OpenCores
URL https://opencores.org/ocsvn/or1k_old/or1k_old/trunk

Subversion Repositories or1k_old

[/] [or1k_old/] [trunk/] [rc203soc/] [sw/] [uClinux/] [arch/] [m68k/] [atari/] [config.c] - Diff between revs 1765 and 1782

Only display areas with differences | Details | Blame | View Log

Rev 1765 Rev 1782
/*
/*
 *  linux/atari/config.c
 *  linux/atari/config.c
 *
 *
 *  Copyright (C) 1994 Bj”rn Brauel
 *  Copyright (C) 1994 Bj”rn Brauel
 *
 *
 *  5/2/94 Roman Hodek:
 *  5/2/94 Roman Hodek:
 *    Added setting of time_adj to get a better clock.
 *    Added setting of time_adj to get a better clock.
 *
 *
 *  5/14/94 Roman Hodek:
 *  5/14/94 Roman Hodek:
 *    gettod() for TT
 *    gettod() for TT
 *
 *
 *  5/15/94 Roman Hodek:
 *  5/15/94 Roman Hodek:
 *    hard_reset_now() for Atari (and others?)
 *    hard_reset_now() for Atari (and others?)
 *
 *
 *  94/12/30 Andreas Schwab:
 *  94/12/30 Andreas Schwab:
 *    atari_sched_init fixed to get precise clock.
 *    atari_sched_init fixed to get precise clock.
 *
 *
 * This file is subject to the terms and conditions of the GNU General Public
 * This file is subject to the terms and conditions of the GNU General Public
 * License.  See the file COPYING in the main directory of this archive
 * License.  See the file COPYING in the main directory of this archive
 * for more details.
 * for more details.
 */
 */
 
 
/*
/*
 * Miscellaneous atari stuff
 * Miscellaneous atari stuff
 */
 */
 
 
#include <linux/config.h>
#include <linux/config.h>
#include <linux/types.h>
#include <linux/types.h>
#include <linux/mm.h>
#include <linux/mm.h>
#include <asm/bootinfo.h>
#include <asm/bootinfo.h>
#include <linux/mc146818rtc.h>
#include <linux/mc146818rtc.h>
#include <linux/kd.h>
#include <linux/kd.h>
#include <linux/tty.h>
#include <linux/tty.h>
#include <linux/console.h>
#include <linux/console.h>
 
 
#include <asm/atarihw.h>
#include <asm/atarihw.h>
#include <asm/atarihdreg.h>
#include <asm/atarihdreg.h>
#include <asm/atariints.h>
#include <asm/atariints.h>
 
 
#include <asm/system.h>
#include <asm/system.h>
#include <asm/io.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <asm/irq.h>
#include <asm/pgtable.h>
#include <asm/pgtable.h>
#include <asm/machdep.h>
#include <asm/machdep.h>
 
 
extern void atari_sched_init(isrfunc);
extern void atari_sched_init(isrfunc);
extern int atari_keyb_init(void);
extern int atari_keyb_init(void);
extern int atari_kbdrate (struct kbd_repeat *);
extern int atari_kbdrate (struct kbd_repeat *);
extern void atari_kbd_leds (unsigned int);
extern void atari_kbd_leds (unsigned int);
extern void atari_init_INTS (void);
extern void atari_init_INTS (void);
extern int atari_add_isr (unsigned long, isrfunc, int, void *, char *);
extern int atari_add_isr (unsigned long, isrfunc, int, void *, char *);
extern int atari_remove_isr (unsigned long, isrfunc, void *);
extern int atari_remove_isr (unsigned long, isrfunc, void *);
extern void atari_enable_irq (unsigned);
extern void atari_enable_irq (unsigned);
extern void atari_disable_irq (unsigned);
extern void atari_disable_irq (unsigned);
extern int atari_get_irq_list (char *buf, int len);
extern int atari_get_irq_list (char *buf, int len);
extern unsigned long atari_gettimeoffset (void);
extern unsigned long atari_gettimeoffset (void);
extern void atari_mste_gettod (int *, int *, int *, int *, int *, int *);
extern void atari_mste_gettod (int *, int *, int *, int *, int *, int *);
extern void atari_gettod (int *, int *, int *, int *, int *, int *);
extern void atari_gettod (int *, int *, int *, int *, int *, int *);
extern int atari_mste_hwclk (int, struct hwclk_time *);
extern int atari_mste_hwclk (int, struct hwclk_time *);
extern int atari_hwclk (int, struct hwclk_time *);
extern int atari_hwclk (int, struct hwclk_time *);
extern int atari_mste_set_clock_mmss (unsigned long);
extern int atari_mste_set_clock_mmss (unsigned long);
extern int atari_set_clock_mmss (unsigned long);
extern int atari_set_clock_mmss (unsigned long);
extern void atari_mksound( unsigned int count, unsigned int ticks );
extern void atari_mksound( unsigned int count, unsigned int ticks );
extern void atari_reset( void );
extern void atari_reset( void );
#ifdef CONFIG_BLK_DEV_FD
#ifdef CONFIG_BLK_DEV_FD
extern int atari_floppy_init (void);
extern int atari_floppy_init (void);
extern void atari_floppy_setup(char *, int *);
extern void atari_floppy_setup(char *, int *);
#endif
#endif
extern void atari_waitbut (void);
extern void atari_waitbut (void);
extern struct consw fb_con;
extern struct consw fb_con;
extern struct fb_info *atari_fb_init(long *);
extern struct fb_info *atari_fb_init(long *);
extern void atari_debug_init (void);
extern void atari_debug_init (void);
extern void atari_video_setup(char *, int *);
extern void atari_video_setup(char *, int *);
 
 
extern void (*kd_mksound)(unsigned int, unsigned int);
extern void (*kd_mksound)(unsigned int, unsigned int);
 
 
/* This function tests for the presence of an address, specially a
/* This function tests for the presence of an address, specially a
 * hardware register address. It is called very early in the kernel
 * hardware register address. It is called very early in the kernel
 * initialization process, when the VBR register isn't set up yet. On
 * initialization process, when the VBR register isn't set up yet. On
 * an Atari, it still points to address 0, which is unmapped. So a bus
 * an Atari, it still points to address 0, which is unmapped. So a bus
 * error would cause another bus error while fetching the exception
 * error would cause another bus error while fetching the exception
 * vector, and the CPU would do nothing at all. So we needed to set up
 * vector, and the CPU would do nothing at all. So we needed to set up
 * a temporary VBR and a vector table for the duration of the test.
 * a temporary VBR and a vector table for the duration of the test.
 */
 */
 
 
static int hwreg_present( volatile void *regp )
static int hwreg_present( volatile void *regp )
{
{
    int ret = 0;
    int ret = 0;
    long        save_sp, save_vbr;
    long        save_sp, save_vbr;
    long        tmp_vectors[3];
    long        tmp_vectors[3];
 
 
    __asm__ __volatile__
    __asm__ __volatile__
        (       "movec  %/vbr,%2\n\t"
        (       "movec  %/vbr,%2\n\t"
                "movel  #Lberr1,%4@(8)\n\t"
                "movel  #Lberr1,%4@(8)\n\t"
                "movec  %4,%/vbr\n\t"
                "movec  %4,%/vbr\n\t"
                "movel  %/sp,%1\n\t"
                "movel  %/sp,%1\n\t"
                "moveq  #0,%0\n\t"
                "moveq  #0,%0\n\t"
                "tstb   %3@\n\t"
                "tstb   %3@\n\t"
                "nop\n\t"
                "nop\n\t"
                "moveq  #1,%0\n"
                "moveq  #1,%0\n"
                "Lberr1:\n\t"
                "Lberr1:\n\t"
                "movel  %1,%/sp\n\t"
                "movel  %1,%/sp\n\t"
                "movec  %2,%/vbr"
                "movec  %2,%/vbr"
                : "=&d" (ret), "=&r" (save_sp), "=&r" (save_vbr)
                : "=&d" (ret), "=&r" (save_sp), "=&r" (save_vbr)
                : "a" (regp), "a" (tmp_vectors)
                : "a" (regp), "a" (tmp_vectors)
                );
                );
 
 
    return( ret );
    return( ret );
}
}
 
 
#if 0
#if 0
static int hwreg_present_bywrite( volatile void *regp,
static int hwreg_present_bywrite( volatile void *regp,
                                 unsigned char val )
                                 unsigned char val )
 
 
{
{
    int         ret;
    int         ret;
    long        save_sp, save_vbr;
    long        save_sp, save_vbr;
    static long tmp_vectors[3] = { 0, 0, (long)&&after_test };
    static long tmp_vectors[3] = { 0, 0, (long)&&after_test };
 
 
    __asm__ __volatile__
    __asm__ __volatile__
        (       "movec  %/vbr,%2\n\t"   /* save vbr value            */
        (       "movec  %/vbr,%2\n\t"   /* save vbr value            */
                "movec  %4,%/vbr\n\t"   /* set up temporary vectors  */
                "movec  %4,%/vbr\n\t"   /* set up temporary vectors  */
                "movel  %/sp,%1\n\t"    /* save sp                   */
                "movel  %/sp,%1\n\t"    /* save sp                   */
                "moveq  #0,%0\n\t"      /* assume not present        */
                "moveq  #0,%0\n\t"      /* assume not present        */
                "moveb  %5,%3@\n\t"     /* write the hardware reg    */
                "moveb  %5,%3@\n\t"     /* write the hardware reg    */
                "cmpb   %3@,%5\n\t"     /* compare it                */
                "cmpb   %3@,%5\n\t"     /* compare it                */
                "seq    %0"             /* comes here only if reg    */
                "seq    %0"             /* comes here only if reg    */
                                        /* is present                */
                                        /* is present                */
                : "=d&" (ret), "=r&" (save_sp), "=r&" (save_vbr)
                : "=d&" (ret), "=r&" (save_sp), "=r&" (save_vbr)
                : "a" (regp), "r" (tmp_vectors), "d" (val)
                : "a" (regp), "r" (tmp_vectors), "d" (val)
                );
                );
  after_test:
  after_test:
    __asm__ __volatile__
    __asm__ __volatile__
      ( "movel  %0,%/sp\n\t"            /* restore sp                */
      ( "movel  %0,%/sp\n\t"            /* restore sp                */
        "movec  %1,%/vbr"                       /* restore vbr               */
        "movec  %1,%/vbr"                       /* restore vbr               */
        : : "r" (save_sp), "r" (save_vbr) : "sp"
        : : "r" (save_sp), "r" (save_vbr) : "sp"
        );
        );
 
 
    return( ret );
    return( ret );
}
}
#endif
#endif
 
 
/* Basically the same, but writes a value into a word register, protected
/* Basically the same, but writes a value into a word register, protected
 * by a bus error handler */
 * by a bus error handler */
 
 
static int hwreg_write( volatile void *regp, unsigned short val )
static int hwreg_write( volatile void *regp, unsigned short val )
{
{
        int             ret;
        int             ret;
        long    save_sp, save_vbr;
        long    save_sp, save_vbr;
        long    tmp_vectors[3];
        long    tmp_vectors[3];
 
