Line 1... |
Line 1... |
|
/*
|
|
Copyright 2011, City University of Hong Kong
|
|
Author is Homer (Dongsheng) Xing.
|
|
|
|
This file is part of Elliptic Curve Group Core.
|
|
|
|
Elliptic Curve Group Core is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU Lesser General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
Elliptic Curve Group Core is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with Elliptic Curve Group Core. If not, see http://www.gnu.org/licenses/lgpl.txt
|
|
*/
|
|
|
`include "inc.v"
|
`include "inc.v"
|
|
`define SCALAR_WIDTH (151-1) // the width for the scalar value
|
|
|
/* add two points on the elliptic curve $y^2=x^3-x+1$ over a Galois field GF(3^M)
|
/* point scalar multiplication on the elliptic curve $y^2=x^3-x+1$ over a Galois field GF(3^M)
|
* whose irreducible polynomial is $x^97 + x^12 + 2$. */
|
* whose irreducible polynomial is $x^97 + x^12 + 2$. */
|
|
/* $P3(x3,y3) == c \cdot P1(x1,y1)$ */
|
|
module point_scalar_mult(clk, reset, x1, y1, zero1, c, done, x3, y3, zero3);
|
|
input clk, reset;
|
|
input [`WIDTH:0] x1, y1;
|
|
input zero1;
|
|
input [`SCALAR_WIDTH:0] c;
|
|
output reg done;
|
|
output reg [`WIDTH:0] x3, y3;
|
|
output reg zero3;
|
|
|
|
reg [`WIDTH:0] x2, y2; reg zero2; // the result
|
|
wire [`WIDTH:0] x4, y4; wire zero4;
|
|
wire [`WIDTH:0] x5, y5; wire zero5;
|
|
reg [`SCALAR_WIDTH : 0] k; // the scalar value
|
|
reg [`SCALAR_WIDTH+1 : 0] i; // the counter
|
|
reg op;
|
|
wire p, p2, rst, done1;
|
|
|
|
assign x4 = (~op) ? x2 : (k[`SCALAR_WIDTH]?x1:0);
|
|
assign y4 = (~op) ? y2 : (k[`SCALAR_WIDTH]?y1:0);
|
|
assign zero4 = (~op) ? zero2 : (k[`SCALAR_WIDTH]?zero1:1);
|
|
assign rst = reset | p2 ;
|
|
|
|
point_add
|
|
ins1 (clk, rst, x2, y2, zero2, x4, y4, zero4, done1, x5, y5, zero5);
|
|
func6
|
|
ins2 (clk, reset, done1, p),
|
|
ins3 (clk, reset, p, p2);
|
|
|
|
always @ (posedge clk)
|
|
if (reset) i <= 1;
|
|
else if ((op & p) | i[`SCALAR_WIDTH+1]) i <= i << 1;
|
|
|
|
always @ (posedge clk)
|
|
if (reset) k <= c;
|
|
else if (op & p) k <= k << 1;
|
|
|
|
always @ (posedge clk)
|
|
if (reset) op <= 0;
|
|
else if (p) op <= ~op;
|
|
|
|
always @ (posedge clk)
|
|
if (reset) begin x2 <= 0; y2 <= 0; zero2 <= 1; end
|
|
else if (p) begin x2 <= x5; y2 <= y5; zero2 <= zero5; end
|
|
|
|
always @ (posedge clk)
|
|
if (reset) begin x3 <= 0; y3 <= 0; zero3 <= 1; done <= 0; end
|
|
else if (i[`SCALAR_WIDTH+1])
|
|
begin x3 <= x2; y3 <= y2; zero3 <= zero2; done <= 1; end
|
|
endmodule
|
|
|
|
/* add two points on the elliptic curve $y^2=x^3-x+1$ over a Galois field GF(3^M)
|
|
* whose irreducible polynomial is $x^97 + x^12 + 2$. */
|
/* $P3(x3,y3) == P1 + P2$ for any points $P1(x1,y1),P2(x2,y2)$ */
|
/* $P3(x3,y3) == P1 + P2$ for any points $P1(x1,y1),P2(x2,y2)$ */
|
module point_add(clk, reset, x1, y1, zero1, x2, y2, zero2, done, x3, y3, zero3);
|
module point_add(clk, reset, x1, y1, zero1, x2, y2, zero2, done, x3, y3, zero3);
|
input clk, reset;
|
input clk, reset;
|
input [`WIDTH:0] x1, y1; // this guy is $P1$
|
input [`WIDTH:0] x1, y1; // this guy is $P1$
|
input zero1; // asserted if P1 == 0
|
input zero1; // asserted if P1 == 0
|