////////////////////////////////////////////////////////////////////////////////
|
////////////////////////////////////////////////////////////////////////////////
|
//
|
//
|
//
|
//
|
// Filename: wbdmac.v
|
// Filename: wbdmac.v
|
//
|
//
|
// Project: Zip CPU -- a small, lightweight, RISC CPU soft core
|
// Project: Zip CPU -- a small, lightweight, RISC CPU soft core
|
//
|
//
|
// Purpose: Wishbone DMA controller
|
// Purpose: Wishbone DMA controller
|
//
|
//
|
// This module is controllable via the wishbone, and moves values from
|
// This module is controllable via the wishbone, and moves values from
|
// one location in the wishbone address space to another. The amount of
|
// one location in the wishbone address space to another. The amount of
|
// memory moved at any given time can be up to 4kB, or equivalently 1kW.
|
// memory moved at any given time can be up to 4kB, or equivalently 1kW.
|
// Four registers control this DMA controller: a control/status register,
|
// Four registers control this DMA controller: a control/status register,
|
// a length register, a source WB address and a destination WB address.
|
// a length register, a source WB address and a destination WB address.
|
// These register may be read at any time, but they may only be written
|
// These register may be read at any time, but they may only be written
|
// to when the controller is idle.
|
// to when the controller is idle.
|
//
|
//
|
// The meanings of three of the setup registers should be self explanatory:
|
// The meanings of three of the setup registers should be self explanatory:
|
// - The length register controls the total number of words to
|
// - The length register controls the total number of words to
|
// transfer.
|
// transfer.
|
// - The source address register controls where the DMA controller
|
// - The source address register controls where the DMA controller
|
// reads from. This address may or may not be incremented
|
// reads from. This address may or may not be incremented
|
// after each read, depending upon the setting in the
|
// after each read, depending upon the setting in the
|
// control/status register.
|
// control/status register.
|
// - The destination address register, which controls where the DMA
|
// - The destination address register, which controls where the DMA
|
// controller writes to. This address may or may not be
|
// controller writes to. This address may or may not be
|
// incremented after each write, also depending upon the
|
// incremented after each write, also depending upon the
|
// setting in the control/status register.
|
// setting in the control/status register.
|
//
|
//
|
// It is the control/status register, at local address zero, that needs
|
// It is the control/status register, at local address zero, that needs
|
// more definition:
|
// more definition:
|
//
|
//
|
// Bits:
|
// Bits:
|
// 31 R Write protect If this is set to one, it means the
|
// 31 R Write protect If this is set to one, it means the
|
// write protect bit is set and the controller
|
// write protect bit is set and the controller
|
// is therefore idle. This bit will be set upon
|
// is therefore idle. This bit will be set upon
|
// completing any transfer.
|
// completing any transfer.
|
// 30 R Error. The controller stopped mid-transfer
|
// 30 R Error. The controller stopped mid-transfer
|
// after receiving a bus error.
|
// after receiving a bus error.
|
// 29 R/W inc_s_n If set to one, the source address
|
// 29 R/W inc_s_n If set to one, the source address
|
// will not increment from one read to the next.
|
// will not increment from one read to the next.
|
// 28 R/W inc_d_n If set to one, the destination address
|
// 28 R/W inc_d_n If set to one, the destination address
|
// will not increment from one write to the next.
|
// will not increment from one write to the next.
|
// 27 R Always 0
|
// 27 R Always 0
|
// 26..16 R nread Indicates how many words have been read,
|
// 26..16 R nread Indicates how many words have been read,
|
// and not necessarily written (yet). This
|
// and not necessarily written (yet). This
|
// combined with the cfg_len parameter should tell
|
// combined with the cfg_len parameter should tell
|
// exactly where the controller is at mid-transfer.
|
// exactly where the controller is at mid-transfer.
|
// 27..16 W WriteProtect When a 12'h3db is written to these
|
// 27..16 W WriteProtect When a 12'h3db is written to these
|
// bits, the write protect bit will be cleared.
|
// bits, the write protect bit will be cleared.
|
//
|
//
|
// 15 R/W on_dev_trigger When set to '1', the controller will
|
// 15 R/W on_dev_trigger When set to '1', the controller will
|
// wait for an external interrupt before starting.
