define DECRYPT 0
#define MODE_ECB 1
#define MODE_ECB 1
#define MODE_CBC 0
#define MODE_CBC 0
 
 
static unsigned int IDX[8] = { IDX1, IDX2, IDX3, IDX4, IDX5, IDX6, IDX7, IDX8 };
static unsigned int IDX[8] = { IDX1, IDX2, IDX3, IDX4, IDX5, IDX6, IDX7, IDX8 };
 
 
static int mode;
static int mode;
static char *xbuf;
static char *xbuf;
static char *tvmem;
static char *tvmem;
 
 
static char *check[] = {
static char *check[] = {
        "des", "md5", "des3_ede", "rot13", "sha1", "sha256", "blowfish",
        "des", "md5", "des3_ede", "rot13", "sha1", "sha256", "blowfish",
        "twofish", "serpent", "sha384", "sha512", "md4", "aes", "cast6",
        "twofish", "serpent", "sha384", "sha512", "md4", "aes", "cast6",
        "arc4", "deflate", NULL
        "arc4", "deflate", NULL
};
};
 
 
static void
static void
hexdump(unsigned char *buf, unsigned int len)
hexdump(unsigned char *buf, unsigned int len)
{
{
        while (len--)
        while (len--)
                printk("%02x", *buf++);
                printk("%02x", *buf++);
 
 
        printk("\n");
        printk("\n");
}
}
 
 
static void
static void
test_hash (char * algo, struct hash_testvec * template, unsigned int tcount)
test_hash (char * algo, struct hash_testvec * template, unsigned int tcount)
{
{
        char *p;
        char *p;
        unsigned int i, j, k, temp;
        unsigned int i, j, k, temp;
        struct scatterlist sg[8];
        struct scatterlist sg[8];
        char result[64];
        char result[64];
        struct crypto_tfm *tfm;
        struct crypto_tfm *tfm;
        struct hash_testvec *hash_tv;
        struct hash_testvec *hash_tv;
        unsigned int tsize;
        unsigned int tsize;
 
 
        printk("\ntesting %s\n", algo);
        printk("\ntesting %s\n", algo);
 
 
        tsize = sizeof (struct hash_testvec);
        tsize = sizeof (struct hash_testvec);
        tsize *= tcount;
        tsize *= tcount;
 
 
        if (tsize > TVMEMSIZE) {
        if (tsize > TVMEMSIZE) {
                printk("template (%u) too big for tvmem (%u)\n", tsize, TVMEMSIZE);
                printk("template (%u) too big for tvmem (%u)\n", tsize, TVMEMSIZE);
                return;
                return;
        }
        }
 
 
        memcpy(tvmem, template, tsize);
        memcpy(tvmem, template, tsize);
        hash_tv = (void *) tvmem;
        hash_tv = (void *) tvmem;
        tfm = crypto_alloc_tfm(algo, 0);
        tfm = crypto_alloc_tfm(algo, 0);
        if (tfm == NULL) {
        if (tfm == NULL) {
                printk("failed to load transform for %s\n", algo);
                printk("failed to load transform for %s\n", algo);
                return;
                return;
        }
        }
 
 
        for (i = 0; i < tcount; i++) {
        for (i = 0; i < tcount; i++) {
                printk ("test %u:\n", i + 1);
                printk ("test %u:\n", i + 1);
                memset (result, 0, 64);
                memset (result, 0, 64);
 
 
                p = hash_tv[i].plaintext;
                p = hash_tv[i].plaintext;
                sg[0].page = virt_to_page (p);
                sg[0].page = virt_to_page (p);
                sg[0].offset = offset_in_page (p);
                sg[0].offset = offset_in_page (p);
                sg[0].length = hash_tv[i].psize;
                sg[0].length = hash_tv[i].psize;
 
 
                crypto_digest_init (tfm);
                crypto_digest_init (tfm);
                crypto_digest_update (tfm, sg, 1);
                crypto_digest_update (tfm, sg, 1);
                crypto_digest_final (tfm, result);
                crypto_digest_final (tfm, result);
 
 
                hexdump (result, crypto_tfm_alg_digestsize (tfm));
                hexdump (result, crypto_tfm_alg_digestsize (tfm));
                printk("%s\n",
                printk("%s\n",
                        memcmp(result, hash_tv[i].digest,
                        memcmp(result, hash_tv[i].digest,
                                crypto_tfm_alg_digestsize(tfm)) ? "fail" :
                                crypto_tfm_alg_digestsize(tfm)) ? "fail" :
                        "pass");
                        "pass");
        }
        }
 
 
        printk ("testing %s across pages\n", algo);
        printk ("testing %s across pages\n", algo);
 
 
        /* setup the dummy buffer first */
        /* setup the dummy buffer first */
        memset(xbuf, 0, XBUFSIZE);
        memset(xbuf, 0, XBUFSIZE);
 
 
        j = 0;
        j = 0;
        for (i = 0; i < tcount; i++) {
        for (i = 0; i < tcount; i++) {
                if (hash_tv[i].np) {
                if (hash_tv[i].np) {
                        j++;
                        j++;
                        printk ("test %u:\n", j);
                        printk ("test %u:\n", j);
                        memset (result, 0, 64);
                        memset (result, 0, 64);
 
 
                        temp = 0;
                        temp = 0;
                        for (k = 0; k < hash_tv[i].np; k++) {
                        for (k = 0; k < hash_tv[i].np; k++) {
                                memcpy (&xbuf[IDX[k]], hash_tv[i].plaintext + temp,
                                memcpy (&xbuf[IDX[k]], hash_tv[i].plaintext + temp,
                                                hash_tv[i].tap[k]);
                                                hash_tv[i].tap[k]);
                                temp += hash_tv[i].tap[k];
                                temp += hash_tv[i].tap[k];
                                p = &xbuf[IDX[k]];
                                p = &xbuf[IDX[k]];
                                sg[k].page = virt_to_page (p);
                                sg[k].page = virt_to_page (p);
                                sg[k].offset = offset_in_page (p);
                                sg[k].offset = offset_in_page (p);
                                sg[k].length = hash_tv[i].tap[k];
                                sg[k].length = hash_tv[i].tap[k];
                        }
                        }
 
 
                        crypto_digest_digest (tfm, sg, hash_tv[i].np, result);
                        crypto_digest_digest (tfm, sg, hash_tv[i].np, result);
 
