Line 2... |
Line 2... |
//
|
//
|
// Filename: butterfly_tb.cpp
|
// Filename: butterfly_tb.cpp
|
//
|
//
|
// Project: A Doubletime Pipelined FFT
|
// Project: A Doubletime Pipelined FFT
|
//
|
//
|
// Purpose: A test-bench for the butterfly.v subfile of the double
|
// Purpose: A test-bench for the butterfly.v subfile of the generic
|
// clocked FFT. This file may be run autonomously. If so,
|
// pipelined FFT. This file may be run autonomously. If so,
|
// the last line output will either read "SUCCESS" on success,
|
// the last line output will either read "SUCCESS" on success, or some
|
// or some other failure message otherwise.
|
// other failure message otherwise.
|
//
|
//
|
// This file depends upon verilator to both compile, run, and
|
// This file depends upon verilator to both compile, run, and therefore
|
// therefore test butterfly.v
|
// test butterfly.v
|
//
|
//
|
// Creator: Dan Gisselquist, Ph.D.
|
// Creator: Dan Gisselquist, Ph.D.
|
// Gisselquist Technology, LLC
|
// Gisselquist Technology, LLC
|
//
|
//
|
///////////////////////////////////////////////////////////////////////////
|
///////////////////////////////////////////////////////////////////////////
|
//
|
//
|
// Copyright (C) 2015, Gisselquist Technology, LLC
|
// Copyright (C) 2015,2018 Gisselquist Technology, LLC
|
//
|
//
|
// This program is free software (firmware): you can redistribute it and/or
|
// This program is free software (firmware): you can redistribute it and/or
|
// modify it under the terms of the GNU General Public License as published
|
// modify it under the terms of the GNU General Public License as published
|
// by the Free Software Foundation, either version 3 of the License, or (at
|
// by the Free Software Foundation, either version 3 of the License, or (at
|
// your option) any later version.
|
// your option) any later version.
|
Line 40... |
Line 40... |
//
|
//
|
///////////////////////////////////////////////////////////////////////////
|
///////////////////////////////////////////////////////////////////////////
|
#include <stdio.h>
|
#include <stdio.h>
|
#include <stdint.h>
|
#include <stdint.h>
|
|
|
#include "fftsize.h"
|
|
#include "Vbutterfly.h"
|
|
#include "verilated.h"
|
#include "verilated.h"
|
|
#include "verilated_vcd_c.h"
|
|
#include "Vbutterfly.h"
|
#include "twoc.h"
|
#include "twoc.h"
|
|
#include "fftsize.h"
|
|
|
|
#ifdef NEW_VERILATOR
|
|
#define VVAR(A) butterfly__DOT__ ## A
|
|
#else
|
|
#define VVAR(A) v__DOT_ ## A
|
|
#endif
|
|
|
#define IWIDTH TST_BUTTERFLY_IWIDTH
|
#define IWIDTH TST_BUTTERFLY_IWIDTH
|
#define CWIDTH TST_BUTTERFLY_CWIDTH
|
#define CWIDTH TST_BUTTERFLY_CWIDTH
|
#define OWIDTH TST_BUTTERFLY_OWIDTH
|
#define OWIDTH TST_BUTTERFLY_OWIDTH
|
#define BFLYDELAY TST_BUTTERFLY_MPYDELAY
|
#define BFLYDELAY TST_BUTTERFLY_MPYDELAY
|
|
|
class BFLY_TB {
|
class BFLY_TB {
|
public:
