OpenCores
URL https://opencores.org/ocsvn/or1k_old/or1k_old/trunk

Subversion Repositories or1k_old

[/] [or1k_old/] [trunk/] [rc203soc/] [sw/] [uClinux/] [mm/] [vmscan.c] - Diff between revs 1634 and 1765

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 1634 Rev 1765
/*
/*
 *  linux/mm/vmscan.c
 *  linux/mm/vmscan.c
 *
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *
 *  Swap reorganised 29.12.95, Stephen Tweedie.
 *  Swap reorganised 29.12.95, Stephen Tweedie.
 *  kswapd added: 7.1.96  sct
 *  kswapd added: 7.1.96  sct
 *  Version: $Id: vmscan.c,v 1.1 2005-12-20 11:47:02 jcastillo Exp $
 *  Version: $Id: vmscan.c,v 1.1 2005-12-20 11:47:02 jcastillo Exp $
 */
 */
 
 
#include <linux/mm.h>
#include <linux/mm.h>
#include <linux/sched.h>
#include <linux/sched.h>
#include <linux/head.h>
#include <linux/head.h>
#include <linux/kernel.h>
#include <linux/kernel.h>
#include <linux/kernel_stat.h>
#include <linux/kernel_stat.h>
#include <linux/errno.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/string.h>
#include <linux/stat.h>
#include <linux/stat.h>
#include <linux/swap.h>
#include <linux/swap.h>
#include <linux/fs.h>
#include <linux/fs.h>
#include <linux/swapctl.h>
#include <linux/swapctl.h>
#include <linux/pagemap.h>
#include <linux/pagemap.h>
#include <linux/smp_lock.h>
#include <linux/smp_lock.h>
 
 
#include <asm/dma.h>
#include <asm/dma.h>
#include <asm/system.h> /* for cli()/sti() */
#include <asm/system.h> /* for cli()/sti() */
#include <asm/segment.h> /* for memcpy_to/fromfs */
#include <asm/segment.h> /* for memcpy_to/fromfs */
#include <asm/bitops.h>
#include <asm/bitops.h>
#include <asm/pgtable.h>
#include <asm/pgtable.h>
 
 
/*
/*
 * To check memory consuming code elsewhere set this to 1
 * To check memory consuming code elsewhere set this to 1
 */
 */
/* #define MM_DEBUG */
/* #define MM_DEBUG */
 
 
/*
/*
 * When are we next due for a page scan?
 * When are we next due for a page scan?
 */
 */
static int next_swap_jiffies = 0;
static int next_swap_jiffies = 0;
 
 
/*
/*
 * Was the last kswapd wakeup caused by
 * Was the last kswapd wakeup caused by
 *     nr_free_pages < free_pages_low
 *     nr_free_pages < free_pages_low
 */
 */
static int last_wakeup_low = 0;
static int last_wakeup_low = 0;
 
 
/*
/*
 * How often do we do a pageout scan during normal conditions?
 * How often do we do a pageout scan during normal conditions?
 * Default is four times a second.
 * Default is four times a second.
 */
 */
int swapout_interval = HZ / 4;
int swapout_interval = HZ / 4;
 
 
/*
/*
 * The wait queue for waking up the pageout daemon:
 * The wait queue for waking up the pageout daemon:
 */
 */
static struct wait_queue * kswapd_wait = NULL;
static struct wait_queue * kswapd_wait = NULL;
 
 
/*
/*
 * We avoid doing a reschedule if the pageout daemon is already awake;
 * We avoid doing a reschedule if the pageout daemon is already awake;
 */
 */
static int kswapd_awake = 0;
static int kswapd_awake = 0;
 
 
/*
/*
 * sysctl-modifiable parameters to control the aggressiveness of the
 * sysctl-modifiable parameters to control the aggressiveness of the
 * page-searching within the kswapd page recovery daemon.
 * page-searching within the kswapd page recovery daemon.
 */
 */
kswapd_control_t kswapd_ctl = {4, -1, -1, -1, -1};
kswapd_control_t kswapd_ctl = {4, -1, -1, -1, -1};
 
 
static void init_swap_timer(void);
static void init_swap_timer(void);
 