 
                        hexdump (result, crypto_tfm_alg_digestsize (tfm));
                        hexdump (result, crypto_tfm_alg_digestsize (tfm));
                        printk("%s\n",
                        printk("%s\n",
                                memcmp(result, hash_tv[i].digest,
                                memcmp(result, hash_tv[i].digest,
                                        crypto_tfm_alg_digestsize(tfm)) ? "fail" :
                                        crypto_tfm_alg_digestsize(tfm)) ? "fail" :
                                "pass");
                                "pass");
                }
                }
        }
        }
 
 
        crypto_free_tfm (tfm);
        crypto_free_tfm (tfm);
}
}
 
 
 
 
#ifdef CONFIG_CRYPTO_HMAC
#ifdef CONFIG_CRYPTO_HMAC
 
 
static void
static void
test_hmac(char *algo, struct hmac_testvec * template, unsigned int tcount)
test_hmac(char *algo, struct hmac_testvec * template, unsigned int tcount)
{
{
        char *p;
        char *p;
        unsigned int i, j, k, temp;
        unsigned int i, j, k, temp;
        struct scatterlist sg[8];
        struct scatterlist sg[8];
        char result[64];
        char result[64];
        struct crypto_tfm *tfm;
        struct crypto_tfm *tfm;
        struct hmac_testvec *hmac_tv;
        struct hmac_testvec *hmac_tv;
        unsigned int tsize, klen;
        unsigned int tsize, klen;
 
 
        tfm = crypto_alloc_tfm(algo, 0);
        tfm = crypto_alloc_tfm(algo, 0);
        if (tfm == NULL) {
        if (tfm == NULL) {
                printk("failed to load transform for %s\n", algo);
                printk("failed to load transform for %s\n", algo);
                return;
                return;
        }
        }
 
 
        printk("\ntesting hmac_%s\n", algo);
        printk("\ntesting hmac_%s\n", algo);
 
 
        tsize = sizeof (struct hmac_testvec);
        tsize = sizeof (struct hmac_testvec);
        tsize *= tcount;
        tsize *= tcount;
        if (tsize > TVMEMSIZE) {
        if (tsize > TVMEMSIZE) {
                printk("template (%u) too big for tvmem (%u)\n", tsize,
                printk("template (%u) too big for tvmem (%u)\n", tsize,
                       TVMEMSIZE);
                       TVMEMSIZE);
                goto out;
                goto out;
        }
        }
 
 
        memcpy(tvmem, template, tsize);
        memcpy(tvmem, template, tsize);
        hmac_tv = (void *) tvmem;
        hmac_tv = (void *) tvmem;
 
 
        for (i = 0; i < tcount; i++) {
        for (i = 0; i < tcount; i++) {
                printk("test %u:\n", i + 1);
                printk("test %u:\n", i + 1);
                memset(result, 0, sizeof (result));
                memset(result, 0, sizeof (result));
 
 
                p = hmac_tv[i].plaintext;
                p = hmac_tv[i].plaintext;
                klen = hmac_tv[i].ksize;
                klen = hmac_tv[i].ksize;
                sg[0].page = virt_to_page(p);
                sg[0].page = virt_to_page(p);
                sg[0].offset = offset_in_page(p);
                sg[0].offset = offset_in_page(p);
                sg[0].length = hmac_tv[i].psize;
                sg[0].length = hmac_tv[i].psize;
 
 
                crypto_hmac(tfm, hmac_tv[i].key, &klen, sg, 1, result);
                crypto_hmac(tfm, hmac_tv[i].key, &klen, sg, 1, result);
 
 
                hexdump(result, crypto_tfm_alg_digestsize(tfm));
                hexdump(result, crypto_tfm_alg_digestsize(tfm));
                printk("%s\n",
                printk("%s\n",
                       memcmp(result, hmac_tv[i].digest,
                       memcmp(result, hmac_tv[i].digest,
                              crypto_tfm_alg_digestsize(tfm)) ? "fail" :
                              crypto_tfm_alg_digestsize(tfm)) ? "fail" :
                       "pass");
                       "pass");
        }
        }
 
 
        printk("\ntesting hmac_%s across pages\n", algo);
        printk("\ntesting hmac_%s across pages\n", algo);
 
 
        memset(xbuf, 0, XBUFSIZE);
        memset(xbuf, 0, XBUFSIZE);
 
 
        j = 0;
        j = 0;
        for (i = 0; i < tcount; i++) {
        for (i = 0; i < tcount; i++) {
                if (hmac_tv[i].np) {
                if (hmac_tv[i].np) {
                        j++;
                        j++;
                        printk ("test %u:\n",j);
                        printk ("test %u:\n",j);
                        memset (result, 0, 64);
                        memset (result, 0, 64);
 
 
                        temp = 0;
                        temp = 0;
                        klen = hmac_tv[i].ksize;
                        klen = hmac_tv[i].ksize;
                        for (k = 0; k < hmac_tv[i].np; k++) {
                        for (k = 0; k < hmac_tv[i].np; k++) {
                                memcpy (&xbuf[IDX[k]], hmac_tv[i].plaintext + temp,
                                memcpy (&xbuf[IDX[k]], hmac_tv[i].plaintext + temp,
                                                hmac_tv[i].tap[k]);
                                                hmac_tv[i].tap[k]);
                                temp += hmac_tv[i].tap[k];
                                temp += hmac_tv[i].tap[k];
                                p = &xbuf[IDX[k]];
                                p = &xbuf[IDX[k]];
                                sg[k].page = virt_to_page (p);
                                sg[k].page = virt_to_page (p);
                                sg[k].offset = offset_in_page (p);
                                sg[k].offset = offset_in_page (p);
                                sg[k].length = hmac_tv[i].tap[k];
                                sg[k].length = hmac_tv[i].tap[k];
                        }
                        }
 
 
                        crypto_hmac(tfm, hmac_tv[i].key, &klen, sg, hmac_tv[i].np,
                        crypto_hmac(tfm, hmac_tv[i].key, &klen, sg, hmac_tv[i].np,
                                        result);
                                        result);
                        hexdump(result, crypto_tfm_alg_digestsize(tfm));
                        hexdump(result, crypto_tfm_alg_digestsize(tfm));
 
 
                        printk("%s\n",
                        printk("%s\n",
                                memcmp(result, hmac_tv[i].digest,
                                memcmp(result, hmac_tv[i].digest,
                                        crypto_tfm_alg_digestsize(tfm)) ? "fail" :
                                        crypto_tfm_alg_digestsize(tfm)) ? "fail" :
                                "pass");
                                "pass");
                }
                }
        }
        }
out:
out:
        crypto_free_tfm(tfm);
        crypto_free_tfm(tfm);
}
}
 
