OpenCores
URL https://opencores.org/ocsvn/fpu100/fpu100/trunk

Subversion Repositories fpu100

[/] [fpu100/] [trunk/] [fpu.vhd] - Diff between revs 20 and 21

Go to most recent revision | Show entire file | Details | Blame | View Log

Rev 20 Rev 21
Line 1... Line 1...
 
-------------------------------------------------------------------------------
 
--
 
-- Project:     <Floating Point Unit Core>
 
--      
 
-- Description: top entity
 
-------------------------------------------------------------------------------
 
--
 
--                              100101011010011100100
 
--                              110000111011100100000
 
--                              100000111011000101101
 
--                              100010111100101111001
 
--                              110000111011101101001
 
--                              010000001011101001010
 
--                              110100111001001100001
 
--                              110111010000001100111
 
--                              110110111110001011101
 
--                              101110110010111101000
 
--                              100000010111000000000
 
--
 
--      Author:          Jidan Al-eryani 
 
--      E-mail:          jidan@gmx.net
 
--
 
--  Copyright (C) 2006
 
--
 
--      This source file may be used and distributed without        
 
--      restriction provided that this copyright statement is not   
 
--      removed from the file and that any derivative work contains 
 
--      the original copyright notice and the associated disclaimer.
 
--                                                           
 
--              THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY     
 
--      EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED   
 
--      TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS   
 
--      FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL THE AUTHOR      
 
--      OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,         
 
--      INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES    
 
--      (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE   
 
--      GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR        
 
--      BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF  
 
--      LIABILITY, WHETHER IN  CONTRACT, STRICT LIABILITY, OR TORT  
 
--      (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT  
 
--      OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE         
 
--      POSSIBILITY OF SUCH DAMAGE. 
 
--
 
 
 No newline at end of file
 No newline at end of file
 
 
 
library ieee;
 
use ieee.std_logic_1164.all;
 
use ieee.numeric_std.all;
 
use ieee.std_logic_misc.all;
 
 
 
library work;
 
use work.comppack.all;
 
use work.fpupack.all;
 
 
 
 
 
entity fpu is
 
    port (
 
        clk_i                   : in std_logic;
 
 
 
        -- Input Operands A & B
 
        opa_i           : in std_logic_vector(FP_WIDTH-1 downto 0);  -- Default: FP_WIDTH=32 
 
        opb_i           : in std_logic_vector(FP_WIDTH-1 downto 0);
 
 
 
        -- fpu operations (fpu_op_i):
 
                -- ========================
 
                -- 000 = add, 
 
                -- 001 = substract, 
 
                -- 010 = multiply, 
 
                -- 011 = divide,
 
                -- 100 = square root
 
                -- 101 = unused
 
                -- 110 = unused
 
                -- 111 = unused
 
        fpu_op_i                : in std_logic_vector(2 downto 0);
 
 
 
        -- Rounding Mode: 
 
        -- ==============
 
        -- 00 = round to nearest even(default), 
 
        -- 01 = round to zero, 
 
        -- 10 = round up, 
 
        -- 11 = round down
 
        rmode_i                 : in std_logic_vector(1 downto 0);
 
 
 
        -- Output port   
 
        output_o        : out std_logic_vector(FP_WIDTH-1 downto 0);
 
 
 
        -- Control signals
 
        start_i                 : in std_logic; -- is also restart signal
 
        ready_o                 : out std_logic;
 
 
 
        -- Exceptions
 
        ine_o                   : out std_logic; -- inexact
 
        overflow_o      : out std_logic; -- overflow
 
        underflow_o     : out std_logic; -- underflow
 
        div_zero_o      : out std_logic; -- divide by zero
 
        inf_o                   : out std_logic; -- infinity
 
        zero_o                  : out std_logic; -- zero
 
        qnan_o                  : out std_logic; -- queit Not-a-Number
 
        snan_o                  : out std_logic -- signaling Not-a-Number
 
        );
 
end fpu;
 
 
 
architecture rtl of fpu is
 
 
 
 
 
        constant MUL_SERIAL: integer range 0 to 1 := 0; -- 0 for parallel multiplier, 1 for serial
 
        constant MUL_COUNT: integer:= 11; --11 for parallel multiplier, 34 for serial
 
 
 
