OpenCores
URL https://opencores.org/ocsvn/xulalx25soc/xulalx25soc/trunk

Subversion Repositories xulalx25soc

[/] [xulalx25soc/] [trunk/] [sw/] [ziprun.cpp] - Diff between revs 30 and 53

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 30 Rev 53
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
//
//
// Filename:    ziprun.cpp
// Filename:    ziprun.cpp
//
//
// Project:     XuLA2 board
// Project:     XuLA2 board
//
//
// Purpose:     To load a program for the ZipCPU into memory.
// Purpose:     To load a program for the ZipCPU into memory.
//
//
//      Steps:
//      Steps:
//              1. Halt and reset the CPU
//              1. Halt and reset the CPU
//              2. Load memory
//              2. Load memory
//              3. Clear the cache
//              3. Clear the cache
//              4. Clear any registers
//              4. Clear any registers
//              5. Set the PC to point to the FPGA local memory
//              5. Set the PC to point to the FPGA local memory
//      THIS DOES NOT START THE PROGRAM!!  The CPU is left in the halt state.
//      THIS DOES NOT START THE PROGRAM!!  The CPU is left in the halt state.
//      To actually start the program, execute a ./wbregs cpu 0.  (Actually,
//      To actually start the program, execute a ./wbregs cpu 0.  (Actually,
//      any value between 0x0 and 0x1f will work, the difference being what
//      any value between 0x0 and 0x1f will work, the difference being what
//      register you will be able to inspect while the CPU is running.)
//      register you will be able to inspect while the CPU is running.)
//
//
//
//
// Creator:     Dan Gisselquist, Ph.D.
// Creator:     Dan Gisselquist, Ph.D.
//              Gisselquist Technology, LLC
//              Gisselquist Technology, LLC
//
//
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
//
//
// Copyright (C) 2015, Gisselquist Technology, LLC
// Copyright (C) 2015, Gisselquist Technology, LLC
//
//
// This program is free software (firmware): you can redistribute it and/or
// This program is free software (firmware): you can redistribute it and/or
// modify it under the terms of  the GNU General Public License as published
// modify it under the terms of  the GNU General Public License as published
// by the Free Software Foundation, either version 3 of the License, or (at
// by the Free Software Foundation, either version 3 of the License, or (at
// your option) any later version.
// your option) any later version.
//
//
// This program is distributed in the hope that it will be useful, but WITHOUT
// This program is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
// FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
// FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
// for more details.
// for more details.
//
//
// License:     GPL, v3, as defined and found on www.gnu.org,
// License:     GPL, v3, as defined and found on www.gnu.org,
//              http://www.gnu.org/licenses/gpl.html
//              http://www.gnu.org/licenses/gpl.html
//
//
//
//
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
//
//
//
//
//
//
#include <stdio.h>
#include <stdio.h>
#include <stdlib.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <fcntl.h>
#include <unistd.h>
#include <unistd.h>
#include <strings.h>
#include <strings.h>
#include <ctype.h>
#include <ctype.h>
#include <string.h>
#include <string.h>
#include <signal.h>
#include <signal.h>
#include <assert.h>
#include <assert.h>
 
 
#include "usbi.h"
#include "usbi.h"
#include "port.h"
#include "port.h"
#include "regdefs.h"
#include "regdefs.h"
#include "flashdrvr.h"
#include "flashdrvr.h"
 
 
bool    iself(const char *fname) {
bool    iself(const char *fname) {
        FILE    *fp;
        FILE    *fp;
        bool    ret = true;
        bool    ret = true;
        fp = fopen(fname, "rb");
        fp = fopen(fname, "rb");
 
 
        if (!fp)        return false;
        if (!fp)        return false;
        if (0x7f != fgetc(fp))  ret = false;
        if (0x7f != fgetc(fp))  ret = false;
        if ('E'  != fgetc(fp))  ret = false;
        if ('E'  != fgetc(fp))  ret = false;
        if ('L'  != fgetc(fp))  ret = false;
        if ('L'  != fgetc(fp))  ret = false;
        if ('F'  != fgetc(fp))  ret = false;
        if ('F'  != fgetc(fp))  ret = false;
        fclose(fp);
        fclose(fp);
        return  ret;
        return  ret;
}
}
 
 
long    fgetwords(FILE *fp) {
long    fgetwords(FILE *fp) {
        // Return the number of words in the current file, and return the 
        // Return the number of words in the current file, and return the 
        // file as though it had never been adjusted
        // file as though it had never been adjusted
        long    fpos, flen;
        long    fpos, flen;
        fpos = ftell(fp);
        fpos = ftell(fp);
        if (0 != fseek(fp, 0l, SEEK_END)) {
        if (0 != fseek(fp, 0l, SEEK_END)) {
                fprintf(stderr, "ERR: Could not determine file size\n");
                fprintf(stderr, "ERR: Could not determine file size\n");
                perror("O/S Err:");
                perror("O/S Err:");
                exit(-2);
                exit(-2);
        } flen = ftell(fp);
        } flen = ftell(fp);
        if (0 != fseek(fp, fpos, SEEK_SET)) {
        if (0 != fseek(fp, fpos, SEEK_SET)) {
                fprintf(stderr, "ERR: Could not seek on file\n");
                fprintf(stderr, "ERR: Could not seek on file\n");
                perror("O/S Err:");
                perror("O/S Err:");
                exit(-2);
                exit(-2);
        } flen /= sizeof(FPGA::BUSW);
        } flen /= sizeof(FPGA::BUSW);
        return flen;
        return flen;
}
}
 
