Line 2... |
Line 2... |
//
|
//
|
// Filename: bldstage.cpp
|
// Filename: bldstage.cpp
|
//
|
//
|
// Project: A General Purpose Pipelined FFT Implementation
|
// Project: A General Purpose Pipelined FFT Implementation
|
//
|
//
|
// Purpose:
|
// Purpose: Builds the logic necessary to implement a single stage of an
|
|
// FFT. This includes referencing the butterfly, but not the
|
|
// actual butterflies themselves. Further, this file only contains the
|
|
// code for the general case of an FFT stage: the special cases of the
|
|
// two final stages are described in other files.
|
//
|
//
|
// Creator: Dan Gisselquist, Ph.D.
|
// Creator: Dan Gisselquist, Ph.D.
|
// Gisselquist Technology, LLC
|
// Gisselquist Technology, LLC
|
//
|
//
|
////////////////////////////////////////////////////////////////////////////////
|
////////////////////////////////////////////////////////////////////////////////
|
Line 22... |
Line 26... |
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
|
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
|
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
// for more details.
|
// for more details.
|
//
|
//
|
// You should have received a copy of the GNU General Public License along
|
// You should have received a copy of the GNU General Public License along
|
// with this program. (It's in the $(ROOT)/doc directory, run make with no
|
// with this program. (It's in the $(ROOT)/doc directory. Run make with no
|
// target there if the PDF file isn't present.) If not, see
|
// target there if the PDF file isn't present.) If not, see
|
// <http://www.gnu.org/licenses/> for a copy.
|
// <http://www.gnu.org/licenses/> for a copy.
|
//
|
//
|
// License: GPL, v3, as defined and found on www.gnu.org,
|
// License: GPL, v3, as defined and found on www.gnu.org,
|
// http://www.gnu.org/licenses/gpl.html
|
// http://www.gnu.org/licenses/gpl.html
|
Line 61... |
Line 65... |
#include "legal.h"
|
#include "legal.h"
|
#include "fftlib.h"
|
#include "fftlib.h"
|
#include "rounding.h"
|
#include "rounding.h"
|
#include "bldstage.h"
|
#include "bldstage.h"
|
|
|
|
//
|
|
// Builds the penultimate FFT stage, using integer operations only.
|
|
// This stage is called laststage elsewhere.
|
|
//
|
void build_dblstage(const char *fname, ROUND_T rounding,
|
void build_dblstage(const char *fname, ROUND_T rounding,
|
const bool async_reset, const bool dbg) {
|
const bool async_reset, const bool dbg) {
|
FILE *fp = fopen(fname, "w");
|
FILE *fp = fopen(fname, "w");
|
if (NULL == fp) {
|
if (NULL == fp) {
|
fprintf(stderr, "Could not open \'%s\' for writing\n", fname);
|
fprintf(stderr, "Could not open \'%s\' for writing\n", fname);
|
Line 145... |
Line 153... |
fprintf(fp, "%s", cpyleft);
|
fprintf(fp, "%s", cpyleft);
|
fprintf(fp, "//\n//\n`default_nettype\tnone\n//\n");
|
fprintf(fp, "//\n//\n`default_nettype\tnone\n//\n");
|
fprintf(fp,
|
fprintf(fp,
|
"module\tlaststage%s(i_clk, %s, i_ce, i_sync, i_left, i_right, o_left, o_right, o_sync%s);\n"