 
/*
/*
 * The swap-out functions return 1 if they successfully
 * The swap-out functions return 1 if they successfully
 * threw something out, and we got a free page. It returns
 * threw something out, and we got a free page. It returns
 * zero if it couldn't do anything, and any other value
 * zero if it couldn't do anything, and any other value
 * indicates it decreased rss, but the page was shared.
 * indicates it decreased rss, but the page was shared.
 *
 *
 * NOTE! If it sleeps, it *must* return 1 to make sure we
 * NOTE! If it sleeps, it *must* return 1 to make sure we
 * don't continue with the swap-out. Otherwise we may be
 * don't continue with the swap-out. Otherwise we may be
 * using a process that no longer actually exists (it might
 * using a process that no longer actually exists (it might
 * have died while we slept).
 * have died while we slept).
 */
 */
static inline int try_to_swap_out(struct task_struct * tsk, struct vm_area_struct* vma,
static inline int try_to_swap_out(struct task_struct * tsk, struct vm_area_struct* vma,
        unsigned long address, pte_t * page_table, int dma, int wait, int can_do_io)
        unsigned long address, pte_t * page_table, int dma, int wait, int can_do_io)
{
{
        pte_t pte;
        pte_t pte;
        unsigned long entry;
        unsigned long entry;
        unsigned long page;
        unsigned long page;
        struct page * page_map;
        struct page * page_map;
 
 
        pte = *page_table;
        pte = *page_table;
        if (!pte_present(pte))
        if (!pte_present(pte))
                return 0;
                return 0;
        page = pte_page(pte);
        page = pte_page(pte);
        if (MAP_NR(page) >= MAP_NR(high_memory))
        if (MAP_NR(page) >= MAP_NR(high_memory))
                return 0;
                return 0;
 
 
        page_map = mem_map + MAP_NR(page);
        page_map = mem_map + MAP_NR(page);
        if (PageReserved(page_map)
        if (PageReserved(page_map)
            || PageLocked(page_map)
            || PageLocked(page_map)
            || (dma && !PageDMA(page_map)))
            || (dma && !PageDMA(page_map)))
                return 0;
                return 0;
        /* Deal with page aging.  Pages age from being unused; they
        /* Deal with page aging.  Pages age from being unused; they
         * rejuvenate on being accessed.  Only swap old pages (age==0
         * rejuvenate on being accessed.  Only swap old pages (age==0
         * is oldest). */
         * is oldest). */
        if ((pte_dirty(pte) && delete_from_swap_cache(MAP_NR(page)))
        if ((pte_dirty(pte) && delete_from_swap_cache(MAP_NR(page)))
            || pte_young(pte))  {
            || pte_young(pte))  {
                set_pte(page_table, pte_mkold(pte));
                set_pte(page_table, pte_mkold(pte));
                touch_page(page_map);
                touch_page(page_map);
                return 0;
                return 0;
        }
        }
        age_page(page_map);
        age_page(page_map);
        if (page_map->age)
        if (page_map->age)
                return 0;
                return 0;
        if (pte_dirty(pte)) {
        if (pte_dirty(pte)) {
                if(!can_do_io)
                if(!can_do_io)
                        return 0;
                        return 0;
                if (vma->vm_ops && vma->vm_ops->swapout) {
                if (vma->vm_ops && vma->vm_ops->swapout) {
                        pid_t pid = tsk->pid;
                        pid_t pid = tsk->pid;
                        vma->vm_mm->rss--;
                        vma->vm_mm->rss--;
                        if (vma->vm_ops->swapout(vma, address - vma->vm_start + vma->vm_offset, page_table))
                        if (vma->vm_ops->swapout(vma, address - vma->vm_start + vma->vm_offset, page_table))
                                kill_proc(pid, SIGBUS, 1);
                                kill_proc(pid, SIGBUS, 1);
                } else {
                } else {
                        if (!(entry = get_swap_page()))
                        if (!(entry = get_swap_page()))
                                return 0;
                                return 0;
                        vma->vm_mm->rss--;
                        vma->vm_mm->rss--;
                        flush_cache_page(vma, address);
                        flush_cache_page(vma, address);
                        set_pte(page_table, __pte(entry));
                        set_pte(page_table, __pte(entry));
                        flush_tlb_page(vma, address);
                        flush_tlb_page(vma, address);
                        tsk->nswap++;
                        tsk->nswap++;
                        rw_swap_page(WRITE, entry, (char *) page, wait);
                        rw_swap_page(WRITE, entry, (char *) page, wait);
                }
                }
                free_page(page);
                free_page(page);
                return 1;       /* we slept: the process may not exist any more */
                return 1;       /* we slept: the process may not exist any more */
        }
        }
        if ((entry = find_in_swap_cache(MAP_NR(page))))  {
        if ((entry = find_in_swap_cache(MAP_NR(page))))  {
                if (page_map->count != 1) {
                if (page_map->count != 1) {
                        set_pte(page_table, pte_mkdirty(pte));
                        set_pte(page_table, pte_mkdirty(pte));
                        printk("Aiee.. duplicated cached swap-cache entry\n");
                        printk("Aiee.. duplicated cached swap-cache entry\n");
                        return 0;
                        return 0;
                }
                }
                vma->vm_mm->rss--;
                vma->vm_mm->rss--;
                flush_cache_page(vma, address);
                flush_cache_page(vma, address);
                set_pte(page_table, __pte(entry));
                set_pte(page_table, __pte(entry));
                flush_tlb_page(vma, address);
                flush_tlb_page(vma, address);
                free_page(page);
                free_page(page);
                return 1;
                return 1;
        }
        }
        vma->vm_mm->rss--;
        vma->vm_mm->rss--;
        flush_cache_page(vma, address);
        flush_cache_page(vma, address);
        pte_clear(page_table);
        pte_clear(page_table);
        flush_tlb_page(vma, address);
        flush_tlb_page(vma, address);
        entry = page_unuse(page);
        entry = page_unuse(page);
        free_page(page);
        free_page(page);
        return entry;
        return entry;
}
}
 
