OpenCores
URL https://opencores.org/ocsvn/dblclockfft/dblclockfft/trunk

Subversion Repositories dblclockfft

[/] [dblclockfft/] [trunk/] [bench/] [cpp/] [fft_tb.cpp] - Diff between revs 35 and 36

Go to most recent revision | Show entire file | Details | Blame | View Log

Rev 35 Rev 36
Line 3... Line 3...
//
//
// Project:     A Doubletime Pipelined FFT
// Project:     A Doubletime Pipelined FFT
//
//
// Purpose:     A test-bench for the main program, fftmain.v, of the double
// Purpose:     A test-bench for the main program, fftmain.v, of the double
//              clocked FFT.  This file may be run autonomously  (when
//              clocked FFT.  This file may be run autonomously  (when
//              fully functional).  If so, the last line output will either
//      fully functional).  If so, the last line output will either read
//              read "SUCCESS" on success, or some other failure message
//      "SUCCESS" on success, or some other failure message otherwise.
//              otherwise.
 
//
//
//              This file depends upon verilator to both compile, run, and
//      This file depends upon verilator to both compile, run, and therefore
//              therefore test fftmain.v
//      test fftmain.v
//
//
// Creator:     Dan Gisselquist, Ph.D.
// Creator:     Dan Gisselquist, Ph.D.
//              Gisselquist Technology, LLC
//              Gisselquist Technology, LLC
//
//
///////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////
//
//
// Copyright (C) 2015, Gisselquist Technology, LLC
// Copyright (C) 2015,2018, Gisselquist Technology, LLC
//
//
// This program is free software (firmware): you can redistribute it and/or
// This program is free software (firmware): you can redistribute it and/or
// modify it under the terms of  the GNU General Public License as published
// modify it under the terms of  the GNU General Public License as published
// by the Free Software Foundation, either version 3 of the License, or (at
// by the Free Software Foundation, either version 3 of the License, or (at
// your option) any later version.
// your option) any later version.
Line 38... Line 37...
//              http://www.gnu.org/licenses/gpl.html
//              http://www.gnu.org/licenses/gpl.html
//
//
//
//
///////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////
#include <stdio.h>
#include <stdio.h>
 
#include <stdlib.h>
#include <math.h>
#include <math.h>
#include <fftw3.h>
#include <fftw3.h>
 
 
#include "verilated.h"
#include "verilated.h"
 
#include "verilated_vcd_c.h"
#include "Vfftmain.h"
#include "Vfftmain.h"
#include "twoc.h"
#include "twoc.h"
 
 
#include "fftsize.h"
#include "fftsize.h"
 
 
Line 54... Line 55...
#define VVAR(A) fftmain__DOT_ ## A
#define VVAR(A) fftmain__DOT_ ## A
#else
#else
#define VVAR(A) v__DOT_ ## A
#define VVAR(A) v__DOT_ ## A
#endif
#endif
 
 
 
#ifdef  DBLCLKFFT
#define revstage_iaddr  VVAR(_revstage__DOT__iaddr)
#define revstage_iaddr  VVAR(_revstage__DOT__iaddr)
 
#else
 
#define revstage_iaddr  VVAR(_revstage__DOT__wraddr)
 
#endif
#define br_sync         VVAR(_br_sync)
#define br_sync         VVAR(_br_sync)
#define br_started      VVAR(_r_br_started)
#define br_started      VVAR(_r_br_started)
#define w_s2048         VVAR(_w_s2048)
#define w_s2048         VVAR(_w_s2048)
#define w_s1024         VVAR(_w_s1024)
#define w_s1024         VVAR(_w_s1024)
#define w_s512          VVAR(_w_s512)
#define w_s512          VVAR(_w_s512)
Line 117... Line 121...
        FILE            *m_dumpfp;
        FILE            *m_dumpfp;
        fftw_plan       m_plan;
        fftw_plan       m_plan;
        double          *m_fft_buf;
        double          *m_fft_buf;
        bool            m_syncd;
        bool            m_syncd;
        unsigned long   m_tickcount;
        unsigned long   m_tickcount;
 
        VerilatedVcdC*  m_trace;
 
 
        FFT_TB(void) {
        FFT_TB(void) {
                m_fft = new Vfftmain;
                m_fft = new Vfftmain;
 