|
"module\tlaststage%s(i_clk, %s, i_ce, i_sync, i_left, i_right, o_left, o_right, o_sync%s);\n"
|
"\tparameter\tIWIDTH=%d,OWIDTH=IWIDTH+1, SHIFT=%d;\n"
|
"\tparameter\tIWIDTH=%d,OWIDTH=IWIDTH+1, SHIFT=%d;\n"
|
"\tinput\t\ti_clk, %s, i_ce, i_sync;\n"
|
"\tinput\twire\ti_clk, %s, i_ce, i_sync;\n"
|
"\tinput\t\t[(2*IWIDTH-1):0]\ti_left, i_right;\n"
|
"\tinput\twire\t[(2*IWIDTH-1):0]\ti_left, i_right;\n"
|
"\toutput\treg\t[(2*OWIDTH-1):0]\to_left, o_right;\n"
|
"\toutput\treg\t[(2*OWIDTH-1):0]\to_left, o_right;\n"
|
"\toutput\treg\t\t\to_sync;\n"
|
"\toutput\treg\t\t\to_sync;\n"
|
"\n", (dbg)?"_dbg":"", resetw.c_str(), (dbg)?", o_dbg":"",
|
"\n", (dbg)?"_dbg":"", resetw.c_str(), (dbg)?", o_dbg":"",
|
TST_DBLSTAGE_IWIDTH, TST_DBLSTAGE_SHIFT,
|
TST_DBLSTAGE_IWIDTH, TST_DBLSTAGE_SHIFT,
|
resetw.c_str());
|
resetw.c_str());
|
Line 184... |
Line 192... |
"\n"
|
"\n"
|
"\tinitial\trnd_sync = 1\'b0; // Sync into rounding\n"
|
"\tinitial\trnd_sync = 1\'b0; // Sync into rounding\n"
|
"\tinitial\tr_sync = 1\'b0; // Sync coming out\n",
|
"\tinitial\tr_sync = 1\'b0; // Sync coming out\n",
|
resetw.c_str());
|
resetw.c_str());
|
if (async_reset)
|
if (async_reset)
|
fprintf(fp, "\talways @(posedge i_clk, negdge i_areset_n)\n\t\tif (!i_areset_n)\n");
|
fprintf(fp, "\talways @(posedge i_clk, negdge i_areset_n)\n\tif (!i_areset_n)\n");
|
else
|
else
|
fprintf(fp, "\talways @(posedge i_clk)\n\t\tif (i_reset)\n");
|
fprintf(fp, "\talways @(posedge i_clk)\n\tif (i_reset)\n");
|
fprintf(fp,
|
fprintf(fp,
|
"\t\tbegin\n"
|
"\t\tbegin\n"
|
"\t\t\trnd_sync <= 1\'b0;\n"
|
"\t\t\trnd_sync <= 1\'b0;\n"
|
"\t\t\tr_sync <= 1\'b0;\n"
|
"\t\t\tr_sync <= 1\'b0;\n"
|
"\t\tend else if (i_ce)\n"
|
"\t\tend else if (i_ce)\n"
|
Line 249... |
Line 257... |
"\n"
|
"\n"
|
"\tinitial\to_sync = 1\'b0; // Final sync coming out of module\n");
|
"\tinitial\to_sync = 1\'b0; // Final sync coming out of module\n");
|
if (async_reset)
|
if (async_reset)
|
fprintf(fp, "\talways @(posedge i_clk, negdge i_areset_n)\n\t\tif (!i_areset_n)\n");
|
fprintf(fp, "\talways @(posedge i_clk, negdge i_areset_n)\n\t\tif (!i_areset_n)\n");
|
else
|
else
|
fprintf(fp, "\talways @(posedge i_clk)\n\t\tif (i_reset)\n");
|
fprintf(fp, "\talways @(posedge i_clk)\n\tif (i_reset)\n");
|
fprintf(fp,
|
fprintf(fp,
|
"\t\t\to_sync <= 1\'b0;\n"
|
"\t\t\to_sync <= 1\'b0;\n"
|
"\t\telse if (i_ce)\n"
|
"\t\telse if (i_ce)\n"
|
"\t\t\to_sync <= r_sync;\n"
|
"\t\t\to_sync <= r_sync;\n"
|
"\n"
|
"\n"
|
Line 330... |
Line 338... |
fprintf(fstage,
|
fprintf(fstage,
|
"\t// Parameters specific to the core that should be changed when this\n"
|
"\t// Parameters specific to the core that should be changed when this\n"
|
"\t// core is built ... Note that the minimum LGSPAN (the base two log\n"
|
"\t// core is built ... Note that the minimum LGSPAN (the base two log\n"
|
"\t// of the span, or the base two log of the current FFT size) is 3.\n"
|
