Line 1... |
Line 1... |
|
-------------------------------------------------------------------------------
|
|
--
|
|
-- Project: <Floating Point Unit Core>
|
|
--
|
|
-- Description: post-normalization entity for the multiplication unit
|
|
-------------------------------------------------------------------------------
|
|
--
|
|
-- 100101011010011100100
|
|
-- 110000111011100100000
|
|
-- 100000111011000101101
|
|
-- 100010111100101111001
|
|
-- 110000111011101101001
|
|
-- 010000001011101001010
|
|
-- 110100111001001100001
|
|
-- 110111010000001100111
|
|
-- 110110111110001011101
|
|
-- 101110110010111101000
|
|
-- 100000010111000000000
|
|
--
|
|
-- Author: Jidan Al-eryani
|
|
-- E-mail: jidan@gmx.net
|
|
--
|
|
-- Copyright (C) 2006
|
|
--
|
|
-- This source file may be used and distributed without
|
|
-- restriction provided that this copyright statement is not
|
|
-- removed from the file and that any derivative work contains
|
|
-- the original copyright notice and the associated disclaimer.
|
|
--
|
|
-- THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY
|
|
-- EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
-- TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
|
-- FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL THE AUTHOR
|
|
-- OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
-- INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
|
-- (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
|
|
-- GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
|
|
-- BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
|
-- LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
-- (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
|
|
-- OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
-- POSSIBILITY OF SUCH DAMAGE.
|
|
--
|
|
|
No newline at end of file
|
No newline at end of file
|
|
library ieee ;
|
|
use ieee.std_logic_1164.all;
|
|
use ieee.std_logic_unsigned.all;
|
|
use ieee.std_logic_misc.all;
|
|
|
|
library work;
|
|
use work.fpupack.all;
|
|
|
|
entity post_norm_mul is
|
|
port(
|
|
clk_i : in std_logic;
|
|
opa_i : in std_logic_vector(FP_WIDTH-1 downto 0);
|
|
opb_i : in std_logic_vector(FP_WIDTH-1 downto 0);
|
|
exp_10_i : in std_logic_vector(EXP_WIDTH+1 downto 0);
|
|
fract_48_i : in std_logic_vector(2*FRAC_WIDTH+1 downto 0); -- hidden(1) & fraction(23)
|
|
sign_i : in std_logic;
|
|
rmode_i : in std_logic_vector(1 downto 0);
|
|
output_o : out std_logic_vector(FP_WIDTH-1 downto 0);
|
|
ine_o : out std_logic
|
|
);
|
|
end post_norm_mul;
|
|
|
|
architecture rtl of post_norm_mul is
|
|
|
|
signal s_expa, s_expb : std_logic_vector(EXP_WIDTH-1 downto 0);
|
|
signal s_exp_10_i : std_logic_vector(EXP_WIDTH+1 downto 0);
|
|
signal s_fract_48_i : std_logic_vector(2*FRAC_WIDTH+1 downto 0);
|
|
signal s_sign_i : std_logic;
|
|
signal s_output_o : std_logic_vector(FP_WIDTH-1 downto 0);
|
|
signal s_ine_o, s_overflow : std_logic;
|
|