        -- Input/output registers
 
        signal s_opa_i, s_opb_i : std_logic_vector(FP_WIDTH-1 downto 0);
 
        signal s_fpu_op_i               : std_logic_vector(2 downto 0);
 
        signal s_rmode_i : std_logic_vector(1 downto 0);
 
        signal s_output_o : std_logic_vector(FP_WIDTH-1 downto 0);
 
    signal s_ine_o, s_overflow_o, s_underflow_o, s_div_zero_o, s_inf_o, s_zero_o, s_qnan_o, s_snan_o : std_logic;
 
 
 
        type   t_state is (waiting,busy);
 
        signal s_state : t_state;
 
        signal s_start_i : std_logic;
 
        signal s_count : integer;
 
        signal s_output1 : std_logic_vector(FP_WIDTH-1 downto 0);
 
        signal s_infa, s_infb : std_logic;
 
 
 
        --      ***Add/Substract units signals***
 
 
 
        signal prenorm_addsub_fracta_28_o, prenorm_addsub_fractb_28_o : std_logic_vector(27 downto 0);
 
        signal prenorm_addsub_exp_o : std_logic_vector(7 downto 0);
 
 
 
        signal addsub_fract_o : std_logic_vector(27 downto 0);
 
        signal addsub_sign_o : std_logic;
 
 
 
        signal postnorm_addsub_output_o : std_logic_vector(31 downto 0);
 
        signal postnorm_addsub_ine_o : std_logic;
 
 
 
        --      ***Multiply units signals***
 
 
 
        signal pre_norm_mul_exp_10 : std_logic_vector(9 downto 0);
 
        signal pre_norm_mul_fracta_24   : std_logic_vector(23 downto 0);
 
        signal pre_norm_mul_fractb_24   : std_logic_vector(23 downto 0);
 
 
 
        signal mul_24_fract_48 : std_logic_vector(47 downto 0);
 
        signal mul_24_sign      : std_logic;
 
        signal serial_mul_fract_48 : std_logic_vector(47 downto 0);
 
        signal serial_mul_sign  : std_logic;
 
 
 
        signal mul_fract_48: std_logic_vector(47 downto 0);
 
        signal mul_sign: std_logic;
 
 
 
        signal post_norm_mul_output     : std_logic_vector(31 downto 0);
 
        signal post_norm_mul_ine        : std_logic;
 
 
 
        --      ***Division units signals***
 
 
 
        signal pre_norm_div_dvdnd : std_logic_vector(49 downto 0);
 
        signal pre_norm_div_dvsor : std_logic_vector(26 downto 0);
 
        signal pre_norm_div_exp : std_logic_vector(EXP_WIDTH+1 downto 0);
 
 
 
        signal serial_div_qutnt : std_logic_vector(26 downto 0);
 
        signal serial_div_rmndr : std_logic_vector(26 downto 0);
 
        signal serial_div_sign : std_logic;
 
        signal serial_div_div_zero : std_logic;
 
 
 
        signal post_norm_div_output : std_logic_vector(31 downto 0);
 
        signal post_norm_div_ine : std_logic;
 
 
 
        --      ***Square units***
 
 
 
        signal pre_norm_sqrt_fracta_o           : std_logic_vector(51 downto 0);
 
        signal pre_norm_sqrt_exp_o                              : std_logic_vector(7 downto 0);
 
 
 
        signal sqrt_sqr_o                       : std_logic_vector(25 downto 0);
 
        signal sqrt_ine_o                       : std_logic;
 
 
 
        signal post_norm_sqrt_output    : std_logic_vector(31 downto 0);
 
        signal post_norm_sqrt_ine_o             : std_logic;
 
 
 
 
 
begin
 
        --***Add/Substract units***
 
 
 
        i_prenorm_addsub: pre_norm_addsub
 
        port map (
 
          clk_i => clk_i,
 
                                opa_i => s_opa_i,
 
                                opb_i => s_opb_i,
 
                                fracta_28_o => prenorm_addsub_fracta_28_o,
 
                                fractb_28_o => prenorm_addsub_fractb_28_o,
 
                                exp_o=> prenorm_addsub_exp_o);
 
