OpenCores
URL https://opencores.org/ocsvn/theia_gpu/theia_gpu/trunk

Subversion Repositories theia_gpu

[/] [theia_gpu/] [trunk/] [rtl/] [aDefinitions.v] - Diff between revs 152 and 154

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 152 Rev 154
 
/**********************************************************************************
 
Theaia, Ray Cast Programable graphic Processing Unit.
 
Copyright (C) 2009  Diego Valverde (diego.valverde.g@gmail.com)
 
 
 
This program is free software; you can redistribute it and/or
 
modify it under the terms of the GNU General Public License
 
as published by the Free Software Foundation; either version 2
 
of the License, or (at your option) any later version.
 
 
 
This program is distributed in the hope that it will be useful,
 
but WITHOUT ANY WARRANTY; without even the implied warranty of
 
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 
GNU General Public License for more details.
 
 
 
You should have received a copy of the GNU General Public License
 
along with this program; if not, write to the Free Software
 
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
 
 
 
***********************************************************************************/
 
 
 
 
 
/*******************************************************************************
 
Module Description:
 
 
 
        This module defines constants that are going to be used
 
        all over the code. By now you have may noticed that all
 
        constants are pre-compilation define directives. This is
 
        for simulation perfomance reasons mainly.
 
*******************************************************************************/
 
 
 
`define MAX_CORES 4             //The number of cores, make sure you update MAX_CORE_BITS!
 
`define MAX_CORE_BITS 2                 // 2 ^ MAX_CORE_BITS = MAX_CORES
 
`define MAX_TMEM_BANKS 4                //The number of memory banks for TMEM
 
`define SELECT_ALL_CORES `MAX_CORES'b1111               //XXX: Change for more cores
 
//---------------------------------------------------------------------------------
 
//Verilog provides a `default_nettype none compiler directive.  When
 
//this directive is set, implicit data types are disabled, which will make any
 
//undeclared signal name a syntax error.This is very usefull to avoid annoying
 
//automatic 1 bit long wire declaration where you don't want them to be!
 
`default_nettype none
 
 
 
//The clock cycle
 
`define CLOCK_CYCLE  5
 
`define CLOCK_PERIOD 10
 
//---------------------------------------------------------------------------------
 
//Defines the Scale. This very important because it sets the fixed point precision.
 
//The Scale defines the number bits that are used as the decimal part of the number.
 
//The code has been written in such a way that allows you to change the value of the
 
//Scale, so that it is possible to experiment with different scenarios. SCALE can be
 
//no smaller that 1 and no bigger that WIDTH.
 
`define SCALE        17
 
 
 
//The next section defines the length of the registers, buses and other structures, 
 
//do not change this valued unless you really know what you are doing (seriously!)
 
`define WIDTH        32
 
`define WB_WIDTH     32  //width of wish-bone buses             
 
`define LONG_WIDTH   64
 
 
 
`define WB_SIMPLE_READ_CYCLE  0
 
`define WB_SIMPLE_WRITE_CYCLE 1
 
//---------------------------------------------------------------------------------
 
//Next are the constants that define the size of the instructions.
 
//instructions are formed like this:
 
// Tupe I:
 
// Operand         (of size INSTRUCTION_OP_LENGTH )
 
// DestinationAddr (of size DATA_ADDRESS_WIDTH )
 
// SourceAddrr1    (of size DATA_ADDRESS_WIDTH )
 
// SourceAddrr2    (of size DATA_ADDRESS_WIDTH )        
 
//Type II:
 
// Operand         (of size INSTRUCTION_OP_LENGTH )
 
// DestinationAddr (of size DATA_ADDRESS_WIDTH )
 
// InmeadiateValue (of size WIDTH = DATA_ADDRESS_WIDTH * 2 )
 
//
 
//You can play around with the size of instuctions, but keep
 
//in mind that Bits 3 and 4 of the Operand have a special meaning
 
//that is used for the jump familiy of instructions (see Documentation).
 
//Also the MSB of Operand is used by the decoder to distinguish 
 
//between Type I and Type II instructions.
 
`define INSTRUCTION_WIDTH       64
 
`define INSTRUCTION_OP_LENGTH   16
 
`define INSTRUCTION_IMM_BITPOS  54
 
`define INSTRUCTION_IMM_BIT     6       //don't change this!
 