signal s_opa_i, s_opb_i : std_logic_vector(FP_WIDTH-1 downto 0);
|
|
signal s_rmode_i : std_logic_vector(1 downto 0);
|
|
|
|
signal s_zeros : std_logic_vector(5 downto 0);
|
|
signal s_carry : std_logic;
|
|
signal s_shr2, s_shl2 : std_logic_vector(5 downto 0);
|
|
signal s_expo1, s_expo2b : std_logic_vector(8 downto 0);
|
|
signal s_exp_10a, s_exp_10b : std_logic_vector(9 downto 0);
|
|
signal s_frac2a : std_logic_vector(47 downto 0);
|
|
|
|
signal s_sticky, s_guard, s_round : std_logic;
|
|
signal s_roundup : std_logic;
|
|
signal s_frac_rnd, s_frac3 : std_logic_vector(24 downto 0);
|
|
signal s_shr3 : std_logic;
|
|
signal s_r_zeros : std_logic_vector(5 downto 0);
|
|
signal s_lost : std_logic;
|
|
signal s_op_0 : std_logic;
|
|
signal s_expo3 : std_logic_vector(8 downto 0);
|
|
|
|
signal s_infa, s_infb : std_logic;
|
|
signal s_nan_in, s_nan_op, s_nan_a, s_nan_b : std_logic;
|
|
|
|
begin
|
|
|
|
-- Input Register
|
|
process(clk_i)
|
|
begin
|
|
if rising_edge(clk_i) then
|
|
s_opa_i <= opa_i;
|
|
s_opb_i <= opb_i;
|
|
s_expa <= opa_i(30 downto 23);
|
|
s_expb <= opb_i(30 downto 23);
|
|
s_exp_10_i <= exp_10_i;
|
|
s_fract_48_i <= fract_48_i;
|
|
s_sign_i <= sign_i;
|
|
s_rmode_i <= rmode_i;
|
|
end if;
|
|
end process;
|
|
|
|
-- Output Register
|
|
process(clk_i)
|
|
begin
|
|
if rising_edge(clk_i) then
|
|
output_o <= s_output_o;
|
|
ine_o <= s_ine_o;
|
|
end if;
|
|
end process;
|
|
|
|
--*** Stage 1 ****
|
|
-- figure out the exponent and howmuch the fraction has to be shiftd right/left
|
|
|
|
s_carry <= s_fract_48_i(47);
|
|
|
|
process(clk_i)
|
|
begin
|
|
if rising_edge(clk_i) then
|
|
if s_fract_48_i(47)='0' then
|
|
s_zeros <= count_l_zeros(s_fract_48_i(46 downto 1));
|
|
else
|
|
s_zeros <= "000000";
|
|
end if;
|
|
s_r_zeros <= count_r_zeros(s_fract_48_i);
|
|
end if;
|
|
end process;
|
|
|
|
s_exp_10a <= s_exp_10_i + ("000000000"&s_carry);
|
|
s_exp_10b <= s_exp_10a - ("0000"&s_zeros);
|
|
|
|
process(clk_i)
|
|
variable v_shr1, v_shl1 : std_logic_vector(9 downto 0);
|
|
begin
|
|
if rising_edge(clk_i) then
|
|
if s_exp_10a(9)='1' or s_exp_10a="0000000000" then
|
|
v_shr1 := "0000000001" - s_exp_10a + ("000000000"&s_carry);
|
|
v_shl1 := (others =>'0');
|
|
s_expo1 <= "000000001";
|
|
else
|
|
if s_exp_10b(9)='1' or s_exp_10b="0000000000" then
|
|
v_shr1 := (others =>'0');
|
|
v_shl1 := ("0000"&s_zeros) - s_exp_10a;
|
|
s_expo1 <= "000000001";
|
|
elsif s_exp_10b(8)='1' then
|
|
v_shr1 := (others =>'0');
|
|
v_shl1 := (others =>'0');
|
|
s_expo1 <= "011111111";
|
|
else
|
|
v_shr1 := ("000000000"&s_carry);
|
|
v_shl1 := ("0000"&s_zeros);
|
|
s_expo1 <= s_exp_10b(8 downto 0);
|
|
end if;
|
|
end if;
|
|
if v_shr1(6)='1' then --"110000" = 48; maximal shift-right postions
|
|
s_shr2 <= "111111";
|
|
else
|
|
s_shr2 <= v_shr1(5 downto 0);
|
|
end if;
|
|
s_shl2 <= v_shl1(5 downto 0);
|
|
end if;
|
|
end process;
|
|
|
|
|
|
-- *** Stage 2 ***
|
|
-- Shifting the fraction and rounding
|
|
|
|
|
|
