Line 1... |
Line 1... |
////////////////////////////////////////////////////////////////////////////
|
|
//
|
//
|
// Filename: butterfly_tb.cpp
|
// Filename: fft_tb.cpp
|
//
|
//
|
// Project: A Doubletime Pipelined FFT
|
// Project: A Doubletime Pipelined FFT
|
//
|
//
|
// Purpose: A test-bench for the butterfly.v subfile of the double
|
// Purpose: A test-bench for the mail program, fftmain.v, of the double
|
// clocked FFT. This file may be run autonomously. If so,
|
// clocked FFT. This file may be run autonomously (when
|
// the last line output will either read "SUCCESS" on success,
|
// fully functional). If so, the last line output will either
|
// or some other failure message otherwise.
|
// read "SUCCESS" on success, or some other failure message
|
|
// otherwise.
|
//
|
//
|
// This file depends upon verilator to both compile, run, and
|
// This file depends upon verilator to both compile, run, and
|
// therefore test butterfly.v
|
// therefore test fftmain.v
|
//
|
//
|
// Creator: Dan Gisselquist, Ph.D.
|
// Creator: Dan Gisselquist, Ph.D.
|
// Gisselquist Tecnology, LLC
|
// Gisselquist Tecnology, LLC
|
//
|
//
|
///////////////////////////////////////////////////////////////////////////
|
///////////////////////////////////////////////////////////////////////////
|
Line 38... |
Line 38... |
// http://www.gnu.org/licenses/gpl.html
|
// http://www.gnu.org/licenses/gpl.html
|
//
|
//
|
//
|
//
|
///////////////////////////////////////////////////////////////////////////
|
///////////////////////////////////////////////////////////////////////////
|
#include <stdio.h>
|
#include <stdio.h>
|
|
#include <math.h>
|
|
#include <fftw3.h>
|
|
|
#include "verilated.h"
|
#include "verilated.h"
|
#include "Vfftmain.h"
|
#include "Vfftmain.h"
|
|
|
#define LGWIDTH 11
|
#define LGWIDTH 11
|
Line 51... |
Line 53... |
#define FFTLEN (1<<LGWIDTH)
|
#define FFTLEN (1<<LGWIDTH)
|
|
|
class FFT_TB {
|
class FFT_TB {
|
public:
|
public:
|
Vfftmain *m_fft;
|
Vfftmain *m_fft;
|
long m_data[FFTLEN];
|
long m_data[FFTLEN], m_log[4*FFTLEN];
|
int m_addr;
|
int m_iaddr, m_oaddr, m_ntest;
|
FILE *m_dumpfp;
|
FILE *m_dumpfp;
|
|
fftw_plan m_plan;
|
|
double *m_fft_buf;
|
|
bool m_syncd;
|
|
|
FFT_TB(void) {
|
FFT_TB(void) {
|
m_fft = new Vfftmain;
|
m_fft = new Vfftmain;
|
m_addr = 0;
|
m_iaddr = m_oaddr = 0;
|
m_dumpfp = NULL;
|
m_dumpfp = NULL;
|
|
|
|
m_fft_buf = (double *)fftw_malloc(sizeof(fftw_complex)*(FFTLEN));
|
|
m_plan = fftw_plan_dft_1d(FFTLEN, (fftw_complex *)m_fft_buf,
|
|
(fftw_complex *)m_fft_buf,
|
|