                Verilated::traceEverOn(true);
                m_iaddr = m_oaddr = 0;
                m_iaddr = m_oaddr = 0;
                m_dumpfp = NULL;
                m_dumpfp = NULL;
 
 
                m_fft_buf = (double *)fftw_malloc(sizeof(fftw_complex)*(FFTLEN));
                m_fft_buf = (double *)fftw_malloc(sizeof(fftw_complex)*(FFTLEN));
                m_plan = fftw_plan_dft_1d(FFTLEN, (fftw_complex *)m_fft_buf,
                m_plan = fftw_plan_dft_1d(FFTLEN, (fftw_complex *)m_fft_buf,
                                (fftw_complex *)m_fft_buf,
                                (fftw_complex *)m_fft_buf,
                                FFTW_FORWARD, FFTW_MEASURE);
                                FFTW_FORWARD, FFTW_MEASURE);
                m_syncd = false;
                m_syncd = false;
                m_ntest = 0;
                m_ntest = 0;
 
        }
 
 
                m_tickcount = 0l;
        ~FFT_TB(void) {
 
                closetrace();
 
                delete m_fft;
 
                m_fft = NULL;
 
        }
 
 
 
        virtual void opentrace(const char *vcdname) {
 
                if (!m_trace) {
 
                        m_trace = new VerilatedVcdC;
 
                        m_fft->trace(m_trace, 99);
 
                        m_trace->open(vcdname);
 
                }
 
        }
 
 
 
        virtual void closetrace(void) {
 
                if (m_trace) {
 
                        m_trace->close();
 
                        delete m_trace;
 
                        m_trace = NULL;
 
                }
        }
        }
 
 
        void    tick(void) {
        void    tick(void) {
                if ((!m_fft->i_ce)||(m_fft->i_rst))
                m_tickcount++;
 
                if (m_fft->i_reset)
                        printf("TICK(%s,%s)\n",
                        printf("TICK(%s,%s)\n",
                                (m_fft->i_rst)?"RST":"   ",
                                (m_fft->i_reset)?"RST":"   ",
                                (m_fft->i_ce)?"CE":"  ");
                                (m_fft->i_ce)?"CE":"  ");
 
 
                m_fft->i_clk = 0;
                m_fft->i_clk = 0;
                m_fft->eval();
                m_fft->eval();
 
                if (m_trace)
 
                        m_trace->dump((vluint64_t)(10*m_tickcount-2));
                m_fft->i_clk = 1;
                m_fft->i_clk = 1;
                m_fft->eval();
                m_fft->eval();
 
                if (m_trace)
 
                        m_trace->dump((vluint64_t)(10*m_tickcount));
 
                m_fft->i_clk = 0;
 
                m_fft->eval();
 
                if (m_trace) {
 
                        m_trace->dump((vluint64_t)(10*m_tickcount+5));
 
                        m_trace->flush();
 
                }
 
        }
 
 
                m_tickcount++;
        void    cetick(void) {
 
                int     ce = m_fft->i_ce, nkce;
 
                tick();
 
 
                /*
                nkce = (rand()&1);
                int nrpt = (rand()&0x01f) + 1;
#ifdef  FFT_CKPCE
                m_fft->i_ce = 0;
                nkce += FFT_CKPCE;
                for(int i=0; i<nrpt; i++) {
#endif
                        m_fft->i_clk = 0;
                if ((ce)&&(nkce>0)) {
                        m_fft->eval();
                        m_fft->i_ce = 0;
                        m_fft->i_clk = 1;
                        for(int kce=1; kce < nkce; kce++)
                        m_fft->eval();
                                tick();
                }
                }
                */
 
 
                m_fft->i_ce = ce;
        }
        }
 
 
        void    reset(void) {
        void    reset(void) {
                m_fft->i_ce  = 0;
                m_fft->i_ce  = 0;
                m_fft->i_rst = 1;
                m_fft->i_reset = 1;
                tick();
                tick();
                m_fft->i_rst = 0;
                m_fft->i_reset = 0;
                tick();
                tick();
 
 
                m_iaddr = m_oaddr = m_logbase = 0;
                m_iaddr = m_oaddr = m_logbase = 0;
                m_syncd = false;
                m_syncd = false;
                m_tickcount = 0l;
                m_tickcount = 0l;
Line 252... Line 294...
                }
                }
 
