OpenCores
URL https://opencores.org/ocsvn/adv_debug_sys/adv_debug_sys/trunk

Subversion Repositories adv_debug_sys

[/] [adv_debug_sys/] [trunk/] [Software/] [adv_jtag_bridge/] [chain_commands.c] - Diff between revs 4 and 8

Go to most recent revision | Show entire file | Details | Blame | View Log

Rev 4 Rev 8
Line 1... Line 1...
 
/* jtag_bridge.c -- JTAG protocol bridge between GDB and Advanced debug module.
 
   Copyright(C) Nathan Yawn, nyawn@opencores.net
 
   based on code from jp2 by Marko Mlinar, markom@opencores.org
 
 
 
   This file contains functions which perform high-level transactions
 
   on a JTAG chain and debug unit, such as setting a value in the TAP IR
 
   or doing a burst write through the wishbone module of the debug unit.
 
   It uses the protocol for the Advanced Debug Interface (adv_dbg_if).
 
 
 
   This program is free software; you can redistribute it and/or modify
 
   it under the terms of the GNU General Public License as published by
 
   the Free Software Foundation; either version 2 of the License, or
 
   (at your option) any later version.
 
 
 
   This program is distributed in the hope that it will be useful,
 
   but WITHOUT ANY WARRANTY; without even the implied warranty of
 
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 
   GNU General Public License for more details.
 
 
 
   You should have received a copy of the GNU General Public License
 
   along with this program; if not, write to the Free Software
 
   Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 
*/
 
 
 
 
 
 
 
#include <stdio.h>
 
#include <stdlib.h>  // for malloc()
 
#include <unistd.h>  // for usleep()
 
#include <pthread.h>  // for mutexes
 
 
 
#include "chain_commands.h"  // For the return error codes
 
#include "adv_debug_module.h"     // hardware-specific defines for the debug module
 
#include "altera_virtual_jtag.h"  // hardware-specifg defines for the Altera Virtual JTAG interface
 
#include "cable_common.h"         // low-level JTAG IO routines
 
#include "errcodes.h"
 
 
 
#define debug(...) //fprintf(stderr, __VA_ARGS__ )
 
 
 
// Polynomial for the CRC calculation
 
// Yes, it's backwards.  Yes, this is on purpose.
 
// The hardware is designed this way to save on logic and routing,
 
// and it's really all the same to us here.
 
#define DBG_CRC_POLY 0xedb88320
 
 
 
// How many tries before an abort
 
#define NUM_SOFT_RETRIES 5
 
 
 
// How many '0' status bits to get during a burst read
 
// before giving up
 
#define MAX_READ_STATUS_WAIT 100
 
 
 
// wait for 100ms
 
#define JTAG_RETRY_WAIT() usleep(100000);
 
 
 
// Mutex for access to the JTAG cable.  Makes API calls threadsafe.
 
pthread_mutex_t dbg_access_mutex = PTHREAD_MUTEX_INITIALIZER;
 
 
 
/* Currently selected scan chain in the debug unit - just to prevent unnecessary
 
   transfers. */
 
int current_chain = -1;
 
int desired_chain = -1;
 
 
 
// Currently selected internal register in each module
 
// - cuts down on unnecessary transfers
 
int current_reg_idx[DBG_MAX_MODULES];
 
 
 
/* The chain that should be currently selected. */
 
//static int dbg_chain = -1;
 
 
 
// Retry data
 
int soft_retry_no = 0;
 
//static int hard_retry_no = 0;
 
 
 
// Configuration data
 
int global_IR_size = 0;
 
int global_IR_prefix_bits = 0;
 
int global_IR_postfix_bits = 0;
 
int global_DR_prefix_bits = 0;
 
int global_DR_postfix_bits = 0;
 
unsigned int global_jtag_cmd_debug = 0;        // Value to be shifted into the TAP IR to select the debug unit (unused for virtual jtag)
 
unsigned char global_altera_virtual_jtag = 0;  // Set true to use virtual jtag mode
 
unsigned int vjtag_cmd_vir = ALTERA_CYCLONE_CMD_VIR;  // virtual IR-shift command for altera devices, may be configured on command line
 
unsigned int vjtag_cmd_vdr = ALTERA_CYCLONE_CMD_VDR; // virtual DR-shift, ditto
 
unsigned char global_xilinx_bscan = 0;  // Set true if the hardware uses a Xilinx BSCAN_* device.
 
 
 
// Prototypes for local functions
 
uint32_t compute_crc(uint32_t crc_in, uint32_t data_in, int length_bits);
 
int retry_do(void);
 
void retry_ok(void);
 
 
 
int jtag_write_bit(uint8_t packet);
 
int jtag_read_write_bit(uint8_t packet, uint8_t *in_bit);
 
int jtag_write_stream(uint32_t *out_data, int length_bits, unsigned char set_TMS);
 
int jtag_read_write_stream(uint32_t *out_data, uint32_t *in_data, int length_bits,
 
                           unsigned char adjust, unsigned char set_TMS);
 
 
 
 
 
int dbg_select_module(int chain);
 
int dbg_select_ctrl_reg(unsigned long regidx);
 
int dbg_ctrl_write(unsigned long regidx, uint32_t *cmd_data, int length_bits);
 
int dbg_ctrl_read(unsigned long regidx, uint32_t *data, int databits);
 
int dbg_burst_command(unsigned int opcode, unsigned long address, int length_words);
 
int dbg_wb_burst_read(int word_size_bytes, int word_count, unsigned long start_address, void *data);
 
int dbg_wb_burst_write(void *data, int word_size_bytes, int word_count, unsigned long start_address);
 
 
 
 
 
 
 
///////////////////////////////////////////////////////////////////////
 
// Configuration
 
 
 
void config_set_IR_size(int size) {
 
  global_IR_size = size;
 
}
 
 
 
void config_set_IR_prefix_bits(int bits) {
 
  global_IR_prefix_bits = bits;
 
}
 
 
 
void config_set_IR_postfix_bits(int bits) {
 
  global_IR_postfix_bits = bits;
 
}
 
 
 
void config_set_DR_prefix_bits(int bits) {
 
  global_DR_prefix_bits = bits;
 
}
 
 
 
void config_set_DR_postfix_bits(int bits) {
 
  global_DR_postfix_bits = bits;
 
}
 
 
 
void config_set_debug_cmd(unsigned int cmd) {
 
  global_jtag_cmd_debug = cmd;
 
}
 
 
 
void config_set_alt_vjtag(unsigned char enable) {
 
  global_altera_virtual_jtag = (enable) ? 1:0;
 
}
 
 
 
// At present, all devices which support virtual JTAG use the same VIR/VDR
 
// commands.  But, if they ever change, these can be changed on the command line.
 
void config_set_vjtag_cmd_vir(unsigned int cmd) {
 
  vjtag_cmd_vir = cmd;
 
}
 
 
 
void config_set_vjtag_cmd_vdr(unsigned int cmd) {
 
  vjtag_cmd_vdr = cmd;
 
}
 
 
 
void config_set_xilinx_bscan(unsigned char enable) {
 
  global_xilinx_bscan = (enable) ? 1:0;
 
}
 
 
 
//////////////////////////////////////////////////////////////////////
 
// Functions which operate on the JTAG TAP
 
 
 
 
 
/* Resets JTAG - Writes TRST=1, and TRST=0.  Sends 8 TMS to put the TAP
 
 * in test_logic_reset mode, for good measure.
 
