///////////////////////////////////////////////////////////////////////////
|
///////////////////////////////////////////////////////////////////////////
|
//
|
//
|
// Filename: wbsdram.v
|
// Filename: wbsdram.v
|
//
|
//
|
// Project: XuLA2 board
|
// Project: XuLA2 board
|
//
|
//
|
// Purpose: Provide 32-bit wishbone access to the SDRAM memory on a XuLA2
|
// Purpose: Provide 32-bit wishbone access to the SDRAM memory on a XuLA2
|
// LX-25 board. Specifically, on each access, the controller will
|
// LX-25 board. Specifically, on each access, the controller will
|
// activate an appropriate bank of RAM (the SDRAM has four banks), and
|
// activate an appropriate bank of RAM (the SDRAM has four banks), and
|
// then issue the read/write command. In the case of walking off the
|
// then issue the read/write command. In the case of walking off the
|
// bank, the controller will activate the next bank before you get to it.
|
// bank, the controller will activate the next bank before you get to it.
|
// Upon concluding any wishbone access, all banks will be precharged and
|
// Upon concluding any wishbone access, all banks will be precharged and
|
// returned to idle.
|
// returned to idle.
|
//
|
//
|
// This particular implementation represents a second generation version
|
// This particular implementation represents a second generation version
|
// because my first version was too complex. To speed things up, this
|
// because my first version was too complex. To speed things up, this
|
// version includes an extra wait state where the wishbone inputs are
|
// version includes an extra wait state where the wishbone inputs are
|
// clocked into a flip flop before any action is taken on them.
|
// clocked into a flip flop before any action is taken on them.
|
//
|
//
|
// Creator: Dan Gisselquist, Ph.D.
|
// Creator: Dan Gisselquist, Ph.D.
|
// Gisselquist Technology, LLC
|
// Gisselquist Technology, LLC
|
//
|
//
|
///////////////////////////////////////////////////////////////////////////
|
///////////////////////////////////////////////////////////////////////////
|
//
|
//
|
// Copyright (C) 2015, Gisselquist Technology, LLC
|
// Copyright (C) 2015, Gisselquist Technology, LLC
|
//
|
//
|
// This program is free software (firmware): you can redistribute it and/or
|
// This program is free software (firmware): you can redistribute it and/or
|
// modify it under the terms of the GNU General Public License as published
|
// modify it under the terms of the GNU General Public License as published
|
// by the Free Software Foundation, either version 3 of the License, or (at
|
// by the Free Software Foundation, either version 3 of the License, or (at
|
// your option) any later version.
|
// your option) any later version.
|
//
|
//
|
// This program is distributed in the hope that it will be useful, but WITHOUT
|
// This program is distributed in the hope that it will be useful, but WITHOUT
|
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
|
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
|
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
// for more details.
|
// for more details.
|
//
|
//
|
// You should have received a copy of the GNU General Public License along
|
// You should have received a copy of the GNU General Public License along
|
// with this program. (It's in the $(ROOT)/doc directory, run make with no
|
// with this program. (It's in the $(ROOT)/doc directory, run make with no
|
// target there if the PDF file isn't present.) If not, see
|
// target there if the PDF file isn't present.) If not, see
|
// <http://www.gnu.org/licenses/> for a copy.
|
// <http://www.gnu.org/licenses/> for a copy.
|
//
|
//
|
// License: GPL, v3, as defined and found on www.gnu.org,
|
// License: GPL, v3, as defined and found on www.gnu.org,
|
// http://www.gnu.org/licenses/gpl.html
|
// http://www.gnu.org/licenses/gpl.html
|
//
|
//
|
//
|
//
|
/////////////////////////////////////////////////////////////////////////////
|
/////////////////////////////////////////////////////////////////////////////
|
//
|
//
|
`define DMOD_GETINPUT 1'b0
|
`define DMOD_GETINPUT 1'b0
|
`define DMOD_PUTOUTPUT 1'b1
|
`define DMOD_PUTOUTPUT 1'b1
|
`define RAM_OPERATIONAL 2'b00
|
`define RAM_OPERATIONAL 2'b00
|
`define RAM_POWER_UP 2'b01
|
`define RAM_POWER_UP 2'b01
|
`define RAM_SET_MODE 2'b10
|
`define RAM_SET_MODE 2'b10
|
`define RAM_INITIAL_REFRESH 2'b11
|
`define RAM_INITIAL_REFRESH 2'b11
|
|
|
module wbsdram(i_clk,
|
module wbsdram(i_clk,
|
i_wb_cyc, i_wb_stb, i_wb_we, i_wb_addr, i_wb_data,
|
i_wb_cyc, i_wb_stb, i_wb_we, i_wb_addr, i_wb_data,
|
o_wb_ack, o_wb_stall, o_wb_data,
|
o_wb_ack, o_wb_stall, o_wb_data,
|
o_ram_cs_n, o_ram_cke, o_ram_ras_n, o_ram_cas_n, o_ram_we_n,
|
o_ram_cs_n, o_ram_cke, o_ram_ras_n, o_ram_cas_n, o_ram_we_n,
|
o_ram_bs, o_ram_addr,
|
o_ram_bs, o_ram_addr,
|
o_ram_dmod, i_ram_data, o_ram_data, o_ram_dqm,
|
o_ram_dmod, i_ram_data, o_ram_data, o_ram_dqm,
|
o_debug);
|
o_debug);
|
parameter RDLY = 6;
|
parameter RDLY = 6;
|
input i_clk;
|
input i_clk;
|
// Wishbone
|
// Wishbone
|
// inputs
|
// inputs
|
input i_wb_cyc, i_wb_stb, i_wb_we;
|
input i_wb_cyc, i_wb_stb, i_wb_we;
|
input [22:0] i_wb_addr;
|
input [22:0] i_wb_addr;
|
input [31:0] i_wb_data;
|
input [31:0] i_wb_data;
|
// outputs
|
// outputs
|
output wire o_wb_ack;
|
output wire o_wb_ack;
|
output reg o_wb_stall;
|
output reg o_wb_stall;
|
output wire [31:0] o_wb_data;
|
output wire [31:0] o_wb_data;
|
// SDRAM control
|
// SDRAM control
|
output wire o_ram_cke;
|
output wire o_ram_cke;
|
output reg o_ram_cs_n,
|
output reg o_ram_cs_n,
|
o_ram_ras_n, o_ram_cas_n, o_ram_we_n;
|
o_ram_ras_n, o_ram_cas_n, o_ram_we_n;
|
output reg [1:0] o_ram_bs;
|
output reg [1:0] o_ram_bs;
|
output reg [12:0] o_ram_addr;
|
output reg [12:0] o_ram_addr;
|
output reg o_ram_dmod;
|
output reg o_ram_dmod;
|
input [15:0] i_ram_data;
|
input [15:0] i_ram_data;
|
output reg [15:0] o_ram_data;
|
output reg [15:0] o_ram_data;
|
output reg [1:0] o_ram_dqm;
|
output reg [1:0] o_ram_dqm;
|
output wire [31:0] o_debug;
|
output wire [31:0] o_debug;
|
|
|
|
|
// Calculate some metrics
|
// Calculate some metrics
|
|
|
//
|
//
|
// First, do we *need* a refresh now --- i.e., must we break out of
|
// First, do we *need* a refresh now --- i.e., must we break out of
|
// whatever we are doing to issue a refresh command?