 
        __asm__ __volatile__
        __asm__ __volatile__
        (       "movec  %/vbr,%2\n\t"
        (       "movec  %/vbr,%2\n\t"
                "movel  #Lberr2,%4@(8)\n\t"
                "movel  #Lberr2,%4@(8)\n\t"
                "movec  %4,%/vbr\n\t"
                "movec  %4,%/vbr\n\t"
                "movel  %/sp,%1\n\t"
                "movel  %/sp,%1\n\t"
                "moveq  #0,%0\n\t"
                "moveq  #0,%0\n\t"
                "movew  %5,%3@\n\t"
                "movew  %5,%3@\n\t"
                "nop    \n\t"   /* If this nop isn't present, 'ret' may already be
                "nop    \n\t"   /* If this nop isn't present, 'ret' may already be
                                 * loaded with 1 at the time the bus error
                                 * loaded with 1 at the time the bus error
                                 * happens! */
                                 * happens! */
                "moveq  #1,%0\n"
                "moveq  #1,%0\n"
        "Lberr2:\n\t"
        "Lberr2:\n\t"
                "movel  %1,%/sp\n\t"
                "movel  %1,%/sp\n\t"
                "movec  %2,%/vbr"
                "movec  %2,%/vbr"
                : "=&d" (ret), "=&r" (save_sp), "=&r" (save_vbr)
                : "=&d" (ret), "=&r" (save_sp), "=&r" (save_vbr)
                : "a" (regp), "a" (tmp_vectors), "g" (val)
                : "a" (regp), "a" (tmp_vectors), "g" (val)
        );
        );
 
 
        return( ret );
        return( ret );
}
}
 
 
/* ++roman: This is a more elaborate test for an SCC chip, since the plain
/* ++roman: This is a more elaborate test for an SCC chip, since the plain
 * Medusa board generates DTACK at the SCC's standard addresses, but a SCC
 * Medusa board generates DTACK at the SCC's standard addresses, but a SCC
 * board in the Medusa is possible. Also, the addresses where the ST_ESCC
 * board in the Medusa is possible. Also, the addresses where the ST_ESCC
 * resides generate DTACK without the chip, too.
 * resides generate DTACK without the chip, too.
 * The method is to write values into the interrupt vector register, that
 * The method is to write values into the interrupt vector register, that
 * should be readable without trouble (from channel A!).
 * should be readable without trouble (from channel A!).
 */
 */
 
 
static int scc_test( volatile char *ctla )
static int scc_test( volatile char *ctla )
{
{
        if (!hwreg_present( ctla ))
        if (!hwreg_present( ctla ))
                return( 0 );
                return( 0 );
        MFPDELAY();
        MFPDELAY();
 
 
        *ctla = 2; MFPDELAY();
        *ctla = 2; MFPDELAY();
        *ctla = 0x40; MFPDELAY();
        *ctla = 0x40; MFPDELAY();
 
 
        *ctla = 2; MFPDELAY();
        *ctla = 2; MFPDELAY();
        if (*ctla != 0x40) return( 0 );
        if (*ctla != 0x40) return( 0 );
        MFPDELAY();
        MFPDELAY();
 
 
        *ctla = 2; MFPDELAY();
        *ctla = 2; MFPDELAY();
        *ctla = 0x60; MFPDELAY();
        *ctla = 0x60; MFPDELAY();
 
 
        *ctla = 2; MFPDELAY();
        *ctla = 2; MFPDELAY();
        if (*ctla != 0x60) return( 0 );
        if (*ctla != 0x60) return( 0 );
 
 
        return( 1 );
        return( 1 );
}
}
 
 
void config_atari(void)
void config_atari(void)
{
{
    mach_sched_init      = atari_sched_init;
    mach_sched_init      = atari_sched_init;
    mach_keyb_init       = atari_keyb_init;
    mach_keyb_init       = atari_keyb_init;
    mach_kbdrate         = atari_kbdrate;
    mach_kbdrate         = atari_kbdrate;
    mach_kbd_leds        = atari_kbd_leds;
    mach_kbd_leds        = atari_kbd_leds;
    mach_init_INTS       = atari_init_INTS;
    mach_init_INTS       = atari_init_INTS;
    mach_add_isr         = atari_add_isr;
    mach_add_isr         = atari_add_isr;
    mach_remove_isr      = atari_remove_isr;
    mach_remove_isr      = atari_remove_isr;
    mach_enable_irq      = atari_enable_irq;
    mach_enable_irq      = atari_enable_irq;
    mach_disable_irq     = atari_disable_irq;
    mach_disable_irq     = atari_disable_irq;
    mach_get_irq_list    = atari_get_irq_list;
    mach_get_irq_list    = atari_get_irq_list;
    mach_gettimeoffset   = atari_gettimeoffset;
    mach_gettimeoffset   = atari_gettimeoffset;
    mach_mksound         = atari_mksound;
    mach_mksound         = atari_mksound;
    mach_reset           = atari_reset;
    mach_reset           = atari_reset;
#ifdef CONFIG_BLK_DEV_FD
#ifdef CONFIG_BLK_DEV_FD
    mach_floppy_init     = atari_floppy_init;
    mach_floppy_init     = atari_floppy_init;
    mach_floppy_setup    = atari_floppy_setup;
    mach_floppy_setup    = atari_floppy_setup;
#endif
#endif
    conswitchp           = &fb_con;
    conswitchp           = &fb_con;
    waitbut              = atari_waitbut;
    waitbut              = atari_waitbut;
    mach_fb_init         = atari_fb_init;
    mach_fb_init         = atari_fb_init;
    mach_max_dma_address = 0xffffff;
    mach_max_dma_address = 0xffffff;
    mach_debug_init      = atari_debug_init;
    mach_debug_init      = atari_debug_init;
    mach_video_setup     = atari_video_setup;
    mach_video_setup     = atari_video_setup;
    kd_mksound           = atari_mksound;
    kd_mksound           = atari_mksound;
 
 
    /* ++bjoern:
    /* ++bjoern:
     * Determine hardware present
     * Determine hardware present
     */
     */
 
