OpenCores
URL https://opencores.org/ocsvn/theia_gpu/theia_gpu/trunk

Subversion Repositories theia_gpu

[/] [theia_gpu/] [trunk/] [rtl/] [Theia.v] - Diff between revs 152 and 154

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 152 Rev 154
 
`timescale 1ns / 1ps
 
`include "aDefinitions.v"
 
/**********************************************************************************
 
Theia, Ray Cast Programable graphic Processing Unit.
 
Copyright (C) 2010  Diego Valverde (diego.valverde.g@gmail.com)
 
 
 
This program is free software; you can redistribute it and/or
 
modify it under the terms of the GNU General Public License
 
as published by the Free Software Foundation; either version 2
 
of the License, or (at your option) any later version.
 
 
 
This program is distributed in the hope that it will be useful,
 
but WITHOUT ANY WARRANTY; without even the implied warranty of
 
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 
GNU General Public License for more details.
 
 
 
You should have received a copy of the GNU General Public License
 
along with this program; if not, write to the Free Software
 
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
 
 
 
***********************************************************************************/
 
 
 
//---------------------------------------------------------------------------
 
module THEIA
 
(
 
 
 
input wire                    CLK_I,    //Input clock
 
input wire                    RST_I,    //Input reset
 
//Theia Interfaces
 
input wire                    MST_I,    //Master signal, THEIA enters configuration mode
 
                                       //when this gets asserted (see documentation)
 
//Wish Bone Interface
 
input wire [`WB_WIDTH-1:0]    DAT_I,     //Input data bus  (Wishbone)
 
input wire                    ACK_I,    //Input ack
 
output wire                   ACK_O,    //Output ack
 
input wire [`WB_WIDTH-1:0]    ADR_I,     //Input address
 
input wire                    WE_I,    //Input write enable
 
input wire                    STB_I,    //Strobe signal, see wishbone documentation
 
input wire                    CYC_I,   //Bus cycle signal, see wishbone documentation
 
input wire [1:0]              TGA_I,   //Input address tag, see THEAI documentation
 
input wire [`MAX_CORES-1:0]      SEL_I,  //The WishBone Master uses this signal to configure a specific core (TBD, not sure is needed)
 
input wire [`MAX_CORES-1:0]   RENDREN_I,
 
 
 
input wire [`MAX_CORE_BITS-1:0]      OMBSEL_I,  //Output memory bank select
 
input wire [`WB_WIDTH-1:0]           OMADR_I,  //Output adress (relative to current bank)
 
output wire [`WB_WIDTH-1:0]          OMEM_O,      //Output data bus (Wishbone)
 
 
 
input wire [`WB_WIDTH-1:0]           TMDAT_I,
 
input wire [`WB_WIDTH-1:0]           TMADR_I,
 
input wire                           TMWE_I,
 
input wire [`MAX_TMEM_BANKS-1:0]     TMSEL_I,
 
//Control Register
 
input wire [15:0]                         CREG_I,
 
output wire                   HDL_O,
 
input wire                    STDONE_I,
 
input wire                    HDA_I,
 
input wire                    HDLACK_I,
 
output wire                   RCOMMIT_O,
 
output wire                   DONE_O
 
 
 
);
 
 
 
 
 
 
 
 
 
wire [`MAX_TMEM_BANKS-1:0] wTMemWriteEnable;
 
SELECT_1_TO_N # ( `MAX_TMEM_BANKS, `MAX_TMEM_BANKS ) TMWE_SEL
 
                        (
 
                        .Sel(TMSEL_I),
 
                        .En(TMWE_I),
 
                        .O(wTMemWriteEnable)
 
                        );
 
 
 
 
 
wire [`MAX_CORES-1:0] wDone;
 
wire [`MAX_CORES-1:0] wBusGranted,wBusRequest;
 
//wire [`WB_WIDTH-1:0]  wDAT_O[`MAX_CORES-1:0];
 
//wire [`WB_WIDTH-1:0]  wADR_O[`MAX_CORES-1:0];
 
//wire [1:0] wTGA_O[`MAX_CORES-1:0];
 
wire [`MAX_CORE_BITS-1:0] wBusSelect;
 
 
 
 
 
//wire [`MAX_CORES-1:0] wSTB_O;
 
//wire [`MAX_CORES-1:0] wWE_O;
 
wire [`MAX_CORES-1:0]wACK_O;
 
 
 