|
public:
|
Vbutterfly *m_bfly;
|
Vbutterfly *m_bfly;
|
|
VerilatedVcdC *m_trace;
|
unsigned long m_left[64], m_right[64];
|
unsigned long m_left[64], m_right[64];
|
bool m_aux[64];
|
bool m_aux[64];
|
int m_addr, m_lastaux, m_offset;
|
int m_addr, m_lastaux, m_offset;
|
bool m_syncd, m_waiting_for_sync_input;
|
bool m_syncd, m_waiting_for_sync_input;
|
|
uint64_t m_tickcount;
|
|
|
BFLY_TB(void) {
|
BFLY_TB(void) {
|
|
Verilated::traceEverOn(true);
|
|
m_trace = NULL;
|
m_bfly = new Vbutterfly;
|
m_bfly = new Vbutterfly;
|
m_addr = 0;
|
m_addr = 0;
|
m_syncd = 0;
|
m_syncd = 0;
|
|
m_tickcount = 0;
|
m_waiting_for_sync_input = true;
|
m_waiting_for_sync_input = true;
|
}
|
}
|
|
|
|
void opentrace(const char *vcdname) {
|
|
if (!m_trace) {
|
|
m_trace = new VerilatedVcdC;
|
|
m_bfly->trace(m_trace, 99);
|
|
m_trace->open(vcdname);
|
|
}
|
|
}
|
|
|
|
void closetrace(void) {
|
|
if (m_trace) {
|
|
m_trace->close();
|
|
delete m_trace;
|
|
m_trace = NULL;
|
|
}
|
|
}
|
|
|
void tick(void) {
|
void tick(void) {
|
|
m_tickcount++;
|
|
|
m_lastaux = m_bfly->o_aux;
|
m_lastaux = m_bfly->o_aux;
|
m_bfly->i_clk = 0;
|
m_bfly->i_clk = 0;
|
m_bfly->eval();
|
m_bfly->eval();
|
|
if (m_trace) m_trace->dump((uint64_t)(10ul*m_tickcount-2));
|
m_bfly->i_clk = 1;
|
m_bfly->i_clk = 1;
|
m_bfly->eval();
|
m_bfly->eval();
|
|
if (m_trace) m_trace->dump((uint64_t)(10ul*m_tickcount));
|
|
m_bfly->i_clk = 0;
|
|
m_bfly->eval();
|
|
if (m_trace) {
|
|
m_trace->dump((uint64_t)(10ul*m_tickcount+5));
|
|
m_trace->flush();
|
|
}
|
|
|
if ((!m_syncd)&&(m_bfly->o_aux))
|
if ((!m_syncd)&&(m_bfly->o_aux))
|
m_offset = m_addr;
|
m_offset = m_addr;
|
m_syncd = (m_syncd) || (m_bfly->o_aux);
|
m_syncd = (m_syncd) || (m_bfly->o_aux);
|
}
|
}
|
|
|
|
void cetick(void) {
|
|
int ce = m_bfly->i_ce, nkce;
|
|
|
|
tick();
|
|
|
|
nkce = (rand()&1);
|
|
#ifdef FFT_CKPCE
|
|
nkce += FFT_CKPCE;
|
|
#endif
|
|
|
|
if ((ce)&&(nkce > 0)) {
|
|
m_bfly->i_ce = 0;
|
|
for(int kce=0; kce<nkce-1; kce++)
|
|
tick();
|
|
}
|
|
|
|
m_bfly->i_ce = ce;
|
|
}
|
|
|
void reset(void) {
|
void reset(void) {
|
m_bfly->i_ce = 0;
|
m_bfly->i_ce = 0;
|
m_bfly->i_rst = 1;
|
m_bfly->i_reset = 1;
|
m_bfly->i_coef = 0l;
|
m_bfly->i_coef = 0l;
|
m_bfly->i_left = 0;
|
m_bfly->i_left = 0;
|
m_bfly->i_right = 0;
|
m_bfly->i_right = 0;
|
tick();
|
tick();
|
m_bfly->i_rst = 0;
|
m_bfly->i_reset = 0;
|
m_bfly->i_ce = 1;
|
m_bfly->i_ce = 1;
|
//
|
//
|
// Let's run a RESET test here, forcing the whole butterfly
|
// Let's run a RESET test here, forcing the whole butterfly
|
// to be filled with aux=1. If the reset works right,
|
// to be filled with aux=1. If the reset works right,
|
// we'll never get an aux=1 output.
|
// we'll never get an aux=1 output.
|
//
|
//
|
m_bfly->i_rst = 1;
|
m_bfly->i_reset = 1;
|
m_bfly->i_aux = 1;
|
m_bfly->i_aux = 1;
|
for(int i=0; i<200; i++) {
|
|
m_bfly->i_ce = 1;