 
FPGA    *m_fpga;
FPGA    *m_fpga;
class   SECTION {
class   SECTION {
public:
public:
        unsigned        m_start, m_len;
        unsigned        m_start, m_len;
        FPGA::BUSW      m_data[1];
        FPGA::BUSW      m_data[1];
};
};
 
 
SECTION **singlesection(int nwords) {
SECTION **singlesection(int nwords) {
        fprintf(stderr, "NWORDS = %d\n", nwords);
        fprintf(stderr, "NWORDS = %d\n", nwords);
        size_t  sz = (2*(sizeof(SECTION)+sizeof(SECTION *))
        size_t  sz = (2*(sizeof(SECTION)+sizeof(SECTION *))
                +(nwords-1)*(sizeof(FPGA::BUSW)));
                +(nwords-1)*(sizeof(FPGA::BUSW)));
        char    *d = (char *)malloc(sz);
        char    *d = (char *)malloc(sz);
        SECTION **r = (SECTION **)d;
        SECTION **r = (SECTION **)d;
        memset(r, 0, sz);
        memset(r, 0, sz);
        r[0] = (SECTION *)(&d[2*sizeof(SECTION *)]);
        r[0] = (SECTION *)(&d[2*sizeof(SECTION *)]);
        r[0]->m_len   = nwords;
        r[0]->m_len   = nwords;
        r[1] = (SECTION *)(&r[0]->m_data[r[0]->m_len]);
        r[1] = (SECTION *)(&r[0]->m_data[r[0]->m_len]);
        r[0]->m_start = 0;
        r[0]->m_start = 0;
        r[1]->m_start = 0;
        r[1]->m_start = 0;
        r[1]->m_len   = 0;
        r[1]->m_len   = 0;
 
 
        return r;
        return r;
}
}
 
 
SECTION **rawsection(const char *fname) {
SECTION **rawsection(const char *fname) {
        SECTION         **secpp, *secp;
        SECTION         **secpp, *secp;
        unsigned        num_words;
        unsigned        num_words;
        FILE            *fp;
        FILE            *fp;
        int             nr;
        int             nr;
 
 
        fp = fopen(fname, "r");
        fp = fopen(fname, "r");
        if (fp == NULL) {
        if (fp == NULL) {
                fprintf(stderr, "Could not open: %s\n", fname);
                fprintf(stderr, "Could not open: %s\n", fname);
                exit(-1);
                exit(-1);
        }
        }
 
 
        if ((num_words=fgetwords(fp)) > MEMWORDS) {
        if ((num_words=fgetwords(fp)) > MEMWORDS) {
                fprintf(stderr, "File overruns Block RAM\n");
                fprintf(stderr, "File overruns Block RAM\n");
                exit(-1);
                exit(-1);
        }
        }
        secpp = singlesection(num_words);
        secpp = singlesection(num_words);
        secp = secpp[0];
        secp = secpp[0];
        secp->m_start = RAMBASE;
        secp->m_start = RAMBASE;
        secp->m_len = num_words;
        secp->m_len = num_words;
        nr= fread(secp->m_data, sizeof(FPGA::BUSW), num_words, fp);
        nr= fread(secp->m_data, sizeof(FPGA::BUSW), num_words, fp);
        if (nr != (int)num_words) {
        if (nr != (int)num_words) {
                fprintf(stderr, "Could not read entire file\n");
                fprintf(stderr, "Could not read entire file\n");
                perror("O/S Err:");
                perror("O/S Err:");
                exit(-2);
                exit(-2);
        } assert(secpp[1]->m_len == 0);
        } assert(secpp[1]->m_len == 0);
 
 
        return secpp;
        return secpp;
}
}
 
 
unsigned        byteswap(unsigned n) {
unsigned        byteswap(unsigned n) {
        unsigned        r;
        unsigned        r;
 
 
        r = (n&0x0ff); n>>= 8;
        r = (n&0x0ff); n>>= 8;
        r = (r<<8) | (n&0x0ff); n>>= 8;
        r = (r<<8) | (n&0x0ff); n>>= 8;
        r = (r<<8) | (n&0x0ff); n>>= 8;
        r = (r<<8) | (n&0x0ff); n>>= 8;
        r = (r<<8) | (n&0x0ff); n>>= 8;
        r = (r<<8) | (n&0x0ff); n>>= 8;
 
 
        return r;
        return r;
}
}
 
 
// #define      CHEAP_AND_EASY
// #define      CHEAP_AND_EASY
#ifdef  CHEAP_AND_EASY
#ifdef  CHEAP_AND_EASY
#else
#else
#include <libelf.h>
#include <libelf.h>
#include <gelf.h>
#include <gelf.h>
 
 
void    elfread(const char *fname, unsigned &entry, SECTION **&sections) {
void    elfread(const char *fname, unsigned &entry, SECTION **&sections) {
        Elf     *e;
        Elf     *e;
        int     fd, i;
        int     fd, i;
        size_t  n;
        size_t  n;
        char    *id;
        char    *id;
        Elf_Kind        ek;
        Elf_Kind        ek;
        GElf_Ehdr       ehdr;
        GElf_Ehdr       ehdr;
        GElf_Phdr       phdr;
        GElf_Phdr       phdr;
        const   bool    dbg = false;
        const   bool    dbg = false;
 