 */
 
int tap_reset(void) {
 
  int i;
 
  int err = APP_ERR_NONE;
 
 
 
  debug("\nreset(");
 
  err |= jtag_write_bit(0);
 
  JTAG_RETRY_WAIT();
 
  /* In case we don't have TRST reset it manually */
 
  for(i = 0; i < 8; i++) err |= jtag_write_bit(TMS);
 
  err |= jtag_write_bit(TRST);  // if TRST not supported, this puts us in run test / idle
 
  JTAG_RETRY_WAIT();
 
  err |= jtag_write_bit(0);  // run test / idle
 
  debug(")\n");
 
 
 
  // Reset data on current module/register selections
 
  current_chain = -1;
 
  for(i = 0; i < DBG_MAX_MODULES; i++)
 
    current_reg_idx[i] = -1;
 
 
 
  return err;
 
}
 
 
 
  // Set the IR with the DEBUG command, one way or the other
 
int tap_enable_debug_module(void)
 
{
 
  uint32_t data;
 
 int err = APP_ERR_NONE;
 
 
 
  if(global_altera_virtual_jtag) {
 
    /* Set for virtual IR shift */
 
    err |= tap_set_ir(vjtag_cmd_vir);  // This is the altera virtual IR scan command
 
    err |= jtag_write_bit(TMS); /* SELECT_DR SCAN */
 
    err |= jtag_write_bit(0); /* CAPTURE_DR */
 
    err |= jtag_write_bit(0); /* SHIFT_DR */
 
 
 
    /* Select debug scan chain in  virtual IR */
 
    data = (0x1<<ALT_VJTAG_IR_SIZE)|ALT_VJTAG_CMD_DEBUG;
 
    err |= jtag_write_stream(&data, (ALT_VJTAG_IR_SIZE+1), 1);  // EXIT1_DR
 
    err |= jtag_write_bit(TMS); /* UPDATE_DR */
 
    err |= jtag_write_bit(0); /* IDLE */
 
 
 
    // This is a command to set an altera device to the "virtual DR shift" command
 
    err |= tap_set_ir(vjtag_cmd_vdr);
 
  }
 
  else {
 
    /* select debug scan chain and stay in it forever */
 
    err |= tap_set_ir(global_jtag_cmd_debug);
 
  }
 
 
 
  return err;
 
}
 
 
 
/* Moves a value into the TAP instruction register (IR)
 
 * Includes adjustment for scan chain IR length.
 
 */
 
uint32_t *ir_chain = NULL;
 
 
 
int tap_set_ir(int ir) {
 
  int chain_size;
 
  int chain_size_words;
 
  int i;
 
  int startoffset, startshift;
 
  int err = APP_ERR_NONE;
 
 
 
  // Adjust desired IR with prefix, postfix bits to set other devices in the chain to BYPASS
 
  chain_size = global_IR_size + global_IR_prefix_bits + global_IR_postfix_bits;
 
  chain_size_words = (chain_size/32)+1;
 
 
 
  if(ir_chain == NULL)  { // We have no way to know in advance how many bits there are in the combined IR register
 
    ir_chain = (uint32_t *) malloc(chain_size_words * sizeof(uint32_t));
 
    if(ir_chain == NULL)
 
      return APP_ERR_MALLOC;
 
  }
 
 
 
  for(i = 0; i < chain_size_words; i++)
 
    ir_chain[i] = 0xFFFFFFFF;  // Set all other devices to BYPASS
 
 
 
  // Copy the IR value into the output stream
 
  startoffset = global_IR_postfix_bits/32;
 
  startshift = (global_IR_postfix_bits - (startoffset*32));
 
  ir_chain[startoffset] &= (ir << startshift);
 
  ir_chain[startoffset] |= ~(0xFFFFFFFF << startshift);  // Put the 1's back in the LSB positions
 
  ir_chain[startoffset] |= (0xFFFFFFFF << (startshift + global_IR_size));  // Put 1's back in MSB positions, if any 
 
  if((startshift + global_IR_size) > 32) { // Deal with spill into the next word
 
    ir_chain[startoffset+1] &= ir >> (32-startshift);
 
    ir_chain[startoffset+1] |= (0xFFFFFFFF << (global_IR_size - (32-startshift)));  // Put the 1's back in the MSB positions
 
  }
 
 
 
  // Do the actual JTAG transaction
 
  debug("Set IR 0x%X\n", ir);
 
  err |= jtag_write_bit(TMS); /* SELECT_DR SCAN */
 
  err |= jtag_write_bit(TMS); /* SELECT_IR SCAN */
 
 
 
  err |= jtag_write_bit(0); /* CAPTURE_IR */
 
  err |= jtag_write_bit(0); /* SHIFT_IR */
 
 
 
  /* write data, EXIT1_IR */
 
  debug("Setting IR, size %i, IR_size = %i, pre_size = %i, post_size = %i, data 0x%X\n", chain_size, global_IR_size, global_IR_prefix_bits, global_IR_postfix_bits, ir);
 
  err |= cable_write_stream(ir_chain, chain_size, 1);  // Use cable_ call directly (not jtag_), so we don't add DR prefix bits
 
  debug("Done setting IR\n");
 
 
 
  err |= jtag_write_bit(TMS); /* UPDATE_IR */
 
  err |= jtag_write_bit(0); /* IDLE */
 
  current_chain = -1;
 
  return err;
 
}
 
 
 
 
 
// This assumes we are in the IDLE state, and we want to be in the SHIFT_DR state.
 
// We may need to do a little extra work, for Altera virtual JTAG...
 
int tap_set_shift_dr(void)
 
{
 
  int err = APP_ERR_NONE;
 
 
 
  // This always needs to be done
 
  err |= jtag_write_bit(TMS); /* SELECT_DR SCAN */
 
  err |= jtag_write_bit(0); /* CAPTURE_DR */
 
  err |= jtag_write_bit(0); /* SHIFT_DR */
 
  return err;
 
}
 
 
 
 
 
////////////////////////////////////////////////////////////////////
 
// Operations to read / write data over JTAG
 
 
 
 
 
/* Writes TCLK=0, TRST=1, TMS=bit1, TDI=bit0
 
   and    TCLK=1, TRST=1, TMS=bit1, TDI=bit0
 
*/
 
int jtag_write_bit(uint8_t packet) {
 
  debug("Wbit(%i)\n", packet);
 
  return cable_write_bit(packet);
 
}
 
 
 
int jtag_read_write_bit(uint8_t packet, uint8_t *in_bit) {
 
  int retval = cable_read_write_bit(packet, in_bit);
 
  debug("RWbit(%i,%i)", packet, *in_bit);
 
  return retval;
 
}
 
 
 
// This automatically adjusts for the DR length (other devices on scan chain)
 
// when the set_TMS flag is true.
 
int jtag_write_stream(uint32_t *out_data, int length_bits, unsigned char set_TMS)
 
{
 
  int i;
 
  int err = APP_ERR_NONE;
 
 
 
  if(!set_TMS)
 
    err |= cable_write_stream(out_data, length_bits, 0);
 
  else if(global_DR_prefix_bits == 0)
 
    err |= cable_write_stream(out_data, length_bits, 1);
 
  else {
 
    err |= cable_write_stream(out_data, length_bits, 0);
 
    // It could be faster to do a cable_write_stream for all the prefix bits (if >= 8 bits),
 
    // but we'd need a data array of unknown (and theoretically unlimited)
 
    // size to hold the 0 bits to write.
 
    for(i = 0; i < (global_DR_prefix_bits-1); i++)
 
      err |= jtag_write_bit(0);
 
    err |= jtag_write_bit(TMS);
 
  }
 
  return err;
 
}
 
 
 
// When set_TMS is true, this function insures the written data is in the desired position (past prefix bits)
 
// before sending TMS.  When 'adjust' is true, this function insures that the data read in accounts for postfix
 
// bits (they are shifted through before the read starts).
 
int jtag_read_write_stream(uint32_t *out_data, uint32_t *in_data, int length_bits, unsigned char adjust, unsigned char set_TMS)
 
{
 
  int i;
 
  int err = APP_ERR_NONE;
 
 
 
  if(adjust && (global_DR_postfix_bits > 0)) {
 
    // It would be faster to do a cable_write_stream for all the postfix bits,
 
    // but we'd need a data array of unknown (and theoretically unlimited)
 
    // size to hold the '0' bits to write.
 
    for(i = 0; i < global_DR_postfix_bits; i++)
 
      err |= cable_write_bit(0);
 
  }
 
 
 
  // If there are both prefix and postfix bits, we may shift more bits than strictly necessary.
 
  // If we shifted out the data while burning through the postfix bits, these shifts could be subtracted
 
  // from the number of prefix shifts.  However, that way leads to madness.
 
  if(!set_TMS)
 
    err |= cable_read_write_stream(out_data, in_data, length_bits, 0);
 
  else if(global_DR_prefix_bits == 0)
 
    err |= cable_read_write_stream(out_data, in_data, length_bits, 1);
 
  else {
 
    err |= cable_read_write_stream(out_data, in_data, length_bits, 0);
 
    // It would be faster to do a cable_write_stream for all the prefix bits,
 
    // but we'd need a data array of unknown (and theoretically unlimited)
 
    // size to hold the '0' bits to write.
 
    for(i = 0; i < (global_DR_prefix_bits-1); i++)
 
      err |= jtag_write_bit(0);
 
    err |= jtag_write_bit(TMS);
 
  }
 
  return err;
 
}
 
 
 
 
 
 
 
// This function attempts to determine the structure of the JTAG chain
 
// It can determine how many devices are present.
 