|
// whatever we are doing to issue a refresh command?
|
//
|
//
|
// The step size here must be such that 8192 charges may be done in
|
// The step size here must be such that 8192 charges may be done in
|
// 64 ms. Thus for a clock of:
|
// 64 ms. Thus for a clock of:
|
// ClkRate(MHz) (64ms/1000(ms/s)*ClkRate)/8192
|
// ClkRate(MHz) (64ms/1000(ms/s)*ClkRate)/8192
|
// 100 MHz 781
|
// 100 MHz 781
|
// 96 MHz 750
|
// 96 MHz 750
|
// 92 MHz 718
|
// 92 MHz 718
|
// 88 MHz 687
|
// 88 MHz 687
|
// 84 MHz 656
|
// 84 MHz 656
|
// 80 MHz 625
|
// 80 MHz 625
|
//
|
//
|
|
// However, since we do two refresh cycles everytime we need a refresh,
|
|
// this standard is close to overkill--but we'll use it anyway. At
|
|
// some later time we should address this, once we are entirely
|
|
// convinced that the memory is otherwise working without failure. Of
|
|
// course, at that time, it may no longer be a priority ...
|
|
//
|
reg need_refresh;
|
reg need_refresh;
|
reg [9:0] refresh_clk;
|
reg [9:0] refresh_clk;
|
wire refresh_cmd;
|
wire refresh_cmd;
|
assign refresh_cmd = (~o_ram_cs_n)&&(~o_ram_ras_n)&&(~o_ram_cas_n)&&(o_ram_we_n);
|
assign refresh_cmd = (~o_ram_cs_n)&&(~o_ram_ras_n)&&(~o_ram_cas_n)&&(o_ram_we_n);
|
initial refresh_clk = 0;
|
initial refresh_clk = 0;
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
begin
|
begin
|
if (refresh_cmd)
|
if (refresh_cmd)
|
refresh_clk <= 10'd625; // Make suitable for 80 MHz clk
|
refresh_clk <= 10'd625; // Make suitable for 80 MHz clk
|
else if (|refresh_clk)
|
else if (|refresh_clk)
|
refresh_clk <= refresh_clk - 10'h1;
|
refresh_clk <= refresh_clk - 10'h1;
|
end
|
end
|
initial need_refresh = 1'b0;
|
initial need_refresh = 1'b0;
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
need_refresh <= (refresh_clk == 10'h00)&&(~refresh_cmd);
|
need_refresh <= (refresh_clk == 10'h00)&&(~refresh_cmd);
|
|
|
reg in_refresh;
|
reg in_refresh;
|
reg [2:0] in_refresh_clk;
|
reg [2:0] in_refresh_clk;
|
initial in_refresh_clk = 3'h0;
|
initial in_refresh_clk = 3'h0;
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
if (refresh_cmd)
|
if (refresh_cmd)
|
in_refresh_clk <= 3'h6;
|
in_refresh_clk <= 3'h6;
|
else if (|in_refresh_clk)
|
else if (|in_refresh_clk)
|
in_refresh_clk <= in_refresh_clk - 3'h1;
|
in_refresh_clk <= in_refresh_clk - 3'h1;
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
in_refresh <= (in_refresh_clk != 3'h0)||(refresh_cmd);
|
in_refresh <= (in_refresh_clk != 3'h0)||(refresh_cmd);
|
|
|
|
|
reg [2:0] bank_active [0:3];
|
reg [2:0] bank_active [0:3];
|
reg [(RDLY-1):0] r_barrell_ack;
|
reg [(RDLY-1):0] r_barrell_ack;
|
reg r_pending;
|
reg r_pending;
|
reg r_we;
|
reg r_we;
|
reg [22:0] r_addr;
|
reg [22:0] r_addr;
|
reg [31:0] r_data;
|
reg [31:0] r_data;
|
reg [12:0] bank_row [0:3];
|
reg [12:0] bank_row [0:3];
|
|
|
|
|
//
|
//
|
// Second, do we *need* a precharge now --- must be break out of
|
// Second, do we *need* a precharge now --- must be break out of
|
// whatever we are doing to issue a precharge command?
|
// whatever we are doing to issue a precharge command?
|
//
|
//
|
// Keep in mind, the number of clocks to wait has to be reduced by
|
// Keep in mind, the number of clocks to wait has to be reduced by
|
// the amount of time it may take us to go into a precharge state.