 
                printf("%3d : SCALE = %12.6f, WT = %18.1f, ISQ = %15.1f, ",
                printf("%3d : SCALE = %12.6f, WT = %18.1f, ISQ = %15.1f, ",
                        m_ntest, scale, wt, isq);
                        m_ntest, scale, wt, isq);
                printf("OSQ = %18.1f, ", osq);
                printf("OSQ = %18.1f, ", osq);
                printf("XISQ = %18.1f\n", xisq);
                printf("XISQ = %18.1f, sqrt = %9.2f\n", xisq, sqrt(xisq));
                if (xisq > 1.4 * FFTLEN/2) {
                if (xisq > 1.4 * FFTLEN/2) {
                        printf("TEST FAIL!!  Result is out of bounds from ");
                        printf("TEST FAIL!!  Result is out of bounds from ");
                        printf("expected result with FFTW3.\n");
                        printf("expected result with FFTW3.\n");
                        // exit(-2);
                        // exit(EXIT_FAILURE);
                }
                }
                m_ntest++;
                m_ntest++;
        }
        }
 
 
 
#ifdef  DBLCLKFFT
        bool    test(ITYP lft, ITYP rht) {
        bool    test(ITYP lft, ITYP rht) {
                m_fft->i_ce    = 1;
                m_fft->i_ce    = 1;
                m_fft->i_rst   = 0;
                m_fft->i_reset = 0;
                m_fft->i_left  = lft;
                m_fft->i_left  = lft;
                m_fft->i_right = rht;
                m_fft->i_right = rht;
 
 
                m_log[(m_iaddr++)&(NFTLOG*FFTLEN-1)] = lft;
                m_log[(m_iaddr++)&(NFTLOG*FFTLEN-1)] = lft;
                m_log[(m_iaddr++)&(NFTLOG*FFTLEN-1)] = rht;
                m_log[(m_iaddr++)&(NFTLOG*FFTLEN-1)] = rht;
 
 
                tick();
                cetick();
 
 
                if (m_fft->o_sync) {
                if (m_fft->o_sync) {
                        if (!m_syncd) {
                        if (!m_syncd) {
                                m_syncd = true;
                                m_syncd = true;
                                printf("ORIGINAL SYNC AT 0x%lx, m_oaddr set to 0x%x\n", m_tickcount, m_oaddr);
                                printf("ORIGINAL SYNC AT 0x%lx, m_oaddr set to 0x%x\n", m_tickcount, m_oaddr);
Line 337... Line 380...
                        checkresults();
                        checkresults();
                }
                }
 
 
                return (m_fft->o_sync);
                return (m_fft->o_sync);
        }
        }
 
#else
 
        bool    test(ITYP data) {
 
                m_fft->i_ce    = 1;
 
                m_fft->i_reset = 0;
 
                m_fft->i_sample  = data;
 
 
 
                m_log[(m_iaddr++)&(NFTLOG*FFTLEN-1)] = data;
 
 
 
                cetick();
 
 
 
                if (m_fft->o_sync) {
 
                        if (!m_syncd) {
 
                                m_syncd = true;
 
                                printf("ORIGINAL SYNC AT 0x%lx, m_oaddr set to 0x%x\n", m_tickcount, m_oaddr);
 
                                m_logbase = m_iaddr;
 
                        } else printf("RESYNC AT %lx\n", m_tickcount);
 
                        m_oaddr &= (-1<<LGWIDTH);
 
                } else m_oaddr += 1;
 
 
 
                printf("%8x,%5d: %08x -> %011lx\t",
 
                        m_iaddr, m_oaddr, data, m_fft->o_result);
 
 
 
#ifndef APPLY_BITREVERSE_LOCALLY
 
                printf(" [%3x]%s", m_fft->revstage_iaddr,
 
                        (m_fft->br_sync)?"S"
 
                                :((m_fft->br_started)?".":"x"));
 
#endif
 
 
 
                printf(" ");
 
#if (FFT_SIZE>=2048)
 
                printf("%s", (m_fft->w_s2048)?"S":"-");
 
#endif
 
#if (FFT_SIZE>1024)
 
                printf("%s", (m_fft->w_s1024)?"S":"-");
 
#endif
 
#if (FFT_SIZE>512)
 
                printf("%s", (m_fft->w_s512)?"S":"-");
 
#endif
 
#if (FFT_SIZE>256)
 
                printf("%s", (m_fft->w_s256)?"S":"-");
 
#endif
 
#if (FFT_SIZE>128)
 
                printf("%s", (m_fft->w_s128)?"S":"-");
 