FFTW_FORWARD, FFTW_MEASURE);
|
|
m_syncd = false;
|
|
m_ntest = 0;
|
}
|
}
|
|
|
void tick(void) {
|
void tick(void) {
|
m_fft->i_clk = 0;
|
m_fft->i_clk = 0;
|
m_fft->eval();
|
m_fft->eval();
|
Line 74... |
Line 86... |
m_fft->i_ce = 0;
|
m_fft->i_ce = 0;
|
m_fft->i_rst = 1;
|
m_fft->i_rst = 1;
|
tick();
|
tick();
|
m_fft->i_rst = 0;
|
m_fft->i_rst = 0;
|
tick();
|
tick();
|
|
|
|
m_iaddr = m_oaddr = 0;
|
|
m_syncd = false;
|
}
|
}
|
|
|
|
long twos_complement(const long val, const int bits) {
|
|
long r;
|
|
|
|
r = val & ((1l<<bits)-1);
|
|
if (r & (1l << (bits-1)))
|
|
r |= (-1l << bits);
|
|
return r;
|
|
}
|
|
|
|
void checkresults(void) {
|
|
double *dp, *sp; // Complex array
|
|
double vout[FFTLEN*2];
|
|
double isq=0.0, osq = 0.0;
|
|
long *lp;
|
|
|
|
// Fill up our test array from the log array
|
|
printf("%3d : CHECK: %8d %5x\n", m_ntest, m_iaddr, m_iaddr);
|
|
dp = m_fft_buf; lp = &m_log[(m_iaddr-FFTLEN*3)&((4*FFTLEN-1)&(-FFTLEN))];
|
|
for(int i=0; i<FFTLEN; i++) {
|
|
long tv = *lp++;
|
|
|
|
dp[0] = twos_complement(tv >> IWIDTH, IWIDTH);
|
|
dp[1] = twos_complement(tv, IWIDTH);
|
|
|
|
printf("IN[%4d = %4x] = %9.1f %9.1f\n",
|
|
i+((m_iaddr-FFTLEN*3)&((4*FFTLEN-1)&(-FFTLEN))),
|
|
i+((m_iaddr-FFTLEN*3)&((4*FFTLEN-1)&(-FFTLEN))),
|
|
dp[0], dp[1]);
|
|
dp += 2;
|
|
}
|
|
|
|
// Let's measure ... are we the zero vector? If not, how close?
|
|
dp = m_fft_buf;
|
|
for(int i=0; i<FFTLEN; i++)
|
|
isq += (*dp) * (*dp);
|
|
|
|
fftw_execute(m_plan);
|
|
|
|
// Let's load up the output we received into vout
|
|
dp = vout;
|
|
for(int i=0; i<FFTLEN; i++) {
|
|
long tv = m_data[i];
|
|
|
|
printf("OUT[%4d = %4x] = ", i, i);
|
|
printf("%16lx = ", tv);
|
|
*dp = twos_complement(tv >> OWIDTH, OWIDTH);
|
|
printf("%12.1f + ", *dp);
|
|
osq += (*dp) * (*dp); dp++;
|
|
*dp = twos_complement(tv, OWIDTH);
|
|
printf("%12.1f j", *dp);
|
|
osq += (*dp) * (*dp); dp++;
|
|
printf(" <-> %12.1f %12.1f\n", m_fft_buf[2*i], m_fft_buf[2*i+1]);
|
|
}
|
|
|
|
|
|
// Let's figure out if there's a scale factor difference ...
|
|
double scale = 0.0, wt = 0.0;
|
|
sp = m_fft_buf; dp = vout;
|
|
for(int i=0; i<FFTLEN*2; i++) {
|
|
scale += (*sp) * (*dp++);
|
|
wt += (*sp) * (*sp); sp++;
|
|
} scale = scale / wt;
|
|
|
|
if (wt == 0.0) scale = 1.0;
|
|
|
|
double xisq = 0.0;
|
|
sp = m_fft_buf; dp = vout;
|
|
for(int i=0; i<FFTLEN*2; i++) {
|
|
double vl = (*sp++) * scale - (*dp++);
|
|
xisq += vl * vl;
|
|
}
|
|
|
|
printf("%3d : SCALE = %12.6f, WT = %18.1f, ISQ = %15.1f, ",
|
|
m_ntest, scale, wt, isq);
|
|
printf("OSQ = %18.1f, ", osq);
|
|