// If the devices support the IDCODE command, it will be read and stored.
 
// There is no way to automatically determine the length of the IR registers - 
 
// this must be read from a BSDL file, if IDCODE is supported.
 
// When IDCODE is not supported, IR length of the target device must be entered on the command line.
 
 
 
#define ALLOC_SIZE 64
 
#define MAX_DEVICES 1024
 
int jtag_enumerate_chain(uint32_t **id_array, int *num_devices)
 
{
 
  uint32_t invalid_code = 0x7f;  // Shift this out, we know we're done when we get it back
 
  const unsigned int done_code = 0x3f;  // invalid_code is altered, we keep this for comparison (minus the start bit)
 
  int devindex = 0;  // which device we are currently trying to detect
 
  unsigned int tempID;
 
  uint32_t temp_manuf_code;
 
  uint32_t temp_rest_code;
 
  uint8_t start_bit = 0;
 
  unsigned long *idcodes;
 
  int reallocs = 0;
 
  int err = APP_ERR_NONE;
 
 
 
  // Malloc a reasonable number of entries, we'll expand if we must.  Linked lists are overrated.
 
  idcodes = (unsigned long *) malloc(ALLOC_SIZE*sizeof(unsigned long));
 
  if(idcodes == NULL) {
 
    printf("Failed to allocate memory for device ID codes!\n");
 
    return APP_ERR_MALLOC;
 
  }
 
 
 
  // Put in SHIFT-DR mode
 
  err |= jtag_write_bit(TMS); /* SELECT_DR SCAN */
 
  err |= jtag_write_bit(0); /* CAPTURE_DR */
 
  err |= jtag_write_bit(0); /* SHIFT_DR */
 
 
 
  printf("Enumerating JTAG chain...\n");
 
 
 
  // Putting a limit on the # of devices supported has the useful side effect
 
  // of insuring we still exit in error cases (we never get the 0x7f manuf. id)
 
  while(devindex < MAX_DEVICES) {
 
    // get 1 bit. 0 = BYPASS, 1 = start of IDCODE
 
    err |= jtag_read_write_bit(invalid_code&0x01, &start_bit);
 
    invalid_code >>= 1;
 
 
 
    if(start_bit == 0) {
 
      if(devindex >= (ALLOC_SIZE << reallocs)) {  // Enlarge the memory array if necessary, double the size each time
 
        idcodes = (unsigned long *) realloc(idcodes, (ALLOC_SIZE << ++reallocs)*sizeof(unsigned long));
 
        if(idcodes == NULL) {
 
          printf("Failed to allocate memory for device ID codes during enumeration!\n");
 
          return APP_ERR_MALLOC;
 
        }
 
      }
 
      idcodes[devindex] = -1;
 
      devindex++;
 
    }
 
    else {
 
      // get 11 bit manufacturer code
 
      err |= jtag_read_write_stream(&invalid_code, &temp_manuf_code, 11, 0, 0);
 
      invalid_code >>= 11;
 
 
 
      if(temp_manuf_code != done_code) {
 
        // get 20 more bits, rest of ID
 
        err |= jtag_read_write_stream(&invalid_code, &temp_rest_code, 20, 0, 0);
 
        invalid_code >>= 20;
 
        tempID = (temp_rest_code << 12) | (temp_manuf_code << 1) | 0x01;
 
        if(devindex >= (ALLOC_SIZE << reallocs)) {  // Enlarge the memory array if necessary, double the size each time
 
          idcodes = (unsigned long *) realloc(idcodes, (ALLOC_SIZE << ++reallocs)*sizeof(unsigned long));
 
          if(idcodes == NULL) {
 
            printf("Failed to allocate memory for device ID codes during enumeration!\n");
 
            return APP_ERR_MALLOC;
 
          }
 
        }
 
        idcodes[devindex] = tempID;
 
        devindex++;
 
      } else {
 
        break;
 
      }
 
    }
 
 
 
    if(err)  // Don't try to keep probing if we get a comm. error
 
      return err;
 
  }
 
 
 
  if(devindex >= MAX_DEVICES)
 
    printf("WARNING: maximum supported devices on JTAG chain (%i) exceeded.\n", MAX_DEVICES);
 
 
 
  // Put in IDLE mode
 
  err |= jtag_write_bit(TMS); /* EXIT1_DR */
 
  err |= jtag_write_bit(TMS); /* UPDATE_DR */
 
  err |= jtag_write_bit(0); /* IDLE */
 
 
 
  *id_array = idcodes;
 
  *num_devices = devindex;
 
  return err;
 
}
 
 
 
 
 
 
 
int jtag_get_idcode(uint32_t cmd, uint32_t *idcode)
 
{
 
  uint32_t data_out = 0;
 
  int err = APP_ERR_NONE;
 
  unsigned char saveconfig = global_altera_virtual_jtag;
 
  global_altera_virtual_jtag = 0; // We want the actual IDCODE, not the virtual device IDCODE
 
 
 
  err |= tap_set_ir(cmd);
 
  err |= tap_set_shift_dr();
 
  err |= jtag_read_write_stream(&data_out, idcode, 32, 1, 1);       /* EXIT1_DR */
 
 
 
  if(err)
 
    printf("Error getting ID code!\n");
 
 
 
  // Put in IDLE mode
 
  err |= jtag_write_bit(TMS); /* UPDATE_DR */
 
  err |= jtag_write_bit(0); /* IDLE */
 
 
 
  global_altera_virtual_jtag = saveconfig;
 
  return err;
 
}
 
 
 
 
 
/////////////////////////////////////////////////////////////////
 
// Helper functions
 
 
 
/* counts retries and returns zero if we should abort */
 
/* TODO: dynamically adjust timings for jp2 */
 
int retry_do() {
 
  int err = APP_ERR_NONE;
 
 
 
  if (soft_retry_no >= NUM_SOFT_RETRIES) {
 
      return 0;
 
 
 
      // *** TODO:  Add a 'hard retry', which re-initializes the cable, re-enumerates the bus, etc.
 
 
 
  } else { /* quick reset */
 
    if(err |= tap_reset()) {
 
      printf("Error %s while resetting for retry.\n", get_err_string(err));
 
      return 0;
 
    }
 
 
 
    // Put us back into DEBUG mode
 
    if(err |= tap_enable_debug_module()) {
 
      printf("Error %s enabling debug module during retry.\n", get_err_string(err));
 
      return 0;
 
    }
 
 
 
    soft_retry_no++;
 
    printf("Retry...\n");
 
  }
 
 
 
  return 1;
 
}
 
 
 
/* resets retry counter */
 
void retry_ok() {
 
  soft_retry_no = 0;
 
}
 
 
 
uint32_t compute_crc(uint32_t crc_in, uint32_t data_in, int length_bits)
 
{
 
  int i;
 
  unsigned int d, c;
 
  uint32_t crc_out = crc_in;
 
 
 
  for(i = 0; i < length_bits; i = i+1)
 
    {
 
      d = ((data_in >> i) & 0x1) ? 0xffffffff : 0;
 
      c = (crc_out & 0x1) ? 0xffffffff : 0;
 
      crc_out = crc_out >> 1;
 
      crc_out = crc_out ^ ((d ^ c) & DBG_CRC_POLY);
 
    }
 
  return crc_out;
 
}
 
 
 
//////////////////////////////////////////////////////////////////
 
// Functions which operate on the debug unit
 
 
 
/* Selects one of the modules in the debug unit (e.g. wishbone unit, CPU0, etc.)
 
