OpenCores
URL https://opencores.org/ocsvn/or1k_old/or1k_old/trunk

Subversion Repositories or1k_old

[/] [or1k_old/] [trunk/] [rc203soc/] [sw/] [uClinux/] [arch/] [i386/] [kernel/] [vm86.c] - Diff between revs 1765 and 1782

Only display areas with differences | Details | Blame | View Log

Rev 1765 Rev 1782
/*
/*
 *  linux/kernel/vm86.c
 *  linux/kernel/vm86.c
 *
 *
 *  Copyright (C) 1994  Linus Torvalds
 *  Copyright (C) 1994  Linus Torvalds
 */
 */
#include <linux/errno.h>
#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/kernel.h>
#include <linux/signal.h>
#include <linux/signal.h>
#include <linux/string.h>
#include <linux/string.h>
#include <linux/ptrace.h>
#include <linux/ptrace.h>
#include <linux/mm.h>
#include <linux/mm.h>
 
 
#include <asm/segment.h>
#include <asm/segment.h>
#include <asm/pgtable.h>
#include <asm/pgtable.h>
#include <asm/io.h>
#include <asm/io.h>
 
 
/*
/*
 * Known problems:
 * Known problems:
 *
 *
 * Interrupt handling is not guaranteed:
 * Interrupt handling is not guaranteed:
 * - a real x86 will disable all interrupts for one instruction
 * - a real x86 will disable all interrupts for one instruction
 *   after a "mov ss,xx" to make stack handling atomic even without
 *   after a "mov ss,xx" to make stack handling atomic even without
 *   the 'lss' instruction. We can't guarantee this in v86 mode,
 *   the 'lss' instruction. We can't guarantee this in v86 mode,
 *   as the next instruction might result in a page fault or similar.
 *   as the next instruction might result in a page fault or similar.
 * - a real x86 will have interrupts disabled for one instruction
 * - a real x86 will have interrupts disabled for one instruction
 *   past the 'sti' that enables them. We don't bother with all the
 *   past the 'sti' that enables them. We don't bother with all the
 *   details yet..
 *   details yet..
 *
 *
 * Hopefully these problems do not actually matter for anything.
 * Hopefully these problems do not actually matter for anything.
 */
 */
 
 
 
 
#define KVM86   ((struct kernel_vm86_struct *)regs)
#define KVM86   ((struct kernel_vm86_struct *)regs)
#define VMPI    KVM86->vm86plus
#define VMPI    KVM86->vm86plus
 
 
 
 
/*
/*
 * 8- and 16-bit register defines..
 * 8- and 16-bit register defines..
 */
 */
#define AL(regs)        (((unsigned char *)&((regs)->eax))[0])
#define AL(regs)        (((unsigned char *)&((regs)->eax))[0])
#define AH(regs)        (((unsigned char *)&((regs)->eax))[1])
#define AH(regs)        (((unsigned char *)&((regs)->eax))[1])
#define IP(regs)        (*(unsigned short *)&((regs)->eip))
#define IP(regs)        (*(unsigned short *)&((regs)->eip))
#define SP(regs)        (*(unsigned short *)&((regs)->esp))
#define SP(regs)        (*(unsigned short *)&((regs)->esp))
 
 
/*
/*
 * virtual flags (16 and 32-bit versions)
 * virtual flags (16 and 32-bit versions)
 */
 */
#define VFLAGS  (*(unsigned short *)&(current->tss.v86flags))
#define VFLAGS  (*(unsigned short *)&(current->tss.v86flags))
#define VEFLAGS (current->tss.v86flags)
#define VEFLAGS (current->tss.v86flags)
 
 
#define set_flags(X,new,mask) \
#define set_flags(X,new,mask) \
((X) = ((X) & ~(mask)) | ((new) & (mask)))
((X) = ((X) & ~(mask)) | ((new) & (mask)))
 
 
#define SAFE_MASK       (0xDD5)
#define SAFE_MASK       (0xDD5)
#define RETURN_MASK     (0xDFF)
#define RETURN_MASK     (0xDFF)
 
 
 
 
asmlinkage struct pt_regs * save_v86_state(struct vm86_regs * regs)
asmlinkage struct pt_regs * save_v86_state(struct vm86_regs * regs)
{
{
        if (!current->tss.vm86_info) {
        if (!current->tss.vm86_info) {
                printk("no vm86_info: BAD\n");
                printk("no vm86_info: BAD\n");
                do_exit(SIGSEGV);
                do_exit(SIGSEGV);
        }
        }
        set_flags(regs->eflags, VEFLAGS, VIF_MASK | current->tss.v86mask);
        set_flags(regs->eflags, VEFLAGS, VIF_MASK | current->tss.v86mask);
        memcpy_tofs(&current->tss.vm86_info->regs,regs,sizeof(*regs));
        memcpy_tofs(&current->tss.vm86_info->regs,regs,sizeof(*regs));
        put_fs_long(current->tss.screen_bitmap,&current->tss.vm86_info->screen_bitmap);
        put_fs_long(current->tss.screen_bitmap,&current->tss.vm86_info->screen_bitmap);
        current->tss.esp0 = current->saved_kernel_stack;
        current->tss.esp0 = current->saved_kernel_stack;
        current->saved_kernel_stack = 0;
        current->saved_kernel_stack = 0;
        return KVM86->regs32;
        return KVM86->regs32;
}
}
 
 
static void mark_screen_rdonly(struct task_struct * tsk)
static void mark_screen_rdonly(struct task_struct * tsk)
{
{
        pgd_t *pgd;
        pgd_t *pgd;
        pmd_t *pmd;
        pmd_t *pmd;
        pte_t *pte;
        pte_t *pte;
        int i;
        int i;
 