 
    printk( "Atari hardware found: " );
    printk( "Atari hardware found: " );
    if (is_medusa) {
    if (is_medusa) {
        /* There's no Atari video hardware on the Medusa, but all the
        /* There's no Atari video hardware on the Medusa, but all the
         * addresses below generate a DTACK so no bus error occurs! */
         * addresses below generate a DTACK so no bus error occurs! */
    }
    }
    else if (hwreg_present( f030_xreg )) {
    else if (hwreg_present( f030_xreg )) {
        ATARIHW_SET(VIDEL_SHIFTER);
        ATARIHW_SET(VIDEL_SHIFTER);
        printk( "VIDEL " );
        printk( "VIDEL " );
        /* This is a temporary hack: If there is Falcon video
        /* This is a temporary hack: If there is Falcon video
         * hardware, we assume that the ST-DMA serves SCSI instead of
         * hardware, we assume that the ST-DMA serves SCSI instead of
         * ACSI. In the future, there should be a better method for
         * ACSI. In the future, there should be a better method for
         * this...
         * this...
         */
         */
        ATARIHW_SET(ST_SCSI);
        ATARIHW_SET(ST_SCSI);
        printk( "STDMA-SCSI " );
        printk( "STDMA-SCSI " );
    }
    }
    else if (hwreg_present( tt_palette )) {
    else if (hwreg_present( tt_palette )) {
        ATARIHW_SET(TT_SHIFTER);
        ATARIHW_SET(TT_SHIFTER);
        printk( "TT_SHIFTER " );
        printk( "TT_SHIFTER " );
    }
    }
    else if (hwreg_present( &shifter.bas_hi )) {
    else if (hwreg_present( &shifter.bas_hi )) {
        if (hwreg_present( &shifter.bas_lo ) &&
        if (hwreg_present( &shifter.bas_lo ) &&
            (shifter.bas_lo = 0x0aau, shifter.bas_lo == 0x0aau)) {
            (shifter.bas_lo = 0x0aau, shifter.bas_lo == 0x0aau)) {
            ATARIHW_SET(EXTD_SHIFTER);
            ATARIHW_SET(EXTD_SHIFTER);
            printk( "EXTD_SHIFTER " );
            printk( "EXTD_SHIFTER " );
        }
        }
        else {
        else {
            ATARIHW_SET(STND_SHIFTER);
            ATARIHW_SET(STND_SHIFTER);
            printk( "STND_SHIFTER " );
            printk( "STND_SHIFTER " );
        }
        }
    }
    }
    if (hwreg_present( &mfp.par_dt_reg )) {
    if (hwreg_present( &mfp.par_dt_reg )) {
        ATARIHW_SET(ST_MFP);
        ATARIHW_SET(ST_MFP);
        printk( "ST_MFP " );
        printk( "ST_MFP " );
    }
    }
    if (hwreg_present( &tt_mfp.par_dt_reg )) {
    if (hwreg_present( &tt_mfp.par_dt_reg )) {
        ATARIHW_SET(TT_MFP);
        ATARIHW_SET(TT_MFP);
        printk( "TT_MFP " );
        printk( "TT_MFP " );
    }
    }
    if (hwreg_present( &tt_scsi_dma.dma_addr_hi )) {
    if (hwreg_present( &tt_scsi_dma.dma_addr_hi )) {
        ATARIHW_SET(SCSI_DMA);
        ATARIHW_SET(SCSI_DMA);
        printk( "TT_SCSI_DMA " );
        printk( "TT_SCSI_DMA " );
    }
    }
    if (hwreg_present( &st_dma.dma_hi )) {
    if (hwreg_present( &st_dma.dma_hi )) {
        ATARIHW_SET(STND_DMA);
        ATARIHW_SET(STND_DMA);
        printk( "STND_DMA " );
        printk( "STND_DMA " );
    }
    }
    if (is_medusa || /* The ST-DMA address registers aren't readable
    if (is_medusa || /* The ST-DMA address registers aren't readable
                      * on all Medusas, so the test below may fail */
                      * on all Medusas, so the test below may fail */
        (hwreg_present( &st_dma.dma_vhi ) &&
        (hwreg_present( &st_dma.dma_vhi ) &&
         (st_dma.dma_vhi = 0x55) && (st_dma.dma_hi = 0xaa) &&
         (st_dma.dma_vhi = 0x55) && (st_dma.dma_hi = 0xaa) &&
         st_dma.dma_vhi == 0x55 && st_dma.dma_hi == 0xaa &&
         st_dma.dma_vhi == 0x55 && st_dma.dma_hi == 0xaa &&
         (st_dma.dma_vhi = 0xaa) && (st_dma.dma_hi = 0x55) &&
         (st_dma.dma_vhi = 0xaa) && (st_dma.dma_hi = 0x55) &&
         st_dma.dma_vhi == 0xaa && st_dma.dma_hi == 0x55)) {
         st_dma.dma_vhi == 0xaa && st_dma.dma_hi == 0x55)) {
        ATARIHW_SET(EXTD_DMA);
        ATARIHW_SET(EXTD_DMA);
        printk( "EXTD_DMA " );
        printk( "EXTD_DMA " );
    }
    }
    if (hwreg_present( &tt_scsi.scsi_data )) {
    if (hwreg_present( &tt_scsi.scsi_data )) {
        ATARIHW_SET(TT_SCSI);
        ATARIHW_SET(TT_SCSI);
        printk( "TT_SCSI " );
        printk( "TT_SCSI " );
    }
    }
    if (hwreg_present( &sound_ym.rd_data_reg_sel )) {
    if (hwreg_present( &sound_ym.rd_data_reg_sel )) {
        ATARIHW_SET(YM_2149);
        ATARIHW_SET(YM_2149);
        printk( "YM2149 " );
        printk( "YM2149 " );
    }
    }
    if (!is_medusa && hwreg_present( &tt_dmasnd.ctrl )) {
    if (!is_medusa && hwreg_present( &tt_dmasnd.ctrl )) {
        ATARIHW_SET(PCM_8BIT);
        ATARIHW_SET(PCM_8BIT);
        printk( "PCM " );
        printk( "PCM " );
    }
    }
    if (hwreg_present( (void *)(0xffff8940) )) {
    if (hwreg_present( (void *)(0xffff8940) )) {
        ATARIHW_SET(CODEC);
        ATARIHW_SET(CODEC);
        printk( "CODEC " );
        printk( "CODEC " );
    }
    }
    if (hwreg_present( &tt_scc_dma.dma_ctrl ) &&
    if (hwreg_present( &tt_scc_dma.dma_ctrl ) &&
#if 0
#if 0
        /* This test sucks! Who knows some better? */
        /* This test sucks! Who knows some better? */
        (tt_scc_dma.dma_ctrl = 0x01, (tt_scc_dma.dma_ctrl & 1) == 1) &&
        (tt_scc_dma.dma_ctrl = 0x01, (tt_scc_dma.dma_ctrl & 1) == 1) &&
        (tt_scc_dma.dma_ctrl = 0x00, (tt_scc_dma.dma_ctrl & 1) == 0)
        (tt_scc_dma.dma_ctrl = 0x00, (tt_scc_dma.dma_ctrl & 1) == 0)
#else
#else
        !is_medusa
        !is_medusa
#endif
#endif
        ) {
        ) {
        ATARIHW_SET(SCC_DMA);
        ATARIHW_SET(SCC_DMA);
        printk( "SCC_DMA " );
        printk( "SCC_DMA " );
    }
    }
    if (scc_test( &scc.cha_a_ctrl )) {
    if (scc_test( &scc.cha_a_ctrl )) {
        ATARIHW_SET(SCC);
        ATARIHW_SET(SCC);
        printk( "SCC " );
        printk( "SCC " );
    }
    }
    if (scc_test( &st_escc.cha_b_ctrl )) {
    if (scc_test( &st_escc.cha_b_ctrl )) {
        ATARIHW_SET( ST_ESCC );
        ATARIHW_SET( ST_ESCC );
        printk( "ST_ESCC " );
        printk( "ST_ESCC " );
    }
    }
    if (hwreg_present( &tt_scu.sys_mask )) {
    if (hwreg_present( &tt_scu.sys_mask )) {
        ATARIHW_SET(SCU);
        ATARIHW_SET(SCU);
        /* Assume a VME bus if there's a SCU */
        /* Assume a VME bus if there's a SCU */
        ATARIHW_SET( VME );
        ATARIHW_SET( VME );
        printk( "VME SCU " );
        printk( "VME SCU " );
    }
    }
    if (hwreg_present( (void *)(0xffff9210) )) {
    if (hwreg_present( (void *)(0xffff9210) )) {
        ATARIHW_SET(ANALOG_JOY);
        ATARIHW_SET(ANALOG_JOY);
        printk( "ANALOG_JOY " );
        printk( "ANALOG_JOY " );
    }
    }
    if (hwreg_present( blitter.halftone )) {
    if (hwreg_present( blitter.halftone )) {
        ATARIHW_SET(BLITTER);
        ATARIHW_SET(BLITTER);
        printk( "BLITTER " );
        printk( "BLITTER " );
    }
    }
    if (hwreg_present( (void *)(ATA_HD_BASE+ATA_HD_CMD) )) {
    if (hwreg_present( (void *)(ATA_HD_BASE+ATA_HD_CMD) )) {
        ATARIHW_SET(IDE);
        ATARIHW_SET(IDE);
        printk( "IDE " );
        printk( "IDE " );
    }
    }
#if 1 /* This maybe wrong */
#if 1 /* This maybe wrong */
    if (!is_medusa &&
    if (!is_medusa &&
        hwreg_present( &tt_microwire.data ) &&
        hwreg_present( &tt_microwire.data ) &&
        hwreg_present( &tt_microwire.mask ) &&
        hwreg_present( &tt_microwire.mask ) &&
        (tt_microwire.mask = 0x7ff,
        (tt_microwire.mask = 0x7ff,
         tt_microwire.data = MW_LM1992_PSG_HIGH | MW_LM1992_ADDR,
         tt_microwire.data = MW_LM1992_PSG_HIGH | MW_LM1992_ADDR,
         tt_microwire.data != 0)) {
         tt_microwire.data != 0)) {
        ATARIHW_SET(MICROWIRE);
        ATARIHW_SET(MICROWIRE);
        while (tt_microwire.mask != 0x7ff) ;
        while (tt_microwire.mask != 0x7ff) ;
        printk( "MICROWIRE " );
        printk( "MICROWIRE " );
    }
    }
#endif
#endif
    if (hwreg_present( &tt_rtc.regsel )) {
    if (hwreg_present( &tt_rtc.regsel )) {
        ATARIHW_SET(TT_CLK);
        ATARIHW_SET(TT_CLK);
        printk( "TT_CLK " );
        printk( "TT_CLK " );
        mach_gettod = atari_gettod;
        mach_gettod = atari_gettod;
        mach_hwclk = atari_hwclk;
        mach_hwclk = atari_hwclk;
        mach_set_clock_mmss = atari_set_clock_mmss;
        mach_set_clock_mmss = atari_set_clock_mmss;
    }
    }
    if (hwreg_present( &mste_rtc.sec_ones)) {
    if (hwreg_present( &mste_rtc.sec_ones)) {
        ATARIHW_SET(MSTE_CLK);
        ATARIHW_SET(MSTE_CLK);
        printk( "MSTE_CLK ");
        printk( "MSTE_CLK ");
        mach_gettod = atari_mste_gettod;
        mach_gettod = atari_mste_gettod;
        mach_hwclk = atari_mste_hwclk;
        mach_hwclk = atari_mste_hwclk;
        mach_set_clock_mmss = atari_mste_set_clock_mmss;
        mach_set_clock_mmss = atari_mste_set_clock_mmss;
    }
    }
    if (!is_medusa &&
    if (!is_medusa &&
        hwreg_present( &dma_wd.fdc_speed ) &&
        hwreg_present( &dma_wd.fdc_speed ) &&
        hwreg_write( &dma_wd.fdc_speed, 0 )) {
        hwreg_write( &dma_wd.fdc_speed, 0 )) {
            ATARIHW_SET(FDCSPEED);
            ATARIHW_SET(FDCSPEED);
            printk( "FDC_SPEED ");
            printk( "FDC_SPEED ");
    }
    }
    if (!ATARIHW_PRESENT(ST_SCSI)) {
    if (!ATARIHW_PRESENT(ST_SCSI)) {
        ATARIHW_SET(ACSI);
        ATARIHW_SET(ACSI);
        printk( "ACSI " );
        printk( "ACSI " );
    }
    }
    printk("\n");
    printk("\n");
 
 
    if (m68k_is040or060)
    if (m68k_is040or060)
        /* Now it seems to be safe to turn of the tt0 transparent
        /* Now it seems to be safe to turn of the tt0 transparent
         * translation (the one that must not be turned off in
         * translation (the one that must not be turned off in
         * head.S...)
         * head.S...)
         */
         */
        __asm__ volatile ("moveq #0,%/d0;"
        __asm__ volatile ("moveq #0,%/d0;"
                          ".long 0x4e7b0004;"   /* movec d0,itt0 */
                          ".long 0x4e7b0004;"   /* movec d0,itt0 */
                          ".long 0x4e7b0006;"   /* movec d0,dtt0 */
                          ".long 0x4e7b0006;"   /* movec d0,dtt0 */
                                                  : /* no outputs */
                                                  : /* no outputs */
                                                  : /* no inputs */
                                                  : /* no inputs */
                                                  : "d0");
                                                  : "d0");
 
 
    /* allocator for memory that must reside in st-ram */
    /* allocator for memory that must reside in st-ram */
    atari_stram_init ();
    atari_stram_init ();
 
 
    /* Set up a mapping for the VMEbus address region:
    /* Set up a mapping for the VMEbus address region:
     *
     *
     * VME is either at phys. 0xfexxxxxx (TT) or 0xa00000..0xdfffff
     * VME is either at phys. 0xfexxxxxx (TT) or 0xa00000..0xdfffff
     * (MegaSTE) In both cases, the whole 16 MB chunk is mapped at
     * (MegaSTE) In both cases, the whole 16 MB chunk is mapped at
     * 0xfe000000 virt., because this can be done with a single
     * 0xfe000000 virt., because this can be done with a single
     * transparent translation. On the 68040, lots of often unused
     * transparent translation. On the 68040, lots of often unused
     * page tables would be needed otherwise. On a MegaSTE or similar,
     * page tables would be needed otherwise. On a MegaSTE or similar,
     * the highest byte is stripped off by hardware due to the 24 bit
     * the highest byte is stripped off by hardware due to the 24 bit
     * design of the bus.
     * design of the bus.
     */
     */
 
 
    if (!m68k_is040or060) {
    if (!m68k_is040or060) {
        unsigned long   tt1_val;
        unsigned long   tt1_val;
        tt1_val = 0xfe008543;   /* Translate 0xfexxxxxx, enable, cache
        tt1_val = 0xfe008543;   /* Translate 0xfexxxxxx, enable, cache
                                 * inhibit, read and write, FDC mask = 3,
                                 * inhibit, read and write, FDC mask = 3,
                                 * FDC val = 4 -> Supervisor only */
                                 * FDC val = 4 -> Supervisor only */
        __asm__ __volatile__ ( "pmove   %0@,%/tt1" : : "a" (&tt1_val) );
        __asm__ __volatile__ ( "pmove   %0@,%/tt1" : : "a" (&tt1_val) );
    }
    }
    else {
    else {
        __asm__ __volatile__
        __asm__ __volatile__
            ( "movel %0,%/d0\n\t"
            ( "movel %0,%/d0\n\t"
              ".long 0x4e7b0005\n\t"    /* movec d0,itt1 */
              ".long 0x4e7b0005\n\t"    /* movec d0,itt1 */
              ".long 0x4e7b0007"        /* movec d0,dtt1 */
              ".long 0x4e7b0007"        /* movec d0,dtt1 */
              :
              :
              : "g" (0xfe00a040)        /* Translate 0xfexxxxxx, enable,
              : "g" (0xfe00a040)        /* Translate 0xfexxxxxx, enable,
                                         * supervisor only, non-cacheable/
                                         * supervisor only, non-cacheable/
                                         * serialized, writable */
                                         * serialized, writable */
              : "d0" );
              : "d0" );
 