 
 
//Defines the Lenght of Memory blocks
 
`define DATA_ROW_WIDTH        96
 
`define DATA_ADDRESS_WIDTH    16
 
`define ROM_ADDRESS_WIDTH     16
 
`define ROM_ADDRESS_SEL_MASK  `ROM_ADDRESS_WIDTH'h8000
 
 
 
//---------------------------------------------------------------------------------
 
//The next section defines the code memory entry point for the various code routines
 
//Please keep this syntax ENTRYPOINT_ADDR_* because the perl script that
 
//parses the user code expects this pattern in order to read in the tokens
 
 
 
//Internal Entry points (default ROM Address)
 
`define ENTRYPOINT_ADRR_INITIAL                 `ROM_ADDRESS_WIDTH'd0   //0 - This should always be zero
 
`define ENTRYPOINT_ADRR_CPPU                    `ROM_ADDRESS_WIDTH'd44
 
`define ENTRYPOINT_ADRR_RGU                     `ROM_ADDRESS_WIDTH'd47
 
`define ENTRYPOINT_ADRR_AABBIU                  `ROM_ADDRESS_WIDTH'd69
 
`define ENTRYPOINT_ADRR_BIU                     `ROM_ADDRESS_WIDTH'd157
 
`define ENTRYPOINT_ADRR_PSU                     `ROM_ADDRESS_WIDTH'd232
 
`define ENTRYPOINT_ADRR_PSU2                    `ROM_ADDRESS_WIDTH'd248
 
`define ENTRYPOINT_ADRR_TCC                     `ROM_ADDRESS_WIDTH'd190
 
`define ENTRYPOINT_ADRR_NPG                     `ROM_ADDRESS_WIDTH'd55
 
//User Entry points (default ROM Address)
 
`define ENTRYPOINT_ADRR_USERCONSTANTS           `ROM_ADDRESS_WIDTH'd276
 
`define ENTRYPOINT_ADRR_PIXELSHADER             `ROM_ADDRESS_WIDTH'd278
 
`define ENTRYPOINT_ADRR_MAIN                    `ROM_ADDRESS_WIDTH'd37
 
 
 
//Please keep this syntax ENTRYPOINT_INDEX_* because the perl script that
 
//parses the user code expects this pattern in order to read in the tokens
 
//Internal subroutines
 
`define ENTRYPOINT_INDEX_INITIAL                `ROM_ADDRESS_WIDTH'h8000
 
`define ENTRYPOINT_INDEX_CPPU                   `ROM_ADDRESS_WIDTH'h8001
 
`define ENTRYPOINT_INDEX_RGU                    `ROM_ADDRESS_WIDTH'h8002
 
`define ENTRYPOINT_INDEX_AABBIU                 `ROM_ADDRESS_WIDTH'h8003
 
`define ENTRYPOINT_INDEX_BIU                    `ROM_ADDRESS_WIDTH'h8004
 
`define ENTRYPOINT_INDEX_PSU                    `ROM_ADDRESS_WIDTH'h8005
 
`define ENTRYPOINT_INDEX_PSU2                   `ROM_ADDRESS_WIDTH'h8006
 
`define ENTRYPOINT_INDEX_TCC                    `ROM_ADDRESS_WIDTH'h8007
 
`define ENTRYPOINT_INDEX_NPG                    `ROM_ADDRESS_WIDTH'h8008
 
//User defined subroutines
 
`define ENTRYPOINT_INDEX_USERCONSTANTS          `ROM_ADDRESS_WIDTH'h8009
 
`define ENTRYPOINT_INDEX_PIXELSHADER            `ROM_ADDRESS_WIDTH'h800A
 
`define ENTRYPOINT_INDEX_MAIN                   `ROM_ADDRESS_WIDTH'h800B
 
 
 
`define USER_AABBIU_UCODE_ADDRESS `ROM_ADDRESS_WIDTH'b1000000000000000
 
//---------------------------------------------------------------------------------
 
//This handy little macro allows me to print stuff either to STDOUT or a file.
 