 
        if (elf_version(EV_CURRENT) == EV_NONE) {
        if (elf_version(EV_CURRENT) == EV_NONE) {
                fprintf(stderr, "ELF library initialization err, %s\n", elf_errmsg(-1));
                fprintf(stderr, "ELF library initialization err, %s\n", elf_errmsg(-1));
                perror("O/S Err:");
                perror("O/S Err:");
                exit(EXIT_FAILURE);
                exit(EXIT_FAILURE);
        } if ((fd = open(fname, O_RDONLY, 0)) < 0) {
        } if ((fd = open(fname, O_RDONLY, 0)) < 0) {
                fprintf(stderr, "Could not open %s\n", fname);
                fprintf(stderr, "Could not open %s\n", fname);
                perror("O/S Err:");
                perror("O/S Err:");
                exit(EXIT_FAILURE);
                exit(EXIT_FAILURE);
        } if ((e = elf_begin(fd, ELF_C_READ, NULL))==NULL) {
        } if ((e = elf_begin(fd, ELF_C_READ, NULL))==NULL) {
                fprintf(stderr, "Could not run elf_begin, %s\n", elf_errmsg(-1));
                fprintf(stderr, "Could not run elf_begin, %s\n", elf_errmsg(-1));
                exit(EXIT_FAILURE);
                exit(EXIT_FAILURE);
        }
        }
 
 
        ek = elf_kind(e);
        ek = elf_kind(e);
        if (ek == ELF_K_ELF) {
        if (ek == ELF_K_ELF) {
                ; // This is the kind of file we should expect
                ; // This is the kind of file we should expect
        } else if (ek == ELF_K_AR) {
        } else if (ek == ELF_K_AR) {
                fprintf(stderr, "Cannot run an archive!\n");
                fprintf(stderr, "Cannot run an archive!\n");
                exit(EXIT_FAILURE);
                exit(EXIT_FAILURE);
        } else if (ek == ELF_K_NONE) {
        } else if (ek == ELF_K_NONE) {
                ;
                ;
        } else {
        } else {
                fprintf(stderr, "Unexpected ELF file kind!\n");
                fprintf(stderr, "Unexpected ELF file kind!\n");
                exit(EXIT_FAILURE);
                exit(EXIT_FAILURE);
        }
        }
 
 
        if (gelf_getehdr(e, &ehdr) == NULL) {
        if (gelf_getehdr(e, &ehdr) == NULL) {
                fprintf(stderr, "getehdr() failed: %s\n", elf_errmsg(-1));
                fprintf(stderr, "getehdr() failed: %s\n", elf_errmsg(-1));
                exit(EXIT_FAILURE);
                exit(EXIT_FAILURE);
        } if ((i=gelf_getclass(e)) == ELFCLASSNONE) {
        } if ((i=gelf_getclass(e)) == ELFCLASSNONE) {
                fprintf(stderr, "getclass() failed: %s\n", elf_errmsg(-1));
                fprintf(stderr, "getclass() failed: %s\n", elf_errmsg(-1));
                exit(EXIT_FAILURE);
                exit(EXIT_FAILURE);
        } if ((id = elf_getident(e, NULL)) == NULL) {
        } if ((id = elf_getident(e, NULL)) == NULL) {
                fprintf(stderr, "getident() failed: %s\n", elf_errmsg(-1));
                fprintf(stderr, "getident() failed: %s\n", elf_errmsg(-1));
                exit(EXIT_FAILURE);
                exit(EXIT_FAILURE);
        } if (i != ELFCLASS32) {
        } if (i != ELFCLASS32) {
                fprintf(stderr, "This is a 64-bit ELF file, ZipCPU ELF files are all 32-bit\n");
                fprintf(stderr, "This is a 64-bit ELF file, ZipCPU ELF files are all 32-bit\n");
                exit(EXIT_FAILURE);
                exit(EXIT_FAILURE);
        }
        }
 
 
        if (dbg) {
        if (dbg) {
        printf("    %-20s 0x%jx\n", "e_type", (uintmax_t)ehdr.e_type);
        printf("    %-20s 0x%jx\n", "e_type", (uintmax_t)ehdr.e_type);
        printf("    %-20s 0x%jx\n", "e_machine", (uintmax_t)ehdr.e_machine);
        printf("    %-20s 0x%jx\n", "e_machine", (uintmax_t)ehdr.e_machine);
        printf("    %-20s 0x%jx\n", "e_version", (uintmax_t)ehdr.e_version);
        printf("    %-20s 0x%jx\n", "e_version", (uintmax_t)ehdr.e_version);
        printf("    %-20s 0x%jx\n", "e_entry", (uintmax_t)ehdr.e_entry);
        printf("    %-20s 0x%jx\n", "e_entry", (uintmax_t)ehdr.e_entry);
        printf("    %-20s 0x%jx\n", "e_phoff", (uintmax_t)ehdr.e_phoff);
        printf("    %-20s 0x%jx\n", "e_phoff", (uintmax_t)ehdr.e_phoff);
        printf("    %-20s 0x%jx\n", "e_shoff", (uintmax_t)ehdr.e_shoff);
        printf("    %-20s 0x%jx\n", "e_shoff", (uintmax_t)ehdr.e_shoff);
        printf("    %-20s 0x%jx\n", "e_flags", (uintmax_t)ehdr.e_flags);
        printf("    %-20s 0x%jx\n", "e_flags", (uintmax_t)ehdr.e_flags);
        printf("    %-20s 0x%jx\n", "e_ehsize", (uintmax_t)ehdr.e_ehsize);
        printf("    %-20s 0x%jx\n", "e_ehsize", (uintmax_t)ehdr.e_ehsize);
        printf("    %-20s 0x%jx\n", "e_phentsize", (uintmax_t)ehdr.e_phentsize);
        printf("    %-20s 0x%jx\n", "e_phentsize", (uintmax_t)ehdr.e_phentsize);
        printf("    %-20s 0x%jx\n", "e_shentsize", (uintmax_t)ehdr.e_shentsize);
        printf("    %-20s 0x%jx\n", "e_shentsize", (uintmax_t)ehdr.e_shentsize);
        printf("\n");
        printf("\n");
        }
        }
 