 
    }
    }
}
}
 
 
void atari_sched_init (isrfunc timer_routine)
void atari_sched_init (isrfunc timer_routine)
{
{
    /* set Timer C data Register */
    /* set Timer C data Register */
    mfp.tim_dt_c = INT_TICKS;
    mfp.tim_dt_c = INT_TICKS;
    /* start timer C, div = 1:100 */
    /* start timer C, div = 1:100 */
    mfp.tim_ct_cd = (mfp.tim_ct_cd & 15) | 0x60;
    mfp.tim_ct_cd = (mfp.tim_ct_cd & 15) | 0x60;
    /* install interrupt service routine for MFP Timer C */
    /* install interrupt service routine for MFP Timer C */
    add_isr (IRQ_MFP_TIMC, timer_routine, IRQ_TYPE_SLOW, NULL, "timer");
    add_isr (IRQ_MFP_TIMC, timer_routine, IRQ_TYPE_SLOW, NULL, "timer");
}
}
 
 
/* ++andreas: gettimeoffset fixed to check for pending interrupt */
/* ++andreas: gettimeoffset fixed to check for pending interrupt */
 
 
#define TICK_SIZE 10000
#define TICK_SIZE 10000
 
 
/* This is always executed with interrupts disabled.  */
/* This is always executed with interrupts disabled.  */
unsigned long atari_gettimeoffset (void)
unsigned long atari_gettimeoffset (void)
{
{
  unsigned long ticks, offset = 0;
  unsigned long ticks, offset = 0;
 
 
  /* read MFP timer C current value */
  /* read MFP timer C current value */
  ticks = mfp.tim_dt_c;
  ticks = mfp.tim_dt_c;
  /* The probability of underflow is less than 2% */
  /* The probability of underflow is less than 2% */
  if (ticks > INT_TICKS - INT_TICKS / 50)
  if (ticks > INT_TICKS - INT_TICKS / 50)
    /* Check for pending timer interrupt */
    /* Check for pending timer interrupt */
    if (mfp.int_pn_b & (1 << 5))
    if (mfp.int_pn_b & (1 << 5))
      offset = TICK_SIZE;
      offset = TICK_SIZE;
 
 
  ticks = INT_TICKS - ticks;
  ticks = INT_TICKS - ticks;
  ticks = ticks * 10000L / INT_TICKS;
  ticks = ticks * 10000L / INT_TICKS;
 
 
  return ticks + offset;
  return ticks + offset;
}
}
 
 
 
 
static void
static void
mste_read(struct MSTE_RTC *val)
mste_read(struct MSTE_RTC *val)
{
{
#define COPY(v) val->v=(mste_rtc.v & 0xf)
#define COPY(v) val->v=(mste_rtc.v & 0xf)
        do {
        do {
                COPY(sec_ones) ; COPY(sec_tens) ; COPY(min_ones) ;
                COPY(sec_ones) ; COPY(sec_tens) ; COPY(min_ones) ;
                COPY(min_tens) ; COPY(hr_ones) ; COPY(hr_tens) ;
                COPY(min_tens) ; COPY(hr_ones) ; COPY(hr_tens) ;
                COPY(weekday) ; COPY(day_ones) ; COPY(day_tens) ;
                COPY(weekday) ; COPY(day_ones) ; COPY(day_tens) ;
                COPY(mon_ones) ; COPY(mon_tens) ; COPY(year_ones) ;
                COPY(mon_ones) ; COPY(mon_tens) ; COPY(year_ones) ;
                COPY(year_tens) ;
                COPY(year_tens) ;
        /* prevent from reading the clock while it changed */
        /* prevent from reading the clock while it changed */
        } while (val->sec_ones != (mste_rtc.sec_ones & 0xf));
        } while (val->sec_ones != (mste_rtc.sec_ones & 0xf));
#undef COPY
#undef COPY
}
}
 
 
static void
static void
mste_write(struct MSTE_RTC *val)
mste_write(struct MSTE_RTC *val)
{
{
#define COPY(v) mste_rtc.v=val->v
#define COPY(v) mste_rtc.v=val->v
        do {
        do {
                COPY(sec_ones) ; COPY(sec_tens) ; COPY(min_ones) ;
                COPY(sec_ones) ; COPY(sec_tens) ; COPY(min_ones) ;
                COPY(min_tens) ; COPY(hr_ones) ; COPY(hr_tens) ;
                COPY(min_tens) ; COPY(hr_ones) ; COPY(hr_tens) ;
                COPY(weekday) ; COPY(day_ones) ; COPY(day_tens) ;
                COPY(weekday) ; COPY(day_ones) ; COPY(day_tens) ;
                COPY(mon_ones) ; COPY(mon_tens) ; COPY(year_ones) ;
                COPY(mon_ones) ; COPY(mon_tens) ; COPY(year_ones) ;
                COPY(year_tens) ;
                COPY(year_tens) ;
        /* prevent from writing the clock while it changed */
        /* prevent from writing the clock while it changed */
        } while (val->sec_ones != (mste_rtc.sec_ones & 0xf));
        } while (val->sec_ones != (mste_rtc.sec_ones & 0xf));
#undef COPY
#undef COPY
}
}
 
 
#define RTC_READ(reg)                           \
#define RTC_READ(reg)                           \
    ({  unsigned char   __val;                  \
    ({  unsigned char   __val;                  \
                outb(reg,&tt_rtc.regsel);       \
                outb(reg,&tt_rtc.regsel);       \
                __val = tt_rtc.data;            \
                __val = tt_rtc.data;            \
                __val;                          \
                __val;                          \
        })
        })
 
 
#define RTC_WRITE(reg,val)                      \
#define RTC_WRITE(reg,val)                      \
    do {                                        \
    do {                                        \
                outb(reg,&tt_rtc.regsel);       \
                outb(reg,&tt_rtc.regsel);       \
                tt_rtc.data = (val);            \
                tt_rtc.data = (val);            \
        } while(0)
        } while(0)
 
 
 
 
void atari_mste_gettod (int *yearp, int *monp, int *dayp,
void atari_mste_gettod (int *yearp, int *monp, int *dayp,
                        int *hourp, int *minp, int *secp)
                        int *hourp, int *minp, int *secp)
{
{
    int hr24=0;
    int hr24=0;
    struct MSTE_RTC val;
    struct MSTE_RTC val;
 
 
    mste_rtc.mode=(mste_rtc.mode | 1);
    mste_rtc.mode=(mste_rtc.mode | 1);
    hr24=mste_rtc.mon_tens & 1;
    hr24=mste_rtc.mon_tens & 1;
    mste_rtc.mode=(mste_rtc.mode & ~1);
    mste_rtc.mode=(mste_rtc.mode & ~1);
 
 
    mste_read(&val);
    mste_read(&val);
    *secp = val.sec_ones + val.sec_tens * 10;
    *secp = val.sec_ones + val.sec_tens * 10;
    *minp = val.min_ones + val.min_tens * 10;
    *minp = val.min_ones + val.min_tens * 10;
    if (hr24)
    if (hr24)
        *hourp = val.hr_ones + val.hr_tens * 10;
        *hourp = val.hr_ones + val.hr_tens * 10;
    else {
    else {
        *hourp = val.hr_ones + (val.hr_tens & 1) * 10;
        *hourp = val.hr_ones + (val.hr_tens & 1) * 10;
        if (val.hr_tens & 2)
        if (val.hr_tens & 2)
            *hourp += 12;
            *hourp += 12;
    }
    }
    *dayp = val.day_ones + val.day_tens * 10;
    *dayp = val.day_ones + val.day_tens * 10;
    *monp = val.mon_ones + val.mon_tens * 10;
    *monp = val.mon_ones + val.mon_tens * 10;
    *yearp = val.year_ones + val.year_tens * 10 + 80;
    *yearp = val.year_ones + val.year_tens * 10 + 80;
}
}
 
 
 
 
void atari_gettod (int *yearp, int *monp, int *dayp,
void atari_gettod (int *yearp, int *monp, int *dayp,
                   int *hourp, int *minp, int *secp)
                   int *hourp, int *minp, int *secp)
{
{
    unsigned char       ctrl;
    unsigned char       ctrl;
    unsigned short tos_version;
    unsigned short tos_version;
 
 
    while (!(RTC_READ(RTC_FREQ_SELECT) & RTC_UIP)) ;
    while (!(RTC_READ(RTC_FREQ_SELECT) & RTC_UIP)) ;
    while (RTC_READ(RTC_FREQ_SELECT) & RTC_UIP) ;
    while (RTC_READ(RTC_FREQ_SELECT) & RTC_UIP) ;
 
 
    *secp  = RTC_READ(RTC_SECONDS);
    *secp  = RTC_READ(RTC_SECONDS);
    *minp  = RTC_READ(RTC_MINUTES);
    *minp  = RTC_READ(RTC_MINUTES);
    *hourp = RTC_READ(RTC_HOURS);
    *hourp = RTC_READ(RTC_HOURS);
    *dayp  = RTC_READ(RTC_DAY_OF_MONTH);
    *dayp  = RTC_READ(RTC_DAY_OF_MONTH);
    *monp  = RTC_READ(RTC_MONTH);
    *monp  = RTC_READ(RTC_MONTH);
    *yearp = RTC_READ(RTC_YEAR);
    *yearp = RTC_READ(RTC_YEAR);
 
 
    ctrl = RTC_READ(RTC_CONTROL);
    ctrl = RTC_READ(RTC_CONTROL);
 
 
    if (!(ctrl & RTC_DM_BINARY)) {
    if (!(ctrl & RTC_DM_BINARY)) {
        BCD_TO_BIN(*secp);
        BCD_TO_BIN(*secp);
        BCD_TO_BIN(*minp);
        BCD_TO_BIN(*minp);
        BCD_TO_BIN(*hourp);
        BCD_TO_BIN(*hourp);
        BCD_TO_BIN(*dayp);
        BCD_TO_BIN(*dayp);
        BCD_TO_BIN(*monp);
        BCD_TO_BIN(*monp);
        BCD_TO_BIN(*yearp);
        BCD_TO_BIN(*yearp);
    }
    }
    if (!(ctrl & RTC_24H)) {
    if (!(ctrl & RTC_24H)) {
        if (*hourp & 0x80) {
        if (*hourp & 0x80) {
            *hourp &= ~0x80;
            *hourp &= ~0x80;
            *hourp += 12;
            *hourp += 12;
        }
        }
    }
    }
    /* Adjust values (let the setup valid) */
    /* Adjust values (let the setup valid) */
 