|
// the amount of time it may take us to go into a precharge state.
|
|
// You may also notice that the precharge requirement is tighter
|
|
// than this one, so ... perhaps this isn't as required?
|
//
|
//
|
|
`ifdef PRECHARGE_COUNTERS
|
|
/*
|
|
*
|
|
* I'm commenting this out. As long as we are doing one refresh
|
|
* cycle every 625 (or even 1250) clocks, and as long as that refresh
|
|
* cycle requires that all banks be precharged, then we will never run
|
|
* out of the maximum active to precharge command period.
|
|
*
|
|
* If the logic isn't needed, then, let's get rid of it.
|
|
*
|
|
*/
|
reg [3:0] need_precharge;
|
reg [3:0] need_precharge;
|
genvar k;
|
genvar k;
|
generate
|
generate
|
for(k=0; k<4; k=k+1)
|
for(k=0; k<4; k=k+1)
|
begin : precharge_genvar_loop
|
begin : precharge_genvar_loop
|
wire precharge_cmd;
|
wire precharge_cmd;
|
assign precharge_cmd = ((~o_ram_cs_n)&&(~o_ram_ras_n)&&(o_ram_cas_n)&&(~o_ram_we_n)
|
assign precharge_cmd = ((~o_ram_cs_n)&&(~o_ram_ras_n)&&(o_ram_cas_n)&&(~o_ram_we_n)
|
&&((o_ram_addr[10])||(o_ram_bs == k[1:0])))
|
&&((o_ram_addr[10])||(o_ram_bs == k[1:0])))
|
// Also on read or write with precharge
|
// Also on read or write with precharge
|
||(~o_ram_cs_n)&&(o_ram_ras_n)&&(~o_ram_cas_n)&&(o_ram_addr[10]);
|
||(~o_ram_cs_n)&&(o_ram_ras_n)&&(~o_ram_cas_n)&&(o_ram_addr[10]);
|
|
|
reg [9:0] precharge_clk;
|
reg [9:0] precharge_clk;
|
initial precharge_clk = 0;
|
initial precharge_clk = 0;
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
begin
|
begin
|
if ((precharge_cmd)||(bank_active[k] == 0))
|
if ((precharge_cmd)||(bank_active[k] == 0))
|
|
// This needs to be 100_000 ns, or 10_000
|
|
// clocks. A value of 1000 is *highly*
|
|
// conservative.
|
precharge_clk <= 10'd1000;
|
precharge_clk <= 10'd1000;
|
else if (|precharge_clk)
|
else if (|precharge_clk)
|
precharge_clk <= precharge_clk - 10'h1;
|
precharge_clk <= precharge_clk - 10'h1;
|
end
|
end
|
initial need_precharge[k] = 1'b0;
|
initial need_precharge[k] = 1'b0;
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
need_precharge[k] <= ~(|precharge_clk);
|
need_precharge[k] <= ~(|precharge_clk);
|
end // precharge_genvar_loop
|
end // precharge_genvar_loop
|
endgenerate
|
endgenerate
|
|
`else
|
|
wire [3:0] need_precharge;
|
|
assign need_precharge = 4'h0;
|
|
`endif
|
|
|
|
|
|
|
reg [15:0] clocks_til_idle;
|
reg [15:0] clocks_til_idle;
|
reg [1:0] r_state;
|
reg [1:0] r_state;
|
wire bus_cyc;
|
wire bus_cyc;
|
assign bus_cyc = ((i_wb_cyc)&&(i_wb_stb)&&(~o_wb_stall));
|
assign bus_cyc = ((i_wb_cyc)&&(i_wb_stb)&&(~o_wb_stall));
|
reg nxt_dmod;
|
reg nxt_dmod;
|
|
|
// Pre-process pending operations
|
// Pre-process pending operations
|
wire pending;
|
wire pending;
|
initial r_pending = 1'b0;
|
initial r_pending = 1'b0;
|
reg [22:5] fwd_addr;
|
reg [22:5] fwd_addr;
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
if (bus_cyc)
|
if (bus_cyc)
|
begin
|
begin
|
r_pending <= 1'b1;
|
r_pending <= 1'b1;
|
r_we <= i_wb_we;
|
r_we <= i_wb_we;
|
r_addr <= i_wb_addr;
|
r_addr <= i_wb_addr;
|
r_data <= i_wb_data;
|
r_data <= i_wb_data;
|
fwd_addr <= i_wb_addr[22:5] + 18'h01;
|
fwd_addr <= i_wb_addr[22:5] + 18'h01;
|
end else if ((~o_ram_cs_n)&&(o_ram_ras_n)&&(~o_ram_cas_n))
|
end else if ((~o_ram_cs_n)&&(o_ram_ras_n)&&(~o_ram_cas_n))
|
r_pending <= 1'b0;
|
r_pending <= 1'b0;
|
else if (~i_wb_cyc)
|
else if (~i_wb_cyc)
|
r_pending <= 1'b0;
|
r_pending <= 1'b0;
|
|
|
reg r_bank_valid;
|
reg r_bank_valid;
|
initial r_bank_valid = 1'b0;
|
initial r_bank_valid = 1'b0;
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
if (bus_cyc)
|
if (bus_cyc)
|
r_bank_valid <=((bank_active[i_wb_addr[9:8]][2])
|
