Line 1... |
Line 1... |
|
-------------------------------------------------------------------------------
|
|
--
|
|
-- Project: <Floating Point Unit Core>
|
|
--
|
|
-- Description: top entity
|
|
-------------------------------------------------------------------------------
|
|
--
|
|
-- 100101011010011100100
|
|
-- 110000111011100100000
|
|
-- 100000111011000101101
|
|
-- 100010111100101111001
|
|
-- 110000111011101101001
|
|
-- 010000001011101001010
|
|
-- 110100111001001100001
|
|
-- 110111010000001100111
|
|
-- 110110111110001011101
|
|
-- 101110110010111101000
|
|
-- 100000010111000000000
|
|
--
|
|
-- Author: Jidan Al-eryani
|
|
-- E-mail: jidan@gmx.net
|
|
--
|
|
-- Copyright (C) 2006
|
|
--
|
|
-- This source file may be used and distributed without
|
|
-- restriction provided that this copyright statement is not
|
|
-- removed from the file and that any derivative work contains
|
|
-- the original copyright notice and the associated disclaimer.
|
|
--
|
|
-- THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY
|
|
-- EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
-- TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
|
-- FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL THE AUTHOR
|
|
-- OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
-- INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
|
-- (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
|
|
-- GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
|
|
-- BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
|
-- LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
-- (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
|
|
-- OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
-- POSSIBILITY OF SUCH DAMAGE.
|
|
--
|
|
|
No newline at end of file
|
No newline at end of file
|
|
|
|
library ieee;
|
|
use ieee.std_logic_1164.all;
|
|
use ieee.numeric_std.all;
|
|
use ieee.std_logic_misc.all;
|
|
|
|
library work;
|
|
use work.comppack.all;
|
|
use work.fpupack.all;
|
|
|
|
|
|
entity fpu is
|
|
port (
|
|
clk_i : in std_logic;
|
|
|
|
-- Input Operands A & B
|
|
opa_i : in std_logic_vector(FP_WIDTH-1 downto 0); -- Default: FP_WIDTH=32
|
|
opb_i : in std_logic_vector(FP_WIDTH-1 downto 0);
|
|
|
|
-- fpu operations (fpu_op_i):
|
|
-- ========================
|
|
-- 000 = add,
|
|
-- 001 = substract,
|
|
-- 010 = multiply,
|
|
-- 011 = divide,
|
|
-- 100 = square root
|
|
-- 101 = unused
|
|
-- 110 = unused
|
|
-- 111 = unused
|
|
fpu_op_i : in std_logic_vector(2 downto 0);
|
|
|
|
-- Rounding Mode:
|
|
-- ==============
|
|
-- 00 = round to nearest even(default),
|
|
-- 01 = round to zero,
|
|
-- 10 = round up,
|
|
-- 11 = round down
|
|
rmode_i : in std_logic_vector(1 downto 0);
|
|
|
|
-- Output port
|
|
output_o : out std_logic_vector(FP_WIDTH-1 downto 0);
|
|
|
|
-- Control signals
|
|
start_i : in std_logic; -- is also restart signal
|
|
ready_o : out std_logic;