 
 
 
        // Check whether or not this is an ELF file for the ZipCPU ...
        // Check whether or not this is an ELF file for the ZipCPU ...
        if (ehdr.e_machine != 0x0dadd) {
        if (ehdr.e_machine != 0x0dadd) {
                fprintf(stderr, "This is not a ZipCPU ELF file\n");
                fprintf(stderr, "This is not a ZipCPU ELF file\n");
                exit(EXIT_FAILURE);
                exit(EXIT_FAILURE);
        }
        }
 
 
        // Get our entry address
        // Get our entry address
        entry = ehdr.e_entry;
        entry = ehdr.e_entry;
 
 
 
 
        // Now, let's go look at the program header
        // Now, let's go look at the program header
        if (elf_getphdrnum(e, &n) != 0) {
        if (elf_getphdrnum(e, &n) != 0) {
                fprintf(stderr, "elf_getphdrnum() failed: %s\n", elf_errmsg(-1));
                fprintf(stderr, "elf_getphdrnum() failed: %s\n", elf_errmsg(-1));
                exit(EXIT_FAILURE);
                exit(EXIT_FAILURE);
        }
        }
 
 
        unsigned total_octets = 0, current_offset=0, current_section=0;
        unsigned total_octets = 0, current_offset=0, current_section=0;
        for(i=0; i<(int)n; i++) {
        for(i=0; i<(int)n; i++) {
                total_octets += sizeof(SECTION *)+sizeof(SECTION);
                total_octets += sizeof(SECTION *)+sizeof(SECTION);
 
 
                if (gelf_getphdr(e, i, &phdr) != &phdr) {
                if (gelf_getphdr(e, i, &phdr) != &phdr) {
                        fprintf(stderr, "getphdr() failed: %s\n", elf_errmsg(-1));
                        fprintf(stderr, "getphdr() failed: %s\n", elf_errmsg(-1));
                        exit(EXIT_FAILURE);
                        exit(EXIT_FAILURE);
                }
                }
 
 
                if (dbg) {
                if (dbg) {
                printf("    %-20s 0x%x\n", "p_type",   phdr.p_type);
                printf("    %-20s 0x%x\n", "p_type",   phdr.p_type);
                printf("    %-20s 0x%jx\n", "p_offset", phdr.p_offset);
                printf("    %-20s 0x%jx\n", "p_offset", phdr.p_offset);
                printf("    %-20s 0x%jx\n", "p_vaddr",  phdr.p_vaddr);
                printf("    %-20s 0x%jx\n", "p_vaddr",  phdr.p_vaddr);
                printf("    %-20s 0x%jx\n", "p_paddr",  phdr.p_paddr);
                printf("    %-20s 0x%jx\n", "p_paddr",  phdr.p_paddr);
                printf("    %-20s 0x%jx\n", "p_filesz", phdr.p_filesz);
                printf("    %-20s 0x%jx\n", "p_filesz", phdr.p_filesz);
                printf("    %-20s 0x%jx\n", "p_memsz",  phdr.p_memsz);
                printf("    %-20s 0x%jx\n", "p_memsz",  phdr.p_memsz);
                printf("    %-20s 0x%x [", "p_flags",  phdr.p_flags);
                printf("    %-20s 0x%x [", "p_flags",  phdr.p_flags);
 
 
                if (phdr.p_flags & PF_X)        printf(" Execute");
                if (phdr.p_flags & PF_X)        printf(" Execute");
                if (phdr.p_flags & PF_R)        printf(" Read");
                if (phdr.p_flags & PF_R)        printf(" Read");
                if (phdr.p_flags & PF_W)        printf(" Write");
                if (phdr.p_flags & PF_W)        printf(" Write");
                printf("]\n");
                printf("]\n");
                printf("    %-20s 0x%jx\n", "p_align", phdr.p_align);
                printf("    %-20s 0x%jx\n", "p_align", phdr.p_align);
                }
                }
 
 
                total_octets += phdr.p_memsz;
                total_octets += phdr.p_memsz;
        }
        }
 
 
        char    *d = (char *)malloc(total_octets + sizeof(SECTION)+sizeof(SECTION *));
        char    *d = (char *)malloc(total_octets + sizeof(SECTION)+sizeof(SECTION *));
        memset(d, 0, total_octets);
        memset(d, 0, total_octets);
 
 
        SECTION **r = sections = (SECTION **)d;
        SECTION **r = sections = (SECTION **)d;
        current_offset = (n+1)*sizeof(SECTION *);
        current_offset = (n+1)*sizeof(SECTION *);
        current_section = 0;
        current_section = 0;
 
 
        for(i=0; i<(int)n; i++) {
        for(i=0; i<(int)n; i++) {
                r[i] = (SECTION *)(&d[current_offset]);
                r[i] = (SECTION *)(&d[current_offset]);
 
 
                if (gelf_getphdr(e, i, &phdr) != &phdr) {
                if (gelf_getphdr(e, i, &phdr) != &phdr) {
                        fprintf(stderr, "getphdr() failed: %s\n", elf_errmsg(-1));
                        fprintf(stderr, "getphdr() failed: %s\n", elf_errmsg(-1));
                        exit(EXIT_FAILURE);
                        exit(EXIT_FAILURE);
                }
                }
 