 
        pgd = pgd_offset(tsk->mm, 0xA0000);
        pgd = pgd_offset(tsk->mm, 0xA0000);
        if (pgd_none(*pgd))
        if (pgd_none(*pgd))
                return;
                return;
        if (pgd_bad(*pgd)) {
        if (pgd_bad(*pgd)) {
                printk("vm86: bad pgd entry [%p]:%08lx\n", pgd, pgd_val(*pgd));
                printk("vm86: bad pgd entry [%p]:%08lx\n", pgd, pgd_val(*pgd));
                pgd_clear(pgd);
                pgd_clear(pgd);
                return;
                return;
        }
        }
        pmd = pmd_offset(pgd, 0xA0000);
        pmd = pmd_offset(pgd, 0xA0000);
        if (pmd_none(*pmd))
        if (pmd_none(*pmd))
                return;
                return;
        if (pmd_bad(*pmd)) {
        if (pmd_bad(*pmd)) {
                printk("vm86: bad pmd entry [%p]:%08lx\n", pmd, pmd_val(*pmd));
                printk("vm86: bad pmd entry [%p]:%08lx\n", pmd, pmd_val(*pmd));
                pmd_clear(pmd);
                pmd_clear(pmd);
                return;
                return;
        }
        }
        pte = pte_offset(pmd, 0xA0000);
        pte = pte_offset(pmd, 0xA0000);
        for (i = 0; i < 32; i++) {
        for (i = 0; i < 32; i++) {
                if (pte_present(*pte))
                if (pte_present(*pte))
                        set_pte(pte, pte_wrprotect(*pte));
                        set_pte(pte, pte_wrprotect(*pte));
                pte++;
                pte++;
        }
        }
        flush_tlb();
        flush_tlb();
}
}
 
 
 
 
 
 
static int do_vm86_irq_handling(int subfunction, int irqnumber);
static int do_vm86_irq_handling(int subfunction, int irqnumber);
static void do_sys_vm86(struct kernel_vm86_struct *info, struct task_struct *tsk);
static void do_sys_vm86(struct kernel_vm86_struct *info, struct task_struct *tsk);
 
 
asmlinkage int sys_vm86old(struct vm86_struct * v86)
asmlinkage int sys_vm86old(struct vm86_struct * v86)
{
{
        struct kernel_vm86_struct info; /* declare this _on top_,
        struct kernel_vm86_struct info; /* declare this _on top_,
                                         * this avoids wasting of stack space.
                                         * this avoids wasting of stack space.
                                         * This remains on the stack until we
                                         * This remains on the stack until we
                                         * return to 32 bit user space.
                                         * return to 32 bit user space.
                                         */
                                         */
        struct task_struct *tsk = current;
        struct task_struct *tsk = current;
        int error;
        int error;
 
 
        if (tsk->saved_kernel_stack)
        if (tsk->saved_kernel_stack)
                return -EPERM;
                return -EPERM;
        /* v86 must be readable (now) and writable (for save_v86_state) */
        /* v86 must be readable (now) and writable (for save_v86_state) */
        error = verify_area(VERIFY_WRITE,v86,sizeof(*v86));
        error = verify_area(VERIFY_WRITE,v86,sizeof(*v86));
        if (error)
        if (error)
                return error;
                return error;
        memcpy_fromfs(&info,v86,sizeof(struct vm86_struct));
        memcpy_fromfs(&info,v86,sizeof(struct vm86_struct));
        memset(&info.vm86plus, 0, (int)&info.regs32 - (int)&info.vm86plus);
        memset(&info.vm86plus, 0, (int)&info.regs32 - (int)&info.vm86plus);
        info.regs32 = (struct pt_regs *) &v86;
        info.regs32 = (struct pt_regs *) &v86;
        tsk->tss.vm86_info = v86;
        tsk->tss.vm86_info = v86;
        do_sys_vm86(&info, tsk);
        do_sys_vm86(&info, tsk);
        return 0;        /* we never return here */
        return 0;        /* we never return here */
}
}
 
 
 
 
asmlinkage int sys_vm86(unsigned long subfunction, struct vm86plus_struct * v86)
asmlinkage int sys_vm86(unsigned long subfunction, struct vm86plus_struct * v86)
{
{
        struct kernel_vm86_struct info; /* declare this _on top_,
        struct kernel_vm86_struct info; /* declare this _on top_,
                                         * this avoids wasting of stack space.
                                         * this avoids wasting of stack space.
                                         * This remains on the stack until we
                                         * This remains on the stack until we
                                         * return to 32 bit user space.
                                         * return to 32 bit user space.
                                         */
                                         */
        struct task_struct *tsk = current;
        struct task_struct *tsk = current;
        int error;
        int error;
 
 
        switch (subfunction) {
        switch (subfunction) {
                case VM86_REQUEST_IRQ:
                case VM86_REQUEST_IRQ:
                case VM86_FREE_IRQ:
                case VM86_FREE_IRQ:
                case VM86_GET_IRQ_BITS:
                case VM86_GET_IRQ_BITS:
                case VM86_GET_AND_RESET_IRQ:
                case VM86_GET_AND_RESET_IRQ:
                        return do_vm86_irq_handling(subfunction,(int)v86);
                        return do_vm86_irq_handling(subfunction,(int)v86);
                case VM86_PLUS_INSTALL_CHECK:
                case VM86_PLUS_INSTALL_CHECK:
                        /* NOTE: on old vm86 stuff this will return the error
                        /* NOTE: on old vm86 stuff this will return the error
                           from verify_area(), because the subfunction is
                           from verify_area(), because the subfunction is
                           interpreted as (invalid) address to vm86_struct.
                           interpreted as (invalid) address to vm86_struct.
                           So the installation check works.
                           So the installation check works.
                         */
                         */
                        return 0;
                        return 0;
        }
        }
 