r_bank_valid <=((bank_active[i_wb_addr[9:8]][2])
|
&&(bank_row[i_wb_addr[9:8]]==r_addr[22:10]));
|
&&(bank_row[i_wb_addr[9:8]]==r_addr[22:10]));
|
else
|
else
|
r_bank_valid <= ((bank_active[r_addr[9:8]][2])
|
r_bank_valid <= ((bank_active[r_addr[9:8]][2])
|
&&(bank_row[r_addr[9:8]]==r_addr[22:10]));
|
&&(bank_row[r_addr[9:8]]==r_addr[22:10]));
|
reg fwd_bank_valid;
|
reg fwd_bank_valid;
|
initial fwd_bank_valid = 0;
|
initial fwd_bank_valid = 0;
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
fwd_bank_valid <= ((bank_active[fwd_addr[9:8]][2])
|
fwd_bank_valid <= ((bank_active[fwd_addr[9:8]][2])
|
&&(bank_row[fwd_addr[9:8]]==fwd_addr[22:10]));
|
&&(bank_row[fwd_addr[9:8]]==fwd_addr[22:10]));
|
|
|
assign pending = (r_pending)&&(o_wb_stall);
|
assign pending = (r_pending)&&(o_wb_stall);
|
|
|
// Address MAP:
|
// Address MAP:
|
// 23-bits bits in, 24-bits out
|
// 23-bits bits in, 24-bits out
|
//
|
//
|
// 222 1111 1111 1100 0000 0000
|
// 222 1111 1111 1100 0000 0000
|
// 210 9876 5432 1098 7654 3210
|
// 210 9876 5432 1098 7654 3210
|
// rrr rrrr rrrr rrBB cccc cccc 0
|
// rrr rrrr rrrr rrBB cccc cccc 0
|
// 8765 4321 0
|
// 8765 4321 0
|
//
|
//
|
initial r_barrell_ack = 0;
|
initial r_barrell_ack = 0;
|
initial r_state = `RAM_POWER_UP;
|
initial r_state = `RAM_POWER_UP;
|
initial clocks_til_idle = 16'd20500;
|
initial clocks_til_idle = 16'd20500;
|
initial o_wb_stall = 1'b1;
|
initial o_wb_stall = 1'b1;
|
initial o_ram_dmod = `DMOD_GETINPUT;
|
initial o_ram_dmod = `DMOD_GETINPUT;
|
initial nxt_dmod = `DMOD_GETINPUT;
|
initial nxt_dmod = `DMOD_GETINPUT;
|
initial o_ram_cs_n = 1'b0;
|
initial o_ram_cs_n = 1'b0;
|
initial o_ram_ras_n = 1'b1;
|
initial o_ram_ras_n = 1'b1;
|
initial o_ram_cas_n = 1'b1;
|
initial o_ram_cas_n = 1'b1;
|
initial o_ram_we_n = 1'b1;
|
initial o_ram_we_n = 1'b1;
|
initial o_ram_dqm = 2'b11;
|
initial o_ram_dqm = 2'b11;
|
assign o_ram_cke = 1'b1;
|
assign o_ram_cke = 1'b1;
|
initial bank_active[0] = 3'b000;
|
initial bank_active[0] = 3'b000;
|
initial bank_active[1] = 3'b000;
|
initial bank_active[1] = 3'b000;
|
initial bank_active[2] = 3'b000;
|
initial bank_active[2] = 3'b000;
|
initial bank_active[3] = 3'b000;
|
initial bank_active[3] = 3'b000;
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
if (r_state == `RAM_OPERATIONAL)
|
if (r_state == `RAM_OPERATIONAL)
|
begin
|
begin
|
o_wb_stall <= (r_pending)||(bus_cyc);
|
o_wb_stall <= (r_pending)||(bus_cyc);
|
r_barrell_ack <= r_barrell_ack >> 1;
|
r_barrell_ack <= r_barrell_ack >> 1;
|
nxt_dmod <= `DMOD_GETINPUT;
|
nxt_dmod <= `DMOD_GETINPUT;
|
o_ram_dmod <= nxt_dmod;
|
o_ram_dmod <= nxt_dmod;
|
|
|
//
|
//
|
|
// We assume that, whatever state the bank is in, that it
|
|
// continues in that state and set up a series of shift
|
|
// registers to contain that information. If it will not
|
|
// continue in that state, all that therefore needs to be
|
|
// done is to set bank_active[?][2] below.
|
|
//
|
bank_active[0] <= { bank_active[0][2], bank_active[0][2:1] };
|
bank_active[0] <= { bank_active[0][2], bank_active[0][2:1] };
|
bank_active[1] <= { bank_active[1][2], bank_active[1][2:1] };
|
bank_active[1] <= { bank_active[1][2], bank_active[1][2:1] };
|
bank_active[2] <= { bank_active[2][2], bank_active[2][2:1] };
|
bank_active[2] <= { bank_active[2][2], bank_active[2][2:1] };
|
bank_active[3] <= { bank_active[3][2], bank_active[3][2:1] };
|
bank_active[3] <= { bank_active[3][2], bank_active[3][2:1] };
|
//
|
//
|
o_ram_cs_n <= (~i_wb_cyc);
|
o_ram_cs_n <= (~i_wb_cyc);
|
// o_ram_cke <= 1'b1;
|
// o_ram_cke <= 1'b1;
|
o_ram_dqm <= 2'b0;
|
o_ram_dqm <= 2'b0;
|
if (|clocks_til_idle[2:0])
|
if (|clocks_til_idle[2:0])
|
clocks_til_idle[2:0] <= clocks_til_idle[2:0] - 3'h1;