 
                if (dbg) {
                if (dbg) {
                printf("    %-20s 0x%jx\n", "p_offset", phdr.p_offset);
                printf("    %-20s 0x%jx\n", "p_offset", phdr.p_offset);
                printf("    %-20s 0x%jx\n", "p_vaddr",  phdr.p_vaddr);
                printf("    %-20s 0x%jx\n", "p_vaddr",  phdr.p_vaddr);
                printf("    %-20s 0x%jx\n", "p_paddr",  phdr.p_paddr);
                printf("    %-20s 0x%jx\n", "p_paddr",  phdr.p_paddr);
                printf("    %-20s 0x%jx\n", "p_filesz", phdr.p_filesz);
                printf("    %-20s 0x%jx\n", "p_filesz", phdr.p_filesz);
                printf("    %-20s 0x%jx\n", "p_memsz",  phdr.p_memsz);
                printf("    %-20s 0x%jx\n", "p_memsz",  phdr.p_memsz);
                printf("    %-20s 0x%x [", "p_flags",  phdr.p_flags);
                printf("    %-20s 0x%x [", "p_flags",  phdr.p_flags);
 
 
                if (phdr.p_flags & PF_X)        printf(" Execute");
                if (phdr.p_flags & PF_X)        printf(" Execute");
                if (phdr.p_flags & PF_R)        printf(" Read");
                if (phdr.p_flags & PF_R)        printf(" Read");
                if (phdr.p_flags & PF_W)        printf(" Write");
                if (phdr.p_flags & PF_W)        printf(" Write");
                printf("]\n");
                printf("]\n");
 
 
                printf("    %-20s 0x%jx\n", "p_align", phdr.p_align);
                printf("    %-20s 0x%jx\n", "p_align", phdr.p_align);
                }
                }
 
 
                current_section++;
                current_section++;
 
 
                r[i]->m_start = phdr.p_vaddr;
                r[i]->m_start = phdr.p_vaddr;
                r[i]->m_len   = phdr.p_filesz/ sizeof(FPGA::BUSW);
                r[i]->m_len   = phdr.p_filesz/ sizeof(FPGA::BUSW);
 
 
                current_offset += phdr.p_memsz + sizeof(SECTION);
                current_offset += phdr.p_memsz + sizeof(SECTION);
 
 
                // Now, let's read in our section ...
                // Now, let's read in our section ...
                if (lseek(fd, phdr.p_offset, SEEK_SET) < 0) {
                if (lseek(fd, phdr.p_offset, SEEK_SET) < 0) {
                        fprintf(stderr, "Could not seek to file position %08lx\n", phdr.p_offset);
                        fprintf(stderr, "Could not seek to file position %08lx\n", phdr.p_offset);
                        perror("O/S Err:");
                        perror("O/S Err:");
                        exit(EXIT_FAILURE);
                        exit(EXIT_FAILURE);
                } if (phdr.p_filesz > phdr.p_memsz)
                } if (phdr.p_filesz > phdr.p_memsz)
                        phdr.p_filesz = 0;
                        phdr.p_filesz = 0;
                if (read(fd, r[i]->m_data, phdr.p_filesz) != (int)phdr.p_filesz) {
                if (read(fd, r[i]->m_data, phdr.p_filesz) != (int)phdr.p_filesz) {
                        fprintf(stderr, "Didnt read entire section\n");
                        fprintf(stderr, "Didnt read entire section\n");
                        perror("O/S Err:");
                        perror("O/S Err:");
                        exit(EXIT_FAILURE);
                        exit(EXIT_FAILURE);
                }
                }
 
 
                // Next, we need to byte swap it from big to little endian
                // Next, we need to byte swap it from big to little endian
                for(unsigned j=0; j<r[i]->m_len; j++)
                for(unsigned j=0; j<r[i]->m_len; j++)
                        r[i]->m_data[j] = byteswap(r[i]->m_data[j]);
                        r[i]->m_data[j] = byteswap(r[i]->m_data[j]);
 
 
                if (dbg) for(unsigned j=0; j<r[i]->m_len; j++)
                if (dbg) for(unsigned j=0; j<r[i]->m_len; j++)
                        fprintf(stderr, "ADR[%04x] = %08x\n", r[i]->m_start+j,
                        fprintf(stderr, "ADR[%04x] = %08x\n", r[i]->m_start+j,
                        r[i]->m_data[j]);
                        r[i]->m_data[j]);
        }
        }
 
 
        r[i] = (SECTION *)(&d[current_offset]);
        r[i] = (SECTION *)(&d[current_offset]);
        r[current_section]->m_start = 0;
        r[current_section]->m_start = 0;
        r[current_section]->m_len   = 0;
        r[current_section]->m_len   = 0;
 
 
        elf_end(e);
        elf_end(e);
        close(fd);
        close(fd);
}
}
#endif
#endif
 
 
void    usage(void) {
void    usage(void) {
        printf("USAGE: ziprun [-hmprux] <zip-program-file>\n");
        printf("USAGE: ziprun [-hmprux] <zip-program-file>\n");
        printf("\n"
        printf("\n"
"\t-h\tDisplay this usage statement\n"
"\t-h\tDisplay this usage statement\n"
"\t-m\tClear unused memory locations.  Note this only applies to SDRAM\n"
"\t-m\tClear unused memory locations.  Note this only applies to SDRAM\n"
"\t\t(if used) and block ram, not flash.\n"
"\t\t(if used) and block ram, not flash.\n"
"\t-p [PORT]\tConnect to the XuLA device across a network access\n"
"\t-p [PORT]\tConnect to the XuLA device across a network access\n"
"\t\tconnection using port PORT, rather than attempting a USB\n"
"\t\tconnection using port PORT, rather than attempting a USB\n"
"\t\tconnection.  If PORT is not given, %s:%d will be\n"
"\t\tconnection.  If PORT is not given, %s:%d will be\n"
"\t\tassumed as a default.\n"
"\t\tassumed as a default.\n"
"\t-u\tAccess the XuLA board via the USB connector [DEFAULT]\n"
"\t-u\tAccess the XuLA board via the USB connector [DEFAULT]\n"
"\t-x\tClear all of the ZipCPU registers to a known initial state\n\n",
"\t-x\tClear all of the ZipCPU registers to a known initial state\n\n",
        FPGAHOST,FPGAPORT);
        FPGAHOST,FPGAPORT);
}
}
 