 
        /* we come here only for functions VM86_ENTER, VM86_ENTER_NO_BYPASS */
        /* we come here only for functions VM86_ENTER, VM86_ENTER_NO_BYPASS */
        if (tsk->saved_kernel_stack)
        if (tsk->saved_kernel_stack)
                return -EPERM;
                return -EPERM;
        /* v86 must be readable (now) and writable (for save_v86_state) */
        /* v86 must be readable (now) and writable (for save_v86_state) */
        error = verify_area(VERIFY_WRITE,v86,sizeof(struct vm86plus_struct));
        error = verify_area(VERIFY_WRITE,v86,sizeof(struct vm86plus_struct));
        if (error)
        if (error)
                return error;
                return error;
        memcpy_fromfs(&info,v86,sizeof(struct vm86plus_struct));
        memcpy_fromfs(&info,v86,sizeof(struct vm86plus_struct));
        info.regs32 = (struct pt_regs *) &subfunction;
        info.regs32 = (struct pt_regs *) &subfunction;
        info.vm86plus.is_vm86pus = 1;
        info.vm86plus.is_vm86pus = 1;
        tsk->tss.vm86_info = (struct vm86_struct *)v86;
        tsk->tss.vm86_info = (struct vm86_struct *)v86;
        do_sys_vm86(&info, tsk);
        do_sys_vm86(&info, tsk);
        return 0;        /* we never return here */
        return 0;        /* we never return here */
}
}
 
 
 
 
static void do_sys_vm86(struct kernel_vm86_struct *info, struct task_struct *tsk)
static void do_sys_vm86(struct kernel_vm86_struct *info, struct task_struct *tsk)
{
{
/*
/*
 * make sure the vm86() system call doesn't try to do anything silly
 * make sure the vm86() system call doesn't try to do anything silly
 */
 */
        info->regs.__null_ds = 0;
        info->regs.__null_ds = 0;
        info->regs.__null_es = 0;
        info->regs.__null_es = 0;
        info->regs.__null_fs = 0;
        info->regs.__null_fs = 0;
        info->regs.__null_gs = 0;
        info->regs.__null_gs = 0;
/*
/*
 * The eflags register is also special: we cannot trust that the user
 * The eflags register is also special: we cannot trust that the user
 * has set it up safely, so this makes sure interrupt etc flags are
 * has set it up safely, so this makes sure interrupt etc flags are
 * inherited from protected mode.
 * inherited from protected mode.
 */
 */
        VEFLAGS = info->regs.eflags;
        VEFLAGS = info->regs.eflags;
        info->regs.eflags &= SAFE_MASK;
        info->regs.eflags &= SAFE_MASK;
        info->regs.eflags |= info->regs32->eflags & ~SAFE_MASK;
        info->regs.eflags |= info->regs32->eflags & ~SAFE_MASK;
        info->regs.eflags |= VM_MASK;
        info->regs.eflags |= VM_MASK;
 
 
        switch (info->cpu_type) {
        switch (info->cpu_type) {
                case CPU_286:
                case CPU_286:
                        tsk->tss.v86mask = 0;
                        tsk->tss.v86mask = 0;
                        break;
                        break;
                case CPU_386:
                case CPU_386:
                        tsk->tss.v86mask = NT_MASK | IOPL_MASK;
                        tsk->tss.v86mask = NT_MASK | IOPL_MASK;
                        break;
                        break;
                case CPU_486:
                case CPU_486:
                        tsk->tss.v86mask = AC_MASK | NT_MASK | IOPL_MASK;
                        tsk->tss.v86mask = AC_MASK | NT_MASK | IOPL_MASK;
                        break;
                        break;
                default:
                default:
                        tsk->tss.v86mask = ID_MASK | AC_MASK | NT_MASK | IOPL_MASK;
                        tsk->tss.v86mask = ID_MASK | AC_MASK | NT_MASK | IOPL_MASK;
                        break;
                        break;
        }
        }
 
 
/*
/*
 * Save old state, set default return value (%eax) to 0
 * Save old state, set default return value (%eax) to 0
 */
 */
        info->regs32->eax = 0;
        info->regs32->eax = 0;
        tsk->saved_kernel_stack = tsk->tss.esp0;
        tsk->saved_kernel_stack = tsk->tss.esp0;
        tsk->tss.esp0 = (unsigned long) &info->VM86_TSS_ESP0;
        tsk->tss.esp0 = (unsigned long) &info->VM86_TSS_ESP0;
 
 
        tsk->tss.screen_bitmap = info->screen_bitmap;
        tsk->tss.screen_bitmap = info->screen_bitmap;
        if (info->flags & VM86_SCREEN_BITMAP)
        if (info->flags & VM86_SCREEN_BITMAP)
                mark_screen_rdonly(tsk);
                mark_screen_rdonly(tsk);
        __asm__ __volatile__(
        __asm__ __volatile__(
                "movl %0,%%esp\n\t"
                "movl %0,%%esp\n\t"
                "jmp ret_from_sys_call"
                "jmp ret_from_sys_call"
                : /* no outputs */
                : /* no outputs */
                :"r" (&info->regs));
                :"r" (&info->regs));
        /* we never return here */
        /* we never return here */
}
}
 
 
static inline void return_to_32bit(struct vm86_regs * regs16, int retval)
static inline void return_to_32bit(struct vm86_regs * regs16, int retval)
{
{
        struct pt_regs * regs32;
        struct pt_regs * regs32;
 
