OpenCores
URL https://opencores.org/ocsvn/dbg_interface/dbg_interface/trunk

Subversion Repositories dbg_interface

[/] [dbg_interface/] [trunk/] [rtl/] [verilog/] [dbg_cpu.v] - Diff between revs 100 and 101

Go to most recent revision | Show entire file | Details | Blame | View Log

Rev 100 Rev 101
Line 41... Line 41...
//////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////
//
//
// CVS Revision History
// CVS Revision History
//
//
// $Log: not supported by cvs2svn $
// $Log: not supported by cvs2svn $
 
// Revision 1.1  2004/01/16 14:53:31  mohor
 
// *** empty log message ***
 
//
//
//
//
//
 
 
// synopsys translate_off
// synopsys translate_off
`include "timescale.v"
`include "timescale.v"
Line 66... Line 69...
                cpu_ce_i,
                cpu_ce_i,
                crc_match_i,
                crc_match_i,
                crc_en_o,
                crc_en_o,
                shift_crc_o,
                shift_crc_o,
                rst_i,
                rst_i,
                clk_i
 
 
                // CPU signals
 
                cpu_clk_i,
 
                cpu_addr_o,
 
                cpu_data_i,
 
                cpu_data_o,
 
                cpu_bp_i,
 
                cpu_stall_o,
 
                cpu_stall_all_o,
 
                cpu_stb_o,
 
                cpu_sel_o,          // Not synchronized
 
                cpu_we_o,
 
                cpu_ack_i,
 
                cpu_rst_o
 
 
 
 
              );
              );
 
 
// JTAG signals
// JTAG signals
Line 86... Line 102...
input         cpu_ce_i;
input         cpu_ce_i;
input         crc_match_i;
input         crc_match_i;
output        crc_en_o;
output        crc_en_o;
output        shift_crc_o;
output        shift_crc_o;
input         rst_i;
input         rst_i;
input         clk_i;
 
 
 
 
// CPU signals
 
input         cpu_clk_i;
 
output [31:0] cpu_addr_o;
 
input  [31:0] cpu_data_i;
 
output [31:0] cpu_data_o;
 
input         cpu_bp_i;
 
output        cpu_stall_o;
 
output        cpu_stall_all_o;
 
output        cpu_stb_o;
 
output [`CPU_NUM -1:0]  cpu_sel_o;
 
output        cpu_we_o;
 
input         cpu_ack_i;
 
output        cpu_rst_o;
 
 
 
 
 
 
reg           tdo_o;
reg           tdo_o;
 
 
wire          cmd_cnt_en;
wire          cmd_cnt_en;
reg     [1:0] cmd_cnt;
reg     [1:0] cmd_cnt;
Line 114... Line 146...
reg     [3:0] status;
reg     [3:0] status;
 
 
wire          enable;
wire          enable;
 
 
reg           read_cycle_reg;
reg           read_cycle_reg;
 
reg           read_cycle_reg_q;
reg           read_cycle_cpu;
reg           read_cycle_cpu;
 
reg           read_cycle_cpu_q;
reg           write_cycle_reg;
reg           write_cycle_reg;
reg           write_cycle_cpu;
reg           write_cycle_cpu;
wire          read_cycle;
wire          read_cycle;
wire          write_cycle;
wire          write_cycle;
 
 
reg    [34:0] dr;
reg    [34:0] dr;
 
wire    [7:0] reg_data_out;
 
 
wire          dr_read_reg;
wire          dr_read_reg;
wire          dr_write_reg;
wire          dr_write_reg;
wire          dr_read_cpu8;
wire          dr_read_cpu8;
wire          dr_read_cpu32;
wire          dr_read_cpu32;
Line 142... Line 177...
 
 
reg           cmd_read_reg;
reg           cmd_read_reg;
reg           cmd_read_cpu;
reg           cmd_read_cpu;
reg           cmd_write_reg;
reg           cmd_write_reg;
reg           cmd_write_cpu;
reg           cmd_write_cpu;
 
reg           cycle_32_bit;
 
reg           reg_access;
 
 
 
reg [31:0] adr;
 
reg set_addr;
 
reg [199:0] latching_data_text;
 
reg cpu_ack_sync;
 
reg cpu_ack_tck;
 
reg cpu_ack_tck_q;
 
reg cpu_stb;
 
reg cpu_stb_sync;
 
reg cpu_stb_o;
 
 
wire          go_prelim;
wire          go_prelim;
wire          crc_cnt_31;
wire          crc_cnt_31;
 
 
 
 
 
 
assign enable = cpu_ce_i & shift_dr_i;
assign enable = cpu_ce_i & shift_dr_i;
assign crc_en_o = enable & crc_cnt_end & (~status_cnt_end);
assign crc_en_o = enable & crc_cnt_end & (~status_cnt_end);
assign shift_crc_o = enable & status_cnt_end;  // Signals dbg module to shift out the CRC
assign shift_crc_o = enable & status_cnt_end;  // Signals dbg module to shift out the CRC
 
 
 
 
Line 279... Line 327...
 