 
int main(int argc, char **argv) {
int main(int argc, char **argv) {
        int             skp=0, port = FPGAPORT;
        int             skp=0, port = FPGAPORT;
        bool            use_usb = true, permit_raw_files = false;
        bool            use_usb = true, permit_raw_files = false;
        unsigned        entry = RAMBASE;
        unsigned        entry = RAMBASE;
        bool            clear_registers = false, clear_memory = false;
        bool            clear_registers = false, clear_memory = false;
        FLASHDRVR       *flash = NULL;
        FLASHDRVR       *flash = NULL;
 
 
        if (argc < 2) {
        if (argc < 2) {
                usage();
                usage();
                exit(EXIT_SUCCESS);
                exit(EXIT_SUCCESS);
        }
        }
 
 
        skp=1;
        skp=1;
        for(int argn=0; argn<argc-skp; argn++) {
        for(int argn=0; argn<argc-skp; argn++) {
                if (argv[argn+skp][0] == '-') {
                if (argv[argn+skp][0] == '-') {
                        switch(argv[argn+skp][1]) {
                        switch(argv[argn+skp][1]) {
                        case 'h':
                        case 'h':
                                usage();
                                usage();
                                exit(EXIT_SUCCESS);
                                exit(EXIT_SUCCESS);
                        case 'm':
                        case 'm':
                                clear_memory = true;
                                clear_memory = true;
                                fprintf(stderr, "Clear memory feature not yet implemented\n");
                                fprintf(stderr, "Clear memory feature not yet implemented\n");
                                exit(EXIT_FAILURE);
                                exit(EXIT_FAILURE);
                                break;
                                break;
                        case 'p':
                        case 'p':
                                use_usb = false;
                                use_usb = false;
                                if (isdigit(argv[argn+skp][2]))
                                if (isdigit(argv[argn+skp][2]))
                                        port = atoi(&argv[argn+skp][2]);
                                        port = atoi(&argv[argn+skp][2]);
                                break;
                                break;
                        case 'r':
                        case 'r':
                                permit_raw_files = true;
                                permit_raw_files = true;
                                break;
                                break;
                        case 'u':
                        case 'u':
                                use_usb = true;
                                use_usb = true;
                                break;
                                break;
                        case 'x':
                        case 'x':
                                clear_registers = true;
                                clear_registers = true;
                                break;
                                break;
                        } skp++; argn--;
                        } skp++; argn--;
                } else
                } else
                        argv[argn] = argv[argn+skp];
                        argv[argn] = argv[argn+skp];
        } argc -= skp;
        } argc -= skp;
 
 
        if (use_usb)
        if (use_usb)
                m_fpga = new FPGA(new USBI());
                m_fpga = new FPGA(new USBI());
        else
        else
                m_fpga = new FPGA(new NETCOMMS(FPGAHOST, port));
                m_fpga = new FPGA(new NETCOMMS(FPGAHOST, port));
 
 
        if ((argc<=0)||(access(argv[0],R_OK)!=0)) {
        if ((argc<=0)||(access(argv[0],R_OK)!=0)) {
                printf("Usage: ziprun obj-file\n");
                printf("Usage: ziprun obj-file\n");
                printf("\n"
                printf("\n"
"\tziprun loads the object file into memory, resets the CPU, and leaves it\n"
"\tziprun loads the object file into memory, resets the CPU, and leaves it\n"
"\tin a halted state ready to start running the object file.\n");
"\tin a halted state ready to start running the object file.\n");
                exit(-1);
                exit(-1);
        } const char *codef = argv[0];
        } const char *codef = argv[0];
 
 
        printf("Halting the CPU\n");
        printf("Halting the CPU\n");
        m_fpga->usleep(5);
        m_fpga->usleep(5);
        m_fpga->writeio(R_ZIPCTRL, CPU_RESET|CPU_HALT);
        m_fpga->writeio(R_ZIPCTRL, CPU_RESET|CPU_HALT);
 
 
        try {
        try {
                SECTION **secpp = NULL, *secp;
                SECTION **secpp = NULL, *secp;
 
 
                if(iself(codef)) {
                if(iself(codef)) {
#ifndef CHEAP_AND_EASY
#ifndef CHEAP_AND_EASY
                        // zip-readelf will help with both of these ...
                        // zip-readelf will help with both of these ...
                        elfread(codef, entry, secpp);
                        elfread(codef, entry, secpp);
 
 
                        /*
                        /*
                        fprintf(stderr, "Secpp = %08lx\n", (unsigned long)secpp);
                        fprintf(stderr, "Secpp = %08lx\n", (unsigned long)secpp);
                        for(int i=0; secpp[i]->m_len; i++) {
                        for(int i=0; secpp[i]->m_len; i++) {
                                secp = secpp[i];
                                secp = secpp[i];
                                fprintf(stderr, "Sec[%2d] - %08x - %08x\n",
                                fprintf(stderr, "Sec[%2d] - %08x - %08x\n",
                                        i, secp->m_start,
                                        i, secp->m_start,
                                        secp->m_start+secp->m_len);
                                        secp->m_start+secp->m_len);
                        } */
                        } */
#else
#else
                        char    tmpbuf[TMP_MAX], cmdbuf[256];
                        char    tmpbuf[TMP_MAX], cmdbuf[256];
                        int     unused_fd;
                        int     unused_fd;
 
