///////////////////////////////////////////////////////////////////////////
|
///////////////////////////////////////////////////////////////////////////
|
//
|
//
|
// Filename: wbpwmaudio.v
|
// Filename: wbpwmaudio.v
|
//
|
//
|
// Project: A Wishbone Controlled PWM (audio) controller
|
// Project: A Wishbone Controlled PWM (audio) controller
|
//
|
//
|
// Purpose: This PWM controller was designed with audio in mind, although
|
// Purpose: This PWM controller was designed with audio in mind, although
|
// it should be sufficient for many other purposes. Specifically,
|
// it should be sufficient for many other purposes. Specifically,
|
// it creates a pulse-width modulated output, where the amount of time
|
// it creates a pulse-width modulated output, where the amount of time
|
// the output is 'high' is determined by the pulse width data given to
|
// the output is 'high' is determined by the pulse width data given to
|
// it. Further, the 'high' time is spread out in bit reversed order.
|
// it. Further, the 'high' time is spread out in bit reversed order.
|
// In this fashion, a halfway point will alternate between high and low,
|
// In this fashion, a halfway point will alternate between high and low,
|
// rather than the normal fashion of being high for half the time and then
|
// rather than the normal fashion of being high for half the time and then
|
// low. This approach was chosen to move the PWM artifacts to higher,
|
// low. This approach was chosen to move the PWM artifacts to higher,
|
// inaudible frequencies and hence improve the sound quality.
|
// inaudible frequencies and hence improve the sound quality.
|
//
|
//
|
// The interface supports two addresses:
|
// The interface supports two addresses:
|
//
|
//
|
// Addr[0] is the data register. Writes to this register will set
|
// Addr[0] is the data register. Writes to this register will set
|
// a 16-bit sample value to be produced by the PWM logic.
|
// a 16-bit sample value to be produced by the PWM logic.
|
// Reads will also produce, in the 17th bit, whether the interrupt
|
// Reads will also produce, in the 17th bit, whether the interrupt
|
// is set or not. (If set, it's time to write a new data value
|
// is set or not. (If set, it's time to write a new data value
|
// ...)
|
// ...)
|
//
|
//
|
// Addr[1] is a timer reload value, used to determine how often the
|
// Addr[1] is a timer reload value, used to determine how often the
|
// PWM logic needs its next value. This number should be set
|
// PWM logic needs its next value. This number should be set
|
// to the number of clock cycles between reload values. So,
|
// to the number of clock cycles between reload values. So,
|
// for example, an 80 MHz clock can generate a 44.1 kHz audio
|
// for example, an 80 MHz clock can generate a 44.1 kHz audio
|
// stream by reading in a new sample every (80e6/44.1e3 = 1814)
|
// stream by reading in a new sample every (80e6/44.1e3 = 1814)
|
// samples. After loading a sample, the device is immediately
|
// samples. After loading a sample, the device is immediately
|
// ready to load a second. Once the first sample completes,
|
// ready to load a second. Once the first sample completes,
|
// the second sample will start going to the output, and an
|
// the second sample will start going to the output, and an
|
// interrupt will be generated indicating that the device is
|
// interrupt will be generated indicating that the device is
|
// now ready for the third sample. (The one sample buffer
|
// now ready for the third sample. (The one sample buffer
|
// allows some flexibility in getting the new sample there fast
|
// allows some flexibility in getting the new sample there fast
|
// enough ...)
|
// enough ...)
|
//
|
//
|
//
|
//
|
// If you read through the code below, you'll notice that you can also
|
// If you read through the code below, you'll notice that you can also
|
// set the timer reload value to an immutable constant by changing the
|
// set the timer reload value to an immutable constant by changing the
|
// VARIABLE_RATE parameter to 0. When VARIABLE_RATE is set to zero,
|
// VARIABLE_RATE parameter to 0. When VARIABLE_RATE is set to zero,
|
// both addresses become the same, Addr[0] or the data register, and the
|
// both addresses become the same, Addr[0] or the data register, and the
|
// reload value can no longer be changed--forcing the sample rate to
|
// reload value can no longer be changed--forcing the sample rate to
|
// stay constant.
|
// stay constant.
|
//
|
//
|
//
|
//
|
// Of course, if you don't want to deal with the interrupts or sample
|
// Of course, if you don't want to deal with the interrupts or sample
|
// rates, you can still get a pseudo analog output by just setting the
|
// rates, you can still get a pseudo analog output by just setting the
|
// value to the analog output you would like and then not updating
|
// value to the analog output you would like and then not updating
|
// it. In this case, you could also shut the interrupt down at the
|
// it. In this case, you could also shut the interrupt down at the
|
// controller, to keep that from bothering you as well.
|
// controller, to keep that from bothering you as well.
|
//
|
//
|
// Creator: Dan Gisselquist, Ph.D.
|
// Creator: Dan Gisselquist, Ph.D.