"\t// of the span, or the base two log of the current FFT size) is 3.\n"
|
"\t// Smaller spans (i.e. the span of 2) must use the dbl laststage module.\n"
|
"\t// Smaller spans (i.e. the span of 2) must use the dbl laststage module.\n"
|
"\tparameter\tLGWIDTH=%d, LGSPAN=%d, BFLYSHIFT=0;\n"
|
"\tparameter\tLGSPAN=%d, BFLYSHIFT=0; // LGWIDTH=%d\n"
|
"\tparameter\t[0:0] OPT_HWMPY = 1;\n",
|
"\tparameter\t[0:0] OPT_HWMPY = 1;\n",
|
lgval(stage), (nwide <= 1) ? lgval(stage)-1 : lgval(stage)-2);
|
(nwide <= 1) ? lgval(stage)-1 : lgval(stage)-2, lgval(stage));
|
fprintf(fstage,
|
fprintf(fstage,
|
"\t// Clocks per CE. If your incoming data rate is less than 50%% of your\n"
|
"\t// Clocks per CE. If your incoming data rate is less than 50%% of your\n"
|
"\t// clock speed, you can set CKPCE to 2\'b10, make sure there's at least\n"
|
"\t// clock speed, you can set CKPCE to 2\'b10, make sure there's at least\n"
|
"\t// one clock between cycles when i_ce is high, and then use two\n"
|
"\t// one clock between cycles when i_ce is high, and then use two\n"
|
"\t// multiplies instead of three. Setting CKPCE to 2\'b11, and insisting\n"
|
"\t// multiplies instead of three. Setting CKPCE to 2\'b11, and insisting\n"
|
Line 361... |
Line 369... |
"`else\n"
|
"`else\n"
|
"\tlocalparam [0:0] ZERO_ON_IDLE = 1'b0;\n"
|
"\tlocalparam [0:0] ZERO_ON_IDLE = 1'b0;\n"
|
"`endif // VERILATOR\n\n");
|
"`endif // VERILATOR\n\n");
|
|
|
fprintf(fstage,
|
fprintf(fstage,
|
"\tinput i_clk, %s, i_ce, i_sync;\n"
|
"\tinput wire i_clk, %s, i_ce, i_sync;\n"
|
"\tinput [(2*IWIDTH-1):0] i_data;\n"
|
"\tinput wire [(2*IWIDTH-1):0] i_data;\n"
|
"\toutput reg [(2*OWIDTH-1):0] o_data;\n"
|
"\toutput reg [(2*OWIDTH-1):0] o_data;\n"
|
"\toutput reg o_sync;\n"
|
"\toutput reg o_sync;\n"
|
"\n", resetw.c_str());
|
"\n", resetw.c_str());
|
if (dbg) { fprintf(fstage, "\toutput\twire\t[33:0]\t\t\to_dbg;\n"
|
if (dbg) { fprintf(fstage, "\toutput\twire\t[33:0]\t\t\to_dbg;\n"
|
"\tassign\to_dbg = { ((o_sync)&&(i_ce)), i_ce, o_data[(2*OWIDTH-1):(2*OWIDTH-16)],\n"
|
"\tassign\to_dbg = { ((o_sync)&&(i_ce)), i_ce, o_data[(2*OWIDTH-1):(2*OWIDTH-16)],\n"
|
"\t\t\t\t\to_data[(OWIDTH-1):(OWIDTH-16)] };\n"
|
"\t\t\t\t\to_data[(OWIDTH-1):(OWIDTH-16)] };\n"
|
"\n");
|
"\n");
|
}
|
}
|
fprintf(fstage,
|
fprintf(fstage,
|
|
"\t// I am using the prefixes\n"
|
|
"\t// ib_* to reference the inputs to the butterfly, and\n"
|
|
"\t// ob_* to reference the outputs from the butterfly\n"
|
"\treg wait_for_sync;\n"
|
"\treg wait_for_sync;\n"
|
"\treg [(2*IWIDTH-1):0] ib_a, ib_b;\n"
|
"\treg [(2*IWIDTH-1):0] ib_a, ib_b;\n"
|
"\treg [(2*CWIDTH-1):0] ib_c;\n"
|
"\treg [(2*CWIDTH-1):0] ib_c;\n"
|
"\treg ib_sync;\n"
|
"\treg ib_sync;\n"
|
"\n"
|
"\n"
|
Line 389... |
Line 400... |
"\t// CWIDTH bits are the imaginary value.\n"
|
"\t// CWIDTH bits are the imaginary value.\n"
|
"\t//\n"
|
"\t//\n"
|
"\t// cmem[i] = { (2^(CWIDTH-2)) * cos(2*pi*i/(2^LGWIDTH)),\n"
|
"\t// cmem[i] = { (2^(CWIDTH-2)) * cos(2*pi*i/(2^LGWIDTH)),\n"