 */
 
int dbg_select_module(int chain)
 
{
 
  uint32_t data;
 
  int err = APP_ERR_NONE;
 
 
 
  if (current_chain == chain)
 
    return err;
 
 
 
  current_chain = -1;
 
  desired_chain = chain;
 
 
 
  // MSB of the data out must be set to 1, indicating a module select command
 
  data = chain | (1<<DBG_MODULE_SELECT_REG_SIZE);
 
 
 
  debug("select module %i\n", chain);
 
  err |= tap_set_shift_dr();    /* SHIFT_DR */
 
 
 
  /* write data, EXIT1_DR */
 
  err |= jtag_write_stream(&data, 3, 1);  // When TMS is set (last parameter), DR length is also adjusted; EXIT1_DR
 
 
 
  // *** If 'valid module selected' feedback is ever added, test it here
 
 
 
  err |= jtag_write_bit(TMS); /* UPDATE_DR */
 
  err |= jtag_write_bit(0); /* IDLE */
 
  current_chain = chain;
 
 
 
  if(err)
 
    printf("Error %s selecting active debug module\n", get_err_string(err));
 
 
 
  return err;
 
}
 
 
 
// Set the index of the desired register in the currently selected module
 
// 1 bit module select command
 
// 4 bits opcode
 
// n bits index
 
// Make sure the corrent module/chain is selected before calling this
 
int dbg_select_ctrl_reg(unsigned long regidx)
 
{
 
  uint32_t data;
 
  int index_len = 0;
 
  uint32_t opcode;
 
  int err = APP_ERR_NONE;
 
 
 
  if(err |= dbg_select_module(desired_chain))
 
    return err;
 
 
 
  debug("selreg %ld\n", regidx);
 
 
 
  // If this reg is already selected, don't do a JTAG transaction
 
  if(current_reg_idx[current_chain] == regidx)
 
    return APP_ERR_NONE;
 
 
 
  switch(current_chain) {
 
  case DC_WISHBONE:
 
    index_len = DBG_WB_REG_SEL_LEN;
 
    opcode = DBG_WB_CMD_IREG_SEL;
 
    break;
 
  case DC_CPU0:
 
    index_len = DBG_CPU0_REG_SEL_LEN;
 
    opcode = DBG_CPU0_CMD_IREG_SEL;
 
    break;
 
  case DC_CPU1:
 
    index_len = DBG_CPU1_REG_SEL_LEN;
 
    opcode = DBG_CPU1_CMD_IREG_SEL;
 
    break;
 
  default:
 
    printf("ERROR! Illegal debug chain selected while selecting control register!\n");
 
    return 1;
 
  }
 
 
 
 
 
  // Set up the data.
 
  data = (opcode & ~(1<<DBG_WB_OPCODE_LEN)) << index_len;  // MSB must be 0 to access modules
 
  data |= regidx;
 
 
 
  debug("Selreg: data is 0x%lX (opcode = 0x%lX)\n", data,opcode);
 
 
 
  err |= tap_set_shift_dr();  /* SHIFT_DR */
 
 
 
  /* write data, EXIT1_DR */
 
  err |= jtag_write_stream(&data, 5+index_len, 1);
 
 
 
  err |= jtag_write_bit(TMS); /* UPDATE_DR */
 
  err |= jtag_write_bit(0); /* IDLE */
 
 
 
  /* reset retry counter */
 
  retry_ok();
 
  current_reg_idx[current_chain] = regidx;
 
 
 
  if(err)
 
    printf("Error %s selecting control register %ld in module %i\n", get_err_string(err), regidx, current_chain);
 
 
 
  return err;
 
}
 
 
 
 
 
/* Sends out a generic command to the selected debug unit module, LSB first.  Fields are:
 
 * MSB: 1-bit module command
 
 * 4-bit opcode
 
 * m-bit register index
 
 * n-bit data (LSB)
 
 * Note that in the data array, the LSB of data[0] will be sent first,
 
 * (and become the LSB of the command)
 
 * up through the MSB of data[0], then the LSB of data[1], etc.
 
 */
 
int dbg_ctrl_write(unsigned long regidx, uint32_t *cmd_data, int length_bits) {
 
  uint32_t data;
 
  int index_len = 0;
 
  uint32_t opcode;
 
  int err = APP_ERR_NONE;
 
 
 
  if(err |= dbg_select_module(desired_chain))
 
    return err;
 
 
 
  debug("ctrl wr idx %ld dat 0x%lX\n", regidx, cmd_data[0]);
 
 
 
  switch(current_chain) {
 
  case DC_WISHBONE:
 
    index_len = DBG_WB_REG_SEL_LEN;
 
    opcode = DBG_WB_CMD_IREG_WR;
 
    break;
 
  case DC_CPU0:
 
    index_len = DBG_CPU0_REG_SEL_LEN;
 
    opcode = DBG_CPU0_CMD_IREG_WR;
 
    break;
 
  case DC_CPU1:
 
    index_len = DBG_CPU1_REG_SEL_LEN;
 
    opcode = DBG_CPU1_CMD_IREG_WR;
 
    break;
 
  default:
 
    printf("ERROR! Illegal debug chain selected (%i) while doing control write!\n", current_chain);
 
    return 1;
 
  }
 
 
 
 
 
  // Set up the data.  We cheat a bit here, by using 2 stream writes.
 
  data = (opcode & ~(1<<DBG_WB_OPCODE_LEN)) << index_len;  // MSB must be 0 to access modules
 
  data |= regidx;
 
 
 
  err |= tap_set_shift_dr();  /* SHIFT_DR */
 
 
 
  /* write data, EXIT1_DR */
 
  err |= jtag_write_stream(cmd_data, length_bits, 0);
 
  err |= jtag_write_stream(&data, 5+index_len, 1);
 
 
 
  err |= jtag_write_bit(TMS); /* UPDATE_DR */
 
  err |= jtag_write_bit(0); /* IDLE */
 
 
 
  /* reset retry counter */
 
  retry_ok();
 
  current_reg_idx[current_chain] = regidx;
 
 
 
 if(err)
 
    printf("Error %s writing control register %ld in module %i\n", get_err_string(err), regidx, current_chain);
 
 
 
  return err;
 
}
 
 
 
 
 
/* reads control register (internal to the debug unit)
 
 * Currently only 1 register in the CPU module, so no register select
 
 */
 
int dbg_ctrl_read(unsigned long regidx, uint32_t *data, int databits) {
 
  uint32_t outdata[4] = {0,0,0,0};  // *** We assume no more than 128 databits
 
  int opcode;
 
  int opcode_len;
 
  int err = APP_ERR_NONE;
 
 
 
  if(err |= dbg_select_module(desired_chain))
 
    return err;
 
 
 
  if(err |= dbg_select_ctrl_reg(regidx))
 
    return err;
 
 
 
  debug("ctrl rd idx %ld\n", regidx);
 
 
 
  // There is no 'read' command, We write a NOP to read
 
  switch(current_chain) {
 
  case DC_WISHBONE:
 
    opcode = DBG_WB_CMD_NOP;
 
    opcode_len = DBG_WB_OPCODE_LEN;
 
    break;
 
  case DC_CPU0:
 
    opcode = DBG_CPU0_CMD_NOP;
 
    opcode_len = DBG_CPU0_OPCODE_LEN;
 
    break;
 
  case DC_CPU1:
 
    opcode = DBG_CPU1_CMD_NOP;
 
    opcode_len = DBG_CPU1_OPCODE_LEN;
 
    break;
 
  default:
 
    printf("ERROR! Illegal debug chain selected while doing control read!\n");
 
    return 1;
 
  }
 
 
 
  outdata[0] = opcode & ~(0x1 << opcode_len);  // Zero MSB = op for module, not top-level debug unit
 
 
 
  err |= tap_set_shift_dr();  /* SHIFT_DR */
 
 
 
  // We cheat a bit here by using two stream operations.
 
  // First we burn the postfix bits and read the desired data, then we push a NOP
 
  // into position through the prefix bits.  We may be able to combine the two and save
 
  // some cycles, but that way leads to madness.
 
  err |= jtag_read_write_stream(outdata, data, databits, 1, 0);  // adjust for prefix bits
 
  err |= jtag_write_stream(outdata, opcode_len+1, 1);  // adjust for postfix bits, Set TMS: EXIT1_DR
 
 
 
  err |= jtag_write_bit(TMS); /* UPDATE_DR */
 
  err |= jtag_write_bit(0); /* IDLE */
 
 
 
 
 
  /* reset retry counter */
 
  retry_ok();
 
 
 
  if(err)
 
    printf("Error %s reading control register %ld in module %i\n", get_err_string(err), regidx, current_chain);
 
 
 
  return err;
 
}
 
 
 
 
 
/* sends out a burst command to the selected module in the debug unit (MSB to LSB):
 
 * 1-bit module command
 
 * 4-bit opcode
 
 * 32-bit address
 
 * 16-bit length (of the burst, in words)
 
 */
 
int dbg_burst_command(unsigned int opcode, unsigned long address, int length_words) {
 
  uint32_t data[2];
 
  int err = APP_ERR_NONE;
 
 
 
  if(err |= dbg_select_module(desired_chain))
 
    return err;
 
 
 
  debug("burst op %i adr 0x%lX len %i\n", opcode, address, length_words);
 
 
 
  // Set up the data
 
  data[0] = length_words | (address << 16);
 
  data[1] = ((address >> 16) | ((opcode & 0xf) << 16)) & ~(0x1<<20); // MSB must be 0 to access modules
 
 
 
  err |= tap_set_shift_dr();  /* SHIFT_DR */
 
 
 
  /* write data, EXIT1_DR */
 
  err |= jtag_write_stream(data, 53, 1);  // When TMS is set (last parameter), DR length is also adjusted; EXIT1_DR
 
 
 
  err |= jtag_write_bit(TMS); /* UPDATE_DR */
 
  err |= jtag_write_bit(0); /* IDLE */
 
 
 
  /* reset retry counter */
 
  retry_ok();
 
 
 
  if(err)
 
    printf("Error %s sending burst command to module %i\n", get_err_string(err), desired_chain);
 
 
 
  return err;
 
}
 
 
 
// Set up and execute a burst read from a contiguous block of addresses.
 