|
// Gisselquist Technology, LLC
|
// Gisselquist Technology, LLC
|
//
|
//
|
///////////////////////////////////////////////////////////////////////////
|
///////////////////////////////////////////////////////////////////////////
|
//
|
//
|
// Copyright (C) 2015, Gisselquist Technology, LLC
|
// Copyright (C) 2015, Gisselquist Technology, LLC
|
//
|
//
|
// This program is free software (firmware): you can redistribute it and/or
|
// This program is free software (firmware): you can redistribute it and/or
|
// modify it under the terms of the GNU General Public License as published
|
// modify it under the terms of the GNU General Public License as published
|
// by the Free Software Foundation, either version 3 of the License, or (at
|
// by the Free Software Foundation, either version 3 of the License, or (at
|
// your option) any later version.
|
// your option) any later version.
|
//
|
//
|
// This program is distributed in the hope that it will be useful, but WITHOUT
|
// This program is distributed in the hope that it will be useful, but WITHOUT
|
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
|
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
|
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
// for more details.
|
// for more details.
|
//
|
//
|
// You should have received a copy of the GNU General Public License along
|
// You should have received a copy of the GNU General Public License along
|
// with this program. (It's in the $(ROOT)/doc directory. Run make with no
|
// with this program. (It's in the $(ROOT)/doc directory. Run make with no
|
// target there if the PDF file isn't present.) If not, see
|
// target there if the PDF file isn't present.) If not, see
|
// <http://www.gnu.org/licenses/> for a copy.
|
// <http://www.gnu.org/licenses/> for a copy.
|
//
|
//
|
// License: GPL, v3, as defined and found on www.gnu.org,
|
// License: GPL, v3, as defined and found on www.gnu.org,
|
// http://www.gnu.org/licenses/gpl.html
|
// http://www.gnu.org/licenses/gpl.html
|
//
|
//
|
//
|
//
|
///////////////////////////////////////////////////////////////////////////
|
///////////////////////////////////////////////////////////////////////////
|
module wbpwmaudio(i_clk,
|
module wbpwmaudio(i_clk,
|
// Wishbone interface
|
// Wishbone interface
|
i_wb_cyc, i_wb_stb, i_wb_we, i_wb_addr, i_wb_data,
|
i_wb_cyc, i_wb_stb, i_wb_we, i_wb_addr, i_wb_data,
|
o_wb_ack, o_wb_stall, o_wb_data,
|
o_wb_ack, o_wb_stall, o_wb_data,
|
o_pwm, o_int);
|
o_pwm, o_int);
|
parameter DEFAULT_RELOAD = 17'd1814, // about 44.1 kHz @ 80MHz
|
parameter DEFAULT_RELOAD = 17'd1814, // about 44.1 kHz @ 80MHz
|
//DEFAULT_RELOAD = 17'd2268,//about 44.1 kHz @ 100MHz
|
//DEFAULT_RELOAD = 17'd2268,//about 44.1 kHz @ 100MHz
|
VARIABLE_RATE=0,
|
VARIABLE_RATE=0,
|
TIMING_BITS=17;
|
TIMING_BITS=17;
|
input i_clk;
|
input i_clk;
|
input i_wb_cyc, i_wb_stb, i_wb_we;
|
input i_wb_cyc, i_wb_stb, i_wb_we;
|
input i_wb_addr;
|
input i_wb_addr;
|
input [31:0] i_wb_data;
|
input [31:0] i_wb_data;
|
output reg o_wb_ack;
|
output reg o_wb_ack;
|
output wire o_wb_stall;
|
output wire o_wb_stall;
|
output wire [31:0] o_wb_data;
|
output wire [31:0] o_wb_data;
|
output reg o_pwm;
|
output reg o_pwm;
|
output reg o_int;
|
output reg o_int;
|
|
|
|
|
// How often shall we create an interrupt? Every reload_value clocks!
|
// How often shall we create an interrupt? Every reload_value clocks!