|
|
|
|
-- Exceptions
|
|
ine_o : out std_logic; -- inexact
|
|
overflow_o : out std_logic; -- overflow
|
|
underflow_o : out std_logic; -- underflow
|
|
div_zero_o : out std_logic; -- divide by zero
|
|
inf_o : out std_logic; -- infinity
|
|
zero_o : out std_logic; -- zero
|
|
qnan_o : out std_logic; -- queit Not-a-Number
|
|
snan_o : out std_logic -- signaling Not-a-Number
|
|
);
|
|
end fpu;
|
|
|
|
architecture rtl of fpu is
|
|
|
|
|
|
constant MUL_SERIAL: integer range 0 to 1 := 0; -- 0 for parallel multiplier, 1 for serial
|
|
constant MUL_COUNT: integer:= 11; --11 for parallel multiplier, 34 for serial
|
|
|
|
-- Input/output registers
|
|
signal s_opa_i, s_opb_i : std_logic_vector(FP_WIDTH-1 downto 0);
|
|
signal s_fpu_op_i : std_logic_vector(2 downto 0);
|
|
signal s_rmode_i : std_logic_vector(1 downto 0);
|
|
signal s_output_o : std_logic_vector(FP_WIDTH-1 downto 0);
|
|
signal s_ine_o, s_overflow_o, s_underflow_o, s_div_zero_o, s_inf_o, s_zero_o, s_qnan_o, s_snan_o : std_logic;
|
|
|
|
type t_state is (waiting,busy);
|
|
signal s_state : t_state;
|
|
signal s_start_i : std_logic;
|
|
signal s_count : integer;
|
|
signal s_output1 : std_logic_vector(FP_WIDTH-1 downto 0);
|
|
signal s_infa, s_infb : std_logic;
|
|
|
|
-- ***Add/Substract units signals***
|
|
|
|
signal prenorm_addsub_fracta_28_o, prenorm_addsub_fractb_28_o : std_logic_vector(27 downto 0);
|
|
signal prenorm_addsub_exp_o : std_logic_vector(7 downto 0);
|
|
|
|
signal addsub_fract_o : std_logic_vector(27 downto 0);
|
|
signal addsub_sign_o : std_logic;
|
|
|
|
signal postnorm_addsub_output_o : std_logic_vector(31 downto 0);
|
|
signal postnorm_addsub_ine_o : std_logic;
|
|
|
|
-- ***Multiply units signals***
|
|
|
|
signal pre_norm_mul_exp_10 : std_logic_vector(9 downto 0);
|
|
signal pre_norm_mul_fracta_24 : std_logic_vector(23 downto 0);
|
|
signal pre_norm_mul_fractb_24 : std_logic_vector(23 downto 0);
|
|
|
|
signal mul_24_fract_48 : std_logic_vector(47 downto 0);
|
|
signal mul_24_sign : std_logic;
|
|
signal serial_mul_fract_48 : std_logic_vector(47 downto 0);
|
|
signal serial_mul_sign : std_logic;
|
|
|
|
signal mul_fract_48: std_logic_vector(47 downto 0);
|
|
signal mul_sign: std_logic;
|
|
|
|
signal post_norm_mul_output : std_logic_vector(31 downto 0);
|
|
signal post_norm_mul_ine : std_logic;
|
|
|
|
-- ***Division units signals***
|
|
|
|
signal pre_norm_div_dvdnd : std_logic_vector(49 downto 0);
|
|
signal pre_norm_div_dvsor : std_logic_vector(26 downto 0);
|
|
signal pre_norm_div_exp : std_logic_vector(EXP_WIDTH+1 downto 0);
|
|
|
|
signal serial_div_qutnt : std_logic_vector(26 downto 0);
|
|
signal serial_div_rmndr : std_logic_vector(26 downto 0);
|
|
signal serial_div_sign : std_logic;
|
|
signal serial_div_div_zero : std_logic;
|
|
|
|
signal post_norm_div_output : std_logic_vector(31 downto 0);
|
|
signal post_norm_div_ine : std_logic;
|
|
|
|
-- ***Square units***
|
|
|
|