|
// wait for an external interrupt before starting.
|
// 14..10 R/W device_id This determines which external interrupt
|
// 14..10 R/W device_id This determines which external interrupt
|
// will trigger a transfer.
|
// will trigger a transfer.
|
// 9..0 R/W transfer_len How many bytes to transfer at one time.
|
// 9..0 R/W transfer_len How many bytes to transfer at one time.
|
// The minimum transfer length is one, while zero
|
// The minimum transfer length is one, while zero
|
// is mapped to a transfer length of 1kW.
|
// is mapped to a transfer length of 1kW.
|
//
|
//
|
//
|
//
|
// To use this, follow this checklist:
|
// To use this, follow this checklist:
|
// 1. Wait for any prior DMA operation to complete
|
// 1. Wait for any prior DMA operation to complete
|
// (Read address 0, wait 'till either top bit is set or cfg_len==0)
|
// (Read address 0, wait 'till either top bit is set or cfg_len==0)
|
// 2. Write values into length, source and destination address.
|
// 2. Write values into length, source and destination address.
|
// (writei(3, &vals) should be sufficient for this.)
|
// (writei(3, &vals) should be sufficient for this.)
|
// 3. Enable the DMAC interrupt in whatever interrupt controller is present
|
// 3. Enable the DMAC interrupt in whatever interrupt controller is present
|
// on the system.
|
// on the system.
|
// 4. Write the final start command to the setup/control/status register:
|
// 4. Write the final start command to the setup/control/status register:
|
// Set inc_s_n, inc_d_n, on_dev_trigger, dev_trigger,
|
// Set inc_s_n, inc_d_n, on_dev_trigger, dev_trigger,
|
// appropriately for your task
|
// appropriately for your task
|
// Write 12'h3db to the upper word.
|
// Write 12'h3db to the upper word.
|
// Set the lower word to either all zeros, or a smaller transfer
|
// Set the lower word to either all zeros, or a smaller transfer
|
// length if desired.
|
// length if desired.
|
// 5. wait() for the interrupt and the operation to complete.
|
// 5. wait() for the interrupt and the operation to complete.
|
// Prior to completion, number of items successfully transferred
|
// Prior to completion, number of items successfully transferred
|
// be read from the length register. If the internal buffer is
|
// be read from the length register. If the internal buffer is
|
// being used, then you can read how much has been read into that
|
// being used, then you can read how much has been read into that
|
// buffer by reading from bits 25..16 of this control/status
|
// buffer by reading from bits 25..16 of this control/status
|
// register.
|
// register.
|
//
|
//
|
// Creator: Dan Gisselquist
|
// Creator: Dan Gisselquist
|
// Gisselquist Tecnology, LLC
|
// Gisselquist Technology, LLC
|
//
|
//
|
// Copyright: 2015
|
// Copyright: 2015
|
//
|
//
|
//
|
//
|
////////////////////////////////////////////////////////////////////////////////
|
////////////////////////////////////////////////////////////////////////////////
|
//
|
//
|
// Copyright (C) 2015, Gisselquist Technology, LLC
|
// Copyright (C) 2015, Gisselquist Technology, LLC
|
//
|
//
|
// This program is free software (firmware): you can redistribute it and/or
|
// This program is free software (firmware): you can redistribute it and/or
|
// modify it under the terms of the GNU General Public License as published
|
// modify it under the terms of the GNU General Public License as published
|
// by the Free Software Foundation, either version 3 of the License, or (at
|
// by the Free Software Foundation, either version 3 of the License, or (at
|
// your option) any later version.
|
// your option) any later version.
|
//
|
//
|
// This program is distributed in the hope that it will be useful, but WITHOUT
|
// This program is distributed in the hope that it will be useful, but WITHOUT
|
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
|
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
|
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
// for more details.
|
// for more details.