 
        regs32 = save_v86_state(regs16);
        regs32 = save_v86_state(regs16);
        regs32->eax = retval;
        regs32->eax = retval;
        __asm__ __volatile__("movl %0,%%esp\n\t"
        __asm__ __volatile__("movl %0,%%esp\n\t"
                "jmp ret_from_sys_call"
                "jmp ret_from_sys_call"
                : : "r" (regs32));
                : : "r" (regs32));
}
}
 
 
static inline void set_IF(struct vm86_regs * regs)
static inline void set_IF(struct vm86_regs * regs)
{
{
        VEFLAGS |= VIF_MASK;
        VEFLAGS |= VIF_MASK;
        if (VEFLAGS & VIP_MASK)
        if (VEFLAGS & VIP_MASK)
                return_to_32bit(regs, VM86_STI);
                return_to_32bit(regs, VM86_STI);
}
}
 
 
static inline void clear_IF(struct vm86_regs * regs)
static inline void clear_IF(struct vm86_regs * regs)
{
{
        VEFLAGS &= ~VIF_MASK;
        VEFLAGS &= ~VIF_MASK;
}
}
 
 
static inline void clear_TF(struct vm86_regs * regs)
static inline void clear_TF(struct vm86_regs * regs)
{
{
        regs->eflags &= ~TF_MASK;
        regs->eflags &= ~TF_MASK;
}
}
 
 
static inline void set_vflags_long(unsigned long eflags, struct vm86_regs * regs)
static inline void set_vflags_long(unsigned long eflags, struct vm86_regs * regs)
{
{
        set_flags(VEFLAGS, eflags, current->tss.v86mask);
        set_flags(VEFLAGS, eflags, current->tss.v86mask);
        set_flags(regs->eflags, eflags, SAFE_MASK);
        set_flags(regs->eflags, eflags, SAFE_MASK);
        if (eflags & IF_MASK)
        if (eflags & IF_MASK)
                set_IF(regs);
                set_IF(regs);
}
}
 
 
static inline void set_vflags_short(unsigned short flags, struct vm86_regs * regs)
static inline void set_vflags_short(unsigned short flags, struct vm86_regs * regs)
{
{
        set_flags(VFLAGS, flags, current->tss.v86mask);
        set_flags(VFLAGS, flags, current->tss.v86mask);
        set_flags(regs->eflags, flags, SAFE_MASK);
        set_flags(regs->eflags, flags, SAFE_MASK);
        if (flags & IF_MASK)
        if (flags & IF_MASK)
                set_IF(regs);
                set_IF(regs);
}
}
 
 
static inline unsigned long get_vflags(struct vm86_regs * regs)
static inline unsigned long get_vflags(struct vm86_regs * regs)
{
{
        unsigned long flags = regs->eflags & RETURN_MASK;
        unsigned long flags = regs->eflags & RETURN_MASK;
 
 
        if (VEFLAGS & VIF_MASK)
        if (VEFLAGS & VIF_MASK)
                flags |= IF_MASK;
                flags |= IF_MASK;
        return flags | (VEFLAGS & current->tss.v86mask);
        return flags | (VEFLAGS & current->tss.v86mask);
}
}
 
 
static inline int is_revectored(int nr, struct revectored_struct * bitmap)
static inline int is_revectored(int nr, struct revectored_struct * bitmap)
{
{
        __asm__ __volatile__("btl %2,%1\n\tsbbl %0,%0"
        __asm__ __volatile__("btl %2,%1\n\tsbbl %0,%0"
                :"=r" (nr)
                :"=r" (nr)
                :"m" (*bitmap),"r" (nr));
                :"m" (*bitmap),"r" (nr));
        return nr;
        return nr;
}
}
 
 
/*
/*
 * Boy are these ugly, but we need to do the correct 16-bit arithmetic.
 * Boy are these ugly, but we need to do the correct 16-bit arithmetic.
 * Gcc makes a mess of it, so we do it inline and use non-obvious calling
 * Gcc makes a mess of it, so we do it inline and use non-obvious calling
 * conventions..
 * conventions..
 */
 */
#define pushb(base, ptr, val) \
#define pushb(base, ptr, val) \
__asm__ __volatile__( \
__asm__ __volatile__( \
        "decw %w0\n\t" \
        "decw %w0\n\t" \
        "movb %2,%%fs:0(%1,%0)" \
        "movb %2,%%fs:0(%1,%0)" \
        : "=r" (ptr) \
        : "=r" (ptr) \
        : "r" (base), "q" (val), "0" (ptr))
        : "r" (base), "q" (val), "0" (ptr))
 
 
#define pushw(base, ptr, val) \
#define pushw(base, ptr, val) \
__asm__ __volatile__( \
__asm__ __volatile__( \
        "decw %w0\n\t" \
        "decw %w0\n\t" \
        "movb %h2,%%fs:0(%1,%0)\n\t" \
        "movb %h2,%%fs:0(%1,%0)\n\t" \
        "decw %w0\n\t" \
        "decw %w0\n\t" \
        "movb %b2,%%fs:0(%1,%0)" \
        "movb %b2,%%fs:0(%1,%0)" \
        : "=r" (ptr) \
        : "=r" (ptr) \
        : "r" (base), "q" (val), "0" (ptr))
        : "r" (base), "q" (val), "0" (ptr))
 