printf("XISQ = %18.1f\n", xisq);
|
|
m_ntest++;
|
|
}
|
|
|
bool test(int lft, int rht) {
|
bool test(int lft, int rht) {
|
m_fft->i_ce = 1;
|
m_fft->i_ce = 1;
|
m_fft->i_rst = 0;
|
m_fft->i_rst = 0;
|
m_fft->i_left = lft;
|
m_fft->i_left = lft;
|
m_fft->i_right = rht;
|
m_fft->i_right = rht;
|
|
|
|
m_log[(m_iaddr++)&(4*FFTLEN-1)] = (long)lft;
|
|
m_log[(m_iaddr++)&(4*FFTLEN-1)] = (long)rht;
|
|
|
tick();
|
tick();
|
|
|
if (m_fft->o_sync) {
|
if (m_fft->o_sync) {
|
m_addr = 0;
|
m_oaddr &= (-1<<LGWIDTH);
|
} else m_addr += 2;
|
m_syncd = true;
|
|
} else m_oaddr += 2;
|
printf("%5d: %08x,%08x -> %09lx,%09lx\t%s%s%s%s%s%s%s%s%s%s %s\n",
|
|
m_addr,
|
printf("%8x,%5d: %08x,%08x -> %011lx,%011lx"
|
|
// "\t%011lx,%011lx"
|
|
// "\t%011lx,%011lx"
|
|
// "\t%06x,%06x"
|
|
// "\t%06x,%06x"
|
|
"\t%011lx,%06x,%06x"
|
|
"\t%011lx,%06x,%06x"
|
|
" %s%s%s%s%s%s%s%s%s%s %s%s\n",
|
|
m_iaddr, m_oaddr,
|
lft, rht, m_fft->o_left, m_fft->o_right,
|
lft, rht, m_fft->o_left, m_fft->o_right,
|
|
// m_fft->v__DOT__stage_e2048__DOT__ib_a,
|
|
// m_fft->v__DOT__stage_e2048__DOT__ib_b,
|
|
// m_fft->v__DOT__stage_e512__DOT__ib_a,
|
|
// m_fft->v__DOT__stage_e512__DOT__ib_b,
|
|
// m_fft->v__DOT__stage_e256__DOT__ib_a,
|
|
// m_fft->v__DOT__stage_e256__DOT__ib_b,
|
|
// m_fft->v__DOT__stage_e128__DOT__ib_a,
|
|
// m_fft->v__DOT__stage_e128__DOT__ib_b,
|
|
// m_fft->v__DOT__stage_e64__DOT__ib_a,
|
|
// m_fft->v__DOT__stage_e64__DOT__ib_b,
|
|
// m_fft->v__DOT__stage_e32__DOT__ib_a,
|
|
// m_fft->v__DOT__stage_e32__DOT__ib_b,
|
|
// m_fft->v__DOT__stage_e16__DOT__ib_a,
|
|
// m_fft->v__DOT__stage_e16__DOT__ib_b,
|
|
// m_fft->v__DOT__stage_e8__DOT__ib_a,
|
|
// m_fft->v__DOT__stage_e8__DOT__ib_b,
|
|
// m_fft->v__DOT__stage_o8__DOT__ib_a,
|
|
// m_fft->v__DOT__stage_o8__DOT__ib_b,
|
|
// m_fft->v__DOT__stage_e4__DOT__sum_r,
|
|
// m_fft->v__DOT__stage_e4__DOT__sum_i,
|
|
// m_fft->v__DOT__stage_o4__DOT__sum_r,
|
|
// m_fft->v__DOT__stage_o4__DOT__sum_i,
|
|
m_fft->v__DOT__stage_e4__DOT__ob_a,
|
|
m_fft->v__DOT__stage_e4__DOT__ob_b_r,
|
|
m_fft->v__DOT__stage_e4__DOT__ob_b_i,
|
|
m_fft->v__DOT__stage_o4__DOT__ob_a,
|
|
m_fft->v__DOT__stage_o4__DOT__ob_b_r,
|
|
m_fft->v__DOT__stage_o4__DOT__ob_b_i,
|
|
// m_fft->v__DOT__stage_2__DOT__out_0r,
|
|
// m_fft->v__DOT__stage_2__DOT__out_0i,
|
|
// m_fft->v__DOT__stage_2__DOT__out_1r,
|
|
// m_fft->v__DOT__stage_2__DOT__out_1i,
|
(m_fft->v__DOT__w_s2048)?"S":"-",
|
(m_fft->v__DOT__w_s2048)?"S":"-",
|
(m_fft->v__DOT__w_s1024)?"S":"-",
|
(m_fft->v__DOT__w_s1024)?"S":"-",
|
(m_fft->v__DOT__w_s512)?"S":"-",
|