// Note that there is a minor weakness in the CRC algorithm in case of retries:
 
// the CRC is only checked for the final burst read.  Thus, if errors/partial retries
 
// break up a transfer into multiple bursts, only the last burst will be CRC protected.
 
#define MAX_BUS_ERRORS 10
 
int dbg_wb_burst_read(int word_size_bytes, int word_count, unsigned long start_address, void *data)
 
{
 
  unsigned char opcode;
 
  uint8_t status;
 
  unsigned long instream;
 
  int i, j;
 
  unsigned long crc_calc;
 
  uint32_t crc_read;
 
  unsigned char word_size_bits;
 
  uint32_t out_data = 0;
 
  uint32_t in_data;
 
  unsigned long addr;
 
  uint32_t err_data[2];
 
  int bus_error_retries = 0;
 
  int err = APP_ERR_NONE;
 
 
 
    debug("Doing burst read, word size %d, word count %d, start address 0x%lX", word_size_bytes, word_count, start_address);
 
 
 
    if(word_count <= 0) {
 
      debug("Ignoring illegal read burst length (%d)\n", word_count);
 
      return 0;
 
    }
 
 
 
    instream = 0;
 
    word_size_bits = word_size_bytes << 3;
 
 
 
    // Select the appropriate opcode
 
    switch(current_chain) {
 
    case DC_WISHBONE:
 
      if (word_size_bytes == 1) opcode = DBG_WB_CMD_BREAD8;
 
      else if(word_size_bytes == 2) opcode = DBG_WB_CMD_BREAD16;
 
      else if(word_size_bytes == 4) opcode = DBG_WB_CMD_BREAD32;
 
      else {
 
        printf("Tried burst read with invalid word size (%0x), defaulting to 4-byte words", word_size_bytes);
 
        opcode = DBG_WB_CMD_BREAD32;
 
      }
 
      break;
 
    case DC_CPU0:
 
      if(word_size_bytes == 4) opcode = DBG_CPU0_CMD_BREAD32;
 
      else {
 
        printf("Tried burst read with invalid word size (%0x), defaulting to 4-byte words", word_size_bytes);
 
        opcode = DBG_CPU0_CMD_BREAD32;
 
      }
 
      break;
 
    case DC_CPU1:
 
      if(word_size_bytes == 4) opcode = DBG_CPU1_CMD_BREAD32;
 
      else {
 
        printf("Tried burst read with invalid word size (%0x), defaulting to 4-byte words", word_size_bytes);
 
        opcode = DBG_CPU0_CMD_BREAD32;
 
      }
 
      break;
 
    default:
 
      printf("ERROR! Illegal debug chain selected while doing burst read!\n");
 
      return 1;
 
    }
 
 
 
 wb_burst_read_retry_full:
 
    i = 0;
 
    addr = start_address;
 
 wb_burst_read_retry_partial:
 
    crc_calc = 0xffffffff;
 
 
 
 
 
    // Send the BURST READ command, returns TAP to idle state
 
    if(err |= dbg_burst_command(opcode, addr, (word_count-i)))  // word_count-i in case of partial retry 
 
      return err;
 
 
 
    // This is a kludge to word around oddities in the Xilinx BSCAN_* devices, and the
 
    // adv_dbg_if state machine.  The debug FSM needs 1 TCK between UPDATE_DR above, and
 
    // the CAPTURE_DR below, and the BSCAN_* won't provide it.  So, we force it, by putting the TAP
 
    // in BYPASS, which makes the debug_select line inactive, which is AND'ed with the TCK line (in the xilinx_internal_jtag module),
 
    // which forces it low.  Then we re-enable USER1/debug_select to make TCK high.  One TCK
 
    // event, the hard way. 
 
    if(global_xilinx_bscan) {
 
      err |= tap_set_ir(0xFFFFFFFF);
 
      err |= tap_enable_debug_module();
 
    }
 
 
 
    // Get us back to shift_dr mode to read a burst
 
    err |=  tap_set_shift_dr();
 
 
 
    // We do not adjust for the DR length here.  BYPASS regs are loaded with 0,
 
    // and the debug unit waits for a '1' status bit before beginning to read data.
 
 
 
   // Repeat for each word: wait until ready = 1, then read word_size_bits bits.
 
   for(; i < word_count; i++)
 
     {
 
       // Get 1 status bit, then word_size_bytes*8 bits
 
       status = 0;
 
       j = 0;
 
       while(!status) {  // Status indicates whether there is a word available to read.  Wait until it returns true.
 
         err |= jtag_read_write_bit(0, &status);
 
         j++;
 
         // If max count exceeded, retry starting with the failure address
 
         if(j > MAX_READ_STATUS_WAIT) {
 
           printf("Burst read timed out.\n");
 
           if(!retry_do()) {
 
             printf("Retry count exceeded in burst read!\n");
 
             return err|APP_ERR_MAX_RETRY;
 
           }
 
           err = APP_ERR_NONE;  // on retry, errors cleared
 
           addr = start_address + (i*word_size_bytes);
 
           goto wb_burst_read_retry_partial;
 
         }
 
       }
 
 
 
       if(j > 1) {  // It's actually normal for the first read of a burst to take 2 tries, even with a fast WB clock - 3 with a Xilinx BSCAN
 
         debug("Took %0d tries before good status bit during burst read", j);
 
       }
 
 
 
       // Get one word of data
 
       err |= jtag_read_write_stream(&out_data, &in_data, word_size_bits, 0, 0);
 
       debug("Read 0x%0lx", in_data);
 
 
 
       if(err) {  // Break and retry as soon as possible on error
 
         printf("Error %s during burst read.\n", get_err_string(err));
 
           if(!retry_do()) {
 
             printf("Retry count exceeded in burst read!\n");
 
             return err|APP_ERR_MAX_RETRY;
 
           }
 
           err = APP_ERR_NONE;  // on retry, errors cleared
 
           addr = start_address + (i*word_size_bytes);
 
           goto wb_burst_read_retry_partial;
 
       }
 
 
 
       crc_calc = compute_crc(crc_calc, in_data, word_size_bits);
 
 
 
       if(word_size_bytes == 1) ((unsigned char *)data)[i] = in_data & 0xFF;
 
       else if(word_size_bytes == 2) ((unsigned short *)data)[i] = in_data & 0xFFFF;
 
       else ((unsigned long *)data)[i] = in_data;
 
     }
 
 
 
   // All bus data was read.  Read the data CRC from the debug module.
 
   err |= jtag_read_write_stream(&out_data, &crc_read, 32, 0, 1);
 
   err |= jtag_write_bit(TMS);  // update_ir
 
   err |= jtag_write_bit(0);    // idle
 
 
 
   if(crc_calc != crc_read) {
 
     printf("CRC ERROR! Computed 0x%lx, read CRC 0x%lx\n", crc_calc, crc_read);
 
     if(!retry_do()) {
 
       printf("Retry count exceeded!  Abort!\n\n");
 
       return err|APP_ERR_CRC;
 
     }
 
     goto  wb_burst_read_retry_full;
 
   }
 
   else debug("CRC OK!");
 
 
 
 
 
 
 
   // Now, read the error register, and retry/recompute as necessary.
 
   if(current_chain == DC_WISHBONE)
 
     {
 
       err |= dbg_ctrl_read(DBG_WB_REG_ERROR, err_data, 1);  // First, just get 1 bit...read address only if necessary,
 
       if(err_data[0] & 0x1) {  // Then we have a problem.
 