|
"\t// (2^(CWIDTH-2)) * sin(2*pi*i/(2^LGWIDTH)) };\n"
|
"\t// (2^(CWIDTH-2)) * sin(2*pi*i/(2^LGWIDTH)) };\n"
|
"\t//\n"
|
"\t//\n"
|
"\treg [(2*CWIDTH-1):0] cmem [0:((1<<LGSPAN)-1)];\n"
|
"\treg [(2*CWIDTH-1):0] cmem [0:((1<<LGSPAN)-1)];\n");
|
"\tinitial\t$readmemh(COEFFILE,cmem);\n\n");
|
|
|
if (formal_property_flag)
|
|
fprintf(fstage,
|
|
"`ifdef FORMAL\n"
|
|
"// Let the formal tool pick the coefficients\n"
|
|
"`else\n");
|
|
fprintf(fstage, "\tinitial\t$readmemh(COEFFILE,cmem);\n\n");
|
|
if (formal_property_flag)
|
|
fprintf(fstage, "`endif\n\n");
|
|
|
// gen_coeff_file(coredir, fname, stage, cbits, nwide, offset, inv);
|
// gen_coeff_file(coredir, fname, stage, cbits, nwide, offset, inv);
|
|
|
fprintf(fstage,
|
fprintf(fstage,
|
"\treg [(LGSPAN):0] iaddr;\n"
|
"\treg [(LGSPAN):0] iaddr;\n"
|
"\treg [(2*IWIDTH-1):0] imem [0:((1<<LGSPAN)-1)];\n"
|
"\treg [(2*IWIDTH-1):0] imem [0:((1<<LGSPAN)-1)];\n"
|
"\n"
|
"\n"
|
"\treg [LGSPAN:0] oB;\n"
|
"\treg [LGSPAN:0] oaddr;\n"
|
"\treg [(2*OWIDTH-1):0] omem [0:((1<<LGSPAN)-1)];\n"
|
"\treg [(2*OWIDTH-1):0] omem [0:((1<<LGSPAN)-1)];\n"
|
"\n"
|
"\n"
|
"\tinitial wait_for_sync = 1\'b1;\n"
|
"\tinitial wait_for_sync = 1\'b1;\n"
|
"\tinitial iaddr = 0;\n");
|
"\tinitial iaddr = 0;\n");
|
if (async_reset)
|
if (async_reset)
|
fprintf(fstage, "\talways @(posedge i_clk, negedge i_areset_n)\n\t\tif (!i_areset_n)\n");
|
fprintf(fstage, "\talways @(posedge i_clk, negedge i_areset_n)\n\tif (!i_areset_n)\n");
|
else
|
else
|
fprintf(fstage, "\talways @(posedge i_clk)\n\t\tif (i_reset)\n");
|
fprintf(fstage, "\talways @(posedge i_clk)\n\tif (i_reset)\n");
|
|
|
fprintf(fstage,
|
fprintf(fstage,
|
"\tbegin\n"
|
"\tbegin\n"
|
"\t\t\twait_for_sync <= 1\'b1;\n"
|
"\t\twait_for_sync <= 1\'b1;\n"
|
"\t\t\tiaddr <= 0;\n"
|
"\t\tiaddr <= 0;\n"
|
"\tend else if ((i_ce)&&((!wait_for_sync)||(i_sync)))\n"
|
"\tend else if ((i_ce)&&((!wait_for_sync)||(i_sync)))\n"
|
"\tbegin\n"
|
"\tbegin\n"
|
"\t\t//\n"
|
"\t\t//\n"
|
"\t\t// First step: Record what we\'re not ready to use yet\n"
|
"\t\t// First step: Record what we\'re not ready to use yet\n"
|
"\t\t//\n"
|
"\t\t//\n"
|
Line 429... |
Line 448... |
|
|
fprintf(fstage,
|
fprintf(fstage,
|
"\t//\n"
|
"\t//\n"
|
"\t// Now, we have all the inputs, so let\'s feed the butterfly\n"
|
"\t// Now, we have all the inputs, so let\'s feed the butterfly\n"
|
"\t//\n"
|
"\t//\n"
|
|
"\t// ib_sync is the synchronization bit to the butterfly. It will\n"
|
|
"\t// be tracked within the butterfly, and used to create the o_sync\n"
|
|
"\t// value when the results from this output are produced\n"
|
"\tinitial ib_sync = 1\'b0;\n");
|
"\tinitial ib_sync = 1\'b0;\n");
|
if (async_reset)
|
if (async_reset)
|
fprintf(fstage, "\talways @(posedge i_clk, negedge i_areset_n)\n\tif (!i_areset_n)\n");
|
fprintf(fstage, "\talways @(posedge i_clk, negedge i_areset_n)\n\tif (!i_areset_n)\n");
|
else
|
else
|
fprintf(fstage, "\talways @(posedge i_clk)\n\tif (i_reset)\n");