|
//
|
//
|
// License: GPL, v3, as defined and found on www.gnu.org,
|
// License: GPL, v3, as defined and found on www.gnu.org,
|
// http://www.gnu.org/licenses/gpl.html
|
// http://www.gnu.org/licenses/gpl.html
|
//
|
//
|
//
|
//
|
///////////////////////////////////////////////////////////////////////////
|
///////////////////////////////////////////////////////////////////////////
|
//
|
//
|
//
|
//
|
module wbdmac(i_clk,
|
module wbdmac(i_clk,
|
i_swb_cyc, i_swb_stb, i_swb_we, i_swb_addr, i_swb_data,
|
i_swb_cyc, i_swb_stb, i_swb_we, i_swb_addr, i_swb_data,
|
o_swb_ack, o_swb_stall, o_swb_data,
|
o_swb_ack, o_swb_stall, o_swb_data,
|
o_mwb_cyc, o_mwb_stb, o_mwb_we, o_mwb_addr, o_mwb_data,
|
o_mwb_cyc, o_mwb_stb, o_mwb_we, o_mwb_addr, o_mwb_data,
|
i_mwb_ack, i_mwb_stall, i_mwb_data, i_mwb_err,
|
i_mwb_ack, i_mwb_stall, i_mwb_data, i_mwb_err,
|
i_dev_ints,
|
i_dev_ints,
|
o_interrupt,
|
o_interrupt);
|
i_other_busmaster_requests_bus);
|
|
parameter ADDRESS_WIDTH=32, LGMEMLEN = 10,
|
parameter ADDRESS_WIDTH=32, LGMEMLEN = 10,
|
DW=32, LGDV=5,AW=ADDRESS_WIDTH;
|
DW=32, LGDV=5,AW=ADDRESS_WIDTH;
|
input i_clk;
|
input i_clk;
|
// Slave/control wishbone inputs
|
// Slave/control wishbone inputs
|
input i_swb_cyc, i_swb_stb, i_swb_we;
|
input i_swb_cyc, i_swb_stb, i_swb_we;
|
input [1:0] i_swb_addr;
|
input [1:0] i_swb_addr;
|
input [(DW-1):0] i_swb_data;
|
input [(DW-1):0] i_swb_data;
|
// Slave/control wishbone outputs
|
// Slave/control wishbone outputs
|
output reg o_swb_ack;
|
output reg o_swb_ack;
|
output wire o_swb_stall;
|
output wire o_swb_stall;
|
output reg [(DW-1):0] o_swb_data;
|
output reg [(DW-1):0] o_swb_data;
|
// Master/DMA wishbone control
|
// Master/DMA wishbone control
|
output reg o_mwb_cyc, o_mwb_stb, o_mwb_we;
|
output reg o_mwb_cyc, o_mwb_stb, o_mwb_we;
|
output reg [(AW-1):0] o_mwb_addr;
|
output reg [(AW-1):0] o_mwb_addr;
|
output reg [(DW-1):0] o_mwb_data;
|
output reg [(DW-1):0] o_mwb_data;
|
// Master/DMA wishbone responses from the bus
|
// Master/DMA wishbone responses from the bus
|
input i_mwb_ack, i_mwb_stall;
|
input i_mwb_ack, i_mwb_stall;
|
input [(DW-1):0] i_mwb_data;
|
input [(DW-1):0] i_mwb_data;
|
input i_mwb_err;
|
input i_mwb_err;
|
// The interrupt device interrupt lines
|
// The interrupt device interrupt lines
|
input [(DW-1):0] i_dev_ints;
|
input [(DW-1):0] i_dev_ints;
|
// An interrupt to be set upon completion
|
// An interrupt to be set upon completion
|
output reg o_interrupt;
|
output reg o_interrupt;
|
// Need to release the bus for a higher priority user
|
// Need to release the bus for a higher priority user
|
input i_other_busmaster_requests_bus;
|
// This logic had lots of problems, so it is being
|
|
// removed. If you want to make sure the bus is available
|
|
// for a higher priority user, adjust the transfer length
|
|
// accordingly.