(m_fft->v__DOT__w_s512)?"S":"-",
|
(m_fft->v__DOT__w_s256)?"S":"-",
|
(m_fft->v__DOT__w_s256)?"S":"-",
|
(m_fft->v__DOT__w_s128)?"S":"-",
|
(m_fft->v__DOT__w_s128)?"S":"-",
|
(m_fft->v__DOT__w_s64)?"S":"-",
|
(m_fft->v__DOT__w_s64)?"S":"-",
|
(m_fft->v__DOT__w_s32)?"S":"-",
|
(m_fft->v__DOT__w_s32)?"S":"-",
|
(m_fft->v__DOT__w_s16)?"S":"-", // This works
|
(m_fft->v__DOT__w_s16)?"S":"-",
|
(m_fft->v__DOT__w_s8)?"S":"-",
|
(m_fft->v__DOT__w_s8)?"S":"-",
|
(m_fft->v__DOT__w_s4)?"S":"-", // This doesn.t
|
(m_fft->v__DOT__w_s4)?"S":"-",
|
(m_fft->o_sync)?"\t(SYNC!)":"");
|
// (m_fft->v__DOT__w_s2)?"S":"-", // doesn't exist
|
|
(m_fft->o_sync)?"\t(SYNC!)":"",
|
|
(m_fft->o_left | m_fft->o_right)?" (NZ)":"");
|
|
|
m_data[(m_addr )&(FFTLEN-1)] = m_fft->o_left;
|
m_data[(m_oaddr )&(FFTLEN-1)] = m_fft->o_left;
|
m_data[(m_addr+1)&(FFTLEN-1)] = m_fft->o_right;
|
m_data[(m_oaddr+1)&(FFTLEN-1)] = m_fft->o_right;
|
|
|
if (m_addr == FFTLEN-2)
|
if ((m_syncd)&&((m_oaddr&(FFTLEN-1)) == FFTLEN-2)) {
|
dumpwrite();
|
dumpwrite();
|
|
checkresults();
|
|
}
|
|
|
return (m_fft->o_sync);
|
return (m_fft->o_sync);
|
}
|
}
|
|
|
bool test(double lft_r, double lft_i, double rht_r, double rht_i) {
|
bool test(double lft_r, double lft_i, double rht_r, double rht_i) {
|
int ilft, irht, ilft_r, ilft_i, irht_r, irht_i;
|
int ilft, irht, ilft_r, ilft_i, irht_r, irht_i;
|
|
|
ilft_r = (int)(lft_r + 0.5) & ((1<<IWIDTH)-1);
|
ilft_r = (int)(lft_r) & ((1<<IWIDTH)-1);
|
ilft_i = (int)(lft_i + 0.5) & ((1<<IWIDTH)-1);
|
ilft_i = (int)(lft_i) & ((1<<IWIDTH)-1);
|
irht_r = (int)(rht_r + 0.5) & ((1<<IWIDTH)-1);
|
irht_r = (int)(rht_r) & ((1<<IWIDTH)-1);
|
irht_i = (int)(rht_i + 0.5) & ((1<<IWIDTH)-1);
|
irht_i = (int)(rht_i) & ((1<<IWIDTH)-1);
|
|
|
ilft = (ilft_r << IWIDTH) | ilft_i;
|
ilft = (ilft_r << IWIDTH) | ilft_i;
|
irht = (irht_r << IWIDTH) | irht_i;
|
irht = (irht_r << IWIDTH) | irht_i;
|
|
|
return test(ilft, irht);
|
return test(ilft, irht);
|
Line 168... |
Line 308... |
fwrite(buf, sizeof(double), FFTLEN*2, m_dumpfp);
|
fwrite(buf, sizeof(double), FFTLEN*2, m_dumpfp);
|
delete[] buf;
|
delete[] buf;
|
}
|
}
|
};
|
};
|
|
|
|
|
int main(int argc, char **argv, char **envp) {
|
int main(int argc, char **argv, char **envp) {
|
Verilated::commandArgs(argc, argv);
|
Verilated::commandArgs(argc, argv);
|
FFT_TB *fft = new FFT_TB;
|
FFT_TB *fft = new FFT_TB;
|
FILE *fpout;
|
FILE *fpout;
|
|
|
Line 182... |
Line 323... |
}
|
}
|
|
|
fft->reset();
|
fft->reset();
|
fft->dump(fpout);
|
fft->dump(fpout);
|
|
|
// Let's start by just testing our limits ...