 
#define pushl(base, ptr, val) \
#define pushl(base, ptr, val) \
__asm__ __volatile__( \
__asm__ __volatile__( \
        "decw %w0\n\t" \
        "decw %w0\n\t" \
        "rorl $16,%2\n\t" \
        "rorl $16,%2\n\t" \
        "movb %h2,%%fs:0(%1,%0)\n\t" \
        "movb %h2,%%fs:0(%1,%0)\n\t" \
        "decw %w0\n\t" \
        "decw %w0\n\t" \
        "movb %b2,%%fs:0(%1,%0)\n\t" \
        "movb %b2,%%fs:0(%1,%0)\n\t" \
        "decw %w0\n\t" \
        "decw %w0\n\t" \
        "rorl $16,%2\n\t" \
        "rorl $16,%2\n\t" \
        "movb %h2,%%fs:0(%1,%0)\n\t" \
        "movb %h2,%%fs:0(%1,%0)\n\t" \
        "decw %w0\n\t" \
        "decw %w0\n\t" \
        "movb %b2,%%fs:0(%1,%0)" \
        "movb %b2,%%fs:0(%1,%0)" \
        : "=r" (ptr) \
        : "=r" (ptr) \
        : "r" (base), "q" (val), "0" (ptr))
        : "r" (base), "q" (val), "0" (ptr))
 
 
#define popb(base, ptr) \
#define popb(base, ptr) \
({ unsigned long __res; \
({ unsigned long __res; \
__asm__ __volatile__( \
__asm__ __volatile__( \
        "movb %%fs:0(%1,%0),%b2\n\t" \
        "movb %%fs:0(%1,%0),%b2\n\t" \
        "incw %w0" \
        "incw %w0" \
        : "=r" (ptr), "=r" (base), "=q" (__res) \
        : "=r" (ptr), "=r" (base), "=q" (__res) \
        : "0" (ptr), "1" (base), "2" (0)); \
        : "0" (ptr), "1" (base), "2" (0)); \
__res; })
__res; })
 
 
#define popw(base, ptr) \
#define popw(base, ptr) \
({ unsigned long __res; \
({ unsigned long __res; \
__asm__ __volatile__( \
__asm__ __volatile__( \
        "movb %%fs:0(%1,%0),%b2\n\t" \
        "movb %%fs:0(%1,%0),%b2\n\t" \
        "incw %w0\n\t" \
        "incw %w0\n\t" \
        "movb %%fs:0(%1,%0),%h2\n\t" \
        "movb %%fs:0(%1,%0),%h2\n\t" \
        "incw %w0" \
        "incw %w0" \
        : "=r" (ptr), "=r" (base), "=q" (__res) \
        : "=r" (ptr), "=r" (base), "=q" (__res) \
        : "0" (ptr), "1" (base), "2" (0)); \
        : "0" (ptr), "1" (base), "2" (0)); \
__res; })
__res; })
 
 
#define popl(base, ptr) \
#define popl(base, ptr) \
({ unsigned long __res; \
({ unsigned long __res; \
__asm__ __volatile__( \
__asm__ __volatile__( \
        "movb %%fs:0(%1,%0),%b2\n\t" \
        "movb %%fs:0(%1,%0),%b2\n\t" \
        "incw %w0\n\t" \
        "incw %w0\n\t" \
        "movb %%fs:0(%1,%0),%h2\n\t" \
        "movb %%fs:0(%1,%0),%h2\n\t" \
        "incw %w0\n\t" \
        "incw %w0\n\t" \
        "rorl $16,%2\n\t" \
        "rorl $16,%2\n\t" \
        "movb %%fs:0(%1,%0),%b2\n\t" \
        "movb %%fs:0(%1,%0),%b2\n\t" \
        "incw %w0\n\t" \
        "incw %w0\n\t" \
        "movb %%fs:0(%1,%0),%h2\n\t" \
        "movb %%fs:0(%1,%0),%h2\n\t" \
        "incw %w0\n\t" \
        "incw %w0\n\t" \
        "rorl $16,%2" \
        "rorl $16,%2" \
        : "=r" (ptr), "=r" (base), "=q" (__res) \
        : "=r" (ptr), "=r" (base), "=q" (__res) \
        : "0" (ptr), "1" (base)); \
        : "0" (ptr), "1" (base)); \
__res; })
__res; })
 
 
static void do_int(struct vm86_regs *regs, int i, unsigned char * ssp, unsigned long sp)
static void do_int(struct vm86_regs *regs, int i, unsigned char * ssp, unsigned long sp)
{
{
        unsigned long *intr_ptr, segoffs;
        unsigned long *intr_ptr, segoffs;
 
 
        if (regs->cs == BIOSSEG)
        if (regs->cs == BIOSSEG)
                goto cannot_handle;
                goto cannot_handle;
        if (is_revectored(i, &KVM86->int_revectored))
        if (is_revectored(i, &KVM86->int_revectored))
                goto cannot_handle;
                goto cannot_handle;
        if (i==0x21 && is_revectored(AH(regs),&KVM86->int21_revectored))
        if (i==0x21 && is_revectored(AH(regs),&KVM86->int21_revectored))
                goto cannot_handle;
                goto cannot_handle;
        intr_ptr = (unsigned long *) (i << 2);
        intr_ptr = (unsigned long *) (i << 2);
        if (verify_area(VERIFY_READ, intr_ptr, 4) < 0)
        if (verify_area(VERIFY_READ, intr_ptr, 4) < 0)
                goto cannot_handle;
                goto cannot_handle;
        segoffs = get_fs_long(intr_ptr);
        segoffs = get_fs_long(intr_ptr);
        if ((segoffs >> 16) == BIOSSEG)
        if ((segoffs >> 16) == BIOSSEG)
                goto cannot_handle;
                goto cannot_handle;
        pushw(ssp, sp, get_vflags(regs));
        pushw(ssp, sp, get_vflags(regs));
        pushw(ssp, sp, regs->cs);
        pushw(ssp, sp, regs->cs);
        pushw(ssp, sp, IP(regs));
        pushw(ssp, sp, IP(regs));
        regs->cs = segoffs >> 16;
        regs->cs = segoffs >> 16;
        SP(regs) -= 6;
        SP(regs) -= 6;
        IP(regs) = segoffs & 0xffff;
        IP(regs) = segoffs & 0xffff;
        clear_TF(regs);
        clear_TF(regs);
        clear_IF(regs);
        clear_IF(regs);
        return;
        return;
 
 
cannot_handle:
cannot_handle:
        return_to_32bit(regs, VM86_INTx + (i << 8));
        return_to_32bit(regs, VM86_INTx + (i << 8));
}
}
 