|
clocks_til_idle[2:0] <= clocks_til_idle[2:0] - 3'h1;
|
|
|
// Default command is a
|
// Default command is a
|
// NOOP if (i_wb_cyc)
|
// NOOP if (i_wb_cyc)
|
// Device deselect if (~i_wb_cyc)
|
// Device deselect if (~i_wb_cyc)
|
// o_ram_cs_n <= (~i_wb_cyc) above, NOOP
|
// o_ram_cs_n <= (~i_wb_cyc) above, NOOP
|
o_ram_ras_n <= 1'b1;
|
o_ram_ras_n <= 1'b1;
|
o_ram_cas_n <= 1'b1;
|
o_ram_cas_n <= 1'b1;
|
o_ram_we_n <= 1'b1;
|
o_ram_we_n <= 1'b1;
|
|
|
// Don't drive the bus normally, let it float unless we wish
|
// o_ram_data <= r_data[15:0];
|
// to give it a command
|
|
o_ram_data <= r_data[15:0];
|
|
|
|
|
if (nxt_dmod)
|
|
;
|
|
else
|
if ((~i_wb_cyc)||(|need_precharge)||(need_refresh))
|
if ((~i_wb_cyc)||(|need_precharge)||(need_refresh))
|
begin // Issue a precharge all command (if any banks are open),
|
begin // Issue a precharge all command (if any banks are open),
|
// otherwise an autorefresh command
|
// otherwise an autorefresh command
|
if ((bank_active[0][2:1]==2'b10)
|
if ((bank_active[0][2:1]==2'b10)
|
||(bank_active[1][2:1]==2'b10)
|
||(bank_active[1][2:1]==2'b10)
|
||(bank_active[2][2:1]==2'b10)
|
||(bank_active[2][2:1]==2'b10)
|
||(bank_active[3][2:1]==2'b10))
|
||(bank_active[3][2:1]==2'b10)
|
|
||(|clocks_til_idle[2:0]))
|
begin
|
begin
|
// Do nothing this clock
|
// Do nothing this clock
|
// Can't precharge a bank immediately after
|
// Can't precharge a bank immediately after
|
// activating it
|
// activating it
|
end else if (bank_active[0][2]
|
end else if (bank_active[0][2]
|
||(bank_active[1][2])
|
||(bank_active[1][2])
|
||(bank_active[2][2])
|
||(bank_active[2][2])
|
||(bank_active[3][2]))
|
||(bank_active[3][2]))
|
begin // Close all active banks
|
begin // Close all active banks
|
o_ram_cs_n <= 1'b0;
|
o_ram_cs_n <= 1'b0;
|
o_ram_ras_n <= 1'b0;
|
o_ram_ras_n <= 1'b0;
|
o_ram_cas_n <= 1'b1;
|
o_ram_cas_n <= 1'b1;
|
o_ram_we_n <= 1'b0;
|
o_ram_we_n <= 1'b0;
|
o_ram_addr[10] <= 1'b1;
|
o_ram_addr[10] <= 1'b1;
|
bank_active[0][2] <= 1'b0;
|
bank_active[0][2] <= 1'b0;
|
bank_active[1][2] <= 1'b0;
|
bank_active[1][2] <= 1'b0;
|
bank_active[2][2] <= 1'b0;
|
bank_active[2][2] <= 1'b0;
|
bank_active[3][2] <= 1'b0;
|
bank_active[3][2] <= 1'b0;
|
end else if ((|bank_active[0])
|
end else if ((|bank_active[0])
|
||(|bank_active[1])
|
||(|bank_active[1])
|
||(|bank_active[2])
|
||(|bank_active[2])
|
||(|bank_active[3]))
|
||(|bank_active[3]))
|
// Can't precharge yet, the bus is still busy
|
// Can't precharge yet, the bus is still busy
|
begin end else if ((~in_refresh)&&((refresh_clk[9:8]==2'b00)||(need_refresh)))
|
begin end else if ((~in_refresh)&&((refresh_clk[9:8]==2'b00)||(need_refresh)))
|
begin // Send autorefresh command
|
begin // Send autorefresh command
|
o_ram_cs_n <= 1'b0;
|
o_ram_cs_n <= 1'b0;
|
o_ram_ras_n <= 1'b0;
|
o_ram_ras_n <= 1'b0;
|
o_ram_cas_n <= 1'b0;
|
o_ram_cas_n <= 1'b0;
|
o_ram_we_n <= 1'b1;
|
o_ram_we_n <= 1'b1;
|
end // Else just send NOOP's, the default command
|
end // Else just send NOOP's, the default command
|
end else if (nxt_dmod)
|
// end else if (nxt_dmod)
|
begin
|
// begin
|
// Last half of a two cycle write
|
// Last half of a two cycle write
|
o_ram_data <= r_data[15:0];
|
// o_ram_data <= r_data[15:0];
|
|
//
|
|
// While this does need to take precedence over all
|
|
// other commands, it doesn't need to take precedence
|
|
// over the the deactivate/precharge commands from
|
|
// above.
|
|
//
|
|
// We could probably even speed ourselves up a touch
|
|
// by moving this condition down below activating
|
|
// and closing active banks. ... only problem is when I
|
|
// last tried that I broke everything so ... that's not
|
|
// my problem.