 
 
        i_addsub: addsub_28
 
                port map(
 
                         clk_i => clk_i,
 
                         fpu_op_i => s_fpu_op_i(0),
 
                         fracta_i       => prenorm_addsub_fracta_28_o,
 
                         fractb_i       => prenorm_addsub_fractb_28_o,
 
                         signa_i =>  s_opa_i(31),
 
                         signb_i =>  s_opb_i(31),
 
                         fract_o => addsub_fract_o,
 
                         sign_o => addsub_sign_o);
 
 
 
        i_postnorm_addsub: post_norm_addsub
 
        port map(
 
                clk_i => clk_i,
 
                opa_i => s_opa_i,
 
                opb_i => s_opb_i,
 
                fract_28_i => addsub_fract_o,
 
                exp_i => prenorm_addsub_exp_o,
 
                sign_i => addsub_sign_o,
 
                fpu_op_i => s_fpu_op_i(0),
 
                rmode_i => s_rmode_i,
 
                output_o => postnorm_addsub_output_o,
 
                ine_o => postnorm_addsub_ine_o
 
                );
 
 
 
        --***Multiply units***
 
 
 
        i_pre_norm_mul: pre_norm_mul
 
        port map(
 
                clk_i => clk_i,
 
                opa_i => s_opa_i,
 
                opb_i => s_opb_i,
 
                exp_10_o => pre_norm_mul_exp_10,
 
                fracta_24_o     => pre_norm_mul_fracta_24,
 
                fractb_24_o     => pre_norm_mul_fractb_24);
 
 
 
        i_mul_24 : mul_24
 
        port map(
 
                         clk_i => clk_i,
 
                         fracta_i => pre_norm_mul_fracta_24,
 
                         fractb_i => pre_norm_mul_fractb_24,
 
                         signa_i => s_opa_i(31),
 
                         signb_i => s_opb_i(31),
 
                         start_i => start_i,
 
                         fract_o => mul_24_fract_48,
 
                         sign_o =>      mul_24_sign,
 
                         ready_o => open);
 
 
 
        i_serial_mul : serial_mul
 
        port map(
 
                         clk_i => clk_i,
 
                         fracta_i => pre_norm_mul_fracta_24,
 
                         fractb_i => pre_norm_mul_fractb_24,
 
                         signa_i => s_opa_i(31),
 
                         signb_i => s_opb_i(31),
 
                         start_i => s_start_i,
 
                         fract_o => serial_mul_fract_48,
 
                         sign_o =>      serial_mul_sign,
 
                         ready_o => open);
 
 
 
        -- serial or parallel multiplier will be choosed depending on constant MUL_SERIAL
 
        mul_fract_48 <= mul_24_fract_48 when MUL_SERIAL=0 else serial_mul_fract_48;
 
        mul_sign <= mul_24_sign when MUL_SERIAL=0 else serial_mul_sign;
 
 
 
        i_post_norm_mul : post_norm_mul
 
        port map(
 
                         clk_i => clk_i,
 
                         opa_i => s_opa_i,
 
                         opb_i => s_opb_i,
 
                         exp_10_i => pre_norm_mul_exp_10,
 
                         fract_48_i     => mul_fract_48,
 
                         sign_i => mul_sign,
 
                         rmode_i => s_rmode_i,
 
                         output_o => post_norm_mul_output,
 
                         ine_o => post_norm_mul_ine
 
                        );
 
 
 
        --***Division units***
 
 
 
        i_pre_norm_div : pre_norm_div
 
        port map(
 
                         clk_i => clk_i,
 
                         opa_i => s_opa_i,
 
                         opb_i => s_opb_i,
 
                         exp_10_o => pre_norm_div_exp,
 
                         dvdnd_50_o     => pre_norm_div_dvdnd,
 
                         dvsor_27_o     => pre_norm_div_dvsor);
 
 
 
        i_serial_div : serial_div
 
        port map(
 
                         clk_i=> clk_i,
 
                         dvdnd_i => pre_norm_div_dvdnd,
 
                         dvsor_i => pre_norm_div_dvsor,
 
                         sign_dvd_i => s_opa_i(31),
 
                         sign_div_i => s_opb_i(31),
 
                         start_i => s_start_i,
 
                         ready_o => open,
 
                         qutnt_o => serial_div_qutnt,
 
                         rmndr_o => serial_div_rmndr,
 
                         sign_o => serial_div_sign,
 
                         div_zero_o     => serial_div_div_zero);
 