|
// 1 -> 0x0001
|
// First, the smallest real number
|
// 2 -> 0x0002
|
|
// 4 -> 0x0004
|
|
// 8 -> 0x0008
|
|
// 16 -> 0x0010
|
|
// 32 -> 0x0020
|
|
// 64 -> 0x0040
|
|
// 128 -> 0x0080
|
|
// 256 -> 0x0100
|
|
// 512 -> 0x0200
|
|
// 1024 -> 0x0400
|
|
// 2048 -> 0x0800
|
|
// 4096 -> 0x1000
|
|
// 8192 -> 0x2000
|
|
// 16384 -> 0x4000
|
|
for(int v=1; v<32768; v<<=1) for(int k=0; k<FFTLEN/2; k++)
|
|
fft->test((double)v,0.0,(double)v,0.0);
|
|
// 1 -> 0xffff
|
|
// 2 -> 0xfffe
|
|
// 4 -> 0xfffc
|
|
// 8 -> 0xfff8
|
|
// 16 -> 0xfff0
|
|
// 32 -> 0xffe0
|
|
// 64 -> 0xffc0
|
|
// 128 -> 0xff80
|
|
// 256 -> 0xff00
|
|
// 512 -> 0xfe00
|
|
// 1024 -> 0xfc00
|
|
// 2048 -> 0xf800
|
|
// 4096 -> 0xf000
|
|
// 8192 -> 0xe000
|
|
// 16384 -> 0xc000
|
|
// 32768 -> 0x8000
|
|
for(int v=1; v<=32768; v<<=1) for(int k=0; k<FFTLEN/2; k++)
|
|
fft->test(-(double)v,0.0,-(double)v,0.0);
|
|
// 1 -> 0x000040 CORRECT!!
|
|
// 2 -> 0x000080
|
|
// 4 -> 0x000100
|
|
// 8 -> 0x000200
|
|
// 16 -> 0x000400
|
|
// 32 -> 0x000800
|
|
// 64 -> 0x001000
|
|
// 128 -> 0x002000
|
|
// 256 -> 0x004000
|
|
// 512 -> 0x008000
|
|
// 1024 -> 0x010000
|
|
// 2048 -> 0x020000
|
|
// 4096 -> 0x040000
|
|
// 8192 -> 0x080000
|
|
// 16384 -> 0x100000
|
|
for(int v=1; v<32768; v<<=1) for(int k=0; k<FFTLEN/2; k++)
|
|
fft->test(0.0,(double)v,0.0,(double)v);
|
|
// 1 -> 0x3fffc0
|
|
// 2 -> 0x3fff80
|
|
// 4 -> 0x3fff00
|
|
// 8 -> 0x3ffe00
|
|
// 16 -> 0x3ffc00
|
|
// 32 -> 0x3ff800
|
|
// 64 -> 0x3ff000
|
|
// 128 -> 0x3fe000
|
|
// 256 -> 0x3fc000
|
|
// 512 -> 0x3f8000
|
|
// 1024 -> 0x3f0000
|
|
// 2048 -> 0x3e0000
|
|
// 4096 -> 0x3c0000
|
|
// 8192 -> 0x380000
|
|
// 16384 -> 0x300000
|
|
for(int v=1; v<32768; v<<=1) for(int k=0; k<FFTLEN/2; k++)
|
|
fft->test(0.0,-(double)v,0.0,-(double)v);
|
|
|
|
// 61. Now, how about the smallest alternating real signal
|
for(int k=0; k<FFTLEN/2; k++)
|
for(int k=0; k<FFTLEN/2; k++)
|
fft->test(1.0,0.0,1.0,0.0);
|
fft->test(2.0,0.0,0.0,0.0); // Don't forget to expect a bias!
|
// Then the smallest imaginary number
|
// 62. Now, how about the smallest alternating imaginary signal
|
for(int k=0; k<FFTLEN/2; k++)
|
for(int k=0; k<FFTLEN/2; k++)
|
fft->test(0.0,1.0,0.0,1.0);
|
fft->test(0.0,2.0,0.0,0.0); // Don't forget to expect a bias!