|
|
//
|
|
// input i_other_busmaster_requests_bus;
|
|
//
|
|
|
|
|
reg cfg_wp; // Write protect
|
reg cfg_wp; // Write protect
|
reg cfg_err;
|
reg cfg_err;
|
reg [(AW-1):0] cfg_waddr, cfg_raddr, cfg_len;
|
reg [(AW-1):0] cfg_waddr, cfg_raddr, cfg_len;
|
reg [(LGMEMLEN-1):0] cfg_blocklen_sub_one;
|
reg [(LGMEMLEN-1):0] cfg_blocklen_sub_one;
|
reg cfg_incs, cfg_incd;
|
reg cfg_incs, cfg_incd;
|
reg [(LGDV-1):0] cfg_dev_trigger;
|
reg [(LGDV-1):0] cfg_dev_trigger;
|
reg cfg_on_dev_trigger;
|
reg cfg_on_dev_trigger;
|
|
|
// Single block operations: We'll read, then write, up to a single
|
// Single block operations: We'll read, then write, up to a single
|
// memory block here.
|
// memory block here.
|
|
|
reg [(DW-1):0] dma_mem [0:(((1<<LGMEMLEN))-1)];
|
reg [(DW-1):0] dma_mem [0:(((1<<LGMEMLEN))-1)];
|
reg [(LGMEMLEN):0] nread, nwritten, nacks;
|
reg [(LGMEMLEN):0] nread, nwritten, nacks;
|
wire [(AW-1):0] bus_nacks;
|
wire [(AW-1):0] bus_nacks;
|
assign bus_nacks = { {(AW-LGMEMLEN-1){1'b0}}, nacks };
|
assign bus_nacks = { {(AW-LGMEMLEN-1){1'b0}}, nacks };
|
|
|
initial o_interrupt = 1'b0;
|
initial o_interrupt = 1'b0;
|
initial o_mwb_cyc = 1'b0;
|
initial o_mwb_cyc = 1'b0;
|
initial cfg_err = 1'b0;
|
initial cfg_err = 1'b0;
|
initial cfg_wp = 1'b0;
|
initial cfg_wp = 1'b0;
|
initial cfg_len = {(AW){1'b0}};
|
initial cfg_len = {(AW){1'b0}};
|
initial cfg_blocklen_sub_one = {(LGMEMLEN){1'b1}};
|
initial cfg_blocklen_sub_one = {(LGMEMLEN){1'b1}};
|
initial cfg_on_dev_trigger = 1'b0;
|
initial cfg_on_dev_trigger = 1'b0;
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
if ((o_mwb_cyc)&&(o_mwb_we)) // Write cycle
|
if ((o_mwb_cyc)&&(o_mwb_we)) // Write cycle
|
begin
|
begin
|
if ((o_mwb_stb)&&(~i_mwb_stall))
|
if ((o_mwb_stb)&&(~i_mwb_stall))
|
begin
|
begin
|
nwritten <= nwritten+1;
|
nwritten <= nwritten+1;
|
if ((nwritten == nread-1)
|
if (nwritten == nread-1)
|
||(i_other_busmaster_requests_bus))
|
|
// Wishbone interruptus
|
// Wishbone interruptus
|
o_mwb_stb <= 1'b0;
|
o_mwb_stb <= 1'b0;
|
else if (cfg_incd) begin
|
else if (cfg_incd) begin
|
o_mwb_addr <= o_mwb_addr + 1;
|
o_mwb_addr <= o_mwb_addr + 1;
|
cfg_waddr <= cfg_waddr + 1;
|
cfg_waddr <= cfg_waddr + 1;
|
end
|
end
|
// o_mwb_data <= dma_mem[nwritten + 1];
|
// o_mwb_data <= dma_mem[nwritten + 1];
|
end
|
end
|
|
|
if (i_mwb_err)
|
if (i_mwb_err)
|
begin
|
begin
|
o_mwb_cyc <= 1'b0;
|
o_mwb_cyc <= 1'b0;
|
cfg_err <= 1'b1;
|
cfg_err <= 1'b1;
|
cfg_len <= 0;
|
cfg_len <= 0;
|
nread <= 0;
|
nread <= 0;
|
end else if (i_mwb_ack)
|