 
#endif  /* CONFIG_CRYPTO_HMAC */
#endif  /* CONFIG_CRYPTO_HMAC */
 
 
void
void
test_cipher(char * algo, int mode, int enc, struct cipher_testvec * template, unsigned int tcount)
test_cipher(char * algo, int mode, int enc, struct cipher_testvec * template, unsigned int tcount)
{
{
        unsigned int ret, i, j, k, temp;
        unsigned int ret, i, j, k, temp;
        unsigned int tsize;
        unsigned int tsize;
        char *p, *q;
        char *p, *q;
        struct crypto_tfm *tfm;
        struct crypto_tfm *tfm;
        char *key;
        char *key;
        struct cipher_testvec *cipher_tv;
        struct cipher_testvec *cipher_tv;
        struct scatterlist sg[8];
        struct scatterlist sg[8];
        char e[11], m[4];
        char e[11], m[4];
 
 
        if (enc == ENCRYPT)
        if (enc == ENCRYPT)
                strncpy(e, "encryption", 11);
                strncpy(e, "encryption", 11);
        else
        else
                strncpy(e, "decryption", 11);
                strncpy(e, "decryption", 11);
        if (mode == MODE_ECB)
        if (mode == MODE_ECB)
                strncpy(m, "ECB", 4);
                strncpy(m, "ECB", 4);
        else
        else
                strncpy(m, "CBC", 4);
                strncpy(m, "CBC", 4);
 
 
        printk("\ntesting %s %s %s \n", algo, m, e);
        printk("\ntesting %s %s %s \n", algo, m, e);
 
 
        tsize = sizeof (struct cipher_testvec);
        tsize = sizeof (struct cipher_testvec);
        tsize *= tcount;
        tsize *= tcount;
 
 
        if (tsize > TVMEMSIZE) {
        if (tsize > TVMEMSIZE) {
                printk("template (%u) too big for tvmem (%u)\n", tsize,
                printk("template (%u) too big for tvmem (%u)\n", tsize,
                       TVMEMSIZE);
                       TVMEMSIZE);
                return;
                return;
        }
        }
 
 
        memcpy(tvmem, template, tsize);
        memcpy(tvmem, template, tsize);
        cipher_tv = (void *) tvmem;
        cipher_tv = (void *) tvmem;
 
 
        if (mode)
        if (mode)
                tfm = crypto_alloc_tfm (algo, 0);
                tfm = crypto_alloc_tfm (algo, 0);
        else
        else
                tfm = crypto_alloc_tfm (algo, CRYPTO_TFM_MODE_CBC);
                tfm = crypto_alloc_tfm (algo, CRYPTO_TFM_MODE_CBC);
 
 
        if (tfm == NULL) {
        if (tfm == NULL) {
                printk("failed to load transform for %s %s\n", algo, m);
                printk("failed to load transform for %s %s\n", algo, m);
                return;
                return;
        }
        }
 
 
        j = 0;
        j = 0;
        for (i = 0; i < tcount; i++) {
        for (i = 0; i < tcount; i++) {
                if (!(cipher_tv[i].np)) {
                if (!(cipher_tv[i].np)) {
                        j++;
                        j++;
                        printk("test %u (%d bit key):\n",
                        printk("test %u (%d bit key):\n",
                        j, cipher_tv[i].klen * 8);
                        j, cipher_tv[i].klen * 8);
 
 
                        tfm->crt_flags = 0;
                        tfm->crt_flags = 0;
                        if (cipher_tv[i].wk)
                        if (cipher_tv[i].wk)
                                tfm->crt_flags |= CRYPTO_TFM_REQ_WEAK_KEY;
                                tfm->crt_flags |= CRYPTO_TFM_REQ_WEAK_KEY;
                        key = cipher_tv[i].key;
                        key = cipher_tv[i].key;
 
 
                        ret = crypto_cipher_setkey(tfm, key, cipher_tv[i].klen);
                        ret = crypto_cipher_setkey(tfm, key, cipher_tv[i].klen);
                        if (ret) {
                        if (ret) {
                                printk("setkey() failed flags=%x\n", tfm->crt_flags);
                                printk("setkey() failed flags=%x\n", tfm->crt_flags);
 
 
                                if (!cipher_tv[i].fail)
                                if (!cipher_tv[i].fail)
                                        goto out;
                                        goto out;
                        }
                        }
 
 
                        p = cipher_tv[i].input;
                        p = cipher_tv[i].input;
                        sg[0].page = virt_to_page(p);
                        sg[0].page = virt_to_page(p);
                        sg[0].offset = offset_in_page(p);
                        sg[0].offset = offset_in_page(p);
                        sg[0].length = cipher_tv[i].ilen;
                        sg[0].length = cipher_tv[i].ilen;
 
 
                        if (!mode) {
                        if (!mode) {
                                crypto_cipher_set_iv(tfm, cipher_tv[i].iv,
                                crypto_cipher_set_iv(tfm, cipher_tv[i].iv,
                                        crypto_tfm_alg_ivsize (tfm));
                                        crypto_tfm_alg_ivsize (tfm));
                        }
                        }
 
 
                        if (enc)
                        if (enc)
                                ret = crypto_cipher_encrypt(tfm, sg, sg, cipher_tv[i].ilen);
                                ret = crypto_cipher_encrypt(tfm, sg, sg, cipher_tv[i].ilen);
                        else
                        else
                                ret = crypto_cipher_decrypt(tfm, sg, sg, cipher_tv[i].ilen);
                                ret = crypto_cipher_decrypt(tfm, sg, sg, cipher_tv[i].ilen);
 
 
 
 
                        if (ret) {
                        if (ret) {
                                printk("%s () failed flags=%x\n", e, tfm->crt_flags);
                                printk("%s () failed flags=%x\n", e, tfm->crt_flags);
                                goto out;
                                goto out;
                        }
                        }
 
 
                        q = kmap(sg[0].page) + sg[0].offset;
                        q = kmap(sg[0].page) + sg[0].offset;
                        hexdump(q, cipher_tv[i].rlen);
                        hexdump(q, cipher_tv[i].rlen);
 