 
/*
/*
 * A new implementation of swap_out().  We do not swap complete processes,
 * A new implementation of swap_out().  We do not swap complete processes,
 * but only a small number of blocks, before we continue with the next
 * but only a small number of blocks, before we continue with the next
 * process.  The number of blocks actually swapped is determined on the
 * process.  The number of blocks actually swapped is determined on the
 * number of page faults, that this process actually had in the last time,
 * number of page faults, that this process actually had in the last time,
 * so we won't swap heavily used processes all the time ...
 * so we won't swap heavily used processes all the time ...
 *
 *
 * Note: the priority argument is a hint on much CPU to waste with the
 * Note: the priority argument is a hint on much CPU to waste with the
 *       swap block search, not a hint, of how much blocks to swap with
 *       swap block search, not a hint, of how much blocks to swap with
 *       each process.
 *       each process.
 *
 *
 * (C) 1993 Kai Petzke, wpp@marie.physik.tu-berlin.de
 * (C) 1993 Kai Petzke, wpp@marie.physik.tu-berlin.de
 */
 */
 
 
static inline int swap_out_pmd(struct task_struct * tsk, struct vm_area_struct * vma,
static inline int swap_out_pmd(struct task_struct * tsk, struct vm_area_struct * vma,
        pmd_t *dir, unsigned long address, unsigned long end, int dma, int wait,
        pmd_t *dir, unsigned long address, unsigned long end, int dma, int wait,
        int can_do_io)
        int can_do_io)
{
{
        pte_t * pte;
        pte_t * pte;
        unsigned long pmd_end;
        unsigned long pmd_end;
 
 
        if (pmd_none(*dir))
        if (pmd_none(*dir))
                return 0;
                return 0;
        if (pmd_bad(*dir)) {
        if (pmd_bad(*dir)) {
                printk("swap_out_pmd: bad pmd (%08lx)\n", pmd_val(*dir));
                printk("swap_out_pmd: bad pmd (%08lx)\n", pmd_val(*dir));
                pmd_clear(dir);
                pmd_clear(dir);
                return 0;
                return 0;
        }
        }
 
 
        pte = pte_offset(dir, address);
        pte = pte_offset(dir, address);
 
 
        pmd_end = (address + PMD_SIZE) & PMD_MASK;
        pmd_end = (address + PMD_SIZE) & PMD_MASK;
        if (end > pmd_end)
        if (end > pmd_end)
                end = pmd_end;
                end = pmd_end;
 