 
 
wire wOMem_WE[`MAX_CORES-1:0];
 
wire [`WB_WIDTH-1:0] wOMEM_Address[`MAX_CORES-1:0];
 
wire [`WB_WIDTH-1:0] wOMEM_Dat[`MAX_CORES-1:0];
 
 
 
wire [`MAX_CORES-1:0]   wSTB_I;
 
wire [`MAX_CORES-1:0]   wMST_I;
 
wire [`MAX_CORES-1:0]   wACK_I;
 
wire [`MAX_CORES-1:0]   wCYC_I;
 
wire [1:0]              wTGA_I[`MAX_CORES-1:0];
 
 
 
 
 
 
 
wire [`WB_WIDTH-1:0]  wTMEM_Data;
 
wire [`WB_WIDTH-1:0]  wTMEM_Address[`MAX_CORES-1:0];
 
wire [`WB_WIDTH-1:0]  wTMEM_ReadAddr;
 
wire [`MAX_CORES-1:0] wTMEM_Resquest;
 
wire [`MAX_CORES-1:0] wTMEM_Granted;
 
 
 
 
 
 
 
//CROSS-BAR cables
 
 
 
 
 
 
 
wire [`WB_WIDTH-1:0]     wCrossBarDataRow[`MAX_TMEM_BANKS-1:0];                   //Horizontal grid Buses comming from each bank 
 
wire [`WB_WIDTH-1:0]     wCrossBarDataCollumn[`MAX_CORES-1:0];          //Vertical grid buses comming from each core.
 
wire [`WB_WIDTH-1:0]     wTMemReadAdr[`MAX_CORES-1:0];                                       //Horizontal grid Buses comming from each core (virtual addr).
 
wire [`WB_WIDTH-1:0]     wCrossBarAdressCollumn[`MAX_CORES-1:0];                  //Vertical grid buses comming from each core. (physical addr).
 
wire [`WB_WIDTH-1:0]     wCrossBarAddressRow[`MAX_TMEM_BANKS-1:0];                //Horizontal grid Buses comming from each bank.
 
 
 
wire                                                wCORE_2_TMEM__Req[`MAX_CORES-1:0];
 
wire [`MAX_TMEM_BANKS -1:0]    wBankReadRequest[`MAX_CORES-1:0];
 
 
 
 
 
wire [`MAX_CORES-1:0]         wBankReadGranted[`MAX_TMEM_BANKS-1:0];
 
wire                           wTMEM_2_Core__Grant[`MAX_CORES-1:0];
 
 
 
wire[`MAX_CORE_BITS-1:0] wCurrentCoreSelected[`MAX_TMEM_BANKS-1:0];
 
wire[`WIDTH-1:0]                wCoreBankSelect[`MAX_CORES-1:0];
 
wire [`MAX_CORES-1:0] wHDL_O;
 
 
 
 
 
wire [`MAX_CORES-1:0] wHostDataLatched;
 
wire [`MAX_CORES-1:0] wRCOMMIT_O;
 
wire [`MAX_CORES-1:0] wRCommited;
 
 
 
 
 
assign RCOMMIT_O = wRCommited[0] & wRCommited[1] & wRCommited[2] & wRCommited[3];
 
assign HDL_O = wHostDataLatched[0] &  wHostDataLatched[1] &  wHostDataLatched[2] &  wHostDataLatched[3];
 
assign DONE_O = wDone[0] & wDone[1] & wDone[2] & wDone[3];
 
 
 
 
 
 
 
//----------------------------------------------------------------      
 
 
 
        Module_BusArbitrer ARB1
 
        (
 
        .Clock( CLK_I ),
 
        .Reset( RST_I ),
 
        .iRequest( wBusRequest ),
 
        .oGrant(   wBusGranted ),
 
        .oBusSelect( wBusSelect )
 
 
 
        );
 
//----------------------------------------------------------------
 
 
 
  wire  wMaskedACK_O;
 
  assign wMaskedACK_O = (SEL_I & wACK_O) ? 1'b1 : 1'b0;
 
  assign ACK_O =  ( MST_I ) ? wMaskedACK_O  : wACK_O[ wBusSelect];
 
 
 
 
 
 wire [`WB_WIDTH-1:0] wDataOut[`MAX_CORES-1:0];
 
 assign OMEM_O = wDataOut[ OMBSEL_I ];
 