 
    /* Fetch tos version at Physical 2 */
    /* Fetch tos version at Physical 2 */
    /* We my not be able to access this address if the kernel is
    /* We my not be able to access this address if the kernel is
       loaded to st ram, since the first page is unmapped.  On the
       loaded to st ram, since the first page is unmapped.  On the
       Medusa this is always the case and there is nothing we can do
       Medusa this is always the case and there is nothing we can do
       about this, so we just assume the smaller offset.  For the TT
       about this, so we just assume the smaller offset.  For the TT
       we use the fact that in head.S we have set up a mapping
       we use the fact that in head.S we have set up a mapping
       0xFFxxxxxx -> 0x00xxxxxx, so that the first 16MB is accessible
       0xFFxxxxxx -> 0x00xxxxxx, so that the first 16MB is accessible
       in the last 16MB of the address space. */
       in the last 16MB of the address space. */
    tos_version = is_medusa ? 0xfff : *(unsigned short *)0xFF000002;
    tos_version = is_medusa ? 0xfff : *(unsigned short *)0xFF000002;
    *yearp += (tos_version < 0x306) ? 70 : 68;
    *yearp += (tos_version < 0x306) ? 70 : 68;
}
}
 
 
#define HWCLK_POLL_INTERVAL     5
#define HWCLK_POLL_INTERVAL     5
 
 
int atari_mste_hwclk( int op, struct hwclk_time *t )
int atari_mste_hwclk( int op, struct hwclk_time *t )
{
{
    int hour, year;
    int hour, year;
    int hr24=0;
    int hr24=0;
    struct MSTE_RTC val;
    struct MSTE_RTC val;
 
 
    mste_rtc.mode=(mste_rtc.mode | 1);
    mste_rtc.mode=(mste_rtc.mode | 1);
    hr24=mste_rtc.mon_tens & 1;
    hr24=mste_rtc.mon_tens & 1;
    mste_rtc.mode=(mste_rtc.mode & ~1);
    mste_rtc.mode=(mste_rtc.mode & ~1);
 
 
    if (op) {
    if (op) {
        /* write: prepare values */
        /* write: prepare values */
 
 
        val.sec_ones = t->sec % 10;
        val.sec_ones = t->sec % 10;
        val.sec_tens = t->sec / 10;
        val.sec_tens = t->sec / 10;
        val.min_ones = t->min % 10;
        val.min_ones = t->min % 10;
        val.min_tens = t->min / 10;
        val.min_tens = t->min / 10;
        hour = t->hour;
        hour = t->hour;
        val.hr_ones = hour % 10;
        val.hr_ones = hour % 10;
        val.hr_tens = hour / 10;
        val.hr_tens = hour / 10;
        if (!hr24  && hour > 11) {
        if (!hr24  && hour > 11) {
            hour -= 12;
            hour -= 12;
            val.hr_ones = hour % 10;
            val.hr_ones = hour % 10;
            val.hr_tens = (hour / 10) | 2;
            val.hr_tens = (hour / 10) | 2;
        }
        }
        val.day_ones = t->day % 10;
        val.day_ones = t->day % 10;
        val.day_tens = t->day / 10;
        val.day_tens = t->day / 10;
        val.mon_ones = (t->mon+1) % 10;
        val.mon_ones = (t->mon+1) % 10;
        val.mon_tens = (t->mon+1) / 10;
        val.mon_tens = (t->mon+1) / 10;
        year = t->year - 80;
        year = t->year - 80;
        val.year_ones = year % 10;
        val.year_ones = year % 10;
        val.year_tens = year / 10;
        val.year_tens = year / 10;
        val.weekday = t->wday;
        val.weekday = t->wday;
        mste_write(&val);
        mste_write(&val);
        mste_rtc.mode=(mste_rtc.mode | 1);
        mste_rtc.mode=(mste_rtc.mode | 1);
        val.year_ones = (year % 4);     /* leap year register */
        val.year_ones = (year % 4);     /* leap year register */
        mste_rtc.mode=(mste_rtc.mode & ~1);
        mste_rtc.mode=(mste_rtc.mode & ~1);
    }
    }
    else {
    else {
        mste_read(&val);
        mste_read(&val);
        t->sec = val.sec_ones + val.sec_tens * 10;
        t->sec = val.sec_ones + val.sec_tens * 10;
        t->min = val.min_ones + val.min_tens * 10;
        t->min = val.min_ones + val.min_tens * 10;
        if (hr24)
        if (hr24)
            t->hour = val.hr_ones + val.hr_tens * 10;
            t->hour = val.hr_ones + val.hr_tens * 10;
        else {
        else {
            t->hour = val.hr_ones + (val.hr_tens & 1) * 10;
            t->hour = val.hr_ones + (val.hr_tens & 1) * 10;
            if (val.hr_tens & 2)
            if (val.hr_tens & 2)
                t->hour += 12;
                t->hour += 12;
        }
        }
        t->day = val.day_ones + val.day_tens * 10;
        t->day = val.day_ones + val.day_tens * 10;
        t->mon = val.mon_ones + val.mon_tens * 10 - 1;
        t->mon = val.mon_ones + val.mon_tens * 10 - 1;
        t->year = val.year_ones + val.year_tens * 10 + 80;
        t->year = val.year_ones + val.year_tens * 10 + 80;
        t->wday = val.weekday;
        t->wday = val.weekday;
    }
    }
    return 0;
    return 0;
}
}
 
 
int atari_hwclk( int op, struct hwclk_time *t )
int atari_hwclk( int op, struct hwclk_time *t )
{
{
    int sec=0, min=0, hour=0, day=0, mon=0, year=0, wday=0;
    int sec=0, min=0, hour=0, day=0, mon=0, year=0, wday=0;
    unsigned long       flags;
    unsigned long       flags;
    unsigned short      tos_version;
    unsigned short      tos_version;
    unsigned char       ctrl;
    unsigned char       ctrl;
 
 
    /* Tos version at Physical 2.  See above for explanation why we
    /* Tos version at Physical 2.  See above for explanation why we
       cannot use PTOV(2).  */
       cannot use PTOV(2).  */
    tos_version = is_medusa ? 0xfff : *(unsigned short *)0xff000002;
    tos_version = is_medusa ? 0xfff : *(unsigned short *)0xff000002;
 
 
    ctrl = RTC_READ(RTC_CONTROL); /* control registers are
    ctrl = RTC_READ(RTC_CONTROL); /* control registers are
                                   * independent from the UIP */
                                   * independent from the UIP */
 
 
    if (op) {
    if (op) {
        /* write: prepare values */
        /* write: prepare values */
 
 
        sec  = t->sec;
        sec  = t->sec;
        min  = t->min;
        min  = t->min;
        hour = t->hour;
        hour = t->hour;
        day  = t->day;
        day  = t->day;
        mon  = t->mon + 1;
        mon  = t->mon + 1;
        year = t->year - ((tos_version < 0x306) ? 70 : 68);
        year = t->year - ((tos_version < 0x306) ? 70 : 68);
        wday = t->wday + (t->wday >= 0);
        wday = t->wday + (t->wday >= 0);
 
 
        if (!(ctrl & RTC_24H) && hour > 11) {
        if (!(ctrl & RTC_24H) && hour > 11) {
            hour -= 12;
            hour -= 12;
            hour |= 0x80;
            hour |= 0x80;
        }
        }
 
 
        if (!(ctrl & RTC_DM_BINARY)) {
        if (!(ctrl & RTC_DM_BINARY)) {
            BIN_TO_BCD(sec);
            BIN_TO_BCD(sec);
            BIN_TO_BCD(min);
            BIN_TO_BCD(min);
            BIN_TO_BCD(hour);
            BIN_TO_BCD(hour);
            BIN_TO_BCD(day);
            BIN_TO_BCD(day);
            BIN_TO_BCD(mon);
            BIN_TO_BCD(mon);
            BIN_TO_BCD(year);
            BIN_TO_BCD(year);
            if (wday >= 0) BIN_TO_BCD(wday);
            if (wday >= 0) BIN_TO_BCD(wday);
        }
        }
    }
    }
 
 
    /* Reading/writing the clock registers is a bit critical due to
    /* Reading/writing the clock registers is a bit critical due to
     * the regular update cycle of the RTC. While an update is in
     * the regular update cycle of the RTC. While an update is in
     * progress, registers 0..9 shouldn't be touched.
     * progress, registers 0..9 shouldn't be touched.
     * The problem is solved like that: If an update is currently in
     * The problem is solved like that: If an update is currently in
     * progress (the UIP bit is set), the process sleeps for a while
     * progress (the UIP bit is set), the process sleeps for a while
     * (50ms). This really should be enough, since the update cycle
     * (50ms). This really should be enough, since the update cycle
     * normally needs 2 ms.
     * normally needs 2 ms.
     * If the UIP bit reads as 0, we have at least 244 usecs until the
     * If the UIP bit reads as 0, we have at least 244 usecs until the
     * update starts. This should be enough... But to be sure,
     * update starts. This should be enough... But to be sure,
     * additionally the RTC_SET bit is set to prevent an update cycle.
     * additionally the RTC_SET bit is set to prevent an update cycle.
     */
     */
 
 
    while( RTC_READ(RTC_FREQ_SELECT) & RTC_UIP ) {
    while( RTC_READ(RTC_FREQ_SELECT) & RTC_UIP ) {
        current->state = TASK_INTERRUPTIBLE;
        current->state = TASK_INTERRUPTIBLE;
        current->timeout = jiffies + HWCLK_POLL_INTERVAL;
        current->timeout = jiffies + HWCLK_POLL_INTERVAL;
        schedule();
        schedule();
    }
    }
 
 
    save_flags(flags);
    save_flags(flags);
    cli();
    cli();
    RTC_WRITE( RTC_CONTROL, ctrl | RTC_SET );
    RTC_WRITE( RTC_CONTROL, ctrl | RTC_SET );
    if (!op) {
    if (!op) {
        sec  = RTC_READ( RTC_SECONDS );
        sec  = RTC_READ( RTC_SECONDS );
        min  = RTC_READ( RTC_MINUTES );
        min  = RTC_READ( RTC_MINUTES );
        hour = RTC_READ( RTC_HOURS );
        hour = RTC_READ( RTC_HOURS );
        day  = RTC_READ( RTC_DAY_OF_MONTH );
        day  = RTC_READ( RTC_DAY_OF_MONTH );
        mon  = RTC_READ( RTC_MONTH );
        mon  = RTC_READ( RTC_MONTH );
        year = RTC_READ( RTC_YEAR );
        year = RTC_READ( RTC_YEAR );
        wday = RTC_READ( RTC_DAY_OF_WEEK );
        wday = RTC_READ( RTC_DAY_OF_WEEK );
    }
    }
    else {
    else {
        RTC_WRITE( RTC_SECONDS, sec );
        RTC_WRITE( RTC_SECONDS, sec );
        RTC_WRITE( RTC_MINUTES, min );
        RTC_WRITE( RTC_MINUTES, min );
        RTC_WRITE( RTC_HOURS, hour );
        RTC_WRITE( RTC_HOURS, hour );
        RTC_WRITE( RTC_DAY_OF_MONTH, day );
        RTC_WRITE( RTC_DAY_OF_MONTH, day );
        RTC_WRITE( RTC_MONTH, mon );
        RTC_WRITE( RTC_MONTH, mon );
        RTC_WRITE( RTC_YEAR, year );
        RTC_WRITE( RTC_YEAR, year );
        if (wday >= 0) RTC_WRITE( RTC_DAY_OF_WEEK, wday );
        if (wday >= 0) RTC_WRITE( RTC_DAY_OF_WEEK, wday );
    }
    }
    RTC_WRITE( RTC_CONTROL, ctrl & ~RTC_SET );
    RTC_WRITE( RTC_CONTROL, ctrl & ~RTC_SET );
    restore_flags(flags);
    restore_flags(flags);
 