 
                        strcpy(tmpbuf, "/var/tmp/ziprunXXXX");
                        strcpy(tmpbuf, "/var/tmp/ziprunXXXX");
 
 
                        // Make a temporary file
                        // Make a temporary file
                        unused_fd = mkostemp(tmpbuf, O_CREAT|O_TRUNC|O_RDWR);
                        unused_fd = mkostemp(tmpbuf, O_CREAT|O_TRUNC|O_RDWR);
                        // Close it immediately, since we won't be writing to it
                        // Close it immediately, since we won't be writing to it
                        // ourselves
                        // ourselves
                        close(unused_fd);
                        close(unused_fd);
 
 
                        // Now we write to it, as part of calling objcopy
                        // Now we write to it, as part of calling objcopy
                        // 
                        // 
                        sprintf(cmdbuf, "zip-objcopy -S -O binary --reverse-bytes=4 %s %s", codef, tmpbuf);
                        sprintf(cmdbuf, "zip-objcopy -S -O binary --reverse-bytes=4 %s %s", codef, tmpbuf);
 
 
                        if (system(cmdbuf) != 0) {
                        if (system(cmdbuf) != 0) {
                                unlink(tmpbuf);
                                unlink(tmpbuf);
                                fprintf(stderr, "ZIPRUN: Could not comprehend ELF binary\n");
                                fprintf(stderr, "ZIPRUN: Could not comprehend ELF binary\n");
                                exit(-2);
                                exit(-2);
                        }
                        }
 
 
                        secpp = rawsection(tmpbuf);
                        secpp = rawsection(tmpbuf);
                        unlink(tmpbuf);
                        unlink(tmpbuf);
                        entry = RAMBASE;
                        entry = RAMBASE;
#endif
#endif
                } else if (permit_raw_files) {
                } else if (permit_raw_files) {
                        secpp = rawsection(codef);
                        secpp = rawsection(codef);
                        entry = RAMBASE;
                        entry = RAMBASE;
 
                } else {
 
                        fprintf(stderr, "ERR: %s is not in ELF format\n", codef);
 
                        exit(EXIT_FAILURE);
                }
                }
 
 
                // assert(secpp[1]->m_len = 0);
                // assert(secpp[1]->m_len = 0);
                for(int i=0; secpp[i]->m_len; i++) {
                for(int i=0; secpp[i]->m_len; i++) {
                        bool    valid = false;
                        bool    valid = false;
                        secp=  secpp[i];
                        secp=  secpp[i];
                        if ((secp->m_start >= RAMBASE)&&(secp->m_start+secp->m_len <= RAMBASE+MEMWORDS))
                        if ((secp->m_start >= RAMBASE)&&(secp->m_start+secp->m_len <= RAMBASE+MEMWORDS))
                                valid = true;
                                valid = true;
                        else if ((secp->m_start >= SDRAMBASE)&&(secp->m_start+secp->m_len <= SDRAMBASE+SDRAMWORDS))
                        else if ((secp->m_start >= SDRAMBASE)&&(secp->m_start+secp->m_len <= SDRAMBASE+SDRAMWORDS))
                                valid = true;
                                valid = true;
                        else if ((secp->m_start >= SPIFLASH)&&(secp->m_start+secp->m_len <= SPIFLASH+FLASHWORDS))
                        else if ((secp->m_start >= SPIFLASH)&&(secp->m_start+secp->m_len <= SPIFLASH+FLASHWORDS))
                                valid = true;
                                valid = true;
                        if (!valid) {
                        if (!valid) {
                                fprintf(stderr, "No such memory on board: 0x%08x - %08x\n",
                                fprintf(stderr, "No such memory on board: 0x%08x - %08x\n",
                                        secp->m_start, secp->m_start+secp->m_len);
                                        secp->m_start, secp->m_start+secp->m_len);
                                exit(-2);
                                exit(-2);
                        }
                        }
                }
                }
 
 
                if (clear_memory) for(int i=0; secpp[i]->m_len; i++) {
                if (clear_memory) for(int i=0; secpp[i]->m_len; i++) {
                        secp = secpp[i];
                        secp = secpp[i];
                        if ((secp->m_start >= RAMBASE)
                        if ((secp->m_start >= RAMBASE)
                                        &&(secp->m_start+secp->m_len
                                        &&(secp->m_start+secp->m_len
                                                        <= RAMBASE+MEMWORDS)) {
                                                        <= RAMBASE+MEMWORDS)) {
                                printf("Clearing Block ram\n");
                                printf("Clearing Block ram\n");
                                FPGA::BUSW      zbuf[128], a;
                                FPGA::BUSW      zbuf[128], a;
                                memset(zbuf, 0, 128*sizeof(FPGA::BUSW));
                                memset(zbuf, 0, 128*sizeof(FPGA::BUSW));
                                for(a=RAMBASE; a<RAMBASE+MEMWORDS; a+=128)
                                for(a=RAMBASE; a<RAMBASE+MEMWORDS; a+=128)
                                        m_fpga->writei(a, 128, zbuf);
                                        m_fpga->writei(a, 128, zbuf);
                                break;
                                break;
                        }
                        }
                } m_fpga->readio(R_VERSION); // Check for buserrors
                } m_fpga->readio(R_VERSION); // Check for buserrors
 