//Notice that the compilation vairable DUMP_CODE must be set if you want to print
 
//to a file. In XILINX right click 'Simulate Beahvioral Model' -> Properties and
 
//under 'Specify `define macro name and value' type 'DEBUG=1|DUMP_CODE=1|DEBUG_CORE=<core you want to dump>'
 
`ifdef DUMP_CODE
 
 
 
        `define LOGME  $fwrite(ucode_file,
 
`else
 
        `define LOGME  $write(
 
`endif
 
//---------------------------------------------------------------------------------     
 
`define TRUE     32'h1
 
`define FALSE    32'h0
 
`define RT_TRUE  48'b1
 
`define RT_FALSE 48'b0
 
//---------------------------------------------------------------------------------     
 
 
 
`define GENERAL_PURPOSE_REG_ADDR_MASK  `DATA_ADDRESS_WIDTH'h1F
 
`define VOID                           `DATA_ADDRESS_WIDTH'd0   //0000
 
//** Control register bits **//
 
`define CR_EN_LIGHTS   0
 
`define CR_EN_TEXTURE  1
 
`define CR_USER_AABBIU 2
 
/** Swapping registers **/
 
//** Configuration Registers **//
 
`define CREG_LIGHT_INFO                   `DATA_ADDRESS_WIDTH'd0
 
`define CREG_CAMERA_POSITION              `DATA_ADDRESS_WIDTH'd1
 
`define CREG_PROJECTION_WINDOW_MIN        `DATA_ADDRESS_WIDTH'd2
 
`define CREG_PROJECTION_WINDOW_MAX        `DATA_ADDRESS_WIDTH'd3
 
`define CREG_RESOLUTION                   `DATA_ADDRESS_WIDTH'd4
 
`define CREG_TEXTURE_SIZE                 `DATA_ADDRESS_WIDTH'd5
 
`define CREG_PIXEL_2D_INITIAL_POSITION    `DATA_ADDRESS_WIDTH'd6
 
`define CREG_PIXEL_2D_FINAL_POSITION      `DATA_ADDRESS_WIDTH'd7
 
`define CREG_FIRST_LIGTH                  `DATA_ADDRESS_WIDTH'd8
 
`define CREG_FIRST_LIGTH_DIFFUSE          `DATA_ADDRESS_WIDTH'd8
 
//OK, so from address 0x06 to 0x0F is where the lights are,watch out values are harcoded
 
//for now!! (look in ROM.v for hardcoded values!!!)
 
 
 
 
 
//Don't change the order of the registers. CREG_V* and CREG_UV* registers
 
//need to be in that specific order for the triangle fetcher to work 
 
//correctly!
 
 
 
`define CREG_AABBMIN                   `DATA_ADDRESS_WIDTH'd42
 
`define CREG_AABBMAX                   `DATA_ADDRESS_WIDTH'd43
 
`define CREG_V0                        `DATA_ADDRESS_WIDTH'd44
 
`define CREG_UV0                       `DATA_ADDRESS_WIDTH'd45
 
`define CREG_V1                        `DATA_ADDRESS_WIDTH'd46
 
`define CREG_UV1                       `DATA_ADDRESS_WIDTH'd47
 
`define CREG_V2                        `DATA_ADDRESS_WIDTH'd48
 
`define CREG_UV2                       `DATA_ADDRESS_WIDTH'd49
 
`define CREG_TRI_DIFFUSE               `DATA_ADDRESS_WIDTH'd50
 
`define CREG_TEX_COLOR1                `DATA_ADDRESS_WIDTH'd53
 
`define CREG_TEX_COLOR2                `DATA_ADDRESS_WIDTH'd54
 
`define CREG_TEX_COLOR3                `DATA_ADDRESS_WIDTH'd55
 
`define CREG_TEX_COLOR4                `DATA_ADDRESS_WIDTH'd56
 
`define CREG_TEX_COLOR5                `DATA_ADDRESS_WIDTH'd57
 
`define CREG_TEX_COLOR6                `DATA_ADDRESS_WIDTH'd58
 
`define CREG_TEX_COLOR7                `DATA_ADDRESS_WIDTH'd59
 
 
 
 
 
/** Non-Swapping registers **/
 
// ** User Registers **//
 
//General Purpose registers, the user may put what ever he/she
 
//wants in here...
 
`define C1     `DATA_ADDRESS_WIDTH'd64
 
`define C2     `DATA_ADDRESS_WIDTH'd65
 
`define C3     `DATA_ADDRESS_WIDTH'd66
 
`define C4     `DATA_ADDRESS_WIDTH'd67
 
`define C5     `DATA_ADDRESS_WIDTH'd68
 
`define C6     `DATA_ADDRESS_WIDTH'd69
 
`define C7     `DATA_ADDRESS_WIDTH'd70
 
`define R1              `DATA_ADDRESS_WIDTH'd71
 
`define R2              `DATA_ADDRESS_WIDTH'd72
 
`define R3              `DATA_ADDRESS_WIDTH'd73
 
`define R4              `DATA_ADDRESS_WIDTH'd74
 
`define R5              `DATA_ADDRESS_WIDTH'd75
 
`define R6              `DATA_ADDRESS_WIDTH'd76
 
`define R7              `DATA_ADDRESS_WIDTH'd77
 
`define R8              `DATA_ADDRESS_WIDTH'd78
 
`define R9              `DATA_ADDRESS_WIDTH'd79
 
`define R10             `DATA_ADDRESS_WIDTH'd80
 
`define R11             `DATA_ADDRESS_WIDTH'd81
 
`define R12             `DATA_ADDRESS_WIDTH'd82
 
 
 