#endif
 
#if (FFT_SIZE>64)
 
                printf("%s", (m_fft->w_s64)?"S":"-");
 
#endif
 
#if (FFT_SIZE>32)
 
                printf("%s", (m_fft->w_s32)?"S":"-");
 
#endif
 
#if (FFT_SIZE>16)
 
                printf("%s", (m_fft->w_s16)?"S":"-");
 
#endif
 
#if (FFT_SIZE>8)
 
                printf("%s", (m_fft->w_s8)?"S":"-");
 
#endif
 
#if (FFT_SIZE>4)
 
                printf("%s", (m_fft->w_s4)?"S":"-");
 
#endif
 
 
 
                printf(" %s%s\n",
 
                        (m_fft->o_sync)?"\t(SYNC!)":"",
 
                        (m_fft->o_result)?"  (NZ)":"");
 
 
 
                m_data[(m_oaddr  )&(FFTLEN-1)] = m_fft->o_result;
 
 
 
                if ((m_syncd)&&((m_oaddr&(FFTLEN-1)) == FFTLEN-1)) {
 
                        dumpwrite();
 
                        checkresults();
 
                }
 
 
 
                return (m_fft->o_sync);
 
        }
 
#endif
 
 
        bool    test(double lft_r, double lft_i, double rht_r, double rht_i) {
        bool    test(double lft_r, double lft_i, double rht_r, double rht_i) {
                ITYP    ilft, irht, ilft_r, ilft_i, irht_r, irht_i;
                ITYP    ilft, irht, ilft_r, ilft_i, irht_r, irht_i;
 
 
                ilft_r = (ITYP)(lft_r) & ((1<<IWIDTH)-1);
                ilft_r = (ITYP)(lft_r) & ((1<<IWIDTH)-1);
Line 349... Line 466...
                irht_i = (ITYP)(rht_i) & ((1<<IWIDTH)-1);
                irht_i = (ITYP)(rht_i) & ((1<<IWIDTH)-1);
 
 
                ilft = (ilft_r << IWIDTH) | ilft_i;
                ilft = (ilft_r << IWIDTH) | ilft_i;
                irht = (irht_r << IWIDTH) | irht_i;
                irht = (irht_r << IWIDTH) | irht_i;
 
 
 
#ifdef  DBLCLKFFT
                return test(ilft, irht);
                return test(ilft, irht);
 
#else
 
                test(ilft);
 
                return test(irht);
 
#endif
        }
        }
 
 
        double  rdata(int addr) {
        double  rdata(int addr) {
                int     index = addr & (FFTLEN-1);
                int     index = addr & (FFTLEN-1);
 
 
Line 403... Line 525...
        if (NULL == fpout) {
        if (NULL == fpout) {
                fprintf(stderr, "Cannot write output file, fft_tb.dbl\n");
                fprintf(stderr, "Cannot write output file, fft_tb.dbl\n");
                exit(-1);
                exit(-1);
        }
        }
 
 
 
        fft->opentrace("fft.vcd");
        fft->reset();
        fft->reset();
 
 
        {
        {
                int     ftlen = FFTLEN;
                int     ftlen = FFTLEN;
                fwrite(&ftlen, 1, sizeof(int), fpout);
                fwrite(&ftlen, 1, sizeof(int), fpout);
        }
        }
        fft->dump(fpout);
        fft->dump(fpout);
 
 
        // 1.
        // 1.
        fft->test(0.0, 0.0, 32767.0, 0.0);
        double  maxv = ((1l<<(IWIDTH-1))-1l);
 
        fft->test(0.0, 0.0, maxv, 0.0);
        for(int k=0; k<FFTLEN/2-1; k++)
        for(int k=0; k<FFTLEN/2-1; k++)
                fft->test(0.0,0.0,0.0,0.0);
                fft->test(0.0,0.0,0.0,0.0);
 