 
 
        i_post_norm_div : post_norm_div
 
        port map(
 
                         clk_i => clk_i,
 
                         opa_i => s_opa_i,
 
                         opb_i => s_opb_i,
 
                         qutnt_i =>     serial_div_qutnt,
 
                         rmndr_i => serial_div_rmndr,
 
                         exp_10_i => pre_norm_div_exp,
 
                         sign_i => serial_div_sign,
 
                         rmode_i =>     s_rmode_i,
 
                         output_o => post_norm_div_output,
 
                         ine_o => post_norm_div_ine);
 
 
 
 
 
        --***Square units***
 
 
 
        i_pre_norm_sqrt : pre_norm_sqrt
 
        port map(
 
                         clk_i => clk_i,
 
                         opa_i => s_opa_i,
 
                         fracta_52_o => pre_norm_sqrt_fracta_o,
 
                         exp_o => pre_norm_sqrt_exp_o);
 
 
 
        i_sqrt: sqrt
 
        generic map(RD_WIDTH=>52, SQ_WIDTH=>26)
 
        port map(
 
                         clk_i => clk_i,
 
                         rad_i => pre_norm_sqrt_fracta_o,
 
                         start_i => s_start_i,
 
                         ready_o => open,
 
                         sqr_o => sqrt_sqr_o,
 
                         ine_o => sqrt_ine_o);
 
 
 
        i_post_norm_sqrt : post_norm_sqrt
 
        port map(
 
                        clk_i => clk_i,
 
                        opa_i => s_opa_i,
 
                        fract_26_i => sqrt_sqr_o,
 
                        exp_i => pre_norm_sqrt_exp_o,
 
                        ine_i => sqrt_ine_o,
 
                        rmode_i => s_rmode_i,
 
                        output_o => post_norm_sqrt_output,
 
                        ine_o => post_norm_sqrt_ine_o);
 
 
 
 
 
 
 
-----------------------------------------------------------------                       
 
 
 
        -- Input Register
 
        process(clk_i)
 
        begin
 
                if rising_edge(clk_i) then
 
                        s_opa_i <= opa_i;
 
                        s_opb_i <= opb_i;
 
                        s_fpu_op_i <= fpu_op_i;
 
                        s_rmode_i <= rmode_i;
 
                        s_start_i <= start_i;
 
                end if;
 
        end process;
 
 
 
        -- Output Register
 
        process(clk_i)
 
        begin
 
                if rising_edge(clk_i) then
 
                        output_o <= s_output_o;
 
                        ine_o <= s_ine_o;
 
                        overflow_o <= s_overflow_o;
 
                        underflow_o <= s_underflow_o;
 
                        div_zero_o <= s_div_zero_o;
 
                        inf_o <= s_inf_o;
 
                        zero_o <= s_zero_o;
 
                        qnan_o <= s_qnan_o;
 
                        snan_o <= s_snan_o;
 
                end if;
 
        end process;
 
 
 
 
 
        -- FSM
 
        process(clk_i)
 
        begin
 
                if rising_edge(clk_i) then
 
                        if s_start_i ='1' then
 
                                s_state <= busy;
 
                                s_count <= 0;
 
                        elsif s_count=6 and ((fpu_op_i="000") or (fpu_op_i="001")) then
 
                                s_state <= waiting;
 
                                ready_o <= '1';
 
                                s_count <=0;
 
                        elsif s_count=MUL_COUNT and fpu_op_i="010" then
 
                                s_state <= waiting;
 
                                ready_o <= '1';
 
                                s_count <=0;
 
                        elsif s_count=33 and fpu_op_i="011" then
 
                                s_state <= waiting;
 
                                ready_o <= '1';
 
                                s_count <=0;
 
                        elsif s_count=33 and fpu_op_i="100" then
 
                                s_state <= waiting;
 
                                ready_o <= '1';
 
                                s_count <=0;
 
                        elsif s_state=busy then
 
                                s_count <= s_count + 1;
 