end else if (i_mwb_ack)
|
begin
|
begin
|
nacks <= nacks+1;
|
nacks <= nacks+1;
|
cfg_len <= cfg_len - 1;
|
cfg_len <= cfg_len - 1;
|
if ((nacks+1 == nwritten)&&(~o_mwb_stb))
|
if ((nacks+1 == nwritten)&&(~o_mwb_stb))
|
begin
|
begin
|
o_mwb_cyc <= 1'b0;
|
o_mwb_cyc <= 1'b0;
|
nread <= 0;
|
nread <= 0;
|
o_interrupt <= (cfg_len == 1);
|
o_interrupt <= (cfg_len == 1);
|
// Turn write protect back on
|
// Turn write protect back on
|
cfg_wp <= 1'b1;
|
cfg_wp <= 1'b1;
|
end
|
end
|
end
|
end
|
end else if ((o_mwb_cyc)&&(~o_mwb_we)) // Read cycle
|
end else if ((o_mwb_cyc)&&(~o_mwb_we)) // Read cycle
|
begin
|
begin
|
if ((o_mwb_stb)&&(~i_mwb_stall))
|
if ((o_mwb_stb)&&(~i_mwb_stall))
|
begin
|
begin
|
nacks <= nacks+1;
|
nacks <= nacks+1;
|
if ((nacks == {1'b0, cfg_blocklen_sub_one})
|
if ((nacks == {1'b0, cfg_blocklen_sub_one})
|
||(bus_nacks <= cfg_len-1)
|
||(bus_nacks <= cfg_len-1))
|
||(i_other_busmaster_requests_bus))
|
|
// Wishbone interruptus
|
// Wishbone interruptus
|
o_mwb_stb <= 1'b0;
|
o_mwb_stb <= 1'b0;
|
else if (cfg_incs) begin
|
else if (cfg_incs) begin
|
o_mwb_addr <= o_mwb_addr + 1;
|
o_mwb_addr <= o_mwb_addr + 1;
|
end
|
end
|
end
|
end
|
|
|
if (i_mwb_err)
|
if (i_mwb_err)
|
begin
|
begin
|
o_mwb_cyc <= 1'b0;
|
o_mwb_cyc <= 1'b0;
|
cfg_err <= 1'b1;
|
cfg_err <= 1'b1;
|
cfg_len <= 0;
|
cfg_len <= 0;
|
nread <= 0;
|
nread <= 0;
|
end else if (i_mwb_ack)
|
end else if (i_mwb_ack)
|
begin
|
begin
|
nread <= nread+1;
|
nread <= nread+1;
|
if ((~o_mwb_stb)&&(nread+1 == nacks))
|
if ((~o_mwb_stb)&&(nread+1 == nacks))
|
begin
|
begin
|
o_mwb_cyc <= 1'b0;
|
o_mwb_cyc <= 1'b0;
|
nacks <= 0;
|
nacks <= 0;
|
end
|
end
|
if (cfg_incs)
|
if (cfg_incs)
|
cfg_raddr <= cfg_raddr + 1;
|
cfg_raddr <= cfg_raddr + 1;
|
// dma_mem[nread[(LGMEMLEN-1):0]] <= i_mwb_data;
|
// dma_mem[nread[(LGMEMLEN-1):0]] <= i_mwb_data;
|
end
|
end
|
end else if ((~o_mwb_cyc)&&(nread > 0)&&(~cfg_err))
|
end else if ((~o_mwb_cyc)&&(nread > 0)&&(~cfg_err))
|
begin // Initiate/continue a write cycle
|
begin // Initiate/continue a write cycle
|
o_mwb_cyc <= 1'b1;
|
o_mwb_cyc <= 1'b1;
|
o_mwb_stb <= 1'b1;
|
o_mwb_stb <= 1'b1;
|
o_mwb_we <= 1'b1;
|
o_mwb_we <= 1'b1;
|
// o_mwb_data <= dma_mem[0];
|
// o_mwb_data <= dma_mem[0];
|
o_mwb_addr <= cfg_waddr;
|
o_mwb_addr <= cfg_waddr;
|
// nwritten <= 0; // Can't set to zero, in case we're
|
// nwritten <= 0; // Can't set to zero, in case we're
|
// nacks <= 0; // continuing a cycle
|
// nacks <= 0; // continuing a cycle
|
end else if ((~o_mwb_cyc)&&(nread == 0)&&(cfg_len>0)&&(~cfg_wp)
|