|
fprintf(fstage, "\talways @(posedge i_clk)\n\tif (i_reset)\n");
|
Line 443... |
Line 465... |
"\t\t// Set the sync to true on the very first\n"
|
"\t\t// Set the sync to true on the very first\n"
|
"\t\t// valid input in, and hence on the very\n"
|
"\t\t// valid input in, and hence on the very\n"
|
"\t\t// first valid data out per FFT.\n"
|
"\t\t// first valid data out per FFT.\n"
|
"\t\tib_sync <= (iaddr==(1<<(LGSPAN)));\n"
|
"\t\tib_sync <= (iaddr==(1<<(LGSPAN)));\n"
|
"\tend\n\n"
|
"\tend\n\n"
|
|
"\t// Read the values from our input memory, and use them to feed first of two\n"
|
|
"\t// butterfly inputs\n"
|
"\talways\t@(posedge i_clk)\n"
|
"\talways\t@(posedge i_clk)\n"
|
"\tif (i_ce)\n"
|
"\tif (i_ce)\n"
|
"\tbegin\n"
|
"\tbegin\n"
|
"\t\t// One input from memory, ...\n"
|
"\t\t// One input from memory, ...\n"
|
"\t\tib_a <= imem[iaddr[(LGSPAN-1):0]];\n"
|
"\t\tib_a <= imem[iaddr[(LGSPAN-1):0]];\n"
|
Line 478... |
Line 502... |
"\t\t\tidle <= (!iaddr[LGSPAN])&&(!wait_for_sync);\n\n"
|
"\t\t\tidle <= (!iaddr[LGSPAN])&&(!wait_for_sync);\n\n"
|
"\tend else begin\n\n"
|
"\tend else begin\n\n"
|
"\t\talways @(*) idle = 0;\n\n"
|
"\t\talways @(*) idle = 0;\n\n"
|
"\tend endgenerate\n\n");
|
"\tend endgenerate\n\n");
|
|
|
|
if (formal_property_flag)
|
|
fprintf(fstage,
|
|
"// For the formal proof, we'll assume the outputs of hwbfly and/or\n"
|
|
"// butterfly, rather than actually calculating them. This will simplify\n"
|
|
"// the proof and (if done properly) will be equivalent. Be careful of\n"
|
|
"// defining FORMAL if you want the full logic!\n"
|
|
"`ifndef FORMAL\n"
|
|
"\t//\n");
|
|
|
fprintf(fstage,
|
fprintf(fstage,
|
"\tgenerate if (OPT_HWMPY)\n"
|
"\tgenerate if (OPT_HWMPY)\n"
|
"\tbegin : HWBFLY\n"
|
"\tbegin : HWBFLY\n"
|
"\t\thwbfly #(.IWIDTH(IWIDTH),.CWIDTH(CWIDTH),.OWIDTH(OWIDTH),\n"
|
"\t\thwbfly #(.IWIDTH(IWIDTH),.CWIDTH(CWIDTH),.OWIDTH(OWIDTH),\n"
|
"\t\t\t\t.CKPCE(CKPCE), .SHIFT(BFLYSHIFT))\n"
|
"\t\t\t\t.CKPCE(CKPCE), .SHIFT(BFLYSHIFT))\n"
|
Line 497... |
Line 530... |
"\t\t\t\t\t(idle||(!i_ce))?0:ib_c,\n"
|
"\t\t\t\t\t(idle||(!i_ce))?0:ib_c,\n"
|
"\t\t\t\t\t(idle||(!i_ce))?0:ib_a,\n"
|
"\t\t\t\t\t(idle||(!i_ce))?0:ib_a,\n"
|
"\t\t\t\t\t(idle||(!i_ce))?0:ib_b,\n"
|
"\t\t\t\t\t(idle||(!i_ce))?0:ib_b,\n"
|
"\t\t\t\t\t(ib_sync&&i_ce),\n"
|
"\t\t\t\t\t(ib_sync&&i_ce),\n"
|
"\t\t\t\t\tob_a, ob_b, ob_sync);\n"
|
"\t\t\t\t\tob_a, ob_b, ob_sync);\n"
|
"\tend endgenerate\n\n",
|
"\tend endgenerate\n",
|
resetw.c_str(), resetw.c_str());
|
resetw.c_str(), resetw.c_str());
|
|
|
|
if (formal_property_flag)
|
|
fprintf(fstage, "`endif\n\n");
|
|
|
fprintf(fstage,
|
fprintf(fstage,
|
"\t//\n"
|
"\t//\n"
|
"\t// Next step: recover the outputs from the butterfly\n"
|
"\t// Next step: recover the outputs from the butterfly\n"
|
"\t//\n"
|
"\t//\n"
|
"\tinitial oB = 0;\n"
|
"\t// The first output can go immediately to the output of this routine\n"
|
|
"\t// The second output must wait until this time in the idle cycle\n"