|
m_bfly->i_ce = 1;
|
tick();
|
for(int i=0; i<200; i++)
|
}
|
cetick();
|
|
|
// Now here's the RESET line, so let's see what the test does
|
// Now here's the RESET line, so let's see what the test does
|
m_bfly->i_rst = 1;
|
m_bfly->i_reset = 1;
|
m_bfly->i_ce = 1;
|
m_bfly->i_ce = 1;
|
m_bfly->i_aux = 1;
|
m_bfly->i_aux = 1;
|
tick();
|
cetick();
|
m_bfly->i_rst = 0;
|
m_bfly->i_reset = 0;
|
m_syncd = 0;
|
m_syncd = 0;
|
|
|
m_waiting_for_sync_input = true;
|
m_waiting_for_sync_input = true;
|
}
|
}
|
|
|
Line 122... |
Line 178... |
m_waiting_for_sync_input = false;
|
m_waiting_for_sync_input = false;
|
m_addr = 0;
|
m_addr = 0;
|
}
|
}
|
|
|
m_bfly->i_ce = 1;
|
m_bfly->i_ce = 1;
|
tick();
|
cetick();
|
|
|
if ((m_bfly->o_aux)&&(!m_lastaux))
|
if ((m_bfly->o_aux)&&(!m_lastaux))
|
printf("\n");
|
printf("\n");
|
printf("n,k=%d,%3d: COEF=%010lx, LFT=%08x, RHT=%08x, A=%d, OLFT =%09lx, ORHT=%09lx, AUX=%d\n",
|
printf("n,k=%d,%3d: COEF=%0*lx, LFT=%0*x, RHT=%0*x, A=%d, OLFT =%0*lx, ORHT=%0*lx, AUX=%d\n",
|
n,k,
|
n,k,
|
m_bfly->i_coef & (~(-1l<<40)),
|
(2*CWIDTH+3)/4, ubits(m_bfly->i_coef, 2*CWIDTH),
|
m_bfly->i_left,
|
(2*IWIDTH+3)/4, m_bfly->i_left,
|
m_bfly->i_right,
|
(2*IWIDTH+3)/4, m_bfly->i_right,
|
m_bfly->i_aux,
|
m_bfly->i_aux,
|
m_bfly->o_left,
|
(2*OWIDTH+3)/4, (long)m_bfly->o_left,
|
m_bfly->o_right,
|
(2*OWIDTH+3)/4, (long)m_bfly->o_right,
|
m_bfly->o_aux);
|
m_bfly->o_aux);
|
|
|
if ((m_syncd)&&(m_left[(m_addr-m_offset)&(64-1)] != m_bfly->o_left)) {
|
if ((m_syncd)&&(m_left[(m_addr-m_offset)&(64-1)] != m_bfly->o_left)) {
|
printf("WRONG O_LEFT! (%lx(exp) != %lx(sut))\n",
|
printf("WRONG O_LEFT! (%lx(exp) != %lx(sut)\n",
|
m_left[(m_addr-m_offset)&(64-1)],
|
m_left[(m_addr-m_offset)&(64-1)],
|
m_bfly->o_left);
|
(long)m_bfly->o_left);
|
exit(-1);
|
exit(EXIT_FAILURE);
|
}
|
}
|
|
|
if ((m_syncd)&&(m_right[(m_addr-m_offset)&(64-1)] != m_bfly->o_right)) {
|
if ((m_syncd)&&(m_right[(m_addr-m_offset)&(64-1)] != m_bfly->o_right)) {
|
printf("WRONG O_RIGHT (%10lx(exp) != (%10lx(sut))!\n",
|
printf("WRONG O_RIGHT! (%lx(exp) != %lx(sut))\n",
|
m_right[(m_addr-m_offset)&(64-1)], m_bfly->o_right);
|
m_right[(m_addr-m_offset)&(64-1)],
|
exit(-1);
|
(long)m_bfly->o_right);
|
|
exit(EXIT_FAILURE);
|
}
|
}
|
|
|
if ((m_syncd)&&(m_aux[(m_addr-m_offset)&(64-1)] != m_bfly->o_aux)) {
|
if ((m_syncd)&&(m_aux[(m_addr-m_offset)&(64-1)] != m_bfly->o_aux)) {
|
printf("FAILED AUX CHANNEL TEST (i.e. the SYNC)\n");
|
printf("FAILED AUX CHANNEL TEST (i.e. the SYNC)\n");
|
exit(-1);
|
exit(EXIT_FAILURE);
|
}
|
}
|
|
|
if ((m_addr > TST_BUTTERFLY_MPYDELAY+6)&&(!m_syncd)) {
|
if ((m_addr > TST_BUTTERFLY_MPYDELAY+6)&&(!m_syncd)) {
|
printf("NO SYNC PULSE!\n");
|
printf("NO SYNC PULSE!\n");
|
// exit(-1);
|
exit(EXIT_FAILURE);
|
}
|
}
|
|
|
// Now, let's calculate an "expected" result ...
|
// Now, let's calculate an "expected" result ...