 
 
 
assign status_cnt_end = status_cnt4;
assign status_cnt_end = status_cnt4;
 
 
 
 
reg [31:0] adr;
 
reg set_addr;
 
 
 
 
 
// Latching address
// Latching address
always @ (posedge tck_i)
always @ (posedge tck_i)
begin
begin
Line 299... Line 345...
  else
  else
    set_addr <= #1 1'b0;
    set_addr <= #1 1'b0;
end
end
 
 
 
 
reg latch_data;
assign cpu_addr_o = adr;
reg [199:0] latching_data_text;
 
 
 
// Shift register for shifting in and out the data
// Shift register for shifting in and out the data
always @ (posedge tck_i)
always @ (posedge tck_i)
begin
begin
  if (enable & ((~addr_cnt_end) | (~cmd_cnt_end) | ((~data_cnt_end) & write_cycle)))
  if (reg_access)
 
    begin
 
      dr[31:24] <= #1 reg_data_out;
 
      latching_data_text = "Latch reg data";
 
    end
 
  else if (cpu_ack_tck & (~cpu_ack_tck_q) & read_cycle_cpu)
 
    begin
 
      if (cycle_32_bit)
 
        dr[31:0] <= #1 cpu_data_i;
 
      else
 
        dr[31:24] <= #1 cpu_data_i[7:0];
 
      latching_data_text = "Latch cpu data";
 
    end
 
  else if (enable & ((~addr_cnt_end) | (~cmd_cnt_end) | ((~data_cnt_end) & write_cycle) | (crc_cnt_end & (~data_cnt_end) & read_cycle)))
    begin
    begin
      dr <= #1 {dr[33:0], tdi_i};
      dr <= #1 {dr[33:0], tdi_i};
      latch_data <= #1 1'b0;
      latching_data_text = "shifting data";
      latching_data_text = "tdi shifted in";
 
    end
    end
  else
  else
    latching_data_text = "nothing";
    latching_data_text = "nothing";
end
end
 
 
Line 359... Line 417...
    begin
    begin
      cmd_read_reg    <= #1 1'b0;
      cmd_read_reg    <= #1 1'b0;
      cmd_read_cpu    <= #1 1'b0;
      cmd_read_cpu    <= #1 1'b0;
      cmd_write_reg   <= #1 1'b0;
      cmd_write_reg   <= #1 1'b0;
      cmd_write_cpu   <= #1 1'b0;
      cmd_write_cpu   <= #1 1'b0;
 
      cycle_32_bit    <= #1 1'b0;
    end
    end
  else if(crc_cnt_end & (~crc_cnt_end_q) & crc_match_i)
  else if(crc_cnt_end & (~crc_cnt_end_q) & crc_match_i)
    begin
    begin
      cmd_read_reg    <= #1 dr_read_reg_latched;
      cmd_read_reg    <= #1 dr_read_reg_latched;
      cmd_read_cpu    <= #1 dr_read_cpu8_latched | dr_read_cpu32_latched;
      cmd_read_cpu    <= #1 dr_read_cpu8_latched | dr_read_cpu32_latched;
      cmd_write_reg   <= #1 dr_write_reg_latched;
      cmd_write_reg   <= #1 dr_write_reg_latched;
      cmd_write_cpu   <= #1 dr_write_cpu8_latched | dr_write_cpu32_latched;
      cmd_write_cpu   <= #1 dr_write_cpu8_latched | dr_write_cpu32_latched;
 
      cycle_32_bit    <= #1 dr_read_cpu32_latched | dr_write_cpu32_latched;
    end
    end
end
end
 
 
 
 
// Upper limit. Data counter counts until this value is reached.
// Upper limit. Data counter counts until this value is reached.
always @ (posedge tck_i or posedge rst_i)
always @ (posedge tck_i or posedge rst_i)
begin
begin
  if (rst_i)
  if (rst_i)
    data_cnt_limit <= #1 6'h0;
    data_cnt_limit <= #1 6'h0;
  else if(crc_cnt_end & (~crc_cnt_end_q) & crc_match_i)
  else if(crc_cnt_end & (~crc_cnt_end_q) & crc_match_i & (~dr_go_latched))
    begin
    begin
      if (dr_read_cpu32_latched | dr_write_cpu32_latched)
      if (dr_read_cpu32_latched | dr_write_cpu32_latched)
        data_cnt_limit <= #1 6'd32;
        data_cnt_limit <= #1 6'd32;
      else
      else
        data_cnt_limit <= #1 6'd8;
        data_cnt_limit <= #1 6'd8;
Line 408... Line 468...
end
end
 