 
    if (!op) {
    if (!op) {
        /* read: adjust values */
        /* read: adjust values */
 
 
        if (!(ctrl & RTC_DM_BINARY)) {
        if (!(ctrl & RTC_DM_BINARY)) {
            BCD_TO_BIN(sec);
            BCD_TO_BIN(sec);
            BCD_TO_BIN(min);
            BCD_TO_BIN(min);
            BCD_TO_BIN(hour);
            BCD_TO_BIN(hour);
            BCD_TO_BIN(day);
            BCD_TO_BIN(day);
            BCD_TO_BIN(mon);
            BCD_TO_BIN(mon);
            BCD_TO_BIN(year);
            BCD_TO_BIN(year);
            BCD_TO_BIN(wday);
            BCD_TO_BIN(wday);
        }
        }
 
 
        if (!(ctrl & RTC_24H)) {
        if (!(ctrl & RTC_24H)) {
            if (hour & 0x80) {
            if (hour & 0x80) {
                hour &= ~0x80;
                hour &= ~0x80;
                hour += 12;
                hour += 12;
            }
            }
        }
        }
 
 
        t->sec  = sec;
        t->sec  = sec;
        t->min  = min;
        t->min  = min;
        t->hour = hour;
        t->hour = hour;
        t->day  = day;
        t->day  = day;
        t->mon  = mon - 1;
        t->mon  = mon - 1;
        t->year = year + ((tos_version < 0x306) ? 70 : 68);
        t->year = year + ((tos_version < 0x306) ? 70 : 68);
        t->wday = wday - 1;
        t->wday = wday - 1;
    }
    }
 
 
    return( 0 );
    return( 0 );
}
}
 
 
 
 
int atari_mste_set_clock_mmss (unsigned long nowtime)
int atari_mste_set_clock_mmss (unsigned long nowtime)
{
{
    short real_seconds = nowtime % 60, real_minutes = (nowtime / 60) % 60;
    short real_seconds = nowtime % 60, real_minutes = (nowtime / 60) % 60;
    struct MSTE_RTC val;
    struct MSTE_RTC val;
    unsigned char rtc_minutes;
    unsigned char rtc_minutes;
 
 
    mste_read(&val);
    mste_read(&val);
    rtc_minutes= val.min_ones + val.min_tens * 10;
    rtc_minutes= val.min_ones + val.min_tens * 10;
    if ((rtc_minutes < real_minutes
    if ((rtc_minutes < real_minutes
         ? real_minutes - rtc_minutes
         ? real_minutes - rtc_minutes
         : rtc_minutes - real_minutes) < 30)
         : rtc_minutes - real_minutes) < 30)
    {
    {
        val.sec_ones = real_seconds % 10;
        val.sec_ones = real_seconds % 10;
        val.sec_tens = real_seconds / 10;
        val.sec_tens = real_seconds / 10;
        val.min_ones = real_minutes % 10;
        val.min_ones = real_minutes % 10;
        val.min_tens = real_minutes / 10;
        val.min_tens = real_minutes / 10;
        mste_write(&val);
        mste_write(&val);
    }
    }
    else
    else
        return -1;
        return -1;
    return 0;
    return 0;
}
}
 
 
int atari_set_clock_mmss (unsigned long nowtime)
int atari_set_clock_mmss (unsigned long nowtime)
{
{
    int retval = 0;
    int retval = 0;
    short real_seconds = nowtime % 60, real_minutes = (nowtime / 60) % 60;
    short real_seconds = nowtime % 60, real_minutes = (nowtime / 60) % 60;
    unsigned char save_control, save_freq_select, rtc_minutes;
    unsigned char save_control, save_freq_select, rtc_minutes;
 
 
    save_control = RTC_READ (RTC_CONTROL); /* tell the clock it's being set */
    save_control = RTC_READ (RTC_CONTROL); /* tell the clock it's being set */
    RTC_WRITE (RTC_CONTROL, save_control | RTC_SET);
    RTC_WRITE (RTC_CONTROL, save_control | RTC_SET);
 
 
    save_freq_select = RTC_READ (RTC_FREQ_SELECT); /* stop and reset prescaler */
    save_freq_select = RTC_READ (RTC_FREQ_SELECT); /* stop and reset prescaler */
    RTC_WRITE (RTC_FREQ_SELECT, save_freq_select | RTC_DIV_RESET2);
    RTC_WRITE (RTC_FREQ_SELECT, save_freq_select | RTC_DIV_RESET2);
 
 
    rtc_minutes = RTC_READ (RTC_MINUTES);
    rtc_minutes = RTC_READ (RTC_MINUTES);
    if (!(save_control & RTC_DM_BINARY))
    if (!(save_control & RTC_DM_BINARY))
        BCD_TO_BIN (rtc_minutes);
        BCD_TO_BIN (rtc_minutes);
 
 
    /* Since we're only adjusting minutes and seconds, don't interfere
    /* Since we're only adjusting minutes and seconds, don't interfere
       with hour overflow.  This avoids messing with unknown time zones
       with hour overflow.  This avoids messing with unknown time zones
       but requires your RTC not to be off by more than 30 minutes.  */
       but requires your RTC not to be off by more than 30 minutes.  */
    if ((rtc_minutes < real_minutes
    if ((rtc_minutes < real_minutes
         ? real_minutes - rtc_minutes
         ? real_minutes - rtc_minutes
         : rtc_minutes - real_minutes) < 30)
         : rtc_minutes - real_minutes) < 30)
        {
        {
            if (!(save_control & RTC_DM_BINARY))
            if (!(save_control & RTC_DM_BINARY))
                {
                {
                    BIN_TO_BCD (real_seconds);
                    BIN_TO_BCD (real_seconds);
                    BIN_TO_BCD (real_minutes);
                    BIN_TO_BCD (real_minutes);
                }
                }
            RTC_WRITE (RTC_SECONDS, real_seconds);
            RTC_WRITE (RTC_SECONDS, real_seconds);
            RTC_WRITE (RTC_MINUTES, real_minutes);
            RTC_WRITE (RTC_MINUTES, real_minutes);
        }
        }
    else
    else
        retval = -1;
        retval = -1;
 
 
    RTC_WRITE (RTC_FREQ_SELECT, save_freq_select);
    RTC_WRITE (RTC_FREQ_SELECT, save_freq_select);
    RTC_WRITE (RTC_CONTROL, save_control);
    RTC_WRITE (RTC_CONTROL, save_control);
    return retval;
    return retval;
}
}
 
 
 
 
void atari_waitbut (void)
void atari_waitbut (void)
{
{
    /* sorry, no-op */
    /* sorry, no-op */
}
}
 
 
 
 
static inline void ata_mfp_out (char c)
static inline void ata_mfp_out (char c)
{
{
    while (!(mfp.trn_stat & 0x80)) /* wait for tx buf empty */
    while (!(mfp.trn_stat & 0x80)) /* wait for tx buf empty */
        barrier ();
        barrier ();
    mfp.usart_dta = c;
    mfp.usart_dta = c;
}
}
 
 
void ata_mfp_print (const char *str)
void ata_mfp_print (const char *str)
{
{
    for( ; *str; ++str ) {
    for( ; *str; ++str ) {
        if (*str == '\n')
        if (*str == '\n')
            ata_mfp_out( '\r' );
            ata_mfp_out( '\r' );
        ata_mfp_out( *str );
        ata_mfp_out( *str );
    }
    }
}
}
 
 
static inline void ata_scc_out (char c)
static inline void ata_scc_out (char c)
{
{
    do {
    do {
        MFPDELAY();
        MFPDELAY();
    } while (!(scc.cha_b_ctrl & 0x04)); /* wait for tx buf empty */
    } while (!(scc.cha_b_ctrl & 0x04)); /* wait for tx buf empty */
    MFPDELAY();
    MFPDELAY();
    scc.cha_b_data = c;
    scc.cha_b_data = c;
}
}
 
 
void ata_scc_print (const char *str)
void ata_scc_print (const char *str)
{
{
    for( ; *str; ++str ) {
    for( ; *str; ++str ) {
        if (*str == '\n')
        if (*str == '\n')
            ata_scc_out( '\r' );
            ata_scc_out( '\r' );
        ata_scc_out( *str );
        ata_scc_out( *str );
    }
    }
}
}
 
 
static int ata_par_out (char c)
static int ata_par_out (char c)
{
{
    extern unsigned long loops_per_sec;
    extern unsigned long loops_per_sec;
    unsigned char tmp;
    unsigned char tmp;
    /* This a some-seconds timeout in case no printer is connected */
    /* This a some-seconds timeout in case no printer is connected */
    unsigned long i = loops_per_sec > 1 ? loops_per_sec : 10000000;
    unsigned long i = loops_per_sec > 1 ? loops_per_sec : 10000000;
 
 
    while( (mfp.par_dt_reg & 1) && --i ) /* wait for BUSY == L */
    while( (mfp.par_dt_reg & 1) && --i ) /* wait for BUSY == L */
        ;
        ;
    if (!i) return( 0 );
    if (!i) return( 0 );
 
 
    sound_ym.rd_data_reg_sel = 15;  /* select port B */
    sound_ym.rd_data_reg_sel = 15;  /* select port B */
    sound_ym.wd_data = c;           /* put char onto port */
    sound_ym.wd_data = c;           /* put char onto port */
    sound_ym.rd_data_reg_sel = 14;  /* select port A */
    sound_ym.rd_data_reg_sel = 14;  /* select port A */
    tmp = sound_ym.rd_data_reg_sel;
    tmp = sound_ym.rd_data_reg_sel;
    sound_ym.wd_data = tmp & ~0x20; /* set strobe L */
    sound_ym.wd_data = tmp & ~0x20; /* set strobe L */
    MFPDELAY();                     /* wait a bit */
    MFPDELAY();                     /* wait a bit */
    sound_ym.wd_data = tmp | 0x20;  /* set strobe H */
    sound_ym.wd_data = tmp | 0x20;  /* set strobe H */
    return( 1 );
    return( 1 );
}
}
 
 
void ata_par_print (const char *str)
void ata_par_print (const char *str)
{
{
    static int printer_present = 1;
    static int printer_present = 1;
 
 
    if (!printer_present)
    if (!printer_present)
        return;
        return;
 
 
    for( ; *str; ++str ) {
    for( ; *str; ++str ) {
        if (*str == '\n')
        if (*str == '\n')
            if (!ata_par_out( '\r' )) {
            if (!ata_par_out( '\r' )) {
                printer_present = 0;
                printer_present = 0;
                return;
                return;
            }
            }
        if (!ata_par_out( *str )) {
        if (!ata_par_out( *str )) {
            printer_present = 0;
            printer_present = 0;
            return;
            return;
        }
        }
    }
    }
}
}
 