 
        do {
        do {
                int result;
                int result;
                tsk->swap_address = address + PAGE_SIZE;
                tsk->swap_address = address + PAGE_SIZE;
                result = try_to_swap_out(tsk, vma, address, pte, dma, wait,
                result = try_to_swap_out(tsk, vma, address, pte, dma, wait,
                                         can_do_io);
                                         can_do_io);
                if (result)
                if (result)
                        return result;
                        return result;
                address += PAGE_SIZE;
                address += PAGE_SIZE;
                pte++;
                pte++;
        } while (address < end);
        } while (address < end);
        return 0;
        return 0;
}
}
 
 
static inline int swap_out_pgd(struct task_struct * tsk, struct vm_area_struct * vma,
static inline int swap_out_pgd(struct task_struct * tsk, struct vm_area_struct * vma,
        pgd_t *dir, unsigned long address, unsigned long end, int dma, int wait,
        pgd_t *dir, unsigned long address, unsigned long end, int dma, int wait,
        int can_do_io)
        int can_do_io)
{
{
        pmd_t * pmd;
        pmd_t * pmd;
        unsigned long pgd_end;
        unsigned long pgd_end;
 
 
        if (pgd_none(*dir))
        if (pgd_none(*dir))
                return 0;
                return 0;
        if (pgd_bad(*dir)) {
        if (pgd_bad(*dir)) {
                printk("swap_out_pgd: bad pgd (%08lx)\n", pgd_val(*dir));
                printk("swap_out_pgd: bad pgd (%08lx)\n", pgd_val(*dir));
                pgd_clear(dir);
                pgd_clear(dir);
                return 0;
                return 0;
        }
        }
 
 
        pmd = pmd_offset(dir, address);
        pmd = pmd_offset(dir, address);
 
 
        pgd_end = (address + PGDIR_SIZE) & PGDIR_MASK;
        pgd_end = (address + PGDIR_SIZE) & PGDIR_MASK;
        if (end > pgd_end)
        if (end > pgd_end)
                end = pgd_end;
                end = pgd_end;
 
 
        do {
        do {
                int result = swap_out_pmd(tsk, vma, pmd, address, end, dma, wait,
                int result = swap_out_pmd(tsk, vma, pmd, address, end, dma, wait,
                                          can_do_io);
                                          can_do_io);
                if (result)
                if (result)
                        return result;
                        return result;
                address = (address + PMD_SIZE) & PMD_MASK;
                address = (address + PMD_SIZE) & PMD_MASK;
                pmd++;
                pmd++;
        } while (address < end);
        } while (address < end);
        return 0;
        return 0;
}
}
 
 
static int swap_out_vma(struct task_struct * tsk, struct vm_area_struct * vma,
static int swap_out_vma(struct task_struct * tsk, struct vm_area_struct * vma,
        pgd_t *pgdir, unsigned long start, int dma, int wait, int can_do_io)
        pgd_t *pgdir, unsigned long start, int dma, int wait, int can_do_io)
{
{
        unsigned long end;
        unsigned long end;
 
 
        /* Don't swap out areas like shared memory which have their
        /* Don't swap out areas like shared memory which have their
            own separate swapping mechanism or areas which are locked down */
            own separate swapping mechanism or areas which are locked down */
        if (vma->vm_flags & (VM_SHM | VM_LOCKED))
        if (vma->vm_flags & (VM_SHM | VM_LOCKED))
                return 0;
                return 0;
 
 
        end = vma->vm_end;
        end = vma->vm_end;
        while (start < end) {
        while (start < end) {
                int result = swap_out_pgd(tsk, vma, pgdir, start, end, dma, wait,
                int result = swap_out_pgd(tsk, vma, pgdir, start, end, dma, wait,
                                          can_do_io);
                                          can_do_io);
                if (result)
                if (result)
                        return result;
                        return result;
                start = (start + PGDIR_SIZE) & PGDIR_MASK;
                start = (start + PGDIR_SIZE) & PGDIR_MASK;
                pgdir++;
                pgdir++;
        }
        }
        return 0;
        return 0;
}
}
 
 
static int swap_out_process(struct task_struct * p, int dma, int wait, int can_do_io)
static int swap_out_process(struct task_struct * p, int dma, int wait, int can_do_io)
{
{
        unsigned long address;
        unsigned long address;
        struct vm_area_struct* vma;
        struct vm_area_struct* vma;
 