|
// First, the smallest real number
|
// 63. Now, how about the smallest alternating real signal,2nd phase
|
for(int k=0; k<FFTLEN/2; k++)
|
for(int k=0; k<FFTLEN/2; k++)
|
fft->test(-1.0,0.0,-1.0,0.0);
|
fft->test(0.0,0.0,2.0,0.0); // Don't forget to expect a bias!
|
// Then the smallest imaginary number
|
// 64.Now, how about the smallest alternating imaginary signal,2nd phase
|
for(int k=0; k<FFTLEN/2; k++)
|
for(int k=0; k<FFTLEN/2; k++)
|
fft->test(0.0,-1.0,0.0,-1.0);
|
fft->test(0.0,0.0,0.0,2.0); // Don't forget to expect a bias!
|
// Now, how about the smallest alternating real signal
|
|
|
// 65.
|
for(int k=0; k<FFTLEN/2; k++)
|
for(int k=0; k<FFTLEN/2; k++)
|
fft->test(1.0,0.0,0.0,0.0); // Don't forget to expect a bias!
|
fft->test(32767.0,0.0,-32767.0,0.0);
|
// Now, how about the smallest alternating imaginary signal
|
// 66.
|
for(int k=0; k<FFTLEN/2; k++)
|
for(int k=0; k<FFTLEN/2; k++)
|
fft->test(0.0,1.0,0.0,0.0); // Don't forget to expect a bias!
|
fft->test(0.0,-32767.0,0.0,32767.0);
|
// Now, how about the smallest alternating real signal,2nd phase
|
// 67.
|
for(int k=0; k<FFTLEN/2; k++)
|
for(int k=0; k<FFTLEN/2; k++)
|
fft->test(0.0,0.0,1.0,0.0); // Don't forget to expect a bias!
|
fft->test(-32768.0,-32768.0,-32768.0,-32768.0);
|
// Now, how about the smallest alternating imaginary signal,2nd phase
|
// 68.
|
for(int k=0; k<FFTLEN/2; k++)
|
for(int k=0; k<FFTLEN/2; k++)
|
fft->test(0.0,0.0,0.0,1.0); // Don't forget to expect a bias!
|
fft->test(0.0,-32767.0,0.0,32767.0);
|
|
// 69.
|
// Now let's go for the largest value
|
for(int k=0; k<FFTLEN/2; k++)
|
|
fft->test(0.0,32767.0,0.0,-32767.0);
|
|
// 70.
|
for(int k=0; k<FFTLEN/2; k++)
|
for(int k=0; k<FFTLEN/2; k++)
|
fft->test(-32768.0,-32768.0,-32768.0,-32768.0);
|
fft->test(-32768.0,-32768.0,-32768.0,-32768.0);
|
|
|
// And finally, let's clear out our results / buffer
|
// 71. Now let's go for an impulse (SUCCESS)
|
for(int k=0; k<(FFTLEN/2) * 3; k++)
|
fft->test(16384.0, 0.0, 0.0, 0.0);
|
|
for(int k=0; k<FFTLEN/2-1; k++)
|
|
fft->test(0.0,0.0,0.0,0.0);
|
|
|
|
// 72. And another one on the next clock (FAILS, ugly)
|
|
fft->test(0.0, 0.0, 16384.0, 0.0);
|
|
for(int k=0; k<FFTLEN/2-1; k++)
|
|
fft->test(0.0,0.0,0.0,0.0);
|
|
|
|
// 73. And an imaginary one on the second clock
|
|
fft->test(0.0, 0.0, 0.0, 16384.0);
|
|
for(int k=0; k<FFTLEN/2-1; k++)
|
|
fft->test(0.0,0.0,0.0,0.0);
|
|
|
|
// 74. Likewise the next clock
|
|
fft->test(0.0,0.0,0.0,0.0);
|
|
fft->test(16384.0, 0.0, 0.0, 0.0);