|
end else if (in_refresh)
|
end else if (in_refresh)
|
begin
|
begin
|
// NOOPS only here, until we are out of refresh
|
// NOOPS only here, until we are out of refresh
|
end else if ((pending)&&(~r_bank_valid)&&(bank_active[r_addr[9:8]]==3'h0))
|
end else if ((pending)&&(~r_bank_valid)&&(bank_active[r_addr[9:8]]==3'h0))
|
begin // Need to activate the requested bank
|
begin // Need to activate the requested bank
|
o_ram_cs_n <= 1'b0;
|
o_ram_cs_n <= 1'b0;
|
o_ram_ras_n <= 1'b0;
|
o_ram_ras_n <= 1'b0;
|
o_ram_cas_n <= 1'b1;
|
o_ram_cas_n <= 1'b1;
|
o_ram_we_n <= 1'b1;
|
o_ram_we_n <= 1'b1;
|
o_ram_addr <= r_addr[22:10];
|
o_ram_addr <= r_addr[22:10];
|
o_ram_bs <= r_addr[9:8];
|
o_ram_bs <= r_addr[9:8];
|
// clocks_til_idle[2:0] <= 1;
|
// clocks_til_idle[2:0] <= 1;
|
bank_active[r_addr[9:8]][2] <= 1'b1;
|
bank_active[r_addr[9:8]][2] <= 1'b1;
|
bank_row[r_addr[9:8]] <= r_addr[22:10];
|
bank_row[r_addr[9:8]] <= r_addr[22:10];
|
//
|
//
|
end else if ((pending)&&(~r_bank_valid)
|
end else if ((pending)&&(~r_bank_valid)
|
&&(bank_active[r_addr[9:8]]==3'b111))
|
&&(bank_active[r_addr[9:8]]==3'b111))
|
begin // Need to close an active bank
|
begin // Need to close an active bank
|
o_ram_cs_n <= 1'b0;
|
o_ram_cs_n <= 1'b0;
|
o_ram_ras_n <= 1'b0;
|
o_ram_ras_n <= 1'b0;
|
o_ram_cas_n <= 1'b1;
|
o_ram_cas_n <= 1'b1;
|
o_ram_we_n <= 1'b0;
|
o_ram_we_n <= 1'b0;
|
// o_ram_addr <= r_addr[22:10];
|
// o_ram_addr <= r_addr[22:10];
|
o_ram_addr[10]<= 1'b0;
|
o_ram_addr[10]<= 1'b0;
|
o_ram_bs <= r_addr[9:8];
|
o_ram_bs <= r_addr[9:8];
|
// clocks_til_idle[2:0] <= 1;
|
// clocks_til_idle[2:0] <= 1;
|
bank_active[r_addr[9:8]][2] <= 1'b0;
|
bank_active[r_addr[9:8]][2] <= 1'b0;
|
// bank_row[r_addr[9:8]] <= r_addr[22:10];
|
// bank_row[r_addr[9:8]] <= r_addr[22:10];
|
end else if ((pending)&&(~r_we)
|
end else if ((pending)&&(~r_we)
|
&&(bank_active[r_addr[9:8]][2])
|
&&(bank_active[r_addr[9:8]][2])
|
&&(r_bank_valid)
|
&&(r_bank_valid)
|
&&(clocks_til_idle[2:0] < 4))
|
&&(clocks_til_idle[2:0] < 4))
|
begin // Issue the read command
|
begin // Issue the read command
|
o_ram_cs_n <= 1'b0;
|
o_ram_cs_n <= 1'b0;
|
o_ram_ras_n <= 1'b1;
|
o_ram_ras_n <= 1'b1;
|
o_ram_cas_n <= 1'b0;
|
o_ram_cas_n <= 1'b0;
|
o_ram_we_n <= 1'b1;
|
o_ram_we_n <= 1'b1;
|
o_ram_addr <= { 4'h0, r_addr[7:0], 1'b0 };
|
o_ram_addr <= { 4'h0, r_addr[7:0], 1'b0 };
|
o_ram_bs <= r_addr[9:8];
|
o_ram_bs <= r_addr[9:8];
|
clocks_til_idle[2:0] <= 4;
|
clocks_til_idle[2:0] <= 4;
|
|
|
o_wb_stall <= 1'b0;
|
o_wb_stall <= 1'b0;
|
r_barrell_ack[(RDLY-1)] <= 1'b1;
|
r_barrell_ack[(RDLY-1)] <= 1'b1;
|
end else if ((pending)&&(r_we)
|
end else if ((pending)&&(r_we)
|
&&(bank_active[r_addr[9:8]][2])
|
&&(bank_active[r_addr[9:8]][2])
|
&&(r_bank_valid)
|
&&(r_bank_valid)
|
&&(clocks_til_idle[2:0] == 0))
|
&&(clocks_til_idle[2:0] == 0))
|
begin // Issue the write command
|
begin // Issue the write command
|
o_ram_cs_n <= 1'b0;
|
o_ram_cs_n <= 1'b0;
|
o_ram_ras_n <= 1'b1;
|
o_ram_ras_n <= 1'b1;
|
o_ram_cas_n <= 1'b0;
|
o_ram_cas_n <= 1'b0;
|
o_ram_we_n <= 1'b0;
|
o_ram_we_n <= 1'b0;
|
o_ram_addr <= { 4'h0, r_addr[7:0], 1'b0 };
|
o_ram_addr <= { 4'h0, r_addr[7:0], 1'b0 };
|
o_ram_bs <= r_addr[9:8];
|
o_ram_bs <= r_addr[9:8];
|
clocks_til_idle[2:0] <= 3'h1;
|
clocks_til_idle[2:0] <= 3'h1;
|
|
|
o_wb_stall <= 1'b0;
|
o_wb_stall <= 1'b0;
|
r_barrell_ack[1] <= 1'b1;
|
r_barrell_ack[1] <= 1'b1;
|
o_ram_data <= r_data[31:16];
|
// o_ram_data <= r_data[31:16];
|
//
|
//
|
o_ram_dmod <= `DMOD_PUTOUTPUT;
|
o_ram_dmod <= `DMOD_PUTOUTPUT;
|
nxt_dmod <= `DMOD_PUTOUTPUT;
|
nxt_dmod <= `DMOD_PUTOUTPUT;
|
end else if ((r_pending)&&(r_addr[7:0] >= 8'hf0)
|
end else if ((r_pending)&&(r_addr[7:0] >= 8'hf0)
|
&&(~fwd_bank_valid))
|
&&(~fwd_bank_valid))
|
begin
|
begin
|
// Do I need to close the next bank I'll need?
|
// Do I need to close the next bank I'll need?