 
        /*
        /*
         * Go through process' page directory.
         * Go through process' page directory.
         */
         */
        address = p->swap_address;
        address = p->swap_address;
 
 
        /*
        /*
         * Find the proper vm-area
         * Find the proper vm-area
         */
         */
        vma = find_vma(p->mm, address);
        vma = find_vma(p->mm, address);
        if (!vma) {
        if (!vma) {
                p->swap_address = 0;
                p->swap_address = 0;
                return 0;
                return 0;
        }
        }
        if (address < vma->vm_start)
        if (address < vma->vm_start)
                address = vma->vm_start;
                address = vma->vm_start;
 
 
        for (;;) {
        for (;;) {
                int result = swap_out_vma(p, vma, pgd_offset(p->mm, address), address, dma, wait,
                int result = swap_out_vma(p, vma, pgd_offset(p->mm, address), address, dma, wait,
                                          can_do_io);
                                          can_do_io);
                if (result)
                if (result)
                        return result;
                        return result;
                vma = vma->vm_next;
                vma = vma->vm_next;
                if (!vma)
                if (!vma)
                        break;
                        break;
                address = vma->vm_start;
                address = vma->vm_start;
        }
        }
        p->swap_address = 0;
        p->swap_address = 0;
        return 0;
        return 0;
}
}
 
 
static int swap_out(unsigned int priority, int dma, int wait, int can_do_io)
static int swap_out(unsigned int priority, int dma, int wait, int can_do_io)
{
{
        static int swap_task;
        static int swap_task;
        int loop, counter, shfrv;
        int loop, counter, shfrv;
        struct task_struct *p;
        struct task_struct *p;
 
 
#ifdef MM_DEBUG
#ifdef MM_DEBUG
        shfrv = 10;
        shfrv = 10;
#else
#else
        /*
        /*
         * Trouble due ageing pages: In some situations it is possible that we cross only tasks
         * Trouble due ageing pages: In some situations it is possible that we cross only tasks
         * which are swapped out or which have only physical pages with age >= 3.
         * which are swapped out or which have only physical pages with age >= 3.
         * High values of swap_cnt for memory consuming tasks do aggravate such situations.
         * High values of swap_cnt for memory consuming tasks do aggravate such situations.
         *
         *
         * If PAGEOUT_WEIGHT has a value of 8192 a right shift value of 10 leads to
         * If PAGEOUT_WEIGHT has a value of 8192 a right shift value of 10 leads to
         *     (8 * nr_tasks) >> priority
         *     (8 * nr_tasks) >> priority
         * Together with a high number of tasks, say 100, we have counters (due priority)
         * Together with a high number of tasks, say 100, we have counters (due priority)
         *     12(6) + 25(5) + 50(4) + 100(3) + 200(2) + 400(1) + 800(0)
         *     12(6) + 25(5) + 50(4) + 100(3) + 200(2) + 400(1) + 800(0)
         * and as total result 1587 scans of swap_out() to swap out a task page.
         * and as total result 1587 scans of swap_out() to swap out a task page.
         *
         *
         * Just assume 80 tasks are swapped out and the remaining tasks have a swap_cnt value >= 40
         * Just assume 80 tasks are swapped out and the remaining tasks have a swap_cnt value >= 40
         * together with pages with age >= 3.  Then we need approx 20*40*2 = 1600 scans to get a
         * together with pages with age >= 3.  Then we need approx 20*40*2 = 1600 scans to get a
         * free page.
         * free page.
         * And now assume that the amount of cached pages, buffers, and ipc pages are really low.
         * And now assume that the amount of cached pages, buffers, and ipc pages are really low.
         */
         */
        switch (priority) {
        switch (priority) {
                case 6: case 5: case 4:  /* be friendly */
                case 6: case 5: case 4:  /* be friendly */
                        shfrv = 10;
                        shfrv = 10;
                        break;
                        break;
                case 3: case 2: case 1:  /* more intensive */
                case 3: case 2: case 1:  /* more intensive */
                        shfrv =  9;
                        shfrv =  9;
                        break;
                        break;
                case 0: default:         /* sorry we need a page */
                case 0: default:         /* sorry we need a page */
                        shfrv =  8;
                        shfrv =  8;
                        break;
                        break;
        }
        }
        /*
        /*
         * kswapd should be more friendly to other processes.
         * kswapd should be more friendly to other processes.
         */
         */
        if (kswapd_awake)
        if (kswapd_awake)
                shfrv = 10;
                shfrv = 10;
#endif
#endif
 