 
                        printk("%s\n",
                        printk("%s\n",
                                memcmp(q, cipher_tv[i].result, cipher_tv[i].rlen) ? "fail" :
                                memcmp(q, cipher_tv[i].result, cipher_tv[i].rlen) ? "fail" :
                        "pass");
                        "pass");
                }
                }
        }
        }
 
 
        printk("\ntesting %s %s %s across pages (chunking) \n", algo, m, e);
        printk("\ntesting %s %s %s across pages (chunking) \n", algo, m, e);
        memset(xbuf, 0, XBUFSIZE);
        memset(xbuf, 0, XBUFSIZE);
 
 
        j = 0;
        j = 0;
        for (i = 0; i < tcount; i++) {
        for (i = 0; i < tcount; i++) {
                if (cipher_tv[i].np) {
                if (cipher_tv[i].np) {
                        j++;
                        j++;
                        printk("test %u (%d bit key):\n",
                        printk("test %u (%d bit key):\n",
                        j, cipher_tv[i].klen * 8);
                        j, cipher_tv[i].klen * 8);
 
 
                        tfm->crt_flags = 0;
                        tfm->crt_flags = 0;
                        if (cipher_tv[i].wk)
                        if (cipher_tv[i].wk)
                                tfm->crt_flags |= CRYPTO_TFM_REQ_WEAK_KEY;
                                tfm->crt_flags |= CRYPTO_TFM_REQ_WEAK_KEY;
                        key = cipher_tv[i].key;
                        key = cipher_tv[i].key;
 
 
                        ret = crypto_cipher_setkey(tfm, key, cipher_tv[i].klen);
                        ret = crypto_cipher_setkey(tfm, key, cipher_tv[i].klen);
                        if (ret) {
                        if (ret) {
                                printk("setkey() failed flags=%x\n", tfm->crt_flags);
                                printk("setkey() failed flags=%x\n", tfm->crt_flags);
 
 
                                if (!cipher_tv[i].fail)
                                if (!cipher_tv[i].fail)
                                        goto out;
                                        goto out;
                        }
                        }
 
 
                        temp = 0;
                        temp = 0;
                        for (k = 0; k < cipher_tv[i].np; k++) {
                        for (k = 0; k < cipher_tv[i].np; k++) {
                                memcpy (&xbuf[IDX[k]], cipher_tv[i].input + temp,
                                memcpy (&xbuf[IDX[k]], cipher_tv[i].input + temp,
                                                cipher_tv[i].tap[k]);
                                                cipher_tv[i].tap[k]);
                                temp += cipher_tv[i].tap[k];
                                temp += cipher_tv[i].tap[k];
                                p = &xbuf[IDX[k]];
                                p = &xbuf[IDX[k]];
                                sg[k].page = virt_to_page (p);
                                sg[k].page = virt_to_page (p);
                                sg[k].offset = offset_in_page (p);
                                sg[k].offset = offset_in_page (p);
                                sg[k].length = cipher_tv[i].tap[k];
                                sg[k].length = cipher_tv[i].tap[k];
                        }
                        }
 
 
                        if (!mode) {
                        if (!mode) {
                                crypto_cipher_set_iv(tfm, cipher_tv[i].iv,
                                crypto_cipher_set_iv(tfm, cipher_tv[i].iv,
                                                crypto_tfm_alg_ivsize (tfm));
                                                crypto_tfm_alg_ivsize (tfm));
                        }
                        }
 
 
                        if (enc)
                        if (enc)
                                ret = crypto_cipher_encrypt(tfm, sg, sg, cipher_tv[i].ilen);
                                ret = crypto_cipher_encrypt(tfm, sg, sg, cipher_tv[i].ilen);
                        else
                        else
                                ret = crypto_cipher_decrypt(tfm, sg, sg, cipher_tv[i].ilen);
                                ret = crypto_cipher_decrypt(tfm, sg, sg, cipher_tv[i].ilen);
 
 
                        if (ret) {
                        if (ret) {
                                printk("%s () failed flags=%x\n", e, tfm->crt_flags);
                                printk("%s () failed flags=%x\n", e, tfm->crt_flags);
                                goto out;
                                goto out;
                        }
                        }
 
 
                        temp = 0;
                        temp = 0;
                        for (k = 0; k < cipher_tv[i].np; k++) {
                        for (k = 0; k < cipher_tv[i].np; k++) {
                                printk("page %u\n", k);
                                printk("page %u\n", k);
                                q = kmap(sg[k].page) + sg[k].offset;
                                q = kmap(sg[k].page) + sg[k].offset;
                                hexdump(q, cipher_tv[i].tap[k]);
                                hexdump(q, cipher_tv[i].tap[k]);
                                printk("%s\n",
                                printk("%s\n",
                                        memcmp(q, cipher_tv[i].result + temp,
                                        memcmp(q, cipher_tv[i].result + temp,
                                                cipher_tv[i].tap[k]) ? "fail" :
                                                cipher_tv[i].tap[k]) ? "fail" :
                                        "pass");
                                        "pass");
                                temp += cipher_tv[i].tap[k];
                                temp += cipher_tv[i].tap[k];
                        }
                        }
                }
                }
        }
        }
 
 
out:
out:
        crypto_free_tfm(tfm);
        crypto_free_tfm(tfm);
}
}
 
 
static void
static void
test_deflate(void)
test_deflate(void)
{
{
        unsigned int i;
        unsigned int i;
        char result[COMP_BUF_SIZE];
        char result[COMP_BUF_SIZE];
        struct crypto_tfm *tfm;
        struct crypto_tfm *tfm;
        struct comp_testvec *tv;
        struct comp_testvec *tv;
        unsigned int tsize;
        unsigned int tsize;
 
 
        printk("\ntesting deflate compression\n");
        printk("\ntesting deflate compression\n");
 
 
        tsize = sizeof (deflate_comp_tv_template);
        tsize = sizeof (deflate_comp_tv_template);
        if (tsize > TVMEMSIZE) {
        if (tsize > TVMEMSIZE) {
                printk("template (%u) too big for tvmem (%u)\n", tsize,
                printk("template (%u) too big for tvmem (%u)\n", tsize,
                       TVMEMSIZE);
                       TVMEMSIZE);
                return;
                return;
        }
        }
 
 
        memcpy(tvmem, deflate_comp_tv_template, tsize);
        memcpy(tvmem, deflate_comp_tv_template, tsize);
        tv = (void *) tvmem;
        tv = (void *) tvmem;
 