                        else
 
                                s_state <= waiting;
 
                                ready_o <= '0';
 
                        end if;
 
        end if;
 
        end process;
 
 
 
        -- Output Multiplexer
 
        process(clk_i)
 
        begin
 
                if rising_edge(clk_i) then
 
                        if fpu_op_i="000" or fpu_op_i="001" then
 
                                s_output1               <= postnorm_addsub_output_o;
 
                                s_ine_o                 <= postnorm_addsub_ine_o;
 
                        elsif fpu_op_i="010" then
 
                                s_output1       <= post_norm_mul_output;
 
                                s_ine_o                 <= post_norm_mul_ine;
 
                        elsif fpu_op_i="011" then
 
                                s_output1       <= post_norm_div_output;
 
                                s_ine_o                 <= post_norm_div_ine;
 
                        elsif fpu_op_i="100" then
 
                                s_output1       <= post_norm_sqrt_output;
 
                                s_ine_o         <= post_norm_sqrt_ine_o;
 
                        else
 
                                s_output1       <= (others => '0');
 
                                s_ine_o                 <= '0';
 
                        end if;
 
                end if;
 
        end process;
 
 
 
 
 
        s_infa <= '1' when s_opa_i(30 downto 23)="11111111"  else '0';
 
        s_infb <= '1' when s_opb_i(30 downto 23)="11111111"  else '0';
 
 
 
 
 
        --In round down: the subtraction of two equal numbers other than zero are always -0!!!
 
        process(s_output1, s_rmode_i, s_div_zero_o, s_infa, s_infb, s_qnan_o, s_snan_o, s_zero_o, s_fpu_op_i, s_opa_i, s_opb_i )
 
        begin
 
                        if s_rmode_i="00" or (s_div_zero_o or (s_infa or s_infb) or s_qnan_o or s_snan_o)='1' then --round-to-nearest-even
 
                                s_output_o <= s_output1;
 
                        elsif s_rmode_i="01" and s_output1(30 downto 23)="11111111" then
 
                                --In round-to-zero: the sum of two non-infinity operands is never infinity,even if an overflow occures
 
                                s_output_o <= s_output1(31) & "1111111011111111111111111111111";
 
                        elsif s_rmode_i="10" and s_output1(31 downto 23)="111111111" then
 
                                --In round-up: the sum of two non-infinity operands is never negative infinity,even if an overflow occures
 
                                s_output_o <= "11111111011111111111111111111111";
 
                        elsif s_rmode_i="11" then
 
                                --In round-down: a-a= -0
 
                                if (s_fpu_op_i="000" or s_fpu_op_i="001") and s_zero_o='1' and (s_opa_i(31) or (s_fpu_op_i(0) xor s_opb_i(31)))='1' then
 
                                        s_output_o <= "1" & s_output1(30 downto 0);
 
                                --In round-down: the sum of two non-infinity operands is never postive infinity,even if an overflow occures
 
                                elsif s_output1(31 downto 23)="011111111" then
 
                                        s_output_o <= "01111111011111111111111111111111";
 
                                else
 
                                        s_output_o <= s_output1;
 
                                end if;
 
                        else
 
                                s_output_o <= s_output1;
 
                        end if;
 
        end process;
 
 
 
 
 
        -- Generate Exceptions 
 
        s_underflow_o <= '1' when s_output1(30 downto 23)="00000000" and s_ine_o='1' else '0';
 
        s_overflow_o <= '1' when s_output1(30 downto 23)="11111111" and s_ine_o='1' else '0';
 
        s_div_zero_o <= serial_div_div_zero when fpu_op_i="011" else '0';
 
        s_inf_o <= '1' when s_output1(30 downto 23)="11111111" and (s_qnan_o or s_snan_o)='0' else '0';
 
        s_zero_o <= '1' when or_reduce(s_output1(30 downto 0))='0' else '0';
 
        s_qnan_o <= '1' when s_output1(30 downto 0)=QNAN else '0';
 
    s_snan_o <= '1' when s_opa_i(30 downto 0)=SNAN or s_opb_i(30 downto 0)=SNAN else '0';
 
 
 
 
 
end rtl;
 No newline at end of file
 No newline at end of file

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.