|
|
"\t// oaddr is the output memory address, keeping track of where we are\n"
|
|
"\t// in this output cycle.\n"
|
|
"\tinitial oaddr = 0;\n"
|
"\tinitial o_sync = 0;\n"
|
"\tinitial o_sync = 0;\n"
|
"\tinitial b_started = 0;\n");
|
"\tinitial b_started = 0;\n");
|
if (async_reset)
|
if (async_reset)
|
fprintf(fstage, "\talways @(posedge i_clk, negedge i_areset_n)\n\t\tif (!i_areset_n)\n");
|
fprintf(fstage, "\talways @(posedge i_clk, negedge i_areset_n)\n\tif (!i_areset_n)\n");
|
else
|
else
|
fprintf(fstage, "\talways @(posedge i_clk)\n\t\tif (i_reset)\n");
|
fprintf(fstage, "\talways @(posedge i_clk)\n\tif (i_reset)\n");
|
fprintf(fstage,
|
fprintf(fstage,
|
"\tbegin\n"
|
"\tbegin\n"
|
"\t\toB <= 0;\n"
|
"\t\toaddr <= 0;\n"
|
"\t\to_sync <= 0;\n"
|
"\t\to_sync <= 0;\n"
|
|
"\t\t// b_started will be true once we've seen the first ob_sync\n"
|
"\t\tb_started <= 0;\n"
|
"\t\tb_started <= 0;\n"
|
"\tend else if (i_ce)\n"
|
"\tend else if (i_ce)\n"
|
"\tbegin\n"
|
"\tbegin\n"
|
"\t\to_sync <= (!oB[LGSPAN])?ob_sync : 1\'b0;\n"
|
"\t\to_sync <= (!oaddr[LGSPAN])?ob_sync : 1\'b0;\n"
|
"\t\tif (ob_sync||b_started)\n"
|
"\t\tif (ob_sync||b_started)\n"
|
"\t\t\toB <= oB + { {(LGSPAN){1\'b0}}, 1\'b1 };\n"
|
"\t\t\toaddr <= oaddr + 1\'b1;\n"
|
"\t\tif ((ob_sync)&&(!oB[LGSPAN]))\n"
|
"\t\tif ((ob_sync)&&(!oaddr[LGSPAN]))\n"
|
"\t\t// A butterfly output is available\n"
|
"\t\t\t// If b_started is true, then a butterfly output is available\n"
|
"\t\t\tb_started <= 1\'b1;\n"
|
"\t\t\tb_started <= 1\'b1;\n"
|
"\tend\n\n");
|
"\tend\n\n");
|
fprintf(fstage,
|
fprintf(fstage,
|
"\treg [(LGSPAN-1):0]\t\tdly_addr;\n"
|
"\treg [(LGSPAN-1):0]\t\tnxt_oaddr;\n"
|
"\treg [(2*OWIDTH-1):0]\tdly_value;\n"
|
"\treg [(2*OWIDTH-1):0]\tpre_ovalue;\n"
|
"\talways @(posedge i_clk)\n"
|
"\talways @(posedge i_clk)\n"
|
"\tif (i_ce)\n"
|
"\tif (i_ce)\n"
|
|
"\t\tnxt_oaddr[0] <= oaddr[0];\n"
|
|
"\tgenerate if (LGSPAN>1)\n"
|
"\tbegin\n"
|
"\tbegin\n"
|
"\t\tdly_addr <= oB[(LGSPAN-1):0];\n"
|
"\n"
|
"\t\tdly_value <= ob_b;\n"
|
"\t\talways @(posedge i_clk)\n"
|
"\tend\n"
|
"\t\tif (i_ce)\n"
|
|
"\t\t\tnxt_oaddr[LGSPAN-1:1] <= oaddr[LGSPAN-1:1] + 1\'b1;\n"
|
|
"\n"
|
|
"\tend endgenerate\n"
|
|
"\n"
|
|
"\t// Only write to the memory on the first half of the outputs\n"
|
|
"\t// We'll use the memory value on the second half of the outputs\n"
|
|
"\talways @(posedge i_clk)\n"
|
|
"\tif ((i_ce)&&(!oaddr[LGSPAN]))\n"
|
|
"\t\tomem[oaddr[(LGSPAN-1):0]] <= ob_b;\n\n");
|
|
|
|
fprintf(fstage,
|
"\talways @(posedge i_clk)\n"
|
"\talways @(posedge i_clk)\n"
|
"\tif (i_ce)\n"
|
"\tif (i_ce)\n"
|
"\t\tomem[dly_addr] <= dly_value;\n"
|
"\t\tpre_ovalue <= omem[nxt_oaddr[(LGSPAN-1):0]];\n"
|
"\n");
|
"\n");
|
fprintf(fstage,
|
fprintf(fstage,
|
"\talways @(posedge i_clk)\n"
|
"\talways @(posedge i_clk)\n"
|
"\tif (i_ce)\n"
|
"\tif (i_ce)\n"
|
"\t\to_data <= (!oB[LGSPAN])?ob_a : omem[oB[(LGSPAN-1):0]];\n"
|
"\t\to_data <= (!oaddr[LGSPAN]) ? ob_a : pre_ovalue;\n"