 
        counter = ((PAGEOUT_WEIGHT * nr_tasks) >> shfrv) >> priority;
        counter = ((PAGEOUT_WEIGHT * nr_tasks) >> shfrv) >> priority;
        for(; counter >= 0; counter--) {
        for(; counter >= 0; counter--) {
                /*
                /*
                 * Check that swap_task is suitable for swapping.  If not, look for
                 * Check that swap_task is suitable for swapping.  If not, look for
                 * the next suitable process.
                 * the next suitable process.
                 */
                 */
                loop = 0;
                loop = 0;
                while(1) {
                while(1) {
                        if (swap_task >= NR_TASKS) {
                        if (swap_task >= NR_TASKS) {
                                swap_task = 1;
                                swap_task = 1;
                                if (loop)
                                if (loop)
                                        /* all processes are unswappable or already swapped out */
                                        /* all processes are unswappable or already swapped out */
                                        return 0;
                                        return 0;
                                loop = 1;
                                loop = 1;
                        }
                        }
 
 
                        p = task[swap_task];
                        p = task[swap_task];
                        if (p && p->swappable && p->mm->rss)
                        if (p && p->swappable && p->mm->rss)
                                break;
                                break;
 
 
                        swap_task++;
                        swap_task++;
                }
                }
 
 
                /*
                /*
                 * Determine the number of pages to swap from this process.
                 * Determine the number of pages to swap from this process.
                 */
                 */
                if (!p->swap_cnt) {
                if (!p->swap_cnt) {
                        /*
                        /*
                         * Normalise the number of pages swapped by
                         * Normalise the number of pages swapped by
                         * multiplying by (RSS / 1MB)
                         * multiplying by (RSS / 1MB)
                         */
                         */
                        p->swap_cnt = AGE_CLUSTER_SIZE(p->mm->rss);
                        p->swap_cnt = AGE_CLUSTER_SIZE(p->mm->rss);
                }
                }
                if (!--p->swap_cnt)
                if (!--p->swap_cnt)
                        swap_task++;
                        swap_task++;
                switch (swap_out_process(p, dma, wait, can_do_io)) {
                switch (swap_out_process(p, dma, wait, can_do_io)) {
                        case 0:
                        case 0:
                                if (p->state == TASK_STOPPED)
                                if (p->state == TASK_STOPPED)
                                        /* Stopped task occupy nonused ram */
                                        /* Stopped task occupy nonused ram */
                                        break;
                                        break;
                                if (p->swap_cnt)
                                if (p->swap_cnt)
                                        swap_task++;
                                        swap_task++;
                                break;
                                break;
                        case 1:
                        case 1:
                                return 1;
                                return 1;
                        default:
                        default:
                                break;
                                break;
                }
                }
        }
        }
#ifdef MM_DEBUG
#ifdef MM_DEBUG
        if (!priority) {
        if (!priority) {
                printk("swap_out: physical ram %6dkB, min pages   %6dkB\n",
                printk("swap_out: physical ram %6dkB, min pages   %6dkB\n",
                        (int)(high_memory>>10), min_free_pages<<(PAGE_SHIFT-10));
                        (int)(high_memory>>10), min_free_pages<<(PAGE_SHIFT-10));
                printk("swap_out:   free pages %6dkB, async pages %6dkB\n",
                printk("swap_out:   free pages %6dkB, async pages %6dkB\n",
                        nr_free_pages<<(PAGE_SHIFT-10), nr_async_pages<<(PAGE_SHIFT-10));
                        nr_free_pages<<(PAGE_SHIFT-10), nr_async_pages<<(PAGE_SHIFT-10));
        }
        }
#endif
#endif
        return 0;
        return 0;
}
}
 