//** Internal Registers **//
 
`define CREG_PROJECTION_WINDOW_SCALE   `DATA_ADDRESS_WIDTH'd83
 
`define CREG_UNORMALIZED_DIRECTION     `DATA_ADDRESS_WIDTH'd84
 
`define CREG_RAY_DIRECTION             `DATA_ADDRESS_WIDTH'd85
 
`define CREG_E1_LAST                   `DATA_ADDRESS_WIDTH'd86
 
`define CREG_E2_LAST                   `DATA_ADDRESS_WIDTH'd87
 
`define CREG_T                         `DATA_ADDRESS_WIDTH'd88
 
`define CREG_P                         `DATA_ADDRESS_WIDTH'd89
 
`define CREG_Q                         `DATA_ADDRESS_WIDTH'd90
 
`define CREG_UV0_LAST                  `DATA_ADDRESS_WIDTH'd91
 
`define CREG_UV1_LAST                  `DATA_ADDRESS_WIDTH'd92
 
`define CREG_UV2_LAST                  `DATA_ADDRESS_WIDTH'd93
 
`define CREG_TRI_DIFFUSE_LAST          `DATA_ADDRESS_WIDTH'd94
 
`define CREG_LAST_t                    `DATA_ADDRESS_WIDTH'd95
 
`define CREG_LAST_u                    `DATA_ADDRESS_WIDTH'd96
 
`define CREG_LAST_v                    `DATA_ADDRESS_WIDTH'd97
 
`define CREG_COLOR_ACC                 `DATA_ADDRESS_WIDTH'd98
 
`define CREG_t                         `DATA_ADDRESS_WIDTH'd99
 
`define CREG_E1                        `DATA_ADDRESS_WIDTH'd100
 
`define CREG_E2                        `DATA_ADDRESS_WIDTH'd101
 
`define CREG_DELTA                     `DATA_ADDRESS_WIDTH'd102
 
`define CREG_u                         `DATA_ADDRESS_WIDTH'd103
 
`define CREG_v                         `DATA_ADDRESS_WIDTH'd104
 
`define CREG_H1                        `DATA_ADDRESS_WIDTH'd105
 
`define CREG_H2                        `DATA_ADDRESS_WIDTH'd106
 
`define CREG_H3                        `DATA_ADDRESS_WIDTH'd107
 
`define CREG_PIXEL_PITCH               `DATA_ADDRESS_WIDTH'd108
 
 
 
`define CREG_LAST_COL                  `DATA_ADDRESS_WIDTH'd109 //the last valid column, simply CREG_RESOLUTIONX - 1
 
`define CREG_TEXTURE_COLOR             `DATA_ADDRESS_WIDTH'd110
 
`define CREG_PIXEL_2D_POSITION         `DATA_ADDRESS_WIDTH'd111
 
`define CREG_TEXWEIGHT1                `DATA_ADDRESS_WIDTH'd112
 
`define CREG_TEXWEIGHT2                `DATA_ADDRESS_WIDTH'd113
 
`define CREG_TEXWEIGHT3                `DATA_ADDRESS_WIDTH'd114
 
`define CREG_TEXWEIGHT4                `DATA_ADDRESS_WIDTH'd115
 
`define CREG_TEX_COORD1                `DATA_ADDRESS_WIDTH'd116
 
`define CREG_TEX_COORD2                `DATA_ADDRESS_WIDTH'd117
 
`define R99                            `DATA_ADDRESS_WIDTH'd118
 
`define CREG_ZERO                      `DATA_ADDRESS_WIDTH'd119
 
`define CREG_CURRENT_OUTPUT_PIXEL      `DATA_ADDRESS_WIDTH'd120
 
`define CREG_3                         `DATA_ADDRESS_WIDTH'd121
 
`define CREG_012                       `DATA_ADDRESS_WIDTH'd122
 
 
 
//** Ouput registers **//
 
 
 