         err |= dbg_ctrl_read(DBG_WB_REG_ERROR, err_data, 33);
 
         addr = (err_data[0] >> 1) | (err_data[1] << 31);
 
         i = (addr - start_address) / word_size_bytes;
 
         printf("ERROR!  WB bus error during burst read, address 0x%lX (index 0x%X), retrying!\n", addr, i);
 
         bus_error_retries++;
 
         if(bus_error_retries > MAX_BUS_ERRORS) {
 
           printf("Max WB bus errors reached during burst read\n");
 
           return err|APP_ERR_MAX_BUS_ERR;
 
         }
 
         // Don't call retry_do(), a JTAG reset won't help a WB bus error
 
         err_data[0] = 1;
 
         err |= dbg_ctrl_write(DBG_WB_REG_ERROR, err_data, 1);  // Write 1 bit, to reset the error register,
 
         goto wb_burst_read_retry_partial;
 
       }
 
     }
 
 
 
   retry_ok();
 
   return err;
 
}
 
 
 
// Set up and execute a burst write to a contiguous set of addresses
 
int dbg_wb_burst_write(void *data, int word_size_bytes, int word_count, unsigned long start_address)
 
{
 
  unsigned char opcode;
 
  uint8_t status;
 
  uint32_t datawords[2] = {0,0};
 
  uint32_t statuswords[2] = {0,0};
 
  int i;
 
  unsigned long crc_calc;
 
  uint32_t crc_match;
 
  unsigned int word_size_bits;
 
  unsigned long addr;
 
  int bus_error_retries = 0;
 
  uint32_t err_data[2];
 
  int loopct, successes;
 
  int first_status_loop;
 
  int err = APP_ERR_NONE;
 
 
 
    debug("Doing burst write, word size %d, word count %d, start address 0x%lx", word_size_bytes, word_count, start_address);
 
    word_size_bits = word_size_bytes << 3;
 
 
 
    if(word_count <= 0) {
 
      printf("Ignoring illegal burst write size (%d)\n", word_count);
 
      return 0;
 
    }
 
 
 
    // Select the appropriate opcode
 
    switch(current_chain) {
 
    case DC_WISHBONE:
 
      if (word_size_bytes == 1) opcode = DBG_WB_CMD_BWRITE8;
 
      else if(word_size_bytes == 2) opcode = DBG_WB_CMD_BWRITE16;
 
      else if(word_size_bytes == 4) opcode = DBG_WB_CMD_BWRITE32;
 
      else {
 
        printf("Tried WB burst write with invalid word size (%0x), defaulting to 4-byte words", word_size_bytes);
 
        opcode = DBG_WB_CMD_BWRITE32;
 
      }
 
      break;
 
    case DC_CPU0:
 
      if(word_size_bytes == 4) opcode = DBG_CPU0_CMD_BWRITE32;
 
      else {
 
        printf("Tried CPU0 burst write with invalid word size (%0x), defaulting to 4-byte words", word_size_bytes);
 
        opcode = DBG_CPU0_CMD_BWRITE32;
 
      }
 
      break;
 
    case DC_CPU1:
 
      if(word_size_bytes == 4) opcode = DBG_CPU1_CMD_BWRITE32;
 
      else {
 
        printf("Tried CPU1 burst write with invalid word size (%0X), defaulting to 4-byte words", word_size_bytes);
 
        opcode = DBG_CPU0_CMD_BWRITE32;
 
      }
 
      break;
 
    default:
 
      printf("ERROR! Illegal debug chain selected while doing burst WRITE!\n");
 
      return 1;
 
    }
 
 
 
    // Compute which loop iteration in which to expect the first status bit
 
    first_status_loop = 1 + ((global_DR_prefix_bits + global_DR_postfix_bits)/(word_size_bits+1));
 
 
 
 wb_burst_write_retry_full:
 
    i = 0;
 
    addr = start_address;
 
 wb_burst_write_retry_partial:
 
    crc_calc = 0xffffffff;
 
    successes = 0;
 
 
 
 
 
    // Send burst command, return to idle state
 
    if(err |= dbg_burst_command(opcode, addr, (word_count-i)))  // word_count-i in case of partial retry
 
      return err;
 
 
 
   // Get us back to shift_dr mode to write a burst
 
   err |= jtag_write_bit(TMS);  // select_dr_scan
 
   err |= jtag_write_bit(0);           // capture_ir
 
   err |= jtag_write_bit(0);           // shift_ir
 
 
 
   // Write a start bit (a 1) so it knows when to start counting
 
   err |= jtag_write_bit(TDO);
 
 
 
   // Now, repeat...
 
   for(loopct = 0; i < word_count; i++,loopct++)  // loopct only used to check status... 
 
     {
 
       // Write word_size_bytes*8 bits, then get 1 status bit
 
       if(word_size_bytes == 4)       datawords[0] = ((unsigned long *)data)[i];
 
       else if(word_size_bytes == 2) datawords[0] = ((unsigned short *)data)[i];
 
       else                          datawords[0] = ((unsigned char *)data)[i];
 
 
 
       crc_calc = compute_crc(crc_calc, datawords[0], word_size_bits);
 
 
 
       // This is an optimization
 
       if((global_DR_prefix_bits + global_DR_postfix_bits) == 0) {
 
         err |= jtag_write_stream(datawords, word_size_bits, 0);  // Write data
 
         err |= jtag_read_write_bit(0, &status);  // Read status bit
 
         if(!status) {
 
           addr = start_address + (i*word_size_bytes);
 
           printf("Write before bus ready, retrying (idx %i, addr 0x%08lX).\n", i, addr);
 
           if(!retry_do()) { printf("Retry count exceeded!  Abort!\n\n"); exit(1);}
 
           // Don't bother going to TAP idle state, we're about to reset the TAP
 
           goto wb_burst_write_retry_partial;
 
         }
 
       }
 
       else {  // This is slower (for a USB cable anyway), because a read takes 1 more USB transaction than a write.
 
         err |= jtag_read_write_stream(datawords, statuswords, word_size_bits+1, 0, 0);
 
         debug("St. 0x%08lX 0x%08lX\n", statuswords[0], statuswords[1]);
 
         status = (statuswords[0] || statuswords[1]);
 
         if(loopct > first_status_loop) {
 
           if(status) successes++;
 
           else {
 
             i = successes;
 
             addr = start_address + (i*word_size_bytes);
 
             printf("Write before bus ready, retrying (idx %i, addr 0x%08lX).\n", i, addr);
 
             if(!retry_do()) { printf("Retry count exceeded!  Abort!\n\n"); exit(1);}
 
             // Don't bother going to TAP idle state, we're about to reset the TAP
 
             goto wb_burst_write_retry_partial;
 
           }
 
         }
 
       }
 
 
 
       if(err) {
 
         printf("Error %s getting status bit, retrying.\n", get_err_string(err));
 
         if(!retry_do()) {
 
           printf("Retry count exceeded!\n");
 
           return err|APP_ERR_MAX_RETRY;
 
         }
 
         err = APP_ERR_NONE;
 
         addr = start_address + (i*word_size_bytes);
 
         // Don't bother going to TAP idle state, we're about to reset the TAP
 
         goto wb_burst_write_retry_partial;
 
         }
 
 
 
      debug("Wrote 0x%0lx", datawords[0]);
 
     }
 
 
 
   // *** If this is a multi-device chain, at least one status bit will be lost.
 
   // *** If we want to check for it, we'd have to look while sending the CRC, and
 
   // *** maybe while burning bits to get the match bit.  So, for now, there is a
 
   // *** hole here.
 