 
/*
/*
 * We are much more aggressive about trying to swap out than we used
 * We are much more aggressive about trying to swap out than we used
 * to be.  This works out OK, because we now do proper aging on page
 * to be.  This works out OK, because we now do proper aging on page
 * contents.
 * contents.
 */
 */
int try_to_free_page(int priority, int dma, int wait)
int try_to_free_page(int priority, int dma, int wait)
{
{
        static int state = 0;
        static int state = 0;
        int i=6;
        int i=6;
        int stop, can_do_io;
        int stop, can_do_io;
 
 
        /* we don't try as hard if we're not waiting.. */
        /* we don't try as hard if we're not waiting.. */
        stop = 3;
        stop = 3;
        can_do_io = 1;
        can_do_io = 1;
        if (wait)
        if (wait)
                stop = 0;
                stop = 0;
        if (priority == GFP_IO)
        if (priority == GFP_IO)
                can_do_io = 0;
                can_do_io = 0;
        switch (state) {
        switch (state) {
                do {
                do {
                case 0:
                case 0:
                        if (shrink_mmap(i, dma, 1))
                        if (shrink_mmap(i, dma, 1))
                                return 1;
                                return 1;
                        state = 1;
                        state = 1;
                case 1:
                case 1:
                        if (can_do_io && shm_swap(i, dma))
                        if (can_do_io && shm_swap(i, dma))
                                return 1;
                                return 1;
                        state = 2;
                        state = 2;
                default:
                default:
                        if (swap_out(i, dma, wait, can_do_io))
                        if (swap_out(i, dma, wait, can_do_io))
                                return 1;
                                return 1;
                        state = 0;
                        state = 0;
                i--;
                i--;
                } while ((i - stop) >= 0);
                } while ((i - stop) >= 0);
        }
        }
        return 0;
        return 0;
}
}
 
 
/*
/*
 * Before we start the kernel thread, print out the
 * Before we start the kernel thread, print out the
 * kswapd initialization message (otherwise the init message
 * kswapd initialization message (otherwise the init message
 * may be printed in the middle of another driver's init
 * may be printed in the middle of another driver's init
 * message).  It looks very bad when that happens.
 * message).  It looks very bad when that happens.
 */
 */
void kswapd_setup(void)
void kswapd_setup(void)
{
{
       int i;
       int i;
       char *revision="$Revision: 1.1 $", *s, *e;
       char *revision="$Revision: 1.1 $", *s, *e;
 
 
       if ((s = strchr(revision, ':')) &&
       if ((s = strchr(revision, ':')) &&
           (e = strchr(s, '$')))
           (e = strchr(s, '$')))
               s++, i = e - s;
               s++, i = e - s;
       else
       else
               s = revision, i = -1;
               s = revision, i = -1;
       printk ("Starting kswapd v%.*s\n", i, s);
       printk ("Starting kswapd v%.*s\n", i, s);
}
}
 
 
/*
/*
 * The background pageout daemon.
 * The background pageout daemon.
 * Started as a kernel thread from the init process.
 * Started as a kernel thread from the init process.
 */
 */
int kswapd(void *unused)
int kswapd(void *unused)
{
{
        int i, reserved_pages;
        int i, reserved_pages;
 
 
        current->session = 1;
        current->session = 1;
        current->pgrp = 1;
        current->pgrp = 1;
        sprintf(current->comm, "kswapd");
        sprintf(current->comm, "kswapd");
        current->blocked = ~0UL;
        current->blocked = ~0UL;
 
 
        /*
        /*
         *      As a kernel thread we want to tamper with system buffers
         *      As a kernel thread we want to tamper with system buffers
         *      and other internals and thus be subject to the SMP locking
         *      and other internals and thus be subject to the SMP locking
         *      rules. (On a uniprocessor box this does nothing).
         *      rules. (On a uniprocessor box this does nothing).
         */
         */
 
 
#ifdef __SMP__
#ifdef __SMP__
        lock_kernel();
        lock_kernel();
        syscall_count++;
        syscall_count++;
#endif
#endif
 