|
if (bank_active[fwd_addr[9:8]][2:1]==2'b11)
|
if (bank_active[fwd_addr[9:8]][2:1]==2'b11)
|
begin // Need to close the bank first
|
begin // Need to close the bank first
|
o_ram_cs_n <= 1'b0;
|
o_ram_cs_n <= 1'b0;
|
o_ram_ras_n <= 1'b0;
|
o_ram_ras_n <= 1'b0;
|
o_ram_cas_n <= 1'b1;
|
o_ram_cas_n <= 1'b1;
|
o_ram_we_n <= 1'b0;
|
o_ram_we_n <= 1'b0;
|
o_ram_addr[10] <= 1'b0;
|
o_ram_addr[10] <= 1'b0;
|
o_ram_bs <= fwd_addr[9:8];
|
o_ram_bs <= fwd_addr[9:8];
|
bank_active[fwd_addr[9:8]][2] <= 1'b0;
|
bank_active[fwd_addr[9:8]][2] <= 1'b0;
|
end else if (bank_active[fwd_addr[9:8]]==3'b000)
|
end else if (bank_active[fwd_addr[9:8]]==3'b000)
|
begin
|
begin
|
// Need to (pre-)activate the next bank
|
// Need to (pre-)activate the next bank
|
o_ram_cs_n <= 1'b0;
|
o_ram_cs_n <= 1'b0;
|
o_ram_ras_n <= 1'b0;
|
o_ram_ras_n <= 1'b0;
|
o_ram_cas_n <= 1'b1;
|
o_ram_cas_n <= 1'b1;
|
o_ram_we_n <= 1'b1;
|
o_ram_we_n <= 1'b1;
|
o_ram_addr <= fwd_addr[22:10];
|
o_ram_addr <= fwd_addr[22:10];
|
o_ram_bs <= fwd_addr[9:8];
|
o_ram_bs <= fwd_addr[9:8];
|
// clocks_til_idle[3:0] <= 1;
|
// clocks_til_idle[3:0] <= 1;
|
bank_active[fwd_addr[9:8]] <= 3'h4;
|
bank_active[fwd_addr[9:8]] <= 3'h4;
|
bank_row[fwd_addr[9:8]] <= fwd_addr[22:10];
|
bank_row[fwd_addr[9:8]] <= fwd_addr[22:10];
|
end
|
end
|
end
|
end
|
end else if (r_state == `RAM_POWER_UP)
|
end else if (r_state == `RAM_POWER_UP)
|
begin
|
begin
|
// All signals must be held in NOOP state during powerup
|
// All signals must be held in NOOP state during powerup
|
o_ram_dqm <= 2'b11;
|
o_ram_dqm <= 2'b11;
|
// o_ram_cke <= 1'b1;
|
// o_ram_cke <= 1'b1;
|
o_ram_cs_n <= 1'b0;
|
o_ram_cs_n <= 1'b0;
|
o_ram_ras_n <= 1'b1;
|
o_ram_ras_n <= 1'b1;
|
o_ram_cas_n <= 1'b1;
|
o_ram_cas_n <= 1'b1;
|
o_ram_we_n <= 1'b1;
|
o_ram_we_n <= 1'b1;
|
o_ram_dmod <= `DMOD_GETINPUT;
|
o_ram_dmod <= `DMOD_GETINPUT;
|
if (clocks_til_idle == 0)
|
if (clocks_til_idle == 0)
|
begin
|
begin
|
r_state <= `RAM_INITIAL_REFRESH;
|
r_state <= `RAM_INITIAL_REFRESH;
|
clocks_til_idle[3:0] <= 4'ha;
|
clocks_til_idle[3:0] <= 4'ha;
|
o_ram_cs_n <= 1'b0;
|
o_ram_cs_n <= 1'b0;
|
o_ram_ras_n <= 1'b0;
|
o_ram_ras_n <= 1'b0;
|
o_ram_cas_n <= 1'b1;
|
o_ram_cas_n <= 1'b1;
|
o_ram_we_n <= 1'b0;
|
o_ram_we_n <= 1'b0;
|
o_ram_addr[10] <= 1'b1;
|
o_ram_addr[10] <= 1'b1;
|
end else
|
end else
|
clocks_til_idle <= clocks_til_idle - 16'h01;
|
clocks_til_idle <= clocks_til_idle - 16'h01;
|
|
|
o_wb_stall <= 1'b1;
|
o_wb_stall <= 1'b1;
|
r_barrell_ack[(RDLY-1):0] <= 0;
|
r_barrell_ack[(RDLY-1):0] <= 0;
|
end else if (r_state == `RAM_INITIAL_REFRESH)
|
end else if (r_state == `RAM_INITIAL_REFRESH)
|
begin
|
begin
|
//
|
//
|
o_ram_cs_n <= 1'b0;
|
o_ram_cs_n <= 1'b0;
|
o_ram_ras_n <= 1'b0;
|
o_ram_ras_n <= 1'b0;
|
o_ram_cas_n <= 1'b0;
|
o_ram_cas_n <= 1'b0;
|
o_ram_we_n <= 1'b1;
|
o_ram_we_n <= 1'b1;
|
o_ram_dmod <= `DMOD_GETINPUT;
|
o_ram_dmod <= `DMOD_GETINPUT;
|
o_ram_addr <= { 3'b000, 1'b0, 2'b00, 3'b010, 1'b0, 3'b001 };
|
o_ram_addr <= { 3'b000, 1'b0, 2'b00, 3'b010, 1'b0, 3'b001 };
|
if (clocks_til_idle[3:0] == 4'h0)
|
if (clocks_til_idle[3:0] == 4'h0)
|
begin
|
begin
|
r_state <= `RAM_SET_MODE;
|
r_state <= `RAM_SET_MODE;
|
o_ram_we_n <= 1'b0;
|
o_ram_we_n <= 1'b0;
|
clocks_til_idle[3:0] <= 4'h2;
|
clocks_til_idle[3:0] <= 4'h2;
|
end else
|
end else
|
clocks_til_idle[3:0] <= clocks_til_idle[3:0] - 4'h1;
|
clocks_til_idle[3:0] <= clocks_til_idle[3:0] - 4'h1;
|
|
|
o_wb_stall <= 1'b1;
|
o_wb_stall <= 1'b1;
|
r_barrell_ack[(RDLY-1):0] <= 0;
|
r_barrell_ack[(RDLY-1):0] <= 0;
|
end else if (r_state == `RAM_SET_MODE)
|
end else if (r_state == `RAM_SET_MODE)
|
begin
|
begin
|
// Set mode cycle
|
// Set mode cycle
|
o_ram_cs_n <= 1'b1;
|
o_ram_cs_n <= 1'b1;
|
o_ram_ras_n <= 1'b0;
|
o_ram_ras_n <= 1'b0;
|
o_ram_cas_n <= 1'b0;
|
o_ram_cas_n <= 1'b0;
|
o_ram_we_n <= 1'b0;
|
o_ram_we_n <= 1'b0;
|
o_ram_dmod <= `DMOD_GETINPUT;
|
o_ram_dmod <= `DMOD_GETINPUT;
|
|
|
if (clocks_til_idle[3:0] == 4'h0)
|
if (clocks_til_idle[3:0] == 4'h0)
|
r_state <= `RAM_OPERATIONAL;