 
        // 2. Try placing a pulse at the very end location
        // 2. Try placing a pulse at the very end location
        for(int k=0; k<FFTLEN/2; k++) {
        for(int k=0; k<FFTLEN/2; k++) {
                double cl, cr, sl, sr, W;
                double cl, cr, sl, sr, W;
                W = - 2.0 * M_PI / FFTLEN * (1);
                W = - 2.0 * M_PI / FFTLEN * (1);
                cl = cos(W * (2*k  )) * 16383.0;
                cl = cos(W * (2*k  )) * (double)((1l<<(IWIDTH-2))-1l);
                sl = sin(W * (2*k  )) * 16383.0;
                sl = sin(W * (2*k  )) * (double)((1l<<(IWIDTH-2))-1l);
                cr = cos(W * (2*k+1)) * 16383.0;
                cr = cos(W * (2*k+1)) * (double)((1l<<(IWIDTH-2))-1l);
                sr = sin(W * (2*k+1)) * 16383.0;
                sr = sin(W * (2*k+1)) * (double)((1l<<(IWIDTH-2))-1l);
                fft->test(cl, sl, cr, sr);
                fft->test(cl, sl, cr, sr);
        }
        }
 
 
        // 2. 
        // 2. 
        fft->test(32767.0, 0.0, 32767.0, 0.0);
        fft->test(maxv, 0.0, maxv, 0.0);
        for(int k=0; k<FFTLEN/2-1; k++)
        for(int k=0; k<FFTLEN/2-1; k++)
                fft->test(0.0,0.0,0.0,0.0);
                fft->test(0.0,0.0,0.0,0.0);
 
 
        // 3. 
        // 3. 
        fft->test(0.0,0.0,0.0,0.0);
        fft->test(0.0,0.0,0.0,0.0);
        fft->test(32767.0, 0.0, 0.0, 0.0);
        fft->test(maxv, 0.0, 0.0, 0.0);
        for(int k=0; k<FFTLEN/2-1; k++)
        for(int k=0; k<FFTLEN/2-1; k++)
                fft->test(0.0,0.0,0.0,0.0);
                fft->test(0.0,0.0,0.0,0.0);
 
 
        // 4.
        // 4.
        for(int k=0; k<8; k++)
        for(int k=0; k<8; k++)
                fft->test(32767.0, 0.0, 32767.0, 0.0);
                fft->test(maxv, 0.0, maxv, 0.0);
        for(int k=8; k<FFTLEN/2; k++)
        for(int k=8; k<FFTLEN/2; k++)
                fft->test(0.0,0.0,0.0,0.0);
                fft->test(0.0,0.0,0.0,0.0);
 
 
        // 5.
        // 5.
        if (FFTLEN/2 >= 16) {
        if (FFTLEN/2 >= 16) {
                for(int k=0; k<16; k++)
                for(int k=0; k<16; k++)
                        fft->test(32767.0, 0.0, 32767.0, 0.0);
                        fft->test(maxv, 0.0, maxv, 0.0);
                for(int k=16; k<FFTLEN/2; k++)
                for(int k=16; k<FFTLEN/2; k++)
                        fft->test(0.0,0.0,0.0,0.0);
                        fft->test(0.0,0.0,0.0,0.0);
        }
        }
 
 
        // 6.
        // 6.
        if (FFTLEN/2 >= 32) {
        if (FFTLEN/2 >= 32) {
                for(int k=0; k<32; k++)
                for(int k=0; k<32; k++)
                        fft->test(32767.0, 0.0, 32767.0, 0.0);
                        fft->test(maxv, 0.0, maxv, 0.0);
                for(int k=32; k<FFTLEN/2; k++)
                for(int k=32; k<FFTLEN/2; k++)
                        fft->test(0.0,0.0,0.0,0.0);
                        fft->test(0.0,0.0,0.0,0.0);
        }
        }
 
 
        // 7.
        // 7.
        if (FFTLEN/2 >= 64) {
        if (FFTLEN/2 >= 64) {
                for(int k=0; k<64; k++)
                for(int k=0; k<64; k++)
                        fft->test(32767.0, 0.0, 32767.0, 0.0);
                        fft->test(maxv, 0.0, maxv, 0.0);
                for(int k=64; k<FFTLEN/2; k++)
                for(int k=64; k<FFTLEN/2; k++)
                        fft->test(0.0,0.0,0.0,0.0);
                        fft->test(0.0,0.0,0.0,0.0);
        }
        }
 
 
        if (FFTLEN/2 >= 128) {
        if (FFTLEN/2 >= 128) {
                for(int k=0; k<128; k++)
                for(int k=0; k<128; k++)
                        fft->test(32767.0, 0.0, 32767.0, 0.0);
                        fft->test(maxv, 0.0, maxv, 0.0);
                for(int k=128; k<FFTLEN/2; k++)
                for(int k=128; k<FFTLEN/2; k++)
                        fft->test(0.0,0.0,0.0,0.0);
                        fft->test(0.0,0.0,0.0,0.0);
        }
        }
 