 
        /* Give kswapd a realtime priority. */
        /* Give kswapd a realtime priority. */
        current->policy = SCHED_FIFO;
        current->policy = SCHED_FIFO;
        current->priority = 32;  /* Fixme --- we need to standardise our
        current->priority = 32;  /* Fixme --- we need to standardise our
                                    namings for POSIX.4 realtime scheduling
                                    namings for POSIX.4 realtime scheduling
                                    priorities.  */
                                    priorities.  */
 
 
        init_swap_timer();
        init_swap_timer();
 
 
        while (1) {
        while (1) {
                /* low on memory, we need to start swapping soon */
                /* low on memory, we need to start swapping soon */
                next_swap_jiffies = jiffies +
                next_swap_jiffies = jiffies +
                        (last_wakeup_low ? swapout_interval >> 1 : swapout_interval);
                        (last_wakeup_low ? swapout_interval >> 1 : swapout_interval);
                kswapd_awake = 0;
                kswapd_awake = 0;
                current->signal = 0;
                current->signal = 0;
                run_task_queue(&tq_disk);
                run_task_queue(&tq_disk);
                interruptible_sleep_on(&kswapd_wait);
                interruptible_sleep_on(&kswapd_wait);
                kswapd_awake = 1;
                kswapd_awake = 1;
                swapstats.wakeups++;
                swapstats.wakeups++;
                /* Protect our reserved pages: */
                /* Protect our reserved pages: */
                i = 0;
                i = 0;
                reserved_pages = min_free_pages;
                reserved_pages = min_free_pages;
                if (min_free_pages >= 48)
                if (min_free_pages >= 48)
                        reserved_pages -= (12 + (reserved_pages>>3));
                        reserved_pages -= (12 + (reserved_pages>>3));
                if (nr_free_pages <= reserved_pages)
                if (nr_free_pages <= reserved_pages)
                        i = (1+reserved_pages) - nr_free_pages;
                        i = (1+reserved_pages) - nr_free_pages;
                /* Do the background pageout: */
                /* Do the background pageout: */
                for (i += kswapd_ctl.maxpages; i > 0; i--)
                for (i += kswapd_ctl.maxpages; i > 0; i--)
                        try_to_free_page(GFP_KERNEL, 0,
                        try_to_free_page(GFP_KERNEL, 0,
                                         (nr_free_pages <= min_free_pages));
                                         (nr_free_pages <= min_free_pages));
        }
        }
}
}
 
 
/*
/*
 * The swap_tick function gets called on every clock tick.
 * The swap_tick function gets called on every clock tick.
 */
 */
 
 
void swap_tick(void)
void swap_tick(void)
{
{
        int     want_wakeup = 0;
        int     want_wakeup = 0;
 
 
        if ((nr_free_pages + nr_async_pages) < free_pages_low) {
        if ((nr_free_pages + nr_async_pages) < free_pages_low) {
                if (last_wakeup_low)
                if (last_wakeup_low)
                        want_wakeup = (jiffies >= next_swap_jiffies);
                        want_wakeup = (jiffies >= next_swap_jiffies);
                else
                else
                        last_wakeup_low = want_wakeup = 1;
                        last_wakeup_low = want_wakeup = 1;
        }
        }
        else if (((nr_free_pages + nr_async_pages) < free_pages_high) &&
        else if (((nr_free_pages + nr_async_pages) < free_pages_high) &&
                 (jiffies >= next_swap_jiffies)) {
                 (jiffies >= next_swap_jiffies)) {
                last_wakeup_low = 0;
                last_wakeup_low = 0;
                want_wakeup = 1;
                want_wakeup = 1;
        }
        }
 
 
        if (want_wakeup) {
        if (want_wakeup) {
                if (!kswapd_awake && kswapd_ctl.maxpages > 0) {
                if (!kswapd_awake && kswapd_ctl.maxpages > 0) {
                        wake_up(&kswapd_wait);
                        wake_up(&kswapd_wait);
                        need_resched = 1;
                        need_resched = 1;
                }
                }
        }
        }
        timer_active |= (1<<SWAP_TIMER);
        timer_active |= (1<<SWAP_TIMER);
}
}
 
 
 
 
/*
/*
 * Initialise the swap timer
 * Initialise the swap timer
 */
 */
 
 
void init_swap_timer(void)
void init_swap_timer(void)
{
{
        timer_table[SWAP_TIMER].expires = 0;
        timer_table[SWAP_TIMER].expires = 0;
        timer_table[SWAP_TIMER].fn = swap_tick;
        timer_table[SWAP_TIMER].fn = swap_tick;
        timer_active |= (1<<SWAP_TIMER);
        timer_active |= (1<<SWAP_TIMER);
}
}
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.