|
r_state <= `RAM_OPERATIONAL;
|
else
|
else
|
clocks_til_idle[3:0] <= clocks_til_idle[3:0]-4'h1;
|
clocks_til_idle[3:0] <= clocks_til_idle[3:0]-4'h1;
|
|
|
o_wb_stall <= 1'b1;
|
o_wb_stall <= 1'b1;
|
r_barrell_ack[(RDLY-1):0] <= 0;
|
r_barrell_ack[(RDLY-1):0] <= 0;
|
end
|
end
|
|
|
|
always @(posedge i_clk)
|
|
if (nxt_dmod)
|
|
o_ram_data <= r_data[15:0];
|
|
else
|
|
o_ram_data <= r_data[31:16];
|
|
|
`ifdef VERILATOR
|
`ifdef VERILATOR
|
// While I hate to build something that works one way under Verilator
|
// While I hate to build something that works one way under Verilator
|
// and another way in practice, this really isn't that. The problem
|
// and another way in practice, this really isn't that. The problem
|
// \/erilator is having is resolved in toplevel.v---one file that
|
// \/erilator is having is resolved in toplevel.v---one file that
|
// \/erilator doesn't implement. In toplevel.v, there's not only a
|
// \/erilator doesn't implement. In toplevel.v, there's not only a
|
// single clocked latch but two taking place. Here, we replicate one
|
// single clocked latch but two taking place. Here, we replicate one
|
// of those. The second takes place (somehow) within the sdramsim.cpp
|
// of those. The second takes place (somehow) within the sdramsim.cpp
|
// file.
|
// file.
|
reg [15:0] ram_data, last_ram_data;
|
reg [15:0] ram_data, last_ram_data;
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
ram_data <= i_ram_data;
|
ram_data <= i_ram_data;
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
last_ram_data <= ram_data;
|
last_ram_data <= ram_data;
|
`else
|
`else
|
reg [15:0] last_ram_data;
|
reg [15:0] last_ram_data;
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
last_ram_data <= i_ram_data;
|
last_ram_data <= i_ram_data;
|
`endif
|
`endif
|
assign o_wb_ack = r_barrell_ack[0];
|
assign o_wb_ack = r_barrell_ack[0];
|
assign o_wb_data = { last_ram_data, i_ram_data };
|
assign o_wb_data = { last_ram_data, i_ram_data };
|
|
|
//
|
//
|
// The following outputs are not necessary for the functionality of
|
// The following outputs are not necessary for the functionality of
|
// the SDRAM, but they can be used to feed an external "scope" to
|
// the SDRAM, but they can be used to feed an external "scope" to
|
// get an idea of what the internals of this SDRAM are doing.
|
// get an idea of what the internals of this SDRAM are doing.
|
//
|
//
|
// Just be aware of the r_we: it is set based upon the currently pending
|
// Just be aware of the r_we: it is set based upon the currently pending
|
// transaction, or (if none is pending) based upon the last transaction.
|
// transaction, or (if none is pending) based upon the last transaction.
|
// If you want to capture the first value "written" to the device,
|
// If you want to capture the first value "written" to the device,
|
// you'll need to write a nothing value to the device to set r_we.
|
// you'll need to write a nothing value to the device to set r_we.
|
// The first value "written" to the device can be caught in the next
|
// The first value "written" to the device can be caught in the next
|
// interaction after that.
|
// interaction after that.
|
//
|
//
|
assign o_debug = { i_wb_cyc, i_wb_stb, i_wb_we, o_wb_ack, o_wb_stall,
|
reg trigger;
|
o_ram_cs_n, o_ram_ras_n, o_ram_cas_n, o_ram_we_n, o_ram_bs,
|
always @(posedge i_clk)
|
o_ram_dmod, r_pending,
|
trigger <= ((o_wb_data[15:0]==o_wb_data[31:16])
|
// 13 of 32
|
&&(o_wb_ack)&&(~i_wb_we));
|
o_ram_addr[10:0], // 11 more
|
|
(r_we) ? { i_wb_data[23:20], i_wb_data[3:0] }
|
|
|
assign o_debug = { i_wb_cyc, i_wb_stb, i_wb_we, o_wb_ack, o_wb_stall, // 5
|
|
o_ram_cs_n, o_ram_ras_n, o_ram_cas_n, o_ram_we_n, o_ram_bs,//6
|
|
o_ram_dmod, r_pending, // 2
|
|
trigger, // 1
|
|
o_ram_addr[9:0], // 10 more
|
|
(r_we) ? { o_ram_data[7:0] } // 8 values
|
: { o_wb_data[23:20], o_wb_data[3:0] }
|
: { o_wb_data[23:20], o_wb_data[3:0] }
|
// i_ram_data[7:0]
|
// i_ram_data[7:0]
|
};
|
};
|
endmodule
|
endmodule
|
|
|