signal pre_norm_sqrt_fracta_o : std_logic_vector(51 downto 0);
|
|
signal pre_norm_sqrt_exp_o : std_logic_vector(7 downto 0);
|
|
|
|
signal sqrt_sqr_o : std_logic_vector(25 downto 0);
|
|
signal sqrt_ine_o : std_logic;
|
|
|
|
signal post_norm_sqrt_output : std_logic_vector(31 downto 0);
|
|
signal post_norm_sqrt_ine_o : std_logic;
|
|
|
|
|
|
begin
|
|
--***Add/Substract units***
|
|
|
|
i_prenorm_addsub: pre_norm_addsub
|
|
port map (
|
|
clk_i => clk_i,
|
|
opa_i => s_opa_i,
|
|
opb_i => s_opb_i,
|
|
fracta_28_o => prenorm_addsub_fracta_28_o,
|
|
fractb_28_o => prenorm_addsub_fractb_28_o,
|
|
exp_o=> prenorm_addsub_exp_o);
|
|
|
|
i_addsub: addsub_28
|
|
port map(
|
|
clk_i => clk_i,
|
|
fpu_op_i => s_fpu_op_i(0),
|
|
fracta_i => prenorm_addsub_fracta_28_o,
|
|
fractb_i => prenorm_addsub_fractb_28_o,
|
|
signa_i => s_opa_i(31),
|
|
signb_i => s_opb_i(31),
|
|
fract_o => addsub_fract_o,
|
|
sign_o => addsub_sign_o);
|
|
|
|
i_postnorm_addsub: post_norm_addsub
|
|
port map(
|
|
clk_i => clk_i,
|
|
opa_i => s_opa_i,
|
|
opb_i => s_opb_i,
|
|
fract_28_i => addsub_fract_o,
|
|
exp_i => prenorm_addsub_exp_o,
|
|
sign_i => addsub_sign_o,
|
|
fpu_op_i => s_fpu_op_i(0),
|
|
rmode_i => s_rmode_i,
|
|
output_o => postnorm_addsub_output_o,
|
|
ine_o => postnorm_addsub_ine_o
|
|
);
|
|
|
|
--***Multiply units***
|
|
|
|
i_pre_norm_mul: pre_norm_mul
|
|
port map(
|
|
clk_i => clk_i,
|
|
opa_i => s_opa_i,
|
|
opb_i => s_opb_i,
|
|
exp_10_o => pre_norm_mul_exp_10,
|
|
fracta_24_o => pre_norm_mul_fracta_24,
|
|
fractb_24_o => pre_norm_mul_fractb_24);
|
|
|
|
i_mul_24 : mul_24
|
|
port map(
|
|
clk_i => clk_i,
|
|
fracta_i => pre_norm_mul_fracta_24,
|
|
fractb_i => pre_norm_mul_fractb_24,
|
|
signa_i => s_opa_i(31),
|
|
signb_i => s_opb_i(31),
|
|
start_i => start_i,
|
|
fract_o => mul_24_fract_48,
|
|
sign_o => mul_24_sign,
|
|
ready_o => open);
|
|
|
|
i_serial_mul : serial_mul
|
|
port map(
|
|
clk_i => clk_i,
|
|
fracta_i => pre_norm_mul_fracta_24,
|
|
fractb_i => pre_norm_mul_fractb_24,
|
|
signa_i => s_opa_i(31),
|
|
signb_i => s_opb_i(31),
|
|
start_i => s_start_i,
|
|
fract_o => serial_mul_fract_48,
|
|
sign_o => serial_mul_sign,
|
|
ready_o => open);
|
|
|
|
-- serial or parallel multiplier will be choosed depending on constant MUL_SERIAL
|
|
mul_fract_48 <= mul_24_fract_48 when MUL_SERIAL=0 else serial_mul_fract_48;
|
|
mul_sign <= mul_24_sign when MUL_SERIAL=0 else serial_mul_sign;
|
|
|
|
i_post_norm_mul : post_norm_mul
|
|
port map(
|
|
clk_i => clk_i,
|
|
opa_i => s_opa_i,
|
|
opb_i => s_opb_i,
|
|
exp_10_i => pre_norm_mul_exp_10,
|
|
fract_48_i => mul_fract_48,
|
|
sign_i => mul_sign,
|
|
rmode_i => s_rmode_i,
|
|
output_o => post_norm_mul_output,
|
|
ine_o => post_norm_mul_ine
|
|
);
|
|
|
|
--***Division units***
|
|
|
|
i_pre_norm_div : pre_norm_div
|
|
port map(
|
|
clk_i => clk_i,
|
|
opa_i => s_opa_i,
|
|
opb_i => s_opb_i,
|
|
exp_10_o => pre_norm_div_exp,
|
|