 
 
 
 
 
int handle_vm86_trap(struct vm86_regs * regs, long error_code, int trapno)
int handle_vm86_trap(struct vm86_regs * regs, long error_code, int trapno)
{
{
        if (VMPI.is_vm86pus) {
        if (VMPI.is_vm86pus) {
                if ( (trapno==3) || (trapno==1) )
                if ( (trapno==3) || (trapno==1) )
                        return_to_32bit(regs, VM86_TRAP + (trapno << 8));
                        return_to_32bit(regs, VM86_TRAP + (trapno << 8));
                do_int(regs, trapno, (unsigned char *) (regs->ss << 4), SP(regs));
                do_int(regs, trapno, (unsigned char *) (regs->ss << 4), SP(regs));
                return 0;
                return 0;
        }
        }
        if (trapno !=1)
        if (trapno !=1)
                return 1; /* we let this handle by the calling routine */
                return 1; /* we let this handle by the calling routine */
        if (current->flags & PF_PTRACED)
        if (current->flags & PF_PTRACED)
                current->blocked &= ~(1 << (SIGTRAP-1));
                current->blocked &= ~(1 << (SIGTRAP-1));
        send_sig(SIGTRAP, current, 1);
        send_sig(SIGTRAP, current, 1);
        current->tss.trap_no = trapno;
        current->tss.trap_no = trapno;
        current->tss.error_code = error_code;
        current->tss.error_code = error_code;
        return 0;
        return 0;
}
}
 
 
 
 
void handle_vm86_fault(struct vm86_regs * regs, long error_code)
void handle_vm86_fault(struct vm86_regs * regs, long error_code)
{
{
        unsigned char *csp, *ssp;
        unsigned char *csp, *ssp;
        unsigned long ip, sp;
        unsigned long ip, sp;
 
 
#define CHECK_IF_IN_TRAP \
#define CHECK_IF_IN_TRAP \
        if (VMPI.vm86dbg_active && VMPI.vm86dbg_TFpendig) \
        if (VMPI.vm86dbg_active && VMPI.vm86dbg_TFpendig) \
                pushw(ssp,sp,popw(ssp,sp) | TF_MASK);
                pushw(ssp,sp,popw(ssp,sp) | TF_MASK);
#define VM86_FAULT_RETURN \
#define VM86_FAULT_RETURN \
        if (VMPI.force_return_for_pic  && (VEFLAGS & IF_MASK)) \
        if (VMPI.force_return_for_pic  && (VEFLAGS & IF_MASK)) \
                return_to_32bit(regs, VM86_PICRETURN); \
                return_to_32bit(regs, VM86_PICRETURN); \
        return;
        return;
 
 
        csp = (unsigned char *) (regs->cs << 4);
        csp = (unsigned char *) (regs->cs << 4);
        ssp = (unsigned char *) (regs->ss << 4);
        ssp = (unsigned char *) (regs->ss << 4);
        sp = SP(regs);
        sp = SP(regs);
        ip = IP(regs);
        ip = IP(regs);
 
 
        switch (popb(csp, ip)) {
        switch (popb(csp, ip)) {
 
 
        /* operand size override */
        /* operand size override */
        case 0x66:
        case 0x66:
                switch (popb(csp, ip)) {
                switch (popb(csp, ip)) {
 
 
                /* pushfd */
                /* pushfd */
                case 0x9c:
                case 0x9c:
                        SP(regs) -= 4;
                        SP(regs) -= 4;
                        IP(regs) += 2;
                        IP(regs) += 2;
                        pushl(ssp, sp, get_vflags(regs));
                        pushl(ssp, sp, get_vflags(regs));
                        VM86_FAULT_RETURN;
                        VM86_FAULT_RETURN;
 
 
                /* popfd */
                /* popfd */
                case 0x9d:
                case 0x9d:
                        SP(regs) += 4;
                        SP(regs) += 4;
                        IP(regs) += 2;
                        IP(regs) += 2;
                        CHECK_IF_IN_TRAP
                        CHECK_IF_IN_TRAP
                        set_vflags_long(popl(ssp, sp), regs);
                        set_vflags_long(popl(ssp, sp), regs);
                        VM86_FAULT_RETURN;
                        VM86_FAULT_RETURN;
 
 
                /* iretd */
                /* iretd */
                case 0xcf:
                case 0xcf:
                        SP(regs) += 12;
                        SP(regs) += 12;
                        IP(regs) = (unsigned short)popl(ssp, sp);
                        IP(regs) = (unsigned short)popl(ssp, sp);
                        regs->cs = (unsigned short)popl(ssp, sp);
                        regs->cs = (unsigned short)popl(ssp, sp);
                        CHECK_IF_IN_TRAP
                        CHECK_IF_IN_TRAP
                        set_vflags_long(popl(ssp, sp), regs);
                        set_vflags_long(popl(ssp, sp), regs);
                        VM86_FAULT_RETURN;
                        VM86_FAULT_RETURN;
                /* need this to avoid a fallthrough */
                /* need this to avoid a fallthrough */
                default:
                default:
                        return_to_32bit(regs, VM86_UNKNOWN);
                        return_to_32bit(regs, VM86_UNKNOWN);
                }
                }
 