 
 
 
void atari_debug_init( void )
void atari_debug_init( void )
{
{
    extern void (*debug_print_proc)(const char *);
    extern void (*debug_print_proc)(const char *);
    extern char m68k_debug_device[];
    extern char m68k_debug_device[];
 
 
    if (!strcmp( m68k_debug_device, "ser" )) {
    if (!strcmp( m68k_debug_device, "ser" )) {
        /* defaults to ser2 for a Falcon and ser1 otherwise */
        /* defaults to ser2 for a Falcon and ser1 otherwise */
        strcpy( m68k_debug_device,
        strcpy( m68k_debug_device,
                ((boot_info.bi_atari.mch_cookie >> 16) == ATARI_MCH_FALCON) ?
                ((boot_info.bi_atari.mch_cookie >> 16) == ATARI_MCH_FALCON) ?
                "ser2" : "ser1" );
                "ser2" : "ser1" );
 
 
    }
    }
 
 
    if (!strcmp( m68k_debug_device, "ser1" )) {
    if (!strcmp( m68k_debug_device, "ser1" )) {
        /* ST-MFP Modem1 serial port */
        /* ST-MFP Modem1 serial port */
        mfp.trn_stat  &= ~0x01; /* disable TX */
        mfp.trn_stat  &= ~0x01; /* disable TX */
        mfp.usart_ctr  = 0x88;  /* clk 1:16, 8N1 */
        mfp.usart_ctr  = 0x88;  /* clk 1:16, 8N1 */
        mfp.tim_ct_cd &= 0x70;  /* stop timer D */
        mfp.tim_ct_cd &= 0x70;  /* stop timer D */
        mfp.tim_dt_d   = 2;     /* 9600 bps */
        mfp.tim_dt_d   = 2;     /* 9600 bps */
        mfp.tim_ct_cd |= 0x01;  /* start timer D, 1:4 */
        mfp.tim_ct_cd |= 0x01;  /* start timer D, 1:4 */
        mfp.trn_stat  |= 0x01;  /* enable TX */
        mfp.trn_stat  |= 0x01;  /* enable TX */
        debug_print_proc = ata_mfp_print;
        debug_print_proc = ata_mfp_print;
    }
    }
    else if (!strcmp( m68k_debug_device, "ser2" )) {
    else if (!strcmp( m68k_debug_device, "ser2" )) {
        /* SCC Modem2 serial port */
        /* SCC Modem2 serial port */
        static unsigned char *p, scc_table[] = {
        static unsigned char *p, scc_table[] = {
            9, 12,              /* Reset */
            9, 12,              /* Reset */
            4, 0x44,            /* x16, 1 stopbit, no parity */
            4, 0x44,            /* x16, 1 stopbit, no parity */
            3, 0xc0,            /* receiver: 8 bpc */
            3, 0xc0,            /* receiver: 8 bpc */
            5, 0xe2,            /* transmitter: 8 bpc, assert dtr/rts */
            5, 0xe2,            /* transmitter: 8 bpc, assert dtr/rts */
            9, 0,                /* no interrupts */
            9, 0,                /* no interrupts */
            10, 0,               /* NRZ */
            10, 0,               /* NRZ */
            11, 0x50,           /* use baud rate generator */
            11, 0x50,           /* use baud rate generator */
            12, 24, 13, 0,       /* 9600 baud */
            12, 24, 13, 0,       /* 9600 baud */
            14, 2, 14, 3,       /* use master clock for BRG, enable */
            14, 2, 14, 3,       /* use master clock for BRG, enable */
            3, 0xc1,            /* enable receiver */
            3, 0xc1,            /* enable receiver */
            5, 0xea,            /* enable transmitter */
            5, 0xea,            /* enable transmitter */
            0
            0
        };
        };
 
 
        (void)scc.cha_b_ctrl; /* reset reg pointer */
        (void)scc.cha_b_ctrl; /* reset reg pointer */
        for( p = scc_table; *p != 0; ) {
        for( p = scc_table; *p != 0; ) {
            scc.cha_b_ctrl = *p++;
            scc.cha_b_ctrl = *p++;
            MFPDELAY();
            MFPDELAY();
            scc.cha_b_ctrl = *p++;
            scc.cha_b_ctrl = *p++;
            MFPDELAY();
            MFPDELAY();
        }
        }
        debug_print_proc = ata_scc_print;
        debug_print_proc = ata_scc_print;
    }
    }
    else if (!strcmp( m68k_debug_device, "par" )) {
    else if (!strcmp( m68k_debug_device, "par" )) {
        /* parallel printer */
        /* parallel printer */
        atari_turnoff_irq( IRQ_MFP_BUSY ); /* avoid ints */
        atari_turnoff_irq( IRQ_MFP_BUSY ); /* avoid ints */
        sound_ym.rd_data_reg_sel = 7;  /* select mixer control */
        sound_ym.rd_data_reg_sel = 7;  /* select mixer control */
        sound_ym.wd_data = 0xff;       /* sound off, ports are output */
        sound_ym.wd_data = 0xff;       /* sound off, ports are output */
        sound_ym.rd_data_reg_sel = 15; /* select port B */
        sound_ym.rd_data_reg_sel = 15; /* select port B */
        sound_ym.wd_data = 0;          /* no char */
        sound_ym.wd_data = 0;          /* no char */
        sound_ym.rd_data_reg_sel = 14; /* select port A */
        sound_ym.rd_data_reg_sel = 14; /* select port A */
        sound_ym.wd_data = sound_ym.rd_data_reg_sel | 0x20; /* strobe H */
        sound_ym.wd_data = sound_ym.rd_data_reg_sel | 0x20; /* strobe H */
        debug_print_proc = ata_par_print;
        debug_print_proc = ata_par_print;
    }
    }
    else
    else
        debug_print_proc = NULL;
        debug_print_proc = NULL;
}
}
 
 
 
 
void ata_serial_print (const char *str)
void ata_serial_print (const char *str)
{
{
  int c;
  int c;
 
 
  while (c = *str++, c != 0)
  while (c = *str++, c != 0)
    {
    {
      if (c == '\n')
      if (c == '\n')
        {
        {
          while (!(mfp.trn_stat & (1 << 7)))
          while (!(mfp.trn_stat & (1 << 7)))
            barrier ();
            barrier ();
          mfp.usart_dta = '\r';
          mfp.usart_dta = '\r';
        }
        }
      while (!(mfp.trn_stat & (1 << 7)))
      while (!(mfp.trn_stat & (1 << 7)))
        barrier ();
        barrier ();
      mfp.usart_dta = c;
      mfp.usart_dta = c;
    }
    }
}
}
 
 
/* ++roman:
/* ++roman:
 *
 *
 * This function does a reset on machines that lack the ability to
 * This function does a reset on machines that lack the ability to
 * assert the processor's _RESET signal somehow via hardware. It is
 * assert the processor's _RESET signal somehow via hardware. It is
 * based on the fact that you can find the initial SP and PC values
 * based on the fact that you can find the initial SP and PC values
 * after a reset at physical addresses 0 and 4. This works pretty well
 * after a reset at physical addresses 0 and 4. This works pretty well
 * for Atari machines, since the lowest 8 bytes of physical memory are
 * for Atari machines, since the lowest 8 bytes of physical memory are
 * really ROM (mapped by hardware). For other 680x0 machines: don't
 * really ROM (mapped by hardware). For other 680x0 machines: don't
 * know if it works...
 * know if it works...
 *
 *
 * To get the values at addresses 0 and 4, the MMU better is turned
 * To get the values at addresses 0 and 4, the MMU better is turned
 * off first. After that, we have to jump into physical address space
 * off first. After that, we have to jump into physical address space
 * (the PC before the pmove statement points to the virtual address of
 * (the PC before the pmove statement points to the virtual address of
 * the code). Getting that physical address is not hard, but the code
 * the code). Getting that physical address is not hard, but the code
 * becomes a bit complex since I've tried to ensure that the jump
 * becomes a bit complex since I've tried to ensure that the jump
 * statement after the pmove is in the cache already (otherwise the
 * statement after the pmove is in the cache already (otherwise the
 * processor can't fetch it!). For that, the code first jumps to the
 * processor can't fetch it!). For that, the code first jumps to the
 * jump statement with the (virtual) address of the pmove section in
 * jump statement with the (virtual) address of the pmove section in
 * an address register . The jump statement is surely in the cache
 * an address register . The jump statement is surely in the cache
 * now. After that, that physical address of the reset code is loaded
 * now. After that, that physical address of the reset code is loaded
 * into the same address register, pmove is done and the same jump
 * into the same address register, pmove is done and the same jump
 * statements goes to the reset code. Since there are not many
 * statements goes to the reset code. Since there are not many
 * statements between the two jumps, I hope it stays in the cache.
 * statements between the two jumps, I hope it stays in the cache.
 *
 *
 * The C code makes heavy use of the GCC features that you can get the
 * The C code makes heavy use of the GCC features that you can get the
 * address of a C label. No hope to compile this with another compiler
 * address of a C label. No hope to compile this with another compiler
 * than GCC!
 * than GCC!
 */
 */
 
 
/* ++andreas: no need for complicated code, just depend on prefetch */
/* ++andreas: no need for complicated code, just depend on prefetch */
 
 
void atari_reset (void)
void atari_reset (void)
{
{
    long tc_val = 0;
    long tc_val = 0;
    long reset_addr;
    long reset_addr;
 
 
    /* On the Medusa, phys. 0x4 may contain garbage because it's no
    /* On the Medusa, phys. 0x4 may contain garbage because it's no
       ROM.  See above for explanation why we cannot use PTOV(4). */
       ROM.  See above for explanation why we cannot use PTOV(4). */
    reset_addr = is_medusa ? 0xe00030 : *(unsigned long *) 0xff000004;
    reset_addr = is_medusa ? 0xe00030 : *(unsigned long *) 0xff000004;
 
 
    acia.key_ctrl = ACIA_RESET;             /* reset ACIA for switch off OverScan, if it's active */
    acia.key_ctrl = ACIA_RESET;             /* reset ACIA for switch off OverScan, if it's active */
 
 
    /* processor independent: turn off interrupts and reset the VBR;
    /* processor independent: turn off interrupts and reset the VBR;
     * the caches must be left enabled, else prefetching the final jump
     * the caches must be left enabled, else prefetching the final jump
     * instruction doesn't work. */
     * instruction doesn't work. */
    cli();
    cli();
    __asm__ __volatile__
    __asm__ __volatile__
        ("moveq #0,%/d0\n\t"
        ("moveq #0,%/d0\n\t"
         "movec %/d0,%/vbr"
         "movec %/d0,%/vbr"
         : : : "d0" );
         : : : "d0" );
 
 
    if (m68k_is040or060) {
    if (m68k_is040or060) {
        unsigned long jmp_addr040 = VTOP(&&jmp_addr_label040);
        unsigned long jmp_addr040 = VTOP(&&jmp_addr_label040);
        if (m68k_is040or060 == 6) {
        if (m68k_is040or060 == 6) {
            /* 68060: clear PCR to turn off superscalar operation */
            /* 68060: clear PCR to turn off superscalar operation */
            __asm__ __volatile__
            __asm__ __volatile__
                ("moveq #0,%/d0\n\t"
                ("moveq #0,%/d0\n\t"
                 ".long 0x4e7b0808"     /* movec d0,pcr */
                 ".long 0x4e7b0808"     /* movec d0,pcr */
                 : : : "d0" );
                 : : : "d0" );
        }
        }
 