dvdnd_50_o => pre_norm_div_dvdnd,
|
|
dvsor_27_o => pre_norm_div_dvsor);
|
|
|
|
i_serial_div : serial_div
|
|
port map(
|
|
clk_i=> clk_i,
|
|
dvdnd_i => pre_norm_div_dvdnd,
|
|
dvsor_i => pre_norm_div_dvsor,
|
|
sign_dvd_i => s_opa_i(31),
|
|
sign_div_i => s_opb_i(31),
|
|
start_i => s_start_i,
|
|
ready_o => open,
|
|
qutnt_o => serial_div_qutnt,
|
|
rmndr_o => serial_div_rmndr,
|
|
sign_o => serial_div_sign,
|
|
div_zero_o => serial_div_div_zero);
|
|
|
|
i_post_norm_div : post_norm_div
|
|
port map(
|
|
clk_i => clk_i,
|
|
opa_i => s_opa_i,
|
|
opb_i => s_opb_i,
|
|
qutnt_i => serial_div_qutnt,
|
|
rmndr_i => serial_div_rmndr,
|
|
exp_10_i => pre_norm_div_exp,
|
|
sign_i => serial_div_sign,
|
|
rmode_i => s_rmode_i,
|
|
output_o => post_norm_div_output,
|
|
ine_o => post_norm_div_ine);
|
|
|
|
|
|
--***Square units***
|
|
|
|
i_pre_norm_sqrt : pre_norm_sqrt
|
|
port map(
|
|
clk_i => clk_i,
|
|
opa_i => s_opa_i,
|
|
fracta_52_o => pre_norm_sqrt_fracta_o,
|
|
exp_o => pre_norm_sqrt_exp_o);
|
|
|
|
i_sqrt: sqrt
|
|
generic map(RD_WIDTH=>52, SQ_WIDTH=>26)
|
|
port map(
|
|
clk_i => clk_i,
|
|
rad_i => pre_norm_sqrt_fracta_o,
|
|
start_i => s_start_i,
|
|
ready_o => open,
|
|
sqr_o => sqrt_sqr_o,
|
|
ine_o => sqrt_ine_o);
|
|
|
|
i_post_norm_sqrt : post_norm_sqrt
|
|
port map(
|
|
clk_i => clk_i,
|
|
opa_i => s_opa_i,
|
|
fract_26_i => sqrt_sqr_o,
|
|
exp_i => pre_norm_sqrt_exp_o,
|
|
ine_i => sqrt_ine_o,
|
|
rmode_i => s_rmode_i,
|
|
output_o => post_norm_sqrt_output,
|
|
ine_o => post_norm_sqrt_ine_o);
|
|
|
|
|
|
|
|
-----------------------------------------------------------------
|
|
|
|
-- Input Register
|
|
process(clk_i)
|
|
begin
|
|
if rising_edge(clk_i) then
|
|
s_opa_i <= opa_i;
|
|
s_opb_i <= opb_i;
|
|
s_fpu_op_i <= fpu_op_i;
|
|
s_rmode_i <= rmode_i;
|
|
s_start_i <= start_i;
|
|
end if;
|
|
end process;
|
|
|
|
-- Output Register
|
|
process(clk_i)
|
|
begin
|
|
if rising_edge(clk_i) then
|
|
output_o <= s_output_o;
|
|
ine_o <= s_ine_o;
|
|
overflow_o <= s_overflow_o;
|
|
underflow_o <= s_underflow_o;
|
|
div_zero_o <= s_div_zero_o;
|
|
inf_o <= s_inf_o;
|
|
zero_o <= s_zero_o;
|
|
qnan_o <= s_qnan_o;
|
|
snan_o <= s_snan_o;
|
|
end if;
|
|
end process;
|
|
|
|
|
|
-- FSM
|
|
process(clk_i)
|
|
begin
|
|
if rising_edge(clk_i) then
|
|
if s_start_i ='1' then
|
|
s_state <= busy;
|
|
s_count <= 0;
|
|
elsif s_count=6 and ((fpu_op_i="000") or (fpu_op_i="001")) then
|
|
s_state <= waiting;
|
|
ready_o <= '1';
|
|
s_count <=0;
|
|
elsif s_count=MUL_COUNT and fpu_op_i="010" then
|
|
s_state <= waiting;
|
|
ready_o <= '1';
|
|
s_count <=0;
|
|
elsif s_count=33 and fpu_op_i="011" then
|
|
s_state <= waiting;
|
|
ready_o <= '1';
|
|
s_count <=0;
|
|
elsif s_count=33 and fpu_op_i="100" then
|
|
s_state <= waiting;
|
|
ready_o <= '1';
|
|
s_count <=0;
|
|
elsif s_state=busy then
|
|
s_count <= s_count + 1;
|
|
else
|
|
s_state <= waiting;
|
|
ready_o <= '0';
|
|
end if;