 
 
 
always @ (posedge tck_i)
always @ (posedge tck_i)
begin
begin
 
  read_cycle_reg_q <= #1 read_cycle_reg;
 
  read_cycle_cpu_q <= #1 read_cycle_cpu;
 
end
 
 
 
 
 
always @ (posedge tck_i)
 
begin
  if (update_dr_i)
  if (update_dr_i)
    write_cycle_reg <= #1 1'b0;
    write_cycle_reg <= #1 1'b0;
  else if (cmd_write_reg & go_prelim)
  else if (cmd_write_reg & go_prelim)
    write_cycle_reg <= #1 1'b1;
    write_cycle_reg <= #1 1'b1;
end
end
Line 427... Line 494...
 
 
 
 
assign read_cycle = read_cycle_reg | read_cycle_cpu;
assign read_cycle = read_cycle_reg | read_cycle_cpu;
assign write_cycle = write_cycle_reg | write_cycle_cpu;
assign write_cycle = write_cycle_reg | write_cycle_cpu;
 
 
reg reg_access;
 
 
 
// Start register write cycle
 
 
// Start register access cycle
always @ (posedge tck_i)
always @ (posedge tck_i)
begin
begin
  if (write_cycle_reg & data_cnt_end & (~data_cnt_end_q))
  if (write_cycle_reg & data_cnt_end & (~data_cnt_end_q) | read_cycle_reg & (~read_cycle_reg_q))
    begin
    begin
      reg_access <= #1 1'b1;
      reg_access <= #1 1'b1;
    end
    end
  else
  else
    reg_access <= #1 1'b0;
    reg_access <= #1 1'b0;
Line 445... Line 512...
 
 
 
 
// Connecting dbg_cpu_registers
// Connecting dbg_cpu_registers
dbg_cpu_registers i_dbg_cpu_registers
dbg_cpu_registers i_dbg_cpu_registers
     (
     (
      .data_in          (dr[7:0]),
      .data_i           (dr[7:0]),
      .data_out         (),
      .data_o           (reg_data_out),
      .address          (adr[1:0]),
      .addr_i           (adr[1:0]),
      .rw               (write_cycle),
      .we_i             (write_cycle_reg),
      .access           (reg_access),
      .en_i             (reg_access),
      .clk              (tck_i),
      .clk_i            (tck_i),
      .bp               (1'b1),
      .bp_i             (cpu_bp_i),
      .reset            (rst_i),
      .rst_i            (rst_i),
      .cpu_stall        (),
      .cpu_clk_i        (cpu_clk_i),
      .cpu_stall_all    (),
      .cpu_stall_o      (cpu_stall_o),
      .cpu_sel          (),
      .cpu_stall_all_o  (cpu_stall_all_o),
      .cpu_reset        ()
      .cpu_sel_o        (cpu_sel_o),
 
      .cpu_rst_o        (cpu_rst_o)
     );
     );
 
 
 
 
 
 
 
assign cpu_we_o   = write_cycle_cpu;
 
assign cpu_data_o = dr[31:0];
 
 
 
 
 
 
 
 
 
// Synchronizing ack signal from cpu
 
always @ (posedge tck_i)
 
begin
 
  cpu_ack_sync      <= #1 cpu_ack_i;
 
  cpu_ack_tck       <= #1 cpu_ack_sync;
 
  cpu_ack_tck_q     <= #1 cpu_ack_tck;
 
end
 
 
 
 
 
 
 
// Start cpu access cycle
 
always @ (posedge tck_i)
 
begin
 
  if (update_dr_i)
 
    cpu_stb <= #1 1'b0;
 
  else if (cpu_ack_tck)
 
    cpu_stb <= #1 1'b0;
 
  else if (write_cycle_cpu & data_cnt_end & (~data_cnt_end_q) | read_cycle_cpu & (~read_cycle_cpu_q))
 
    cpu_stb <= #1 1'b1;
 
end
 
 
 
 
 
 
 
always @ (posedge tck_i)
 
begin
 
  cpu_stb_sync  <= #1 cpu_stb;
 
  cpu_stb_o     <= #1 cpu_stb_sync;
 
end
 
 
 
 
 
 
 
 
 
 
 
 
endmodule
endmodule
 
 
 
 
 No newline at end of file
 No newline at end of file

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.