|
// If VARIABLE_RATE==0, this value will never change and will be kept
|
// If VARIABLE_RATE==0, this value will never change and will be kept
|
// at the default reload rate (defined up top)
|
// at the default reload rate (defined up top)
|
wire [(TIMING_BITS-1):0] w_reload_value;
|
wire [(TIMING_BITS-1):0] w_reload_value;
|
generate
|
generate
|
if (VARIABLE_RATE != 0)
|
if (VARIABLE_RATE != 0)
|
begin
|
begin
|
reg [(TIMING_BITS-1):0] r_reload_value;
|
reg [(TIMING_BITS-1):0] r_reload_value;
|
initial r_reload_value = DEFAULT_RELOAD;
|
initial r_reload_value = DEFAULT_RELOAD;
|
always @(posedge i_clk) // Data write
|
always @(posedge i_clk) // Data write
|
if ((i_wb_cyc)&&(i_wb_stb)&&(i_wb_addr)&&(i_wb_we))
|
if ((i_wb_stb)&&(i_wb_addr)&&(i_wb_we))
|
r_reload_value <= i_wb_data[(TIMING_BITS-1):0];
|
r_reload_value <= i_wb_data[(TIMING_BITS-1):0];
|
assign w_reload_value = r_reload_value;
|
assign w_reload_value = r_reload_value;
|
end else begin
|
end else begin
|
assign w_reload_value = DEFAULT_RELOAD;
|
assign w_reload_value = DEFAULT_RELOAD;
|
end endgenerate
|
end endgenerate
|
|
|
reg ztimer;
|
reg ztimer;
|
reg [(TIMING_BITS-1):0] timer;
|
reg [(TIMING_BITS-1):0] timer;
|
initial timer = DEFAULT_RELOAD;
|
initial timer = DEFAULT_RELOAD;
|
initial ztimer= 1'b0;
|
initial ztimer= 1'b0;
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
ztimer <= (timer == { {(TIMING_BITS-1){1'b0}}, 1'b1 });
|
ztimer <= (timer == { {(TIMING_BITS-1){1'b0}}, 1'b1 });
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
if (ztimer)
|
if (ztimer)
|
timer <= w_reload_value;
|
timer <= w_reload_value;
|
else
|
else
|
timer <= timer - {{(TIMING_BITS-1){1'b0}},1'b1};
|
timer <= timer - {{(TIMING_BITS-1){1'b0}},1'b1};
|
|
|
reg [15:0] sample_out;
|
reg [15:0] sample_out;
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
if (ztimer)
|
if (ztimer)
|
sample_out <= next_sample;
|
sample_out <= next_sample;
|
|
|
|
|
reg [15:0] next_sample;
|
reg [15:0] next_sample;
|
reg next_valid;
|
reg next_valid;
|
initial next_valid = 1'b1;
|
initial next_valid = 1'b1;
|
initial next_sample = 16'h8000;
|
initial next_sample = 16'h8000;
|
always @(posedge i_clk) // Data write
|
always @(posedge i_clk) // Data write
|
if ((i_wb_cyc)&&(i_wb_stb)&&(i_wb_we)
|
if ((i_wb_stb)&&(i_wb_we)
|
&&((~i_wb_addr)||(VARIABLE_RATE==0)))
|
&&((~i_wb_addr)||(VARIABLE_RATE==0)))
|
begin
|
begin
|
// Write with two's complement data, convert it
|
// Write with two's complement data, convert it
|
// internally to binary offset
|
// internally to binary offset
|
next_sample <= { ~i_wb_data[15], i_wb_data[14:0] };
|
next_sample <= { ~i_wb_data[15], i_wb_data[14:0] };
|
next_valid <= 1'b1;
|
next_valid <= 1'b1;
|
end else if (ztimer)
|
end else if (ztimer)
|
next_valid <= 1'b0;
|
next_valid <= 1'b0;
|
|
|
initial o_int = 1'b0;
|
initial o_int = 1'b0;
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
o_int <= (~next_valid);
|
o_int <= (~next_valid);
|
|
|
reg [15:0] pwm_counter;
|
reg [15:0] pwm_counter;
|
initial pwm_counter = 16'h00;
|
initial pwm_counter = 16'h00;
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
pwm_counter <= pwm_counter + 16'h01;
|
pwm_counter <= pwm_counter + 16'h01;
|
|
|
wire [15:0] br_counter;
|
wire [15:0] br_counter;
|
genvar k;
|
genvar k;
|
generate for(k=0; k<16; k=k+1)
|
generate for(k=0; k<16; k=k+1)
|
begin : bit_reversal_loop
|
begin : bit_reversal_loop
|
assign br_counter[k] = pwm_counter[15-k];
|
assign br_counter[k] = pwm_counter[15-k];
|
end endgenerate
|
end endgenerate
|
|
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
o_pwm <= (sample_out >= br_counter);
|
o_pwm <= (sample_out >= br_counter);
|
|
|
generate
|
generate
|
if (VARIABLE_RATE == 0)
|
if (VARIABLE_RATE == 0)
|
begin
|
begin
|
assign o_wb_data = { 15'h00, o_int, sample_out };
|
assign o_wb_data = { 15'h00, o_int, sample_out };
|
end else begin
|
end else begin
|
reg [31:0] r_wb_data;
|
reg [31:0] r_wb_data;
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
if (i_wb_addr)
|
if (i_wb_addr)
|
r_wb_data <= w_reload_value;
|
r_wb_data <= { {(32-TIMING_BITS){1'b0}}, w_reload_value };
|
else
|
else
|
r_wb_data <= { 15'h00, o_int, sample_out };
|
r_wb_data <= { 15'h00, o_int, sample_out };
|
assign o_wb_data = r_wb_data;
|
assign o_wb_data = r_wb_data;
|
end endgenerate
|
end endgenerate
|
|
|
initial o_wb_ack = 1'b0;
|
initial o_wb_ack = 1'b0;
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
o_wb_ack <= (i_wb_cyc)&&(i_wb_stb);
|
o_wb_ack <= (i_wb_stb);
|
assign o_wb_stall = 1'b0;
|
assign o_wb_stall = 1'b0;
|
|
|
endmodule
|
endmodule
|
|
|