|
|
end if;
|
|
end process;
|
|
|
|
-- Output Multiplexer
|
|
process(clk_i)
|
|
begin
|
|
if rising_edge(clk_i) then
|
|
if fpu_op_i="000" or fpu_op_i="001" then
|
|
s_output1 <= postnorm_addsub_output_o;
|
|
s_ine_o <= postnorm_addsub_ine_o;
|
|
elsif fpu_op_i="010" then
|
|
s_output1 <= post_norm_mul_output;
|
|
s_ine_o <= post_norm_mul_ine;
|
|
elsif fpu_op_i="011" then
|
|
s_output1 <= post_norm_div_output;
|
|
s_ine_o <= post_norm_div_ine;
|
|
elsif fpu_op_i="100" then
|
|
s_output1 <= post_norm_sqrt_output;
|
|
s_ine_o <= post_norm_sqrt_ine_o;
|
|
else
|
|
s_output1 <= (others => '0');
|
|
s_ine_o <= '0';
|
|
end if;
|
|
end if;
|
|
end process;
|
|
|
|
|
|
s_infa <= '1' when s_opa_i(30 downto 23)="11111111" else '0';
|
|
s_infb <= '1' when s_opb_i(30 downto 23)="11111111" else '0';
|
|
|
|
|
|
--In round down: the subtraction of two equal numbers other than zero are always -0!!!
|
|
process(s_output1, s_rmode_i, s_div_zero_o, s_infa, s_infb, s_qnan_o, s_snan_o, s_zero_o, s_fpu_op_i, s_opa_i, s_opb_i )
|
|
begin
|
|
if s_rmode_i="00" or (s_div_zero_o or (s_infa or s_infb) or s_qnan_o or s_snan_o)='1' then --round-to-nearest-even
|
|
s_output_o <= s_output1;
|
|
elsif s_rmode_i="01" and s_output1(30 downto 23)="11111111" then
|
|
--In round-to-zero: the sum of two non-infinity operands is never infinity,even if an overflow occures
|
|
s_output_o <= s_output1(31) & "1111111011111111111111111111111";
|
|
elsif s_rmode_i="10" and s_output1(31 downto 23)="111111111" then
|
|
--In round-up: the sum of two non-infinity operands is never negative infinity,even if an overflow occures
|
|
s_output_o <= "11111111011111111111111111111111";
|
|
elsif s_rmode_i="11" then
|
|
--In round-down: a-a= -0
|
|
if (s_fpu_op_i="000" or s_fpu_op_i="001") and s_zero_o='1' and (s_opa_i(31) or (s_fpu_op_i(0) xor s_opb_i(31)))='1' then
|
|
s_output_o <= "1" & s_output1(30 downto 0);
|
|
--In round-down: the sum of two non-infinity operands is never postive infinity,even if an overflow occures
|
|
elsif s_output1(31 downto 23)="011111111" then
|
|
s_output_o <= "01111111011111111111111111111111";
|
|
else
|
|
s_output_o <= s_output1;
|
|
end if;
|
|
else
|
|
s_output_o <= s_output1;
|
|
end if;
|
|
end process;
|
|
|
|
|
|
-- Generate Exceptions
|
|
s_underflow_o <= '1' when s_output1(30 downto 23)="00000000" and s_ine_o='1' else '0';
|
|
s_overflow_o <= '1' when s_output1(30 downto 23)="11111111" and s_ine_o='1' else '0';
|
|
s_div_zero_o <= serial_div_div_zero when fpu_op_i="011" else '0';
|
|
s_inf_o <= '1' when s_output1(30 downto 23)="11111111" and (s_qnan_o or s_snan_o)='0' else '0';
|
|
s_zero_o <= '1' when or_reduce(s_output1(30 downto 0))='0' else '0';
|
|
s_qnan_o <= '1' when s_output1(30 downto 0)=QNAN else '0';
|
|
s_snan_o <= '1' when s_opa_i(30 downto 0)=SNAN or s_opb_i(30 downto 0)=SNAN else '0';
|
|
|
|
|
|
end rtl;
|
No newline at end of file
|
No newline at end of file
|