end else if ((~o_mwb_cyc)&&(nread == 0)&&(cfg_len>0)&&(~cfg_wp)
|
&&((~cfg_on_dev_trigger)
|
&&((~cfg_on_dev_trigger)
|
||(i_dev_ints[cfg_dev_trigger])))
|
||(i_dev_ints[cfg_dev_trigger])))
|
begin // Initiate a read cycle
|
begin // Initiate a read cycle
|
o_mwb_cyc <= 1'b1;
|
o_mwb_cyc <= 1'b1;
|
o_mwb_stb <= 1'b1;
|
o_mwb_stb <= 1'b1;
|
o_mwb_we <= 1'b0;
|
o_mwb_we <= 1'b0;
|
o_mwb_addr<= cfg_raddr;
|
o_mwb_addr<= cfg_raddr;
|
nwritten <= 0;
|
nwritten <= 0;
|
nread <= 0;
|
nread <= 0;
|
nacks <= 0;
|
nacks <= 0;
|
end else begin
|
end else begin
|
o_mwb_cyc <= 1'b0;
|
o_mwb_cyc <= 1'b0;
|
o_mwb_stb <= 1'b0;
|
o_mwb_stb <= 1'b0;
|
o_mwb_we <= 1'b0;
|
o_mwb_we <= 1'b0;
|
o_mwb_addr <= cfg_raddr;
|
o_mwb_addr <= cfg_raddr;
|
o_interrupt<= 1'b0;
|
o_interrupt<= 1'b0;
|
nwritten <= 0;
|
nwritten <= 0;
|
if ((i_swb_cyc)&&(i_swb_stb)&&(i_swb_we))
|
if ((i_swb_cyc)&&(i_swb_stb)&&(i_swb_we))
|
begin
|
begin
|
cfg_wp <= 1'b1;
|
cfg_wp <= 1'b1;
|
case(i_swb_addr)
|
case(i_swb_addr)
|
2'b00: begin
|
2'b00: begin
|
cfg_wp <= (i_swb_data[27:16]!=12'hfed);
|
cfg_wp <= (i_swb_data[27:16]!=12'hfed);
|
cfg_blocklen_sub_one
|
cfg_blocklen_sub_one
|
<= i_swb_data[(LGMEMLEN-1):0]-1;
|
<= i_swb_data[(LGMEMLEN-1):0]-1;
|
cfg_dev_trigger <= i_swb_data[14:10];
|
cfg_dev_trigger <= i_swb_data[14:10];
|
cfg_on_dev_trigger <= i_swb_data[15];
|
cfg_on_dev_trigger <= i_swb_data[15];
|
cfg_incs <= ~i_swb_data[29];
|
cfg_incs <= ~i_swb_data[29];
|
cfg_incd <= ~i_swb_data[28];
|
cfg_incd <= ~i_swb_data[28];
|
cfg_err <= 1'b0;
|
cfg_err <= 1'b0;
|
end
|
end
|
2'b01: cfg_len <= i_swb_data[(AW-1):0];
|
2'b01: cfg_len <= i_swb_data[(AW-1):0];
|
2'b10: cfg_raddr <= i_swb_data[(AW-1):0];
|
2'b10: cfg_raddr <= i_swb_data[(AW-1):0];
|
2'b11: cfg_waddr <= i_swb_data[(AW-1):0];
|
2'b11: cfg_waddr <= i_swb_data[(AW-1):0];
|
endcase
|
endcase
|
end
|
end
|
end
|
end
|
|
|
//
|
//
|
// This is tricky. In order for Vivado to consider dma_mem to be a
|
// This is tricky. In order for Vivado to consider dma_mem to be a
|
// proper memory, it must have a simple address fed into it. Hence
|
// proper memory, it must have a simple address fed into it. Hence
|
// the read_address (rdaddr) register. The problem is that this
|
// the read_address (rdaddr) register. The problem is that this
|
// register must always be one greater than the address we actually
|
// register must always be one greater than the address we actually
|
// want to read from, unless we are idling. So ... the math is touchy.
|
// want to read from, unless we are idling. So ... the math is touchy.