-- shift the fraction
|
|
process(clk_i)
|
|
begin
|
|
if rising_edge(clk_i) then
|
|
if s_shr2 /= "000000" then
|
|
s_frac2a <= shr(s_fract_48_i, s_shr2);
|
|
else
|
|
s_frac2a <= shl(s_fract_48_i, s_shl2);
|
|
end if;
|
|
end if;
|
|
end process;
|
|
|
|
s_expo2b <= s_expo1 - "000000001" when s_frac2a(46)='0' else s_expo1;
|
|
|
|
|
|
|
|
-- signals if precision was last during the right-shift above
|
|
s_lost <= '1' when (s_shr2+("00000"&s_shr3)) > s_r_zeros else '0';
|
|
|
|
|
|
-- ***Stage 3***
|
|
-- Rounding
|
|
|
|
-- 23
|
|
-- |
|
|
-- xx00000000000000000000000grsxxxxxxxxxxxxxxxxxxxx
|
|
-- guard bit: s_frac2a(23) (LSB of output)
|
|
-- round bit: s_frac2a(22)
|
|
s_guard <= s_frac2a(22);
|
|
s_round <= s_frac2a(21);
|
|
s_sticky <= or_reduce(s_frac2a(20 downto 0)) or s_lost;
|
|
|
|
s_roundup <= s_guard and ((s_round or s_sticky)or s_frac2a(23)) when s_rmode_i="00" else -- round to nearset even
|
|
( s_guard or s_round or s_sticky) and (not s_sign_i) when s_rmode_i="10" else -- round up
|
|
( s_guard or s_round or s_sticky) and (s_sign_i) when s_rmode_i="11" else -- round down
|
|
'0'; -- round to zero(truncate = no rounding)
|
|
|
|
|
|
process(clk_i)
|
|
begin
|
|
if rising_edge(clk_i) then
|
|
if s_roundup='1' then
|
|
s_frac_rnd <= (s_frac2a(47 downto 23)) + "1";
|
|
else
|
|
s_frac_rnd <= (s_frac2a(47 downto 23));
|
|
end if;
|
|
end if;
|
|
end process;
|
|
|
|
s_shr3 <= s_frac_rnd(24);
|
|
|
|
|
|
|
|
s_expo3 <= s_expo2b + '1' when s_shr3='1' and s_expo2b /= "011111111" else s_expo2b;
|
|
s_frac3 <= ("0"&s_frac_rnd(24 downto 1)) when s_shr3='1' and s_expo2b /= "011111111" else s_frac_rnd;
|
|
|
|
|
|
---***Stage 4****
|
|
-- Output
|
|
|
|
s_op_0 <= not ( or_reduce(s_opa_i(30 downto 0)) and or_reduce(s_opb_i(30 downto 0)) );
|
|
|
|
s_infa <= '1' when s_expa="11111111" else '0';
|
|
s_infb <= '1' when s_expb="11111111" else '0';
|
|
|
|
s_nan_a <= '1' when (s_infa='1' and or_reduce (s_opa_i(22 downto 0))='1') else '0';
|
|
s_nan_b <= '1' when (s_infb='1' and or_reduce (s_opb_i(22 downto 0))='1') else '0';
|
|
s_nan_in <= '1' when s_nan_a='1' or s_nan_b='1' else '0';
|
|
s_nan_op <= '1' when (s_infa or s_infb)='1' and s_op_0='1' else '0';-- 0 * inf = nan
|
|
|
|
|
|
s_overflow <= '1' when s_expo3 = "011111111" and (s_infa or s_infb)='0' else '0';
|
|
|
|
s_ine_o <= '1' when s_op_0='0' and (s_lost or or_reduce(s_frac2a(22 downto 0)) or s_overflow)='1' else '0';
|
|
|
|
process(s_sign_i, s_expo3, s_frac3, s_nan_in, s_nan_op, s_infa, s_infb, s_overflow, s_r_zeros)
|
|
begin
|
|
if (s_nan_in or s_nan_op)='1' then
|
|
s_output_o <= s_sign_i & QNAN;
|
|
elsif (s_infa or s_infb)='1' or s_overflow='1' then
|
|
s_output_o <= s_sign_i & INF;
|
|
elsif s_r_zeros=48 then
|
|
s_output_o <= s_sign_i & ZERO_VECTOR;
|
|
else
|
|
s_output_o <= s_sign_i & s_expo3(7 downto 0) & s_frac3(22 downto 0);
|
|
|
|
end if;
|
|
end process;
|
|
|
|
end rtl;
|
No newline at end of file
|
No newline at end of file
|