 
 
  genvar i;
 
  generate
 
        for (i = 0; i < `MAX_CORES; i = i +1)
 
        begin : CORE
 
                assign wMST_I[i] = (SEL_I[i]) ? MST_I : 0;
 
                assign wSTB_I[i] = (SEL_I[i]) ? STB_I : 0;
 
                assign wCYC_I[i] = (SEL_I[i]) ? CYC_I : 0;
 
                assign wTGA_I[i] = (SEL_I[i]) ? TGA_I : 0;
 
 
 
 
 
                THEIACORE CTHEIA
 
                (
 
                .CLK_I( CLK_I ),
 
                .RST_I( RST_I ),
 
                .RENDREN_I( RENDREN_I[i] ),
 
 
 
                //Slave signals
 
                .ADR_I( ADR_I ),
 
                .WE_I(  WE_I  ),
 
                .STB_I(  wSTB_I[i] ),
 
                .ACK_I( ACK_I ),
 
                .CYC_I( wCYC_I[i] ),
 
                .MST_I( wMST_I[i] ),
 
                .TGA_I( wTGA_I[i] ),
 
                .CREG_I( CREG_I ),
 
 
 
                //Master Signals
 
                .ACK_O(         wACK_O[i] ),
 
                .CYC_O(  wBusRequest[i] ),
 
                .GNT_I(         wBusGranted[i] ),
 
                `ifdef DEBUG
 
                .iDebug_CoreID( i ),
 
                `endif
 
 
 
                .OMEM_WE_O( wOMem_WE[i] ),
 
                .OMEM_ADR_O( wOMEM_Address[i] ),
 
                .OMEM_DAT_O( wOMEM_Dat[i] ),
 
 
 
                .TMEM_DAT_I( wCrossBarDataCollumn[i]    ),
 
                .TMEM_ADR_O( wTMemReadAdr[i]  ),
 
                .TMEM_CYC_O( wCORE_2_TMEM__Req[i]       ),
 
                .TMEM_GNT_I( wTMEM_2_Core__Grant[i]     ),
 
 
 
                .HDA_I(     HDA_I ),                            //Host data available
 
                .HDL_O( wHDL_O[i] ),                            //Host data Latched
 
                .HDLACK_I( ~HDL_O ),                          //Host data Latched ACK
 
                .STDONE_I( STDONE_I ),
 
                .RCOMMIT_O( wRCOMMIT_O[i] ),
 
 
 
 
 
                //Other
 
                .DAT_I( DAT_I ),
 
                .DONE_O( wDone[i] )
 
 
 
        );
 
 
 
        UPCOUNTER_POSEDGE # (1) UP_RCOMMIT
 
        (
 
        .Clock(  CLK_I ),
 
        .Reset( RST_I | HDLACK_I ),
 
        .Initial( 1'b0 ),
 
        .Enable( wRCOMMIT_O[i] ),
 
        .Q(wRCommited[i])
 
        );
 
 
 
        UPCOUNTER_POSEDGE # (1) UP_GREADY
 
        (
 
        .Clock(  CLK_I ),
 
        .Reset( RST_I | HDLACK_I ),
 
        .Initial( 1'b0 ),
 
        .Enable( wHDL_O[i] ),
 
        .Q(wHostDataLatched[i])
 
        );
 
 
 
        RAM_SINGLE_READ_PORT # ( `WB_WIDTH, `WB_WIDTH, 250000 ) OMEM //500000 ) OMEM 
 
(
 
        .Clock(         CLK_I                ),
 
        .iWriteEnable(  wOMem_WE[i]          ),
 
        .iWriteAddress( wOMEM_Address[i]     ),
 
        .iDataIn(       wOMEM_Dat[i]         ),
 
        .iReadAddress0( OMADR_I              ),
 
        .oDataOut0(     wDataOut[i]          )
 
 
 
);
 
 
 
 
 
//If there are "n" banks, memory location "X" would reside in bank number X mod n.
 
//X mod 2^n == X & (2^n - 1)
 
assign wCoreBankSelect[i] = (wTMemReadAdr[i] & (`MAX_TMEM_BANKS-1));
 
 
 
//Each core has 1 bank request slot
 
//Each slot has MAX_TMEM_BANKS bits. Only 1 bit can
 
//be 1 at any given point in time. All bits zero means,
 
//we are not requesting to read from any memory bank.
 