|
//
|
//
|
reg [(LGMEMLEN-1):0] rdaddr;
|
reg [(LGMEMLEN-1):0] rdaddr;
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
if ((o_mwb_cyc)&&(o_mwb_we)&&(o_mwb_stb)&&(~i_mwb_stall))
|
if ((o_mwb_cyc)&&(o_mwb_we)&&(o_mwb_stb)&&(~i_mwb_stall))
|
// This would be the normal advance, save that we are
|
// This would be the normal advance, save that we are
|
// already one ahead of nwritten
|
// already one ahead of nwritten
|
rdaddr <= rdaddr + 1; // {{(LGMEMLEN-1){1'b0}},1};
|
rdaddr <= rdaddr + 1; // {{(LGMEMLEN-1){1'b0}},1};
|
else if ((~o_mwb_cyc)&&(nread > 0)&&(~cfg_err))
|
else if ((~o_mwb_cyc)&&(nread > 0)&&(~cfg_err))
|
// Here's where we do our extra advance
|
// Here's where we do our extra advance
|
rdaddr <= nwritten[(LGMEMLEN-1):0]+1;
|
rdaddr <= nwritten[(LGMEMLEN-1):0]+1;
|
else if ((~o_mwb_cyc)||(~o_mwb_we))
|
else if ((~o_mwb_cyc)||(~o_mwb_we))
|
rdaddr <= nwritten[(LGMEMLEN-1):0];
|
rdaddr <= nwritten[(LGMEMLEN-1):0];
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
if ((~o_mwb_cyc)||((o_mwb_we)&&(o_mwb_stb)&&(~i_mwb_stall)))
|
if ((~o_mwb_cyc)||((o_mwb_we)&&(o_mwb_stb)&&(~i_mwb_stall)))
|
o_mwb_data <= dma_mem[rdaddr];
|
o_mwb_data <= dma_mem[rdaddr];
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
if ((o_mwb_cyc)&&(~o_mwb_we)&&(i_mwb_ack))
|
if ((o_mwb_cyc)&&(~o_mwb_we)&&(i_mwb_ack))
|
dma_mem[nread[(LGMEMLEN-1):0]] <= i_mwb_data;
|
dma_mem[nread[(LGMEMLEN-1):0]] <= i_mwb_data;
|
|
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
casez(i_swb_addr)
|
casez(i_swb_addr)
|
2'b00: o_swb_data <= { ~cfg_wp, cfg_err,
|
2'b00: o_swb_data <= { ~cfg_wp, cfg_err,
|
~cfg_incs, ~cfg_incd,
|
~cfg_incs, ~cfg_incd,
|
1'b0, nread,
|
1'b0, nread,
|
cfg_on_dev_trigger, cfg_dev_trigger,
|
cfg_on_dev_trigger, cfg_dev_trigger,
|
cfg_blocklen_sub_one
|
cfg_blocklen_sub_one
|
};
|
};
|
2'b01: o_swb_data <= { {(DW-AW){1'b0}}, cfg_len };
|
2'b01: o_swb_data <= { {(DW-AW){1'b0}}, cfg_len };
|
2'b10: o_swb_data <= { {(DW-AW){1'b0}}, cfg_raddr};
|
2'b10: o_swb_data <= { {(DW-AW){1'b0}}, cfg_raddr};
|
2'b11: o_swb_data <= { {(DW-AW){1'b0}}, cfg_waddr};
|
2'b11: o_swb_data <= { {(DW-AW){1'b0}}, cfg_waddr};
|
endcase
|
endcase
|
|
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
if ((i_swb_cyc)&&(i_swb_stb)) // &&(~i_swb_we))
|
if ((i_swb_cyc)&&(i_swb_stb)) // &&(~i_swb_we))
|
o_swb_ack <= 1'b1;
|
o_swb_ack <= 1'b1;
|
// else if ((i_swb_cyc)&&(i_swb_stb)&&(i_swb_we)&&(~o_mwb_cyc)&&(nread == 0))
|
// else if ((i_swb_cyc)&&(i_swb_stb)&&(i_swb_we)&&(~o_mwb_cyc)&&(nread == 0))
|
else
|
else
|
o_swb_ack <= 1'b0;
|
o_swb_ack <= 1'b0;
|
|
|
assign o_swb_stall = 1'b0;
|
assign o_swb_stall = 1'b0;
|
|
|
endmodule
|
endmodule
|
|
|
|
|