 
        tfm = crypto_alloc_tfm("deflate", 0);
        tfm = crypto_alloc_tfm("deflate", 0);
        if (tfm == NULL) {
        if (tfm == NULL) {
                printk("failed to load transform for deflate\n");
                printk("failed to load transform for deflate\n");
                return;
                return;
        }
        }
 
 
        for (i = 0; i < DEFLATE_COMP_TEST_VECTORS; i++) {
        for (i = 0; i < DEFLATE_COMP_TEST_VECTORS; i++) {
                int ilen, ret, dlen = COMP_BUF_SIZE;
                int ilen, ret, dlen = COMP_BUF_SIZE;
 
 
                printk("test %u:\n", i + 1);
                printk("test %u:\n", i + 1);
                memset(result, 0, sizeof (result));
                memset(result, 0, sizeof (result));
 
 
                ilen = tv[i].inlen;
                ilen = tv[i].inlen;
                ret = crypto_comp_compress(tfm, tv[i].input,
                ret = crypto_comp_compress(tfm, tv[i].input,
                                           ilen, result, &dlen);
                                           ilen, result, &dlen);
                if (ret) {
                if (ret) {
                        printk("fail: ret=%d\n", ret);
                        printk("fail: ret=%d\n", ret);
                        continue;
                        continue;
                }
                }
                hexdump(result, dlen);
                hexdump(result, dlen);
                printk("%s (ratio %d:%d)\n",
                printk("%s (ratio %d:%d)\n",
                       memcmp(result, tv[i].output, dlen) ? "fail" : "pass",
                       memcmp(result, tv[i].output, dlen) ? "fail" : "pass",
                       ilen, dlen);
                       ilen, dlen);
        }
        }
 
 
        printk("\ntesting deflate decompression\n");
        printk("\ntesting deflate decompression\n");
 
 
        tsize = sizeof (deflate_decomp_tv_template);
        tsize = sizeof (deflate_decomp_tv_template);
        if (tsize > TVMEMSIZE) {
        if (tsize > TVMEMSIZE) {
                printk("template (%u) too big for tvmem (%u)\n", tsize,
                printk("template (%u) too big for tvmem (%u)\n", tsize,
                       TVMEMSIZE);
                       TVMEMSIZE);
                goto out;
                goto out;
        }
        }
 
 
        memcpy(tvmem, deflate_decomp_tv_template, tsize);
        memcpy(tvmem, deflate_decomp_tv_template, tsize);
        tv = (void *) tvmem;
        tv = (void *) tvmem;
 
 
        for (i = 0; i < DEFLATE_DECOMP_TEST_VECTORS; i++) {
        for (i = 0; i < DEFLATE_DECOMP_TEST_VECTORS; i++) {
                int ilen, ret, dlen = COMP_BUF_SIZE;
                int ilen, ret, dlen = COMP_BUF_SIZE;
 
 
                printk("test %u:\n", i + 1);
                printk("test %u:\n", i + 1);
                memset(result, 0, sizeof (result));
                memset(result, 0, sizeof (result));
 
 
                ilen = tv[i].inlen;
                ilen = tv[i].inlen;
                ret = crypto_comp_decompress(tfm, tv[i].input,
                ret = crypto_comp_decompress(tfm, tv[i].input,
                                             ilen, result, &dlen);
                                             ilen, result, &dlen);
                if (ret) {
                if (ret) {
                        printk("fail: ret=%d\n", ret);
                        printk("fail: ret=%d\n", ret);
                        continue;
                        continue;
                }
                }
                hexdump(result, dlen);
                hexdump(result, dlen);
                printk("%s (ratio %d:%d)\n",
                printk("%s (ratio %d:%d)\n",
                       memcmp(result, tv[i].output, dlen) ? "fail" : "pass",
                       memcmp(result, tv[i].output, dlen) ? "fail" : "pass",
                       ilen, dlen);
                       ilen, dlen);
        }
        }
out:
out:
        crypto_free_tfm(tfm);
        crypto_free_tfm(tfm);
}
}
 
 
static void
static void
test_available(void)
test_available(void)
{
{
        char **name = check;
        char **name = check;
 
 
        while (*name) {
        while (*name) {
                printk("alg %s ", *name);
                printk("alg %s ", *name);
                printk((crypto_alg_available(*name, 0)) ?
                printk((crypto_alg_available(*name, 0)) ?
                        "found\n" : "not found\n");
                        "found\n" : "not found\n");
                name++;
                name++;
        }
        }
}
}
 
 
static void
static void
do_test(void)
do_test(void)
{
{
        switch (mode) {
        switch (mode) {
 
 
        case 0:
        case 0:
                test_hash("md5", md5_tv_template, MD5_TEST_VECTORS);
                test_hash("md5", md5_tv_template, MD5_TEST_VECTORS);
 
 
                test_hash("sha1", sha1_tv_template, SHA1_TEST_VECTORS);
                test_hash("sha1", sha1_tv_template, SHA1_TEST_VECTORS);
 
 
                //DES
                //DES
                test_cipher ("des", MODE_ECB, ENCRYPT, des_enc_tv_template, DES_ENC_TEST_VECTORS);
                test_cipher ("des", MODE_ECB, ENCRYPT, des_enc_tv_template, DES_ENC_TEST_VECTORS);
                test_cipher ("des", MODE_ECB, DECRYPT, des_dec_tv_template, DES_DEC_TEST_VECTORS);
                test_cipher ("des", MODE_ECB, DECRYPT, des_dec_tv_template, DES_DEC_TEST_VECTORS);
                test_cipher ("des", MODE_CBC, ENCRYPT, des_cbc_enc_tv_template, DES_CBC_ENC_TEST_VECTORS);
                test_cipher ("des", MODE_CBC, ENCRYPT, des_cbc_enc_tv_template, DES_CBC_ENC_TEST_VECTORS);
                test_cipher ("des", MODE_CBC, DECRYPT, des_cbc_dec_tv_template, DES_CBC_DEC_TEST_VECTORS);
                test_cipher ("des", MODE_CBC, DECRYPT, des_cbc_dec_tv_template, DES_CBC_DEC_TEST_VECTORS);
 