|
long rlft, ilft;
|
long rlft, ilft;
|
|
|
Line 239... |
Line 296... |
|
|
m_addr++;
|
m_addr++;
|
}
|
}
|
};
|
};
|
|
|
|
long gentestword(int w, int al, int ar) {
|
|
unsigned long lo, hi, r;
|
|
hi = ((unsigned long)(al&0x0c))<<(w-4);
|
|
hi += (al&3)-2ul;
|
|
|
|
lo = ((unsigned long)(ar&0x0c))<<(w-4);
|
|
lo += (ar&3)-2ul;
|
|
|
|
r = (ubits(hi, w) << w) | (ubits(lo, w));
|
|
return r;
|
|
}
|
|
|
int main(int argc, char **argv, char **envp) {
|
int main(int argc, char **argv, char **envp) {
|
Verilated::commandArgs(argc, argv);
|
Verilated::commandArgs(argc, argv);
|
BFLY_TB *bfly = new BFLY_TB;
|
BFLY_TB *bfly = new BFLY_TB;
|
int16_t ir0, ii0, lstr, lsti;
|
int16_t ir0, ii0, lstr, lsti;
|
int32_t sumr, sumi, difr, difi;
|
int32_t sumr, sumi, difr, difi;
|
int32_t smr, smi, dfr, dfi;
|
int32_t smr, smi, dfr, dfi;
|
int rnd = 0;
|
int rnd = 0;
|
|
|
const int TESTSZ = 256;
|
const int TESTSZ = 256;
|
|
|
|
bfly->opentrace("butterfly.vcd");
|
|
|
bfly->reset();
|
bfly->reset();
|
|
|
|
// #define ZEROTEST
|
|
#define ZEROTEST bfly->test(9,0,0x0000000000l,0x00000000,0x00000000, 0)
|
// Test whether or not the aux channel starts clear, like its supposed to
|
// Test whether or not the aux channel starts clear, like its supposed to
|
|
|
|
bfly->test(9,0,0x4000000000l,0x000f0000,0x00000000, 1);
|
|
ZEROTEST;
|
|
ZEROTEST;
|
|
bfly->test(9,0,0x4000000000l,0x00000000,0x000f0000, 0);
|
|
ZEROTEST;
|
|
ZEROTEST;
|
bfly->test(9,0,0x4000000000l,0x000f0000,0x000f0000, 0);
|
bfly->test(9,0,0x4000000000l,0x000f0000,0x000f0000, 0);
|
|
ZEROTEST;
|
|
ZEROTEST;
|
bfly->test(9,1,0x4000000000l,0x000f0000,0xfff10000, 0);
|
bfly->test(9,1,0x4000000000l,0x000f0000,0xfff10000, 0);
|
|
ZEROTEST;
|
|
ZEROTEST;
|
bfly->test(9,2,0x4000000000l,0x0000000f,0x0000fff1, 0);
|
bfly->test(9,2,0x4000000000l,0x0000000f,0x0000fff1, 0);
|
|
ZEROTEST;
|
|
ZEROTEST;
|
bfly->test(9,3,0x4000000000l,0x0000000f,0x0000000f, 0);
|
bfly->test(9,3,0x4000000000l,0x0000000f,0x0000000f, 0);
|
|
ZEROTEST;
|
|
ZEROTEST;
|
|
|
bfly->test(9,0,0x4000000000l,0x7fff0000,0x7fff0000, 1);
|
bfly->test(9,0,0x4000000000l,0x7fff0000,0x7fff0000, 1);
|
bfly->test(9,1,0x4000000000l,0x7fff0000,0x80010000, 0);
|
bfly->test(9,1,0x4000000000l,0x7fff0000,0x80010000, 0);
|
bfly->test(9,2,0x4000000000l,0x00007fff,0x00008001, 0);
|
bfly->test(9,2,0x4000000000l,0x00007fff,0x00008001, 0);
|
bfly->test(9,3,0x4000000000l,0x00007fff,0x00007fff, 0);
|
bfly->test(9,3,0x4000000000l,0x00007fff,0x00007fff, 0);
|
Line 335... |
Line 423... |
aux = ((k&(TESTSZ-1))==0);
|
aux = ((k&(TESTSZ-1))==0);
|
|
|
bfly->test(n,k, cof, lft, rht, aux);
|
bfly->test(n,k, cof, lft, rht, aux);
|
}
|
}
|
|
|
|
int k = TESTSZ;
|
|
// Exhaustively test
|
|
#if (4*IWIDTH+2*CWIDTH <= 24)
|
|
for(int a=0; a<(1<<(2*IWIDTH)); a++)
|
|
for(int b=0; b<(1<<(2*IWIDTH)); b++)
|
|
for(int c=0; c<(1<<(2*CWIDTH)); c++)
|
|
bfly->test(0, k++, c, a, b, 0);
|
|
|
|
printf("Exhaust complete\n");
|
|
#else
|
|
for(int al=0; al<16; al++)
|
|
for(int ar=0; ar<16; ar++)
|
|
for(int bl=0; bl<16; bl++)
|
|
for(int br=0; br<16; br++)
|
|
for(int cl=0; cl<16; cl++)
|
|
for(int cr=0; cr<16; cr++) {
|
|
long a = gentestword(IWIDTH, al, ar);
|
|
long b = gentestword(IWIDTH, bl, br);
|
|
long c = gentestword(CWIDTH, cl, cr);
|
|
bfly->test(0, k++, c, a, b, 0);
|
|
}
|
|
printf("Partial exhaust complete\n");
|
|
#endif
|
|
|
delete bfly;
|
delete bfly;
|
|
|
printf("SUCCESS!\n");
|
printf("SUCCESS!\n");
|
exit(0);
|
exit(0);
|
}
|
}
|