 
 
   // Done sending data, Send the CRC we computed
 
   err |= jtag_write_stream(&crc_calc, 32, 0);
 
   for(i = 0; i < global_DR_prefix_bits; i++)  // Push the CRC data all the way to the debug unit
 
     err |= jtag_write_bit(0);                 // Can't do this with a stream command without setting TMS on the last bit
 
 
 
   // Read the 'CRC match' bit, and go to exit1_dr
 
   // May need to adjust for other devices in chain!
 
   datawords[0] = 0;
 
   err |= jtag_read_write_stream(datawords, &crc_match, 1, 1, 0);  // set 'adjust' to pull match bit all the way in
 
   // But don't set TMS above, that would shift prefix bits (again), wasting time.
 
   err |= jtag_write_bit(TMS);  // exit1_dr
 
   err |= jtag_write_bit(TMS);  // update_dr
 
   err |= jtag_write_bit(0);           // idle
 
 
 
   if(!crc_match) {
 
     printf("CRC ERROR! match bit after write is %ld (computed CRC 0x%lx)", crc_match, crc_calc);
 
     if(!retry_do()) { printf("Retry count exceeded!  Abort!\n\n"); exit(1);}
 
     goto  wb_burst_write_retry_full;
 
   }
 
   else debug("CRC OK!");
 
 
 
 
 
   // Now, read the error register and retry/recompute as needed
 
   if (current_chain == DC_WISHBONE)
 
     {
 
       err |= dbg_ctrl_read(DBG_WB_REG_ERROR, err_data, 1);  // First, just get 1 bit...read address only if necessary
 
       if(err_data[0] & 0x1) {  // Then we have a problem.
 
         err |= dbg_ctrl_read(DBG_WB_REG_ERROR, err_data, 33);
 
         addr = (err_data[0] >> 1) | (err_data[1] << 31);
 
         i = (addr - start_address) / word_size_bytes;
 
         printf("ERROR!  WB bus error during burst write, address 0x%lX (index 0x%X), retrying!\n", addr, i);
 
         bus_error_retries++;
 
         if(bus_error_retries > MAX_BUS_ERRORS) {
 
           printf("Max WB bus errors reached!\n");
 
           return err|APP_ERR_MAX_BUS_ERR;
 
         }
 
         // Don't call retry_do(), a JTAG reset won't help a WB bus error
 
         err |= dbg_ctrl_write(DBG_WB_REG_ERROR, err_data, 1);  // Write 1 bit, to reset the error register.
 
         goto wb_burst_write_retry_partial;
 
       }
 
     }
 
 
 
   retry_ok();
 
   return err;
 
}
 
 
 
 
 
//////////////////////////////////////////////////////////////////////
 
// API used by the GDB server
 
 
 
/* read a word from wishbone */
 
int dbg_wb_read32(unsigned long adr, unsigned long *data) {
 
  int err;
 
  pthread_mutex_lock(&dbg_access_mutex);
 
  if ((err = dbg_select_module(DC_WISHBONE)))
 
    {
 
      pthread_mutex_unlock(&dbg_access_mutex);
 
      return err;
 
    }
 
  err = dbg_wb_burst_read(4, 1, adr, (void *)data); // All WB reads / writes are bursts
 
  pthread_mutex_unlock(&dbg_access_mutex);
 
  return err;
 
}
 
 
 
/* write a word to wishbone */
 
int dbg_wb_write32(unsigned long adr, unsigned long data) {
 
  int err;
 
  pthread_mutex_lock(&dbg_access_mutex);
 
  if ((err = dbg_select_module(DC_WISHBONE)))
 
    {
 
      pthread_mutex_unlock(&dbg_access_mutex);
 
      return err;
 
    }
 
  err = dbg_wb_burst_write((void *)&data, 4, 1, adr);
 
  pthread_mutex_unlock(&dbg_access_mutex);
 
  return err;
 
}
 
 
 
// write a word to wishbone
 
// Never actually called from the GDB interface
 
int dbg_wb_write16(unsigned long adr, uint16_t data) {
 
  int err;
 
  pthread_mutex_lock(&dbg_access_mutex);
 
  if ((err = dbg_select_module(DC_WISHBONE)))
 
    {
 
      pthread_mutex_unlock(&dbg_access_mutex);
 
      return err;
 
    }
 
  err = dbg_wb_burst_write((void *)&data, 2, 1, adr);
 
  pthread_mutex_unlock(&dbg_access_mutex);
 
  return err;
 
}
 
 
 
// write a word to wishbone
 
// Never actually called from the GDB interface
 
int dbg_wb_write8(unsigned long adr, uint8_t data) {
 
  int err;
 
  pthread_mutex_lock(&dbg_access_mutex);
 
  if ((err = dbg_select_module(DC_WISHBONE)))
 
    {
 
      pthread_mutex_unlock(&dbg_access_mutex);
 
      return err;
 
    }
 
  err = dbg_wb_burst_write((void *)&data, 1, 1, adr);
 
  pthread_mutex_unlock(&dbg_access_mutex);
 
  return err;
 
}
 
 
 
 
 
int dbg_wb_read_block32(unsigned long adr, unsigned long *data, int len) {
 
  int err;
 
  pthread_mutex_lock(&dbg_access_mutex);
 
  if ((err = dbg_select_module(DC_WISHBONE)))
 
    {
 
      pthread_mutex_unlock(&dbg_access_mutex);
 
      return err;
 
    }
 
  err = dbg_wb_burst_read(4, len, adr, (void *)data);  // 'len' is words.
 
  pthread_mutex_unlock(&dbg_access_mutex);
 
  return err;
 
}
 
 
 
 
 
// Never actually called from the GDB interface
 
int dbg_wb_read_block16(unsigned long adr, uint16_t *data, int len) {
 
  int err;
 
  pthread_mutex_lock(&dbg_access_mutex);
 
  if ((err = dbg_select_module(DC_WISHBONE)))
 
    {
 
      pthread_mutex_unlock(&dbg_access_mutex);
 
      return err;
 
    }
 
  err = dbg_wb_burst_read(2, len, adr, (void *)data);  // *** is 'len' bits or words?? Call wants words...
 
  pthread_mutex_unlock(&dbg_access_mutex);
 
  return err;
 
}
 
 
 
// Never actually called from the GDB interface
 
int dbg_wb_read_block8(unsigned long adr, uint8_t *data, int len) {
 
  int err;
 
  pthread_mutex_lock(&dbg_access_mutex);
 
  if ((err = dbg_select_module(DC_WISHBONE)))
 
    {
 
      pthread_mutex_unlock(&dbg_access_mutex);
 
      return err;
 
    }
 
  err = dbg_wb_burst_read(1, len, adr, (void *)data);  // *** is 'len' bits or words?? Call wants words...
 
  pthread_mutex_unlock(&dbg_access_mutex);
 
  return err;
 
}
 
 
 
 
 
 
 
// write a block to wishbone 
 
int dbg_wb_write_block32(unsigned long adr, unsigned long *data, int len) {
 
  int err;
 
  pthread_mutex_lock(&dbg_access_mutex);
 
  if ((err = dbg_select_module(DC_WISHBONE)))
 
    {
 
      pthread_mutex_unlock(&dbg_access_mutex);
 
      return err;
 
    }
 
  err = dbg_wb_burst_write((void *)data, 4, len, adr);  // 'len' is words.
 
  pthread_mutex_unlock(&dbg_access_mutex);
 
  return err;
 
}
 
 
 
 
 
// write a block to wishbone
 
// Never actually called from the GDB interface
 
int dbg_wb_write_block16(unsigned long adr, uint16_t *data, int len) {
 
  int err;
 
  pthread_mutex_lock(&dbg_access_mutex);
 
  if ((err = dbg_select_module(DC_WISHBONE)))
 
    {
 
      pthread_mutex_unlock(&dbg_access_mutex);
 
      return err;
 
    }
 
  err = dbg_wb_burst_write((void *)data, 2, len, adr);  // *** is 'len' bits or words?? Call wants words...
 
  pthread_mutex_unlock(&dbg_access_mutex);
 
  return err;
 
}
 
 
 
// write a block to wishbone
 
int dbg_wb_write_block8(unsigned long adr, uint8_t *data, int len) {
 
  int err;
 
  pthread_mutex_lock(&dbg_access_mutex);
 
  if ((err = dbg_select_module(DC_WISHBONE)))
 
    {
 
      pthread_mutex_unlock(&dbg_access_mutex);
 
      return err;
 
    }
 
  err = dbg_wb_burst_write((void *)data, 1, len, adr);  // 'len' is in words...
 
  pthread_mutex_unlock(&dbg_access_mutex);
 
  return err;
 
}
 
 
 
 
 
/* read a register from cpu0.  This is assumed to be an OR32 CPU, with 32-bit regs. */
 
int dbg_cpu0_read(unsigned long adr, unsigned long *data) {
 
  int err;
 
  pthread_mutex_lock(&dbg_access_mutex);
 
  if ((err = dbg_select_module(DC_CPU0)))
 
    {
 
      pthread_mutex_unlock(&dbg_access_mutex);
 
      return err;
 