 
                //DES3_EDE
                //DES3_EDE
                test_cipher ("des3_ede", MODE_ECB, ENCRYPT, des3_ede_enc_tv_template, DES3_EDE_ENC_TEST_VECTORS);
                test_cipher ("des3_ede", MODE_ECB, ENCRYPT, des3_ede_enc_tv_template, DES3_EDE_ENC_TEST_VECTORS);
                test_cipher ("des3_ede", MODE_ECB, DECRYPT, des3_ede_dec_tv_template, DES3_EDE_DEC_TEST_VECTORS);
                test_cipher ("des3_ede", MODE_ECB, DECRYPT, des3_ede_dec_tv_template, DES3_EDE_DEC_TEST_VECTORS);
 
 
                test_hash("md4", md4_tv_template, MD4_TEST_VECTORS);
                test_hash("md4", md4_tv_template, MD4_TEST_VECTORS);
 
 
                test_hash("sha256", sha256_tv_template, SHA256_TEST_VECTORS);
                test_hash("sha256", sha256_tv_template, SHA256_TEST_VECTORS);
 
 
                //BLOWFISH
                //BLOWFISH
                test_cipher ("blowfish", MODE_ECB, ENCRYPT, bf_enc_tv_template, BF_ENC_TEST_VECTORS);
                test_cipher ("blowfish", MODE_ECB, ENCRYPT, bf_enc_tv_template, BF_ENC_TEST_VECTORS);
                test_cipher ("blowfish", MODE_ECB, DECRYPT, bf_dec_tv_template, BF_DEC_TEST_VECTORS);
                test_cipher ("blowfish", MODE_ECB, DECRYPT, bf_dec_tv_template, BF_DEC_TEST_VECTORS);
                test_cipher ("blowfish", MODE_CBC, ENCRYPT, bf_cbc_enc_tv_template, BF_CBC_ENC_TEST_VECTORS);
                test_cipher ("blowfish", MODE_CBC, ENCRYPT, bf_cbc_enc_tv_template, BF_CBC_ENC_TEST_VECTORS);
                test_cipher ("blowfish", MODE_CBC, DECRYPT, bf_cbc_dec_tv_template, BF_CBC_DEC_TEST_VECTORS);
                test_cipher ("blowfish", MODE_CBC, DECRYPT, bf_cbc_dec_tv_template, BF_CBC_DEC_TEST_VECTORS);
 
 
                //TWOFISH
                //TWOFISH
                test_cipher ("twofish", MODE_ECB, ENCRYPT, tf_enc_tv_template, TF_ENC_TEST_VECTORS);
                test_cipher ("twofish", MODE_ECB, ENCRYPT, tf_enc_tv_template, TF_ENC_TEST_VECTORS);
                test_cipher ("twofish", MODE_ECB, DECRYPT, tf_dec_tv_template, TF_DEC_TEST_VECTORS);
                test_cipher ("twofish", MODE_ECB, DECRYPT, tf_dec_tv_template, TF_DEC_TEST_VECTORS);
                test_cipher ("twofish", MODE_CBC, ENCRYPT, tf_cbc_enc_tv_template, TF_CBC_ENC_TEST_VECTORS);
                test_cipher ("twofish", MODE_CBC, ENCRYPT, tf_cbc_enc_tv_template, TF_CBC_ENC_TEST_VECTORS);
                test_cipher ("twofish", MODE_CBC, DECRYPT, tf_cbc_dec_tv_template, TF_CBC_DEC_TEST_VECTORS);
                test_cipher ("twofish", MODE_CBC, DECRYPT, tf_cbc_dec_tv_template, TF_CBC_DEC_TEST_VECTORS);
 
 
                //SERPENT
                //SERPENT
                test_cipher ("serpent", MODE_ECB, ENCRYPT, serpent_enc_tv_template, SERPENT_ENC_TEST_VECTORS);
                test_cipher ("serpent", MODE_ECB, ENCRYPT, serpent_enc_tv_template, SERPENT_ENC_TEST_VECTORS);
                test_cipher ("serpent", MODE_ECB, DECRYPT, serpent_dec_tv_template, SERPENT_DEC_TEST_VECTORS);
                test_cipher ("serpent", MODE_ECB, DECRYPT, serpent_dec_tv_template, SERPENT_DEC_TEST_VECTORS);
 
 
                //AES
                //AES
                test_cipher ("aes", MODE_ECB, ENCRYPT, aes_enc_tv_template, AES_ENC_TEST_VECTORS);
                test_cipher ("aes", MODE_ECB, ENCRYPT, aes_enc_tv_template, AES_ENC_TEST_VECTORS);
                test_cipher ("aes", MODE_ECB, DECRYPT, aes_dec_tv_template, AES_DEC_TEST_VECTORS);
                test_cipher ("aes", MODE_ECB, DECRYPT, aes_dec_tv_template, AES_DEC_TEST_VECTORS);
 
 
                //CAST5
                //CAST5
                test_cipher ("cast5", MODE_ECB, ENCRYPT, cast5_enc_tv_template, CAST5_ENC_TEST_VECTORS);
                test_cipher ("cast5", MODE_ECB, ENCRYPT, cast5_enc_tv_template, CAST5_ENC_TEST_VECTORS);
                test_cipher ("cast5", MODE_ECB, DECRYPT, cast5_dec_tv_template, CAST5_DEC_TEST_VECTORS);
                test_cipher ("cast5", MODE_ECB, DECRYPT, cast5_dec_tv_template, CAST5_DEC_TEST_VECTORS);
 
 
                //CAST6
                //CAST6
                test_cipher ("cast6", MODE_ECB, ENCRYPT, cast6_enc_tv_template, CAST6_ENC_TEST_VECTORS);
                test_cipher ("cast6", MODE_ECB, ENCRYPT, cast6_enc_tv_template, CAST6_ENC_TEST_VECTORS);
                test_cipher ("cast6", MODE_ECB, DECRYPT, cast6_dec_tv_template, CAST6_DEC_TEST_VECTORS);
                test_cipher ("cast6", MODE_ECB, DECRYPT, cast6_dec_tv_template, CAST6_DEC_TEST_VECTORS);
 