 
        __asm__ __volatile__
        __asm__ __volatile__
            ("movel    %0,%/d0\n\t"
            ("movel    %0,%/d0\n\t"
             "andl     #0xff000000,%/d0\n\t"
             "andl     #0xff000000,%/d0\n\t"
             "orw      #0xe020,%/d0\n\t"   /* map 16 MB, enable, cacheable */
             "orw      #0xe020,%/d0\n\t"   /* map 16 MB, enable, cacheable */
             ".long    0x4e7b0004\n\t"   /* movec d0,itt0 */
             ".long    0x4e7b0004\n\t"   /* movec d0,itt0 */
             ".long    0x4e7b0006\n\t"   /* movec d0,dtt0 */
             ".long    0x4e7b0006\n\t"   /* movec d0,dtt0 */
             "jmp   %0@\n\t"
             "jmp   %0@\n\t"
             : /* no outputs */
             : /* no outputs */
             : "a" (jmp_addr040)
             : "a" (jmp_addr040)
             : "d0" );
             : "d0" );
      jmp_addr_label040:
      jmp_addr_label040:
        __asm__ __volatile__
        __asm__ __volatile__
          ("moveq #0,%/d0\n\t"
          ("moveq #0,%/d0\n\t"
           "nop\n\t"
           "nop\n\t"
           ".word 0xf4d8\n\t"           /* cinva i/d */
           ".word 0xf4d8\n\t"           /* cinva i/d */
           ".word 0xf518\n\t"           /* pflusha */
           ".word 0xf518\n\t"           /* pflusha */
           ".long 0x4e7b0003\n\t"       /* movec d0,tc */
           ".long 0x4e7b0003\n\t"       /* movec d0,tc */
           "jmp %0@"
           "jmp %0@"
           : /* no outputs */
           : /* no outputs */
           : "a" (reset_addr)
           : "a" (reset_addr)
           : "d0");
           : "d0");
    }
    }
    else
    else
        __asm__ __volatile__
        __asm__ __volatile__
            ("pmove %0@,%/tc\n\t"
            ("pmove %0@,%/tc\n\t"
             "jmp %1@"
             "jmp %1@"
             : /* no outputs */
             : /* no outputs */
             : "a" (&tc_val), "a" (reset_addr));
             : "a" (&tc_val), "a" (reset_addr));
}
}
 
 
 
 
void atari_get_model(char *model)
void atari_get_model(char *model)
{
{
    strcpy(model, "Atari ");
    strcpy(model, "Atari ");
    switch (boot_info.bi_atari.mch_cookie >> 16) {
    switch (boot_info.bi_atari.mch_cookie >> 16) {
        case ATARI_MCH_ST:
        case ATARI_MCH_ST:
            if (ATARIHW_PRESENT(MSTE_CLK))
            if (ATARIHW_PRESENT(MSTE_CLK))
                strcat (model, "Mega ST");
                strcat (model, "Mega ST");
            else
            else
                strcat (model, "ST");
                strcat (model, "ST");
            break;
            break;
        case ATARI_MCH_STE:
        case ATARI_MCH_STE:
            if ((boot_info.bi_atari.mch_cookie & 0xffff) == 0x10)
            if ((boot_info.bi_atari.mch_cookie & 0xffff) == 0x10)
                strcat (model, "Mega STE");
                strcat (model, "Mega STE");
            else
            else
                strcat (model, "STE");
                strcat (model, "STE");
            break;
            break;
        case ATARI_MCH_TT:
        case ATARI_MCH_TT:
            if (is_medusa)
            if (is_medusa)
                /* Medusa has TT _MCH cookie */
                /* Medusa has TT _MCH cookie */
                strcat (model, "Medusa");
                strcat (model, "Medusa");
            else
            else
                strcat (model, "TT");
                strcat (model, "TT");
            break;
            break;
        case ATARI_MCH_FALCON:
        case ATARI_MCH_FALCON:
            strcat (model, "Falcon");
            strcat (model, "Falcon");
            break;
            break;
        default:
        default:
            sprintf (model + strlen (model), "(unknown mach cookie 0x%lx)",
            sprintf (model + strlen (model), "(unknown mach cookie 0x%lx)",
                     boot_info.bi_atari.mch_cookie);
                     boot_info.bi_atari.mch_cookie);
            break;
            break;
    }
    }
}
}
 
 
 
 
int atari_get_hardware_list(char *buffer)
int atari_get_hardware_list(char *buffer)
{
{
    int len = 0, i;
    int len = 0, i;
 
 
    for (i = 0; i < boot_info.num_memory; i++)
    for (i = 0; i < boot_info.num_memory; i++)
        len += sprintf (buffer+len, "\t%3ld MB at 0x%08lx (%s)\n",
        len += sprintf (buffer+len, "\t%3ld MB at 0x%08lx (%s)\n",
                        boot_info.memory[i].size >> 20,
                        boot_info.memory[i].size >> 20,
                        boot_info.memory[i].addr,
                        boot_info.memory[i].addr,
                        (boot_info.memory[i].addr & 0xff000000 ?
                        (boot_info.memory[i].addr & 0xff000000 ?
                         "alternate RAM" : "ST-RAM"));
                         "alternate RAM" : "ST-RAM"));
 
 
#define ATARIHW_ANNOUNCE(name,str)                              \
#define ATARIHW_ANNOUNCE(name,str)                              \
    if (ATARIHW_PRESENT(name))                  \
    if (ATARIHW_PRESENT(name))                  \
        len += sprintf (buffer + len, "\t%s\n", str)
        len += sprintf (buffer + len, "\t%s\n", str)
 
 
    len += sprintf (buffer + len, "Detected hardware:\n");
    len += sprintf (buffer + len, "Detected hardware:\n");
    ATARIHW_ANNOUNCE(STND_SHIFTER, "ST Shifter");
    ATARIHW_ANNOUNCE(STND_SHIFTER, "ST Shifter");
    ATARIHW_ANNOUNCE(EXTD_SHIFTER, "STe Shifter");
    ATARIHW_ANNOUNCE(EXTD_SHIFTER, "STe Shifter");
    ATARIHW_ANNOUNCE(TT_SHIFTER, "TT Shifter");
    ATARIHW_ANNOUNCE(TT_SHIFTER, "TT Shifter");
    ATARIHW_ANNOUNCE(VIDEL_SHIFTER, "Falcon Shifter");
    ATARIHW_ANNOUNCE(VIDEL_SHIFTER, "Falcon Shifter");
    ATARIHW_ANNOUNCE(YM_2149, "Programmable Sound Generator");
    ATARIHW_ANNOUNCE(YM_2149, "Programmable Sound Generator");
    ATARIHW_ANNOUNCE(PCM_8BIT, "PCM 8 Bit Sound");
    ATARIHW_ANNOUNCE(PCM_8BIT, "PCM 8 Bit Sound");
    ATARIHW_ANNOUNCE(CODEC, "CODEC Sound");
    ATARIHW_ANNOUNCE(CODEC, "CODEC Sound");
    ATARIHW_ANNOUNCE(TT_SCSI, "SCSI Controller NCR5380 (TT style)");
    ATARIHW_ANNOUNCE(TT_SCSI, "SCSI Controller NCR5380 (TT style)");
    ATARIHW_ANNOUNCE(ST_SCSI, "SCSI Controller NCR5380 (Falcon style)");
    ATARIHW_ANNOUNCE(ST_SCSI, "SCSI Controller NCR5380 (Falcon style)");
    ATARIHW_ANNOUNCE(ACSI, "ACSI Interface");
    ATARIHW_ANNOUNCE(ACSI, "ACSI Interface");
    ATARIHW_ANNOUNCE(IDE, "IDE Interface");
    ATARIHW_ANNOUNCE(IDE, "IDE Interface");
    ATARIHW_ANNOUNCE(FDCSPEED, "8/16 Mhz Switch for FDC");
    ATARIHW_ANNOUNCE(FDCSPEED, "8/16 Mhz Switch for FDC");
    ATARIHW_ANNOUNCE(ST_MFP, "Multi Function Peripheral MFP 68901");
    ATARIHW_ANNOUNCE(ST_MFP, "Multi Function Peripheral MFP 68901");
    ATARIHW_ANNOUNCE(TT_MFP, "Second Multi Function Peripheral MFP 68901");
    ATARIHW_ANNOUNCE(TT_MFP, "Second Multi Function Peripheral MFP 68901");
    ATARIHW_ANNOUNCE(SCC, "Serial Communications Controller SCC 8530");
    ATARIHW_ANNOUNCE(SCC, "Serial Communications Controller SCC 8530");
    ATARIHW_ANNOUNCE(ST_ESCC, "Extended Serial Communications Controller SCC 85230");
    ATARIHW_ANNOUNCE(ST_ESCC, "Extended Serial Communications Controller SCC 85230");
    ATARIHW_ANNOUNCE(ANALOG_JOY, "Paddle Interface");
    ATARIHW_ANNOUNCE(ANALOG_JOY, "Paddle Interface");
    ATARIHW_ANNOUNCE(MICROWIRE, "MICROWIRE(tm) Interface");
    ATARIHW_ANNOUNCE(MICROWIRE, "MICROWIRE(tm) Interface");
    ATARIHW_ANNOUNCE(STND_DMA, "DMA Controller (24 bit)");
    ATARIHW_ANNOUNCE(STND_DMA, "DMA Controller (24 bit)");
    ATARIHW_ANNOUNCE(EXTD_DMA, "DMA Controller (32 bit)");
    ATARIHW_ANNOUNCE(EXTD_DMA, "DMA Controller (32 bit)");
    ATARIHW_ANNOUNCE(SCSI_DMA, "DMA Controller for NCR5380");
    ATARIHW_ANNOUNCE(SCSI_DMA, "DMA Controller for NCR5380");
    ATARIHW_ANNOUNCE(SCC_DMA, "DMA Controller for SCC");
    ATARIHW_ANNOUNCE(SCC_DMA, "DMA Controller for SCC");
    ATARIHW_ANNOUNCE(TT_CLK, "Clock Chip MC146818A");
    ATARIHW_ANNOUNCE(TT_CLK, "Clock Chip MC146818A");
    ATARIHW_ANNOUNCE(MSTE_CLK, "Clock Chip RP5C15");
    ATARIHW_ANNOUNCE(MSTE_CLK, "Clock Chip RP5C15");
    ATARIHW_ANNOUNCE(SCU, "System Control Unit");
    ATARIHW_ANNOUNCE(SCU, "System Control Unit");
    ATARIHW_ANNOUNCE(BLITTER, "Blitter");
    ATARIHW_ANNOUNCE(BLITTER, "Blitter");
    ATARIHW_ANNOUNCE(VME, "VME Bus");
    ATARIHW_ANNOUNCE(VME, "VME Bus");
 
 
    return(len);
    return(len);
}
}
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.