 
        /* pushf */
        /* pushf */
        case 0x9c:
        case 0x9c:
                SP(regs) -= 2;
                SP(regs) -= 2;
                IP(regs)++;
                IP(regs)++;
                pushw(ssp, sp, get_vflags(regs));
                pushw(ssp, sp, get_vflags(regs));
                VM86_FAULT_RETURN;
                VM86_FAULT_RETURN;
 
 
        /* popf */
        /* popf */
        case 0x9d:
        case 0x9d:
                SP(regs) += 2;
                SP(regs) += 2;
                IP(regs)++;
                IP(regs)++;
                CHECK_IF_IN_TRAP
                CHECK_IF_IN_TRAP
                set_vflags_short(popw(ssp, sp), regs);
                set_vflags_short(popw(ssp, sp), regs);
                VM86_FAULT_RETURN;
                VM86_FAULT_RETURN;
 
 
        /* int xx */
        /* int xx */
        case 0xcd: {
        case 0xcd: {
                int intno=popb(csp, ip);
                int intno=popb(csp, ip);
                IP(regs) += 2;
                IP(regs) += 2;
                if (VMPI.vm86dbg_active) {
                if (VMPI.vm86dbg_active) {
                        if ( (1 << (intno &7)) & VMPI.vm86dbg_intxxtab[intno >> 3] )
                        if ( (1 << (intno &7)) & VMPI.vm86dbg_intxxtab[intno >> 3] )
                                return_to_32bit(regs, VM86_INTx + (intno << 8));
                                return_to_32bit(regs, VM86_INTx + (intno << 8));
                }
                }
                do_int(regs, intno, ssp, sp);
                do_int(regs, intno, ssp, sp);
                return;
                return;
        }
        }
 
 
        /* iret */
        /* iret */
        case 0xcf:
        case 0xcf:
                SP(regs) += 6;
                SP(regs) += 6;
                IP(regs) = popw(ssp, sp);
                IP(regs) = popw(ssp, sp);
                regs->cs = popw(ssp, sp);
                regs->cs = popw(ssp, sp);
                CHECK_IF_IN_TRAP
                CHECK_IF_IN_TRAP
                set_vflags_short(popw(ssp, sp), regs);
                set_vflags_short(popw(ssp, sp), regs);
                VM86_FAULT_RETURN;
                VM86_FAULT_RETURN;
 
 
        /* cli */
        /* cli */
        case 0xfa:
        case 0xfa:
                IP(regs)++;
                IP(regs)++;
                clear_IF(regs);
                clear_IF(regs);
                VM86_FAULT_RETURN;
                VM86_FAULT_RETURN;
 
 
        /* sti */
        /* sti */
        /*
        /*
         * Damn. This is incorrect: the 'sti' instruction should actually
         * Damn. This is incorrect: the 'sti' instruction should actually
         * enable interrupts after the /next/ instruction. Not good.
         * enable interrupts after the /next/ instruction. Not good.
         *
         *
         * Probably needs some horsing around with the TF flag. Aiee..
         * Probably needs some horsing around with the TF flag. Aiee..
         */
         */
        case 0xfb:
        case 0xfb:
                IP(regs)++;
                IP(regs)++;
                set_IF(regs);
                set_IF(regs);
                VM86_FAULT_RETURN;
                VM86_FAULT_RETURN;
 
 
        default:
        default:
                return_to_32bit(regs, VM86_UNKNOWN);
                return_to_32bit(regs, VM86_UNKNOWN);
        }
        }
}
}
 
 
/* ---------------- vm86 special IRQ passing stuff ----------------- */
/* ---------------- vm86 special IRQ passing stuff ----------------- */
 
 
#define VM86_IRQNAME            "vm86irq"
#define VM86_IRQNAME            "vm86irq"
 
 
static struct vm86_irqs {
static struct vm86_irqs {
        struct task_struct *tsk;
        struct task_struct *tsk;
        int sig;
        int sig;
} vm86_irqs[16] = {{0},};
} vm86_irqs[16] = {{0},};
static int irqbits=0;
static int irqbits=0;
 
 
#define ALLOWED_SIGS ( 1 /* 0 = don't send a signal */ \
#define ALLOWED_SIGS ( 1 /* 0 = don't send a signal */ \
        | (1 << SIGUSR1) | (1 << SIGUSR2) | (1 << SIGIO)  | (1 << SIGURG) \
        | (1 << SIGUSR1) | (1 << SIGUSR2) | (1 << SIGIO)  | (1 << SIGURG) \
        | (1 << SIGUNUSED) )
        | (1 << SIGUNUSED) )
 
 
static void irq_handler(int intno, void *dev_id, struct pt_regs * regs) {
static void irq_handler(int intno, void *dev_id, struct pt_regs * regs) {
        int irq_bit;
        int irq_bit;
        unsigned long flags;
        unsigned long flags;
 