|
|
"\n");
|
|
|
|
fprintf(fstage,
|
|
"`ifdef FORMAL\n");
|
|
|
|
|
|
if (formal_property_flag) {
|
|
|
|
fprintf(fstage,
|
|
"\t// An arbitrary processing delay from butterfly input to\n"
|
|
"\t// butterfly output(s)\n"
|
|
"\t(* anyconst *) reg [LGSPAN:0] f_mpydelay;\n"
|
|
"\talways @(*)\n"
|
|
"\t\tassume(f_mpydelay > 1);\n"
|
|
"\n"
|
|
"\treg f_past_valid;\n"
|
|
"\tinitial f_past_valid = 1'b0;\n"
|
|
"\talways @(posedge i_clk)\n"
|
|
"\t\tf_past_valid <= 1'b1;\n"
|
|
"\n");
|
|
|
|
if (async_reset)
|
|
fprintf(fstage, "\talways @(*)\n\tif ((!f_past_valid)||(!i_areset_n))\n");
|
|
else
|
|
fprintf(fstage, "\talways @(posedge i_clk)\n"
|
|
"\tif ((!f_past_valid)||($past(i_reset)))\n");
|
|
fprintf(fstage,
|
|
"\tbegin\n"
|
|
"\t\tassert(iaddr == 0);\n"
|
|
"\t\tassert(wait_for_sync);\n"
|
|
"\t\tassert(o_sync == 0);\n"
|
|
"\t\tassert(oaddr == 0);\n"
|
|
"\t\tassert(!b_started);\n"
|
|
"\t\tassert(!o_sync);\n"
|
|
"\tend\n\n");
|
|
|
|
fprintf(fstage,
|
|
"\t/////////////////////////////////////////\n"
|
|
"\t//\n"
|
|
"\t// Formally verify the input half, from the inputs to this module\n"
|
|
"\t// to the inputs of the butterfly\n"
|
|
"\t//\n"
|
|
"\t/////////////////////////////////////////\n"
|
|
"\t//\n"
|
|
"\t// Let's verify a specific set of inputs\n"
|
|
"\t(* anyconst *) reg [LGSPAN:0] f_addr;\n"
|
|
"\treg [2*IWIDTH-1:0] f_left, f_right;\n"
|
|
"\twire [LGSPAN:0] f_next_addr;\n"
|
|
"\n"
|
|
"\talways @(posedge i_clk)\n"
|
|
"\tif ((!$past(i_ce))&&(!$past(i_ce,2))&&(!$past(i_ce,3))&&(!$past(i_ce,4)))\n"
|
|
"\tassume(!i_ce);\n"
|
|
"\n"
|
|
"\talways @(*)\n"
|
|
"\t\tassume(f_addr[LGSPAN]==1'b0);\n"
|
|
"\n"
|
|
"\tassign\tf_next_addr = f_addr + 1'b1;\n"
|
|
"\n"
|
|
"\talways @(posedge i_clk)\n"
|
|
"\tif ((i_ce)&&(iaddr[LGSPAN:0] == f_addr))\n"
|
|
"\t\tf_left <= i_data;\n"
|
|
"\n"
|
|
"\talways @(*)\n"
|
|
"\tif (wait_for_sync)\n"
|
|
"\t\tassert(iaddr == 0);\n"
|
|
"\n"
|
|
"\twire [LGSPAN:0]\tf_last_addr = iaddr - 1'b1;\n"
|
|
"\n"
|
|
"\talways @(posedge i_clk)\n"
|
|
"\tif ((!wait_for_sync)&&(f_last_addr >= { 1'b0, f_addr[LGSPAN-1:0]}))\n"
|
|
"\t\tassert(f_left == imem[f_addr[LGSPAN-1:0]]);\n"
|
|
"\n"
|
|
"\talways @(posedge i_clk)\n"
|
|
"\tif ((i_ce)&&(iaddr == { 1'b1, f_addr[LGSPAN-1:0]}))\n"
|
|
"\t\tf_right <= i_data;\n"
|
|
"\n"
|
|
"\talways @(posedge i_clk)\n"
|
|
"\tif ((i_ce)&&(!wait_for_sync)&&(f_last_addr == { 1'b1, f_addr[LGSPAN-1:0]}))\n"
|
|
"\tbegin\n"
|
|
"\t\tassert(ib_a == f_left);\n"
|
|
"\t\tassert(ib_b == f_right);\n"
|
|
"\t\tassert(ib_c == cmem[f_addr[LGSPAN-1:0]]);\n"
|
|
"\tend\n\n");
|
|
|
|
fprintf(fstage,
|
|
"\t/////////////////////////////////////////\n"
|
|
"\t//\n"
|
|
"\t// Formally verify the output half, from the output of the butterfly\n"
|
|
"\t// to the outputs of this module\n"
|
|
"\t//\n"
|
|
"\t/////////////////////////////////////////\n"
|
|
"\treg [2*OWIDTH-1:0] f_oleft, f_oright;\n"
|
|
"\treg [LGSPAN:0] f_oaddr;\n"