 
        if (FFTLEN/2 >= 256) {
        if (FFTLEN/2 >= 256) {
                for(int k=0; k<256; k++)
                for(int k=0; k<256; k++)
                        fft->test(32767.0, 0.0, 32767.0, 0.0);
                        fft->test(maxv, 0.0, maxv, 0.0);
                for(int k=256; k<FFTLEN/2; k++)
                for(int k=256; k<FFTLEN/2; k++)
                        fft->test(0.0,0.0,0.0,0.0);
                        fft->test(0.0,0.0,0.0,0.0);
        }
        }
 
 
        if (FFTLEN/2 >= 512) {
        if (FFTLEN/2 >= 512) {
                for(int k=0; k<256+128; k++)
                for(int k=0; k<256+128; k++)
                        fft->test(32767.0, 0.0, 32767.0, 0.0);
                        fft->test(maxv, 0.0, maxv, 0.0);
                for(int k=256+128; k<FFTLEN/2; k++)
                for(int k=256+128; k<FFTLEN/2; k++)
                        fft->test(0.0,0.0,0.0,0.0);
                        fft->test(0.0,0.0,0.0,0.0);
        }
        }
 
 
        /*
        /*
Line 601... Line 725...
        for(int k=0; k<FFTLEN/2; k++)
        for(int k=0; k<FFTLEN/2; k++)
                fft->test(0.0,0.0,0.0,2.0); // Don't forget to expect a bias!
                fft->test(0.0,0.0,0.0,2.0); // Don't forget to expect a bias!
 
 
        // 65.
        // 65.
        for(int k=0; k<FFTLEN/2; k++)
        for(int k=0; k<FFTLEN/2; k++)
                fft->test(32767.0,0.0,-32767.0,0.0);
                fft->test(maxv,0.0,-maxv,0.0);
        // 66.
        // 66.
        for(int k=0; k<FFTLEN/2; k++)
        for(int k=0; k<FFTLEN/2; k++)
                fft->test(0.0,-32767.0,0.0,32767.0);
                fft->test(0.0,-maxv,0.0,maxv);
        // 67.
        // 67.
        for(int k=0; k<FFTLEN/2; k++)
        for(int k=0; k<FFTLEN/2; k++)
                fft->test(-32768.0,-32768.0,-32768.0,-32768.0);
                fft->test(-maxv,-maxv,-maxv,-maxv);
        // 68.
        // 68.
        for(int k=0; k<FFTLEN/2; k++)
        for(int k=0; k<FFTLEN/2; k++)
                fft->test(0.0,-32767.0,0.0,32767.0);
                fft->test(0.0,-maxv,0.0,maxv);
        // 69.
        // 69.
        for(int k=0; k<FFTLEN/2; k++)
        for(int k=0; k<FFTLEN/2; k++)
                fft->test(0.0,32767.0,0.0,-32767.0);
                fft->test(0.0,maxv,0.0,-maxv);
        // 70. 
        // 70. 
        for(int k=0; k<FFTLEN/2; k++)
        for(int k=0; k<FFTLEN/2; k++)
                fft->test(-32768.0,-32768.0,-32768.0,-32768.0);
                fft->test(-maxv,-maxv,-maxv,-maxv);
 
 
        // 71. Now let's go for an impulse (SUCCESS)
        // 71. Now let's go for an impulse (SUCCESS)
        fft->test(16384.0, 0.0, 0.0, 0.0);
        fft->test(16384.0, 0.0, 0.0, 0.0);
        for(int k=0; k<FFTLEN/2-1; k++)
        for(int k=0; k<FFTLEN/2-1; k++)
                fft->test(0.0,0.0,0.0,0.0);
                fft->test(0.0,0.0,0.0,0.0);
Line 720... Line 844...
 
 
 
 
 
 
        fclose(fpout);
        fclose(fpout);
 
 
 
        if (!fft->m_syncd) {
 
                printf("FAIL -- NO SYNC\n");
 
                goto test_failure;
 
        }
 
 
        printf("SUCCESS!!\n");
        printf("SUCCESS!!\n");
        exit(0);
        exit(0);
 
test_failure:
 
        printf("TEST FAILED!!\n");
 
        exit(0);
}
}
 
 
 
 
 
 
 No newline at end of file
 No newline at end of file

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.