 
                //ARC4
                //ARC4
                test_cipher ("arc4", MODE_ECB, ENCRYPT, arc4_enc_tv_template, ARC4_ENC_TEST_VECTORS);
                test_cipher ("arc4", MODE_ECB, ENCRYPT, arc4_enc_tv_template, ARC4_ENC_TEST_VECTORS);
                test_cipher ("arc4", MODE_ECB, DECRYPT, arc4_dec_tv_template, ARC4_DEC_TEST_VECTORS);
                test_cipher ("arc4", MODE_ECB, DECRYPT, arc4_dec_tv_template, ARC4_DEC_TEST_VECTORS);
 
 
                test_hash("sha384", sha384_tv_template, SHA384_TEST_VECTORS);
                test_hash("sha384", sha384_tv_template, SHA384_TEST_VECTORS);
                test_hash("sha512", sha512_tv_template, SHA512_TEST_VECTORS);
                test_hash("sha512", sha512_tv_template, SHA512_TEST_VECTORS);
                test_deflate();
                test_deflate();
#ifdef CONFIG_CRYPTO_HMAC
#ifdef CONFIG_CRYPTO_HMAC
                test_hmac("md5", hmac_md5_tv_template, HMAC_MD5_TEST_VECTORS);
                test_hmac("md5", hmac_md5_tv_template, HMAC_MD5_TEST_VECTORS);
                test_hmac("sha1", hmac_sha1_tv_template, HMAC_SHA1_TEST_VECTORS);
                test_hmac("sha1", hmac_sha1_tv_template, HMAC_SHA1_TEST_VECTORS);
                test_hmac("sha256", hmac_sha256_tv_template, HMAC_SHA256_TEST_VECTORS);
                test_hmac("sha256", hmac_sha256_tv_template, HMAC_SHA256_TEST_VECTORS);
#endif          
#endif          
                break;
                break;
 
 
        case 1:
        case 1:
                test_hash("md5", md5_tv_template, MD5_TEST_VECTORS);
                test_hash("md5", md5_tv_template, MD5_TEST_VECTORS);
                break;
                break;
 
 
        case 2:
        case 2:
                test_hash("sha1", sha1_tv_template, SHA1_TEST_VECTORS);
                test_hash("sha1", sha1_tv_template, SHA1_TEST_VECTORS);
                break;
                break;
 
 
        case 3:
        case 3:
                test_cipher ("des", MODE_ECB, ENCRYPT, des_enc_tv_template, DES_ENC_TEST_VECTORS);
                test_cipher ("des", MODE_ECB, ENCRYPT, des_enc_tv_template, DES_ENC_TEST_VECTORS);
                test_cipher ("des", MODE_ECB, DECRYPT, des_dec_tv_template, DES_DEC_TEST_VECTORS);
                test_cipher ("des", MODE_ECB, DECRYPT, des_dec_tv_template, DES_DEC_TEST_VECTORS);
                test_cipher ("des", MODE_CBC, ENCRYPT, des_cbc_enc_tv_template, DES_CBC_ENC_TEST_VECTORS);
                test_cipher ("des", MODE_CBC, ENCRYPT, des_cbc_enc_tv_template, DES_CBC_ENC_TEST_VECTORS);
                test_cipher ("des", MODE_CBC, DECRYPT, des_cbc_dec_tv_template, DES_CBC_DEC_TEST_VECTORS);
                test_cipher ("des", MODE_CBC, DECRYPT, des_cbc_dec_tv_template, DES_CBC_DEC_TEST_VECTORS);
                break;
                break;
 
 
        case 4:
        case 4:
                test_cipher ("des3_ede", MODE_ECB, ENCRYPT, des3_ede_enc_tv_template, DES3_EDE_ENC_TEST_VECTORS);
                test_cipher ("des3_ede", MODE_ECB, ENCRYPT, des3_ede_enc_tv_template, DES3_EDE_ENC_TEST_VECTORS);
                test_cipher ("des3_ede", MODE_ECB, DECRYPT, des3_ede_dec_tv_template, DES3_EDE_DEC_TEST_VECTORS);
                test_cipher ("des3_ede", MODE_ECB, DECRYPT, des3_ede_dec_tv_template, DES3_EDE_DEC_TEST_VECTORS);
                break;
                break;
 
 
        case 5:
        case 5:
                test_hash("md4", md4_tv_template, MD4_TEST_VECTORS);
                test_hash("md4", md4_tv_template, MD4_TEST_VECTORS);
                break;
                break;
 
 
        case 6:
        case 6:
                test_hash("sha256", sha256_tv_template, SHA256_TEST_VECTORS);
                test_hash("sha256", sha256_tv_template, SHA256_TEST_VECTORS);
                break;
                break;
 
 
        case 7:
        case 7:
                test_cipher ("blowfish", MODE_ECB, ENCRYPT, bf_enc_tv_template, BF_ENC_TEST_VECTORS);
                test_cipher ("blowfish", MODE_ECB, ENCRYPT, bf_enc_tv_template, BF_ENC_TEST_VECTORS);
                test_cipher ("blowfish", MODE_ECB, DECRYPT, bf_dec_tv_template, BF_DEC_TEST_VECTORS);
                test_cipher ("blowfish", MODE_ECB, DECRYPT, bf_dec_tv_template, BF_DEC_TEST_VECTORS);
                test_cipher ("blowfish", MODE_CBC, ENCRYPT, bf_cbc_enc_tv_template, BF_CBC_ENC_TEST_VECTORS);
                test_cipher ("blowfish", MODE_CBC, ENCRYPT, bf_cbc_enc_tv_template, BF_CBC_ENC_TEST_VECTORS);
                test_cipher ("blowfish", MODE_CBC, DECRYPT, bf_cbc_dec_tv_template, BF_CBC_DEC_TEST_VECTORS);
                test_cipher ("blowfish", MODE_CBC, DECRYPT, bf_cbc_dec_tv_template, BF_CBC_DEC_TEST_VECTORS);
                break;
                break;
 
 
        case 8:
        case 8:
                test_cipher ("twofish", MODE_ECB, ENCRYPT, tf_enc_tv_template, TF_ENC_TEST_VECTORS);
                test_cipher ("twofish", MODE_ECB, ENCRYPT, tf_enc_tv_template, TF_ENC_TEST_VECTORS);
                test_cipher ("twofish", MODE_ECB, DECRYPT, tf_dec_tv_template, TF_DEC_TEST_VECTORS);
                test_cipher ("twofish", MODE_ECB, DECRYPT, tf_dec_tv_template, TF_DEC_TEST_VECTORS);
                test_cipher ("twofish", MODE_CBC, ENCRYPT, tf_cbc_enc_tv_template, TF_CBC_ENC_TEST_VECTORS);
                test_cipher ("twofish", MODE_CBC, ENCRYPT, tf_cbc_enc_tv_template, TF_CBC_ENC_TEST_VECTORS);
                test_cipher ("twofish", MODE_CBC, DECRYPT, tf_cbc_dec_tv_template, TF_CBC_DEC_TEST_VECTORS);
                test_cipher ("twofish", MODE_CBC, DECRYPT, tf_cbc_dec_tv_template, TF_CBC_DEC_TEST_VECTORS);
                break;
                break;
 