`define OREG_PIXEL_COLOR               `DATA_ADDRESS_WIDTH'd128
 
`define OREG_TEX_COORD1                `DATA_ADDRESS_WIDTH'd129
 
`define OREG_TEX_COORD2                `DATA_ADDRESS_WIDTH'd130
 
`define OREG_ADDR_O                    `DATA_ADDRESS_WIDTH'd131
 
//-------------------------------------------------------------
 
//*** Instruction Set ***
 
//The order of the instructions is important here!. Don't change
 
//it unless you know what you are doing. For example all the 'SET'
 
//family of instructions have the MSB bit in 1. This means that
 
//if you add an instruction and the MSB=1, this instruction will treated
 
//as type II (see manual) meaning the second 32bit argument is expected to be
 
//an inmediate value instead of a register address!
 
//Another example is that in the JUMP family Bits 3 and 4 have a special
 
//meaning: b4b3 = 01 => X jump type, b4b3 = 10 => Y jump type, finally 
 
//b4b3 = 11 means Z jump type.
 
//All this is just to tell you: Don't play with these values!
 
 
 
// *** Type I Instructions (OP DST REG1 REG2) ***
 
`define NOP    `INSTRUCTION_OP_LENGTH'b0_000000         //0
 
`define ADD     `INSTRUCTION_OP_LENGTH'b0_000001        //1
 
`define SUB             `INSTRUCTION_OP_LENGTH'b0_000010        //2
 
`define DIV             `INSTRUCTION_OP_LENGTH'b0_000011        //3
 
`define MUL     `INSTRUCTION_OP_LENGTH'b0_000100        //4
 
`define MAG             `INSTRUCTION_OP_LENGTH'b0_000101        //5
 
`define COPY    `INSTRUCTION_OP_LENGTH'b0_000111        //7
 
`define JGX             `INSTRUCTION_OP_LENGTH'b0_001_000       //8
 
`define JLX             `INSTRUCTION_OP_LENGTH'b0_001_001       //9
 
`define JEQX    `INSTRUCTION_OP_LENGTH'b0_001_010       //10 - A
 
`define JNEX    `INSTRUCTION_OP_LENGTH'b0_001_011       //11 - B
 
`define JGEX    `INSTRUCTION_OP_LENGTH'b0_001_100       //12 - C
 
`define JLEX    `INSTRUCTION_OP_LENGTH'b0_001_101       //13 - D
 
`define INC             `INSTRUCTION_OP_LENGTH'b0_001_110       //14 - E
 
`define ZERO    `INSTRUCTION_OP_LENGTH'b0_001_111       //15 - F
 
`define JGY             `INSTRUCTION_OP_LENGTH'b0_010_000       //16
 
`define JLY             `INSTRUCTION_OP_LENGTH'b0_010_001       //17
 
`define JEQY    `INSTRUCTION_OP_LENGTH'b0_010_010       //18
 
`define JNEY    `INSTRUCTION_OP_LENGTH'b0_010_011       //19
 
`define JGEY    `INSTRUCTION_OP_LENGTH'b0_010_100       //20
 
`define JLEY    `INSTRUCTION_OP_LENGTH'b0_010_101       //21
 
`define CROSS   `INSTRUCTION_OP_LENGTH'b0_010_110       //22
 
`define DOT             `INSTRUCTION_OP_LENGTH'b0_010_111       //23
 
`define JGZ             `INSTRUCTION_OP_LENGTH'b0_011_000       //24
 
`define JLZ             `INSTRUCTION_OP_LENGTH'b0_011_001       //25
 
`define JEQZ    `INSTRUCTION_OP_LENGTH'b0_011_010       //26
 
`define JNEZ    `INSTRUCTION_OP_LENGTH'b0_011_011       //27
 
`define JGEZ    `INSTRUCTION_OP_LENGTH'b0_011_100       //28
 
`define JLEZ    `INSTRUCTION_OP_LENGTH'b0_011_101       //29
 
 
 
//The next instruction is for simulation debug only
 
//not to be synthetized! Pretty much behaves the same
 
//as a NOP, only that prints the register value to
 
//a log file called 'Registers.log'
 
`ifdef DEBUG
 
`define DEBUG_PRINT `INSTRUCTION_OP_LENGTH'b0_011_110   //30
 
`endif
 
 
 
`define MULP     `INSTRUCTION_OP_LENGTH'b0_011_111                      //31    R1.z = S1.x * S1.y
 