 
        save_flags(flags);
        save_flags(flags);
        cli();
        cli();
        irq_bit = 1 << intno;
        irq_bit = 1 << intno;
        if ((irqbits & irq_bit) || ! vm86_irqs[intno].tsk) {
        if ((irqbits & irq_bit) || ! vm86_irqs[intno].tsk) {
                restore_flags(flags);
                restore_flags(flags);
                return;
                return;
        }
        }
        irqbits |= irq_bit;
        irqbits |= irq_bit;
        if (vm86_irqs[intno].sig)
        if (vm86_irqs[intno].sig)
                send_sig(vm86_irqs[intno].sig, vm86_irqs[intno].tsk, 1);
                send_sig(vm86_irqs[intno].sig, vm86_irqs[intno].tsk, 1);
        /* else user will poll for IRQs */
        /* else user will poll for IRQs */
        restore_flags(flags);
        restore_flags(flags);
}
}
 
 
static inline void free_vm86_irq(int irqnumber)
static inline void free_vm86_irq(int irqnumber)
{
{
        free_irq(irqnumber,0);
        free_irq(irqnumber,0);
        vm86_irqs[irqnumber].tsk = 0;
        vm86_irqs[irqnumber].tsk = 0;
        irqbits &= ~(1 << irqnumber);
        irqbits &= ~(1 << irqnumber);
}
}
 
 
static inline int task_valid(struct task_struct *tsk)
static inline int task_valid(struct task_struct *tsk)
{
{
        struct task_struct *p;
        struct task_struct *p;
 
 
        for_each_task(p) {
        for_each_task(p) {
                if ((p == tsk) && (p->sig)) return 1;
                if ((p == tsk) && (p->sig)) return 1;
        }
        }
        return 0;
        return 0;
}
}
 
 
static inline void handle_irq_zombies(void)
static inline void handle_irq_zombies(void)
{
{
        int i;
        int i;
        for (i=3; i<16; i++) {
        for (i=3; i<16; i++) {
                if (vm86_irqs[i].tsk) {
                if (vm86_irqs[i].tsk) {
                        if (task_valid(vm86_irqs[i].tsk)) continue;
                        if (task_valid(vm86_irqs[i].tsk)) continue;
                        free_vm86_irq(i);
                        free_vm86_irq(i);
                }
                }
        }
        }
}
}
 
 
static inline int get_and_reset_irq(int irqnumber)
static inline int get_and_reset_irq(int irqnumber)
{
{
        int bit;
        int bit;
        unsigned long flags;
        unsigned long flags;
 
 
        if ( (irqnumber<3) || (irqnumber>15) ) return 0;
        if ( (irqnumber<3) || (irqnumber>15) ) return 0;
        if (vm86_irqs[irqnumber].tsk != current) return 0;
        if (vm86_irqs[irqnumber].tsk != current) return 0;
        save_flags(flags);
        save_flags(flags);
        cli();
        cli();
        bit = irqbits & (1 << irqnumber);
        bit = irqbits & (1 << irqnumber);
        irqbits &= ~bit;
        irqbits &= ~bit;
        restore_flags(flags);
        restore_flags(flags);
        return bit;
        return bit;
}
}
 
 
 
 
static int do_vm86_irq_handling(int subfunction, int irqnumber)
static int do_vm86_irq_handling(int subfunction, int irqnumber)
{
{
        int ret;
        int ret;
        switch (subfunction) {
        switch (subfunction) {
                case VM86_GET_AND_RESET_IRQ: {
                case VM86_GET_AND_RESET_IRQ: {
                        return get_and_reset_irq(irqnumber);
                        return get_and_reset_irq(irqnumber);
                }
                }
                case VM86_GET_IRQ_BITS: {
                case VM86_GET_IRQ_BITS: {
                        return irqbits;
                        return irqbits;
                }
                }
                case VM86_REQUEST_IRQ: {
                case VM86_REQUEST_IRQ: {
                        int sig = irqnumber >> 8;
                        int sig = irqnumber >> 8;
                        int irq = irqnumber & 255;
                        int irq = irqnumber & 255;
                        handle_irq_zombies();
                        handle_irq_zombies();
                        if (!suser() || securelevel > 0) return -EPERM;
                        if (!suser() || securelevel > 0) return -EPERM;
                        if (!((1 << sig) & ALLOWED_SIGS)) return -EPERM;
                        if (!((1 << sig) & ALLOWED_SIGS)) return -EPERM;
                        if ( (irq<3) || (irq>15) ) return -EPERM;
                        if ( (irq<3) || (irq>15) ) return -EPERM;
                        if (vm86_irqs[irq].tsk) return -EPERM;
                        if (vm86_irqs[irq].tsk) return -EPERM;
                        ret = request_irq(irq, &irq_handler, 0, VM86_IRQNAME, 0);
                        ret = request_irq(irq, &irq_handler, 0, VM86_IRQNAME, 0);
                        if (ret) return ret;
                        if (ret) return ret;
                        vm86_irqs[irq].sig = sig;
                        vm86_irqs[irq].sig = sig;
                        vm86_irqs[irq].tsk = current;
                        vm86_irqs[irq].tsk = current;
                        return irq;
                        return irq;
                }
                }
                case  VM86_FREE_IRQ: {
                case  VM86_FREE_IRQ: {
                        handle_irq_zombies();
                        handle_irq_zombies();
                        if ( (irqnumber<3) || (irqnumber>15) ) return -EPERM;
                        if ( (irqnumber<3) || (irqnumber>15) ) return -EPERM;
                        if (!vm86_irqs[irqnumber].tsk) return 0;
                        if (!vm86_irqs[irqnumber].tsk) return 0;
                        if (vm86_irqs[irqnumber].tsk != current) return -EPERM;
                        if (vm86_irqs[irqnumber].tsk != current) return -EPERM;
                        free_vm86_irq(irqnumber);
                        free_vm86_irq(irqnumber);
                        return 0;
                        return 0;
                }
                }
        }
        }
        return -EINVAL;
        return -EINVAL;
}
}
 
 
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.