    }
 
  err = dbg_wb_burst_read(4, 1, adr, (void *) data); // All CPU register reads / writes are bursts
 
  pthread_mutex_unlock(&dbg_access_mutex);
 
  debug("dbg_cpu_read(), addr 0x%X, data[0] = 0x%X\n", adr, data[0]);
 
  return err;
 
}
 
 
 
/* read multiple registers from cpu0.  This is assumed to be an OR32 CPU, with 32-bit regs. */
 
int dbg_cpu0_read_block(unsigned long adr, unsigned long *data, int count) {
 
  int err;
 
  pthread_mutex_lock(&dbg_access_mutex);
 
  if ((err = dbg_select_module(DC_CPU0)))
 
    {
 
      pthread_mutex_unlock(&dbg_access_mutex);
 
      return err;
 
    }
 
  err = dbg_wb_burst_read(4, count, adr, (void *) data); // All CPU register reads / writes are bursts
 
  pthread_mutex_unlock(&dbg_access_mutex);
 
  debug("dbg_cpu_read_block(), addr 0x%X, count %i, data[0] = 0x%X\n", adr, count, data[0]);
 
  return err;
 
}
 
 
 
/* write a cpu register to cpu0.  This is assumed to be an OR32 CPU, with 32-bit regs. */
 
int dbg_cpu0_write(unsigned long adr, unsigned long data) {
 
  int err;
 
  pthread_mutex_lock(&dbg_access_mutex);
 
  if ((err = dbg_select_module(DC_CPU0)))
 
    {
 
      pthread_mutex_unlock(&dbg_access_mutex);
 
      return err;
 
    }
 
  err = dbg_wb_burst_write((void *)&data, 4, 1, adr);
 
  debug("cpu0_write, adr 0x%X, data 0x%X, ret %i\n", adr, data, err);
 
  pthread_mutex_unlock(&dbg_access_mutex);
 
  return err;
 
}
 
 
 
/* write multiple cpu registers to cpu0.  This is assumed to be an OR32 CPU, with 32-bit regs. */
 
int dbg_cpu0_write_block(unsigned long adr, unsigned long *data, int count) {
 
  int err;
 
  pthread_mutex_lock(&dbg_access_mutex);
 
  if ((err = dbg_select_module(DC_CPU0)))
 
    {
 
      pthread_mutex_unlock(&dbg_access_mutex);
 
      return err;
 
    }
 
  err = dbg_wb_burst_write((void *)data, 4, count, adr);
 
  debug("cpu0_write_block, adr 0x%X, data[0] 0x%X, count %i, ret %i\n", adr, data[0], count, err);
 
  pthread_mutex_unlock(&dbg_access_mutex);
 
  return err;
 
}
 
 
 
/* write a debug unit cpu module register
 
 * Since OR32 debug module has only 1 register,
 
 * adr is ignored (for now) */
 
int dbg_cpu0_write_ctrl(unsigned long adr, unsigned char data) {
 
  int err;
 
  uint32_t dataword = data;
 
  pthread_mutex_lock(&dbg_access_mutex);
 
  if ((err = dbg_select_module(DC_CPU0))) {
 
    printf("Failed to set chain to 0x%X\n", DC_CPU0);
 
    pthread_mutex_unlock(&dbg_access_mutex);
 
    return err;
 
  }
 
  if((err = dbg_ctrl_write(DBG_CPU0_REG_STATUS, &dataword, 2))) {
 
    printf("Failed to write chain to 0x%X control reg 0x%X\n", DC_CPU0,DBG_CPU0_REG_STATUS );  // Only 2 bits: Reset, Stall
 
    pthread_mutex_unlock(&dbg_access_mutex);
 
    return err;
 
  }
 
  debug("cpu0_write_ctrl(): set reg to 0x%X\n", data);
 
  pthread_mutex_unlock(&dbg_access_mutex);
 
  return APP_ERR_NONE;
 
}
 
 
 
 
 
/* read a register from cpu module of the debug unit.
 
 * Currently, there is only 1 register, so we do not need to select it, adr is ignored
 
 */
 
int dbg_cpu0_read_ctrl(unsigned long adr, unsigned char *data) {
 
  int err;
 
  uint32_t dataword;
 
  pthread_mutex_lock(&dbg_access_mutex);
 
  if ((err = dbg_select_module(DC_CPU0))) {
 
    printf("Failed to set chain to 0x%X\n", DC_CPU0);
 
    pthread_mutex_unlock(&dbg_access_mutex);
 
    return err;
 
  }
 
  if ((err = dbg_ctrl_read(DBG_CPU0_REG_STATUS, &dataword, 2))) {
 
    printf("Failed to read chain 0x%X control reg 0x%X\n", DC_CPU0, DBG_CPU0_REG_STATUS);
 
    pthread_mutex_unlock(&dbg_access_mutex);
 
    return err;
 
  }
 
  // reset is bit 1, stall is bit 0 in *data
 
  pthread_mutex_unlock(&dbg_access_mutex);
 
  *data = dataword;
 
  return APP_ERR_NONE;
 
}
 
 
 
// CPU1 Functions.  Note that 2 CPUs are not currently supported by GDB, so these are never actually
 
// called from the GDB interface.  They are included for completeness and future use.
 
// read a register from cpu1
 
int dbg_cpu1_read(unsigned long adr, unsigned long *data)
 
 {
 
  int err;
 
  pthread_mutex_lock(&dbg_access_mutex);
 
  if ((err = dbg_select_module(DC_CPU1)))
 
    {
 
      pthread_mutex_unlock(&dbg_access_mutex);
 
      return err;
 
    }
 
  err = dbg_wb_burst_read(4, 1, adr, (void *) data); // All CPU register reads / writes are bursts
 
  pthread_mutex_unlock(&dbg_access_mutex);
 
  return err;
 
}
 
 
 
 
 
// write a cpu register
 
int dbg_cpu1_write(unsigned long adr, unsigned long data)
 
{
 
  int err;
 
  pthread_mutex_lock(&dbg_access_mutex);
 
  if ((err = dbg_select_module(DC_CPU0)))
 
    {
 
      pthread_mutex_unlock(&dbg_access_mutex);
 
      return err;
 
    }
 
  err = dbg_wb_burst_write((void *)&data, 4, 1, adr);
 
  pthread_mutex_unlock(&dbg_access_mutex);
 
  return err;
 
}
 
 
 
 
 
// write a debug unit cpu module register
 
int dbg_cpu1_write_ctrl(unsigned long adr, unsigned char data) {
 
   int err;
 
  uint32_t dataword = data;
 
  pthread_mutex_lock(&dbg_access_mutex);
 
  if ((err = dbg_select_module(DC_CPU1))) {
 
    printf("Failed to set chain to 0x%X\n", DC_CPU1);
 
    pthread_mutex_unlock(&dbg_access_mutex);
 
    return err;
 
  }
 
  if((err = dbg_ctrl_write(DBG_CPU1_REG_STATUS, &dataword, 2))) {
 
    printf("Failed to write chain to 0x%X control reg 0x%X\n", DC_CPU1,DBG_CPU0_REG_STATUS );  // Only 2 bits: Reset, Stall
 
    pthread_mutex_unlock(&dbg_access_mutex);
 
    return err;
 
  }
 
  pthread_mutex_unlock(&dbg_access_mutex);
 
  return APP_ERR_NONE;
 
}
 
 
 
 
 
// read a debug unit cpu module register
 
int dbg_cpu1_read_ctrl(unsigned long adr, unsigned char *data) {
 
  int err;
 
  uint32_t dataword;
 
  pthread_mutex_lock(&dbg_access_mutex);
 
  if ((err = dbg_select_module(DC_CPU1))) {
 
    printf("Failed to set chain to 0x%X\n", DC_CPU1);
 
    pthread_mutex_unlock(&dbg_access_mutex);
 
    return err;
 
  }
 
  if ((err = dbg_ctrl_read(DBG_CPU1_REG_STATUS, &dataword, 2))) {
 
    printf("Failed to read chain 0x%X control reg 0x%X\n", DC_CPU0, DBG_CPU1_REG_STATUS);
 
    pthread_mutex_unlock(&dbg_access_mutex);
 
    return err;
 
  }
 
  // reset is bit 1, stall is bit 0 in *data
 
  pthread_mutex_unlock(&dbg_access_mutex);
 
  *data = dataword;
 
  return APP_ERR_NONE;
 
}
 
 
 
 
 
 
 
 
 No newline at end of file
 No newline at end of file

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.