`define MOD      `INSTRUCTION_OP_LENGTH'b0_100_000                      //32    R = MODULO( S1,S2 )
 
`define FRAC     `INSTRUCTION_OP_LENGTH'b0_100_001                      //33    R =FractionalPart( S1 )
 
`define INTP     `INSTRUCTION_OP_LENGTH'b0_100_010                      //34    R =IntergerPart( S1 )
 
`define NEG      `INSTRUCTION_OP_LENGTH'b0_100_011                      //35    R = -S1
 
`define DEC      `INSTRUCTION_OP_LENGTH'b0_100_100                      //36    R = S1--
 
`define XCHANGEX `INSTRUCTION_OP_LENGTH'b0_100_101              //              R.x = S2.x, R.y = S1.y, R.z = S1.z
 
`define XCHANGEY `INSTRUCTION_OP_LENGTH'b0_100_110              //              R.x = S1.x, R.y = S2.y, R.z = S1.z
 
`define XCHANGEZ `INSTRUCTION_OP_LENGTH'b0_100_111              //              R.x = S1.x, R.y = S1.y, R.z = S2.z
 
`define IMUL     `INSTRUCTION_OP_LENGTH'b0_101_000              //              R = INTEGER( S1 * S2 )
 
`define UNSCALE  `INSTRUCTION_OP_LENGTH'b0_101_001              //              R = S1 >> SCALE
 
`define RESCALE  `INSTRUCTION_OP_LENGTH'b0_101_010              //              R = S1 << SCALE
 
`define INCX     `INSTRUCTION_OP_LENGTH'b0_101_011         //    R.X = S1.X + 1
 
`define INCY     `INSTRUCTION_OP_LENGTH'b0_101_100         //    R.Y = S1.Y + 1
 
`define INCZ     `INSTRUCTION_OP_LENGTH'b0_101_101         //    R.Z = S1.Z + 1
 
`define OMWRITE  `INSTRUCTION_OP_LENGTH'b0_101_111         //47    IO write to O memory
 
`define TMREAD   `INSTRUCTION_OP_LENGTH'b0_110_000         //48    IO read from T memory
 
`define LEA      `INSTRUCTION_OP_LENGTH'b0_110_001         //49    Load effective address
 
 
 
//*** Type II Instructions (OP DST REG1 IMM) ***
 
`define RETURN          `INSTRUCTION_OP_LENGTH'b1_000000 //64  0x40
 
`define SETX            `INSTRUCTION_OP_LENGTH'b1_000001 //65  0x41
 
`define SETY            `INSTRUCTION_OP_LENGTH'b1_000010 //66
 
`define SETZ            `INSTRUCTION_OP_LENGTH'b1_000011 //67
 
`define SWIZZLE3D       `INSTRUCTION_OP_LENGTH'b1_000100 //68 
 
`define JMP             `INSTRUCTION_OP_LENGTH'b1_011000 //56
 
`define CALL            `INSTRUCTION_OP_LENGTH'b1_011001 //57
 
`define RET             `INSTRUCTION_OP_LENGTH'b1_011010 //58
 
 
 
//-------------------------------------------------------------
 
 
 
//All the posible values for the SWIZZLE3D instruction are defined next
 
`define SWIZZLE_XXX             32'd0
 
`define SWIZZLE_YYY             32'd1
 
`define SWIZZLE_ZZZ             32'd2
 
`define SWIZZLE_XYY             32'd3
 
`define SWIZZLE_XXY             32'd4
 
`define SWIZZLE_XZZ             32'd5
 
`define SWIZZLE_XXZ             32'd6
 
`define SWIZZLE_YXX             32'd7
 
`define SWIZZLE_YYX             32'd8
 
`define SWIZZLE_YZZ             32'd9
 
`define SWIZZLE_YYZ             32'd10
 
`define SWIZZLE_ZXX             32'd11
 
`define SWIZZLE_ZZX             32'd12
 
`define SWIZZLE_ZYY             32'd13
 
`define SWIZZLE_ZZY             32'd14
 
`define SWIZZLE_XZX             32'd15
 
`define SWIZZLE_XYX             32'd16
 
`define SWIZZLE_YXY             32'd17
 
`define SWIZZLE_YZY             32'd18
 
`define SWIZZLE_ZXZ             32'd19
 
`define SWIZZLE_ZYZ             32'd20
 
`define SWIZZLE_YXZ             32'd21
 
 
 
 
 
 
 
 
 No newline at end of file
 No newline at end of file

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.