 
        case 9:
        case 9:
                break;
                break;
 
 
        case 10:
        case 10:
                test_cipher ("aes", MODE_ECB, ENCRYPT, aes_enc_tv_template, AES_ENC_TEST_VECTORS);
                test_cipher ("aes", MODE_ECB, ENCRYPT, aes_enc_tv_template, AES_ENC_TEST_VECTORS);
                test_cipher ("aes", MODE_ECB, DECRYPT, aes_dec_tv_template, AES_DEC_TEST_VECTORS);
                test_cipher ("aes", MODE_ECB, DECRYPT, aes_dec_tv_template, AES_DEC_TEST_VECTORS);
                break;
                break;
 
 
        case 11:
        case 11:
                test_hash("sha384", sha384_tv_template, SHA384_TEST_VECTORS);
                test_hash("sha384", sha384_tv_template, SHA384_TEST_VECTORS);
                break;
                break;
 
 
        case 12:
        case 12:
                test_hash("sha512", sha512_tv_template, SHA512_TEST_VECTORS);
                test_hash("sha512", sha512_tv_template, SHA512_TEST_VECTORS);
                break;
                break;
 
 
        case 13:
        case 13:
                test_deflate();
                test_deflate();
                break;
                break;
 
 
        case 14:
        case 14:
                test_cipher ("cast5", MODE_ECB, ENCRYPT, cast5_enc_tv_template, CAST5_ENC_TEST_VECTORS);
                test_cipher ("cast5", MODE_ECB, ENCRYPT, cast5_enc_tv_template, CAST5_ENC_TEST_VECTORS);
                test_cipher ("cast5", MODE_ECB, DECRYPT, cast5_dec_tv_template, CAST5_DEC_TEST_VECTORS);
                test_cipher ("cast5", MODE_ECB, DECRYPT, cast5_dec_tv_template, CAST5_DEC_TEST_VECTORS);
                break;
                break;
 
 
        case 15:
        case 15:
                test_cipher ("cast6", MODE_ECB, ENCRYPT, cast6_enc_tv_template, CAST6_ENC_TEST_VECTORS);
                test_cipher ("cast6", MODE_ECB, ENCRYPT, cast6_enc_tv_template, CAST6_ENC_TEST_VECTORS);
                test_cipher ("cast6", MODE_ECB, DECRYPT, cast6_dec_tv_template, CAST6_DEC_TEST_VECTORS);
                test_cipher ("cast6", MODE_ECB, DECRYPT, cast6_dec_tv_template, CAST6_DEC_TEST_VECTORS);
                break;
                break;
 
 
        case 16:
        case 16:
                test_cipher ("arc4", MODE_ECB, ENCRYPT, arc4_enc_tv_template, ARC4_ENC_TEST_VECTORS);
                test_cipher ("arc4", MODE_ECB, ENCRYPT, arc4_enc_tv_template, ARC4_ENC_TEST_VECTORS);
                test_cipher ("arc4", MODE_ECB, DECRYPT, arc4_dec_tv_template, ARC4_DEC_TEST_VECTORS);
                test_cipher ("arc4", MODE_ECB, DECRYPT, arc4_dec_tv_template, ARC4_DEC_TEST_VECTORS);
                break;
                break;
 
 
#ifdef CONFIG_CRYPTO_HMAC
#ifdef CONFIG_CRYPTO_HMAC
        case 100:
        case 100:
                test_hmac("md5", hmac_md5_tv_template, HMAC_MD5_TEST_VECTORS);
                test_hmac("md5", hmac_md5_tv_template, HMAC_MD5_TEST_VECTORS);
                break;
                break;
 
 
        case 101:
        case 101:
                test_hmac("sha1", hmac_sha1_tv_template, HMAC_SHA1_TEST_VECTORS);
                test_hmac("sha1", hmac_sha1_tv_template, HMAC_SHA1_TEST_VECTORS);
                break;
                break;
 
 
        case 102:
        case 102:
                test_hmac("sha256", hmac_sha256_tv_template, HMAC_SHA256_TEST_VECTORS);
                test_hmac("sha256", hmac_sha256_tv_template, HMAC_SHA256_TEST_VECTORS);
                break;
                break;
 
 
#endif
#endif
 
 
        case 1000:
        case 1000:
                test_available();
                test_available();
                break;
                break;
 
 
        default:
        default:
                /* useful for debugging */
                /* useful for debugging */
                printk("not testing anything\n");
                printk("not testing anything\n");
                break;
                break;
        }
        }
}
}
 
 
static int __init
static int __init
init(void)
init(void)
{
{
        tvmem = kmalloc(TVMEMSIZE, GFP_KERNEL);
        tvmem = kmalloc(TVMEMSIZE, GFP_KERNEL);
        if (tvmem == NULL)
        if (tvmem == NULL)
                return -ENOMEM;
                return -ENOMEM;
 
 
        xbuf = kmalloc(XBUFSIZE, GFP_KERNEL);
        xbuf = kmalloc(XBUFSIZE, GFP_KERNEL);
        if (xbuf == NULL) {
        if (xbuf == NULL) {
                kfree(tvmem);
                kfree(tvmem);
                return -ENOMEM;
                return -ENOMEM;
        }
        }
 
 
        do_test();
        do_test();
 
 
        kfree(xbuf);
        kfree(xbuf);
        kfree(tvmem);
        kfree(tvmem);
        return 0;
        return 0;
}
}
 
 
/*
/*
 * If an init function is provided, an exit function must also be provided
 * If an init function is provided, an exit function must also be provided
 * to allow module unload.
 * to allow module unload.
 */
 */
static void __exit fini(void) { }
static void __exit fini(void) { }
 
 
module_init(init);
module_init(init);
module_exit(fini);
module_exit(fini);
 
 
MODULE_PARM(mode, "i");
MODULE_PARM(mode, "i");
 
 
MODULE_LICENSE("GPL");
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Quick & dirty crypto testing module");
MODULE_DESCRIPTION("Quick & dirty crypto testing module");
MODULE_AUTHOR("James Morris <jmorris@intercode.com.au>");
MODULE_AUTHOR("James Morris <jmorris@intercode.com.au>");
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.