|
|
for(int k=0; k<FFTLEN/2-2; k++)
|
|
fft->test(0.0,0.0,0.0,0.0);
|
|
|
|
// 75. And it's imaginary counterpart
|
fft->test(0.0,0.0,0.0,0.0);
|
fft->test(0.0,0.0,0.0,0.0);
|
|
fft->test(0.0, 16384.0, 0.0, 0.0);
|
|
for(int k=0; k<FFTLEN/2-2; k++)
|
|
fft->test(0.0,0.0,0.0,0.0);
|
|
|
|
// 76. Likewise the next clock
|
|
fft->test(0.0,0.0,0.0,0.0);
|
|
fft->test(0.0, 0.0, 16384.0, 0.0);
|
|
for(int k=0; k<FFTLEN/2-2; k++)
|
|
fft->test(0.0,0.0,0.0,0.0);
|
|
|
|
// 77. And it's imaginary counterpart
|
|
fft->test(0.0,0.0,0.0,0.0);
|
|
fft->test(0.0, 0.0, 0.0, 16384.0);
|
|
for(int k=0; k<FFTLEN/2-2; k++)
|
|
fft->test(0.0,0.0,0.0,0.0);
|
|
|
|
|
|
// 78. Now let's try some exponentials
|
|
for(int k=0; k<FFTLEN/2; k++) {
|
|
double cl, cr, sl, sr, W;
|
|
W = - 2.0 * M_PI / FFTLEN;
|
|
cl = cos(W * (2*k )) * 16383.0;
|
|
sl = sin(W * (2*k )) * 16383.0;
|
|
cr = cos(W * (2*k+1)) * 16383.0;
|
|
sr = sin(W * (2*k+1)) * 16383.0;
|
|
fft->test(cl, sl, cr, sr);
|
|
}
|
|
|
|
// 72.
|
|
for(int k=0; k<FFTLEN/2; k++) {
|
|
double cl, cr, sl, sr, W;
|
|
W = - 2.0 * M_PI / FFTLEN * 5;
|
|
cl = cos(W * (2*k )) * 16383.0;
|
|
sl = sin(W * (2*k )) * 16383.0;
|
|
cr = cos(W * (2*k+1)) * 16383.0;
|
|
sr = sin(W * (2*k+1)) * 16383.0;
|
|
fft->test(cl, sl, cr, sr);
|
|
}
|
|
|
|
// 73.
|
|
for(int k=0; k<FFTLEN/2; k++) {
|
|
double cl, cr, sl, sr, W;
|
|
W = - 2.0 * M_PI / FFTLEN * 8;
|
|
cl = cos(W * (2*k )) * 8190.0;
|
|
sl = sin(W * (2*k )) * 8190.0;
|
|
cr = cos(W * (2*k+1)) * 8190.0;
|
|
sr = sin(W * (2*k+1)) * 8190.0;
|
|
fft->test(cl, sl, cr, sr);
|
|
}
|
|
|
|
// 74.
|
|
for(int k=0; k<FFTLEN/2; k++) {
|
|
double cl, cr, sl, sr, W;
|
|
W = - 2.0 * M_PI / FFTLEN * 25;
|
|
cl = cos(W * (2*k )) * 4.0;
|
|
sl = sin(W * (2*k )) * 4.0;
|
|
cr = cos(W * (2*k+1)) * 4.0;
|
|
sr = sin(W * (2*k+1)) * 4.0;
|
|
fft->test(cl, sl, cr, sr);
|
|
}
|
|
|
// Now let's try some exponentials
|
// 19.--24. And finally, let's clear out our results / buffer
|
// for(int k=0; k<FFTLEN/2; k++)
|
for(int k=0; k<(FFTLEN/2) * 5; k++)
|
// fft->test(-32768.0,-32768.0,-32768.0,-32768.0);
|
fft->test(0.0,0.0,0.0,0.0);
|
|
|
|
|
|
|
fclose(fpout);
|
fclose(fpout);
|
}
|
}
|
|
|
// 564, 874, 1058, 1178, 1300, 1422, 1546, 1666, 1788, 1798 --> SYNC @ 3852
|
|
// 2612, 2922, 3106, 3226, 3348, 3470, 3594, 3714, 3836, 3846
|
|
// 808, 1118, 1302, 1422, 1544, 1666, 1790, 1910, 2032, 2042 --> SYNC @ 2848
|
|
// 8756 .. ??
|
|
|
|
No newline at end of file
|
No newline at end of file
|