SELECT_1_TO_N # ( `WIDTH, `MAX_CORES ) READDRQ
 
                        (
 
                        .Sel(wCoreBankSelect[ i]),
 
                        .En(wCORE_2_TMEM__Req[i]),
 
                        .O(wBankReadRequest[i])
 
                        );
 
 
 
//The address coming from the core is  virtual adress, meaning it assumes linear
 
//address space, however, since memory is interleaved in a n-way memory we transform
 
//virtual adress into physical adress (relative to the bank) like this
 
//fadr = vadr / n = vadr >> log2(n)
 
 
 
assign wCrossBarAdressCollumn[i] = (wTMemReadAdr[i] >> `MAX_CORE_BITS);
 
 
 
//Connect the granted signal to Arbiter of the Bank we want to read from        
 
assign wTMEM_2_Core__Grant[i] = wBankReadGranted[wCoreBankSelect[i]][i];
 
 
 
//Connect the request signal to Arbiter of the Bank we want to read from        
 
//assign wBankReadRequest[wCoreBankSelect[i]][i] = wCORE_2_TMEM__Req[i];
 
 
 
        end
 
  endgenerate
 
 
 
 
 
////////////// CROSS-BAR INTERCONECTION//////////////////////////
 
 
 
genvar Core,Bank;
 
generate
 
for (Bank = 0; Bank < `MAX_TMEM_BANKS; Bank = Bank + 1)
 
begin : BANK
 
 
 
        //The memory bank itself
 
RAM_SINGLE_READ_PORT     # ( `WB_WIDTH, `WB_WIDTH, 50000 ) TMEM
 
        (
 
        .Clock(         CLK_I                                   ),
 
        .iWriteEnable(  wTMemWriteEnable[Bank]       ),
 
        .iWriteAddress( TMADR_I                      ),
 
        .iDataIn(       TMDAT_I                      ),
 
        .iReadAddress0( wCrossBarAddressRow[Bank]    ), //Connect to the Row of the grid
 
        .oDataOut0(     wCrossBarDataRow[Bank]                  )  //Connect to the Row of the grid
 
 
 
        );
 
 
 
        //Arbiter will Round-Robin Cores attempting to read from the same Bank
 
        //at a given point in time
 
wire [`MAX_CORES-1:0]         wBankReadGrantedDelay[`MAX_TMEM_BANKS-1:0];
 
        Module_BusArbitrer ARB_TMEM
 
        (
 
        .Clock( CLK_I ),
 
        .Reset( RST_I ),
 
        .iRequest( {wBankReadRequest[3][Bank],wBankReadRequest[2][Bank],wBankReadRequest[1][Bank],wBankReadRequest[0][Bank]}),
 
        .oGrant(   wBankReadGrantedDelay[Bank]  ),  //The bit of the core granted to read from this Bank
 
        .oBusSelect( wCurrentCoreSelected[Bank] )                       //The index of the core granted to read from this Bank
 
 
 
        );
 
 
 
        FFD_POSEDGE_SYNCRONOUS_RESET # ( `MAX_CORES ) FFD_GNT
 
(
 
        .Clock(CLK_I),
 
        .Reset(RST_I),
 
        .Enable( 1'b1 ),
 
        .D(wBankReadGrantedDelay[Bank]),
 
        .Q(wBankReadGranted[Bank])
 
);
 
 
 
 
 
        //Create the Cross-Bar interconnection grid now, rows are coonected to the memory banks,
 
        //while collumns are connected to the cores, 2 or more cores can not read from the same
 
        //bank at any given point in time
 
        for (Core = 0; Core < `MAX_CORES; Core = Core + 1)
 
        begin: CORE_CONNECT
 
                //Connect the Data Collum of this core to the Data Row of current bank, only if the Core is looking for data stored in this bank
 
                assign wCrossBarDataCollumn[ Core ] = ( wCoreBankSelect[ Core ] == Bank ) ? wCrossBarDataRow[ Bank ] : `WB_WIDTH'bz;
 
                //Connect the Address Row of this Bank to the Address Column of the core, only if the Arbiter selected this core for reading
 
                assign wCrossBarAddressRow[ Bank ] = ( wCurrentCoreSelected[ Bank ] == Core ) ? wCrossBarAdressCollumn[Core]: `WB_WIDTH'bz;
 
 
 
        end
 
 
 
end
 
endgenerate
 
 
 
////////////// CROSS-BAR INTERCONECTION//////////////////////////
 
//----------------------------------------------------------------
 
 
 
endmodule
 
//---------------------------------------------------------------------------
 
 
 No newline at end of file
 No newline at end of file

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.