 
                if (clear_memory) for(int i=0; secpp[i]->m_len; i++) {
                if (clear_memory) for(int i=0; secpp[i]->m_len; i++) {
                        secp = secpp[i];
                        secp = secpp[i];
                        if ((secp->m_start >= SDRAMBASE)
                        if ((secp->m_start >= SDRAMBASE)
                                        &&(secp->m_start+secp->m_len
                                        &&(secp->m_start+secp->m_len
                                                <= SDRAMBASE+SDRAMWORDS)) {
                                                <= SDRAMBASE+SDRAMWORDS)) {
                                FPGA::BUSW      zbuf[128], a;
                                FPGA::BUSW      zbuf[128], a;
                                printf("Clearing SDRam\n");
                                printf("Clearing SDRam\n");
                                memset(zbuf, 0, 128*sizeof(FPGA::BUSW));
                                memset(zbuf, 0, 128*sizeof(FPGA::BUSW));
                                for(a=SDRAMBASE; a<SDRAMBASE+SDRAMWORDS; a+=128)
                                for(a=SDRAMBASE; a<SDRAMBASE+SDRAMWORDS; a+=128)
                                        m_fpga->writei(a, 128, zbuf);
                                        m_fpga->writei(a, 128, zbuf);
                                break;
                                break;
                        }
                        }
                } m_fpga->readio(R_VERSION); // Check for buserrors
                } m_fpga->readio(R_VERSION); // Check for buserrors
 
 
                for(int i=0; secpp[i]->m_len; i++) {
                for(int i=0; secpp[i]->m_len; i++) {
                        bool    inflash=false;
                        bool    inflash=false;
 
 
                        secp = secpp[i];
                        secp = secpp[i];
                        if ((secp->m_start >= SPIFLASH)
                        if ((secp->m_start >= SPIFLASH)
                                        &&(secp->m_start+secp->m_len
                                        &&(secp->m_start+secp->m_len
                                                        <= SPIFLASH+FLASHWORDS))
                                                        <= SPIFLASH+FLASHWORDS))
                                inflash = true;
                                inflash = true;
                        if (inflash) {
                        if (inflash) {
                                if (!flash)
                                if (!flash)
                                        flash = new FLASHDRVR(m_fpga);
                                        flash = new FLASHDRVR(m_fpga);
                                flash->write(secp->m_start, secp->m_len, secp->m_data, true);
                                flash->write(secp->m_start, secp->m_len, secp->m_data, true);
                        } else
                        } else
                                m_fpga->writei(secp->m_start, secp->m_len, secp->m_data);
                                m_fpga->writei(secp->m_start, secp->m_len, secp->m_data);
                }
                }
                m_fpga->readio(R_ZIPCTRL); // Check for bus errors
                m_fpga->readio(R_ZIPCTRL); // Check for bus errors
 
 
                // Clear any buffers
                // Clear any buffers
                printf("Clearing the cache\n");
                printf("Clearing the cache\n");
                m_fpga->writeio(R_ZIPCTRL, CPU_RESET|CPU_HALT|CPU_CLRCACHE);
                m_fpga->writeio(R_ZIPCTRL, CPU_RESET|CPU_HALT|CPU_CLRCACHE);
                m_fpga->readio(R_VERSION);
                m_fpga->readio(R_VERSION);
 
 
                if (clear_registers) {
                if (clear_registers) {
                        printf("Clearing all registers to zero\n");
                        printf("Clearing all registers to zero\n");
                        // Clear all registers to zero
                        // Clear all registers to zero
                        for(int i=0; i<32; i++) {
                        for(int i=0; i<32; i++) {
                                m_fpga->writeio(R_ZIPCTRL, CPU_HALT|i);
                                m_fpga->writeio(R_ZIPCTRL, CPU_HALT|i);
                                m_fpga->writeio(R_ZIPDATA, 0);
                                m_fpga->writeio(R_ZIPDATA, 0);
                        }
                        }
                } m_fpga->readio(R_VERSION); // Check for bus errors
                } m_fpga->readio(R_VERSION); // Check for bus errors
 
 
                // Start in interrupt mode
                // Start in interrupt mode
                m_fpga->writeio(R_ZIPCTRL, CPU_HALT|CPU_sCC);
                m_fpga->writeio(R_ZIPCTRL, CPU_HALT|CPU_sCC);
                m_fpga->writeio(R_ZIPDATA, 0x000);
                m_fpga->writeio(R_ZIPDATA, 0x000);
 
 
                // Set our entry point into our code
                // Set our entry point into our code
                m_fpga->writeio(R_ZIPCTRL, CPU_HALT|CPU_sPC);
                m_fpga->writeio(R_ZIPCTRL, CPU_HALT|CPU_sPC);
                m_fpga->writeio(R_ZIPDATA, entry);
                m_fpga->writeio(R_ZIPDATA, entry);
 
 
                printf("The CPU should be fully loaded, you may now start\n");
                printf("The CPU should be fully loaded, you may now start\n");
                printf("it.  To start the CPU, type wbregs cpu 0\n");
                printf("it.  To start the CPU, type wbregs cpu 0\n");
        } catch(BUSERR a) {
        } catch(BUSERR a) {
                fprintf(stderr, "XULA-BUS error\n");
                fprintf(stderr, "XULA-BUS error\n");
                m_fpga->writeio(R_ZIPCTRL, CPU_RESET|CPU_HALT|CPU_CLRCACHE);
                m_fpga->writeio(R_ZIPCTRL, CPU_RESET|CPU_HALT|CPU_CLRCACHE);
                exit(-2);
                exit(-2);
        }
        }
 
 
        delete  m_fpga;
        delete  m_fpga;
}
}
 
 
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.