|
|
"\twire [LGSPAN:0] f_oaddr_m1 = f_oaddr - 1'b1;\n\n");
|
|
|
|
fprintf(fstage,
|
|
"\talways @(*)\n"
|
|
"\t\tf_oaddr = iaddr - f_mpydelay + {1'b1,{(LGSPAN-1){1'b0}}};\n"
|
|
"\n"
|
|
"\tassign\tf_oaddr_m1 = f_oaddr - 1'b1;\n"
|
|
"\n");
|
|
|
|
fprintf(fstage,
|
|
"\treg f_output_active;\n"
|
|
"\tinitial\tf_output_active = 1'b0;\n");
|
|
if (async_reset)
|
|
fprintf(fstage, "\talways @(posedge i_clk, negedge i_areset_n)\n\tif (!i_areset_n)\n");
|
|
else
|
|
fprintf(fstage, "\talways @(posedge i_clk)\n\tif (i_reset)\n");
|
|
fprintf(fstage,
|
|
"\t\tf_output_active <= 1'b0;\n"
|
|
"\telse if ((i_ce)&&(ob_sync))\n"
|
|
"\t\tf_output_active <= 1'b1;\n"
|
|
"\n"
|
|
"\talways @(*)\n"
|
|
"\t\tassert(f_output_active == b_started);\n"
|
|
"\n"
|
|
"\talways @(*)\n"
|
|
"\tif (wait_for_sync)\n"
|
|
"\t\tassert(!f_output_active);\n\n");
|
|
|
|
fprintf(fstage,
|
|
"\talways @(*)\n"
|
|
"\tif (f_output_active)\n"
|
|
"\t\tassert(oaddr == f_oaddr);\n"
|
|
"\telse\n"
|
|
"\t\tassert(oaddr == 0);\n"
|
"\n");
|
"\n");
|
|
|
|
|
|
fprintf(fstage,
|
|
"\talways @(*)\n"
|
|
"\tif (wait_for_sync)\n"
|
|
"\t\tassume(!ob_sync);\n"
|
|
"\n"
|
|
"\talways @(*)\n"
|
|
"\t\tassume(ob_sync == (f_oaddr == 0));\n"
|
|
"\n"
|
|
"\talways @(posedge i_clk)\n"
|
|
"\tif ((f_past_valid)&&(!$past(i_ce)))\n"
|
|
"\tbegin\n"
|
|
"\t\tassume($stable(ob_a));\n"
|
|
"\t\tassume($stable(ob_b));\n"
|
|
"\tend\n\n");
|
|
|
|
fprintf(fstage,
|
|
"\tinitial f_oleft = 0;\n"
|
|
"\tinitial f_oright = 0;\n"
|
|
"\talways @(posedge i_clk)\n"
|
|
"\tif ((i_ce)&&(f_oaddr == f_addr))\n"
|
|
"\tbegin\n"
|
|
"\t\tf_oleft <= ob_a;\n"
|
|
"\t\tf_oright <= ob_b;\n"
|
|
"\tend\n"
|
|
"\n"
|
|
"\talways @(posedge i_clk)\n"
|
|
"\tif ((f_output_active)&&(f_oaddr_m1 >= { 1'b0, f_addr[LGSPAN-1:0]}))\n"
|
|
"\t\tassert(omem[f_addr[LGSPAN-1:0]] == f_oright);\n"
|
|
"\n"
|
|
"\talways @(posedge i_clk)\n"
|
|
"\tif ((i_ce)&&(f_oaddr_m1 == 0)&&(f_output_active))\n"
|
|
"\t\tassert(o_sync);\n"
|
|
"\telse if ((i_ce)||(!f_output_active))\n"
|
|
"\t\tassert(!o_sync);\n"
|
|
"\n"
|
|
"\talways @(posedge i_clk)\n"
|
|
"\tif ((i_ce)&&(f_output_active)&&(f_oaddr_m1 == f_addr))\n"
|
|
"\t\tassert(o_data == f_oleft);\n"
|
|
"\talways @(posedge i_clk)\n"
|
|
"\tif ((i_ce)&&(f_output_active)&&(f_oaddr[LGSPAN])\n"
|
|
"\t\t\t&&(f_oaddr[LGSPAN-1:0] == f_addr[LGSPAN-1:0]))\n"
|
|
"\t\tassert(pre_ovalue == f_oright);\n"
|
|
"\talways @(posedge i_clk)\n"
|
|
"\tif ((i_ce)&&(f_output_active)&&(f_oaddr_m1[LGSPAN])\n"
|
|
"\t\t\t&&(f_oaddr_m1[LGSPAN-1:0] == f_addr[LGSPAN-1:0]))\n"
|
|
"\t\tassert(o_data == f_oright);\n"
|
|
"\n");
|
|
} else { // If no formal properties
|
|
fprintf(fstage, "// Formal properties exist, but are not enabled"
|
|
" in this build\n");
|
|
} // End of the formal properties section
|
|
|
|
fprintf(fstage,
|
|
"`endif\n");
|
|
|
fprintf(fstage, "endmodule\n");
|
fprintf(fstage, "endmodule\n");
|
}
|
}
|
|
|
No newline at end of file
|
No newline at end of file
|