OpenCores
URL https://opencores.org/ocsvn/ft816float/ft816float/trunk

Subversion Repositories ft816float

[/] [ft816float/] [trunk/] [rtl/] [verilog/] [fpAddsub.v] - Diff between revs 6 and 8

Go to most recent revision | Show entire file | Details | Blame | View Log

Rev 6 Rev 8
Line 1... Line 1...
 
`timescale 1ns / 1ps
// ============================================================================
// ============================================================================
//        __
//        __
//   \\__/ o\    (C) 2006-2016  Robert Finch, Stratford
//   \\__/ o\    (C) 2006-2016  Robert Finch, Waterloo
//    \  __ /    All rights reserved.
//    \  __ /    All rights reserved.
//     \/_//     robfinch<remove>@finitron.ca
//     \/_//     robfinch<remove>@finitron.ca
//       ||
//       ||
//
//
 
//      fpAddsub.v
 
//    - floating point adder/subtracter
 
//    - two cycle latency
 
//    - can issue every clock cycle
 
//    - parameterized width
 
//    - IEEE 754 representation
 
//
 
//
// This source file is free software: you can redistribute it and/or modify 
// This source file is free software: you can redistribute it and/or modify 
// it under the terms of the GNU Lesser General Public License as published 
// it under the terms of the GNU Lesser General Public License as published 
// by the Free Software Foundation, either version 3 of the License, or     
// by the Free Software Foundation, either version 3 of the License, or     
// (at your option) any later version.                                      
// (at your option) any later version.                                      
//                                                                          
//                                                                          
Line 16... Line 25...
// GNU General Public License for more details.                             
// GNU General Public License for more details.                             
//                                                                          
//                                                                          
// You should have received a copy of the GNU General Public License        
// You should have received a copy of the GNU General Public License        
// along with this program.  If not, see <http://www.gnu.org/licenses/>.    
// along with this program.  If not, see <http://www.gnu.org/licenses/>.    
//
//
//      fpAddsub.v
 
//  - floating point adder/subtracter
 
//  - two cycle latency
 
//  - can issue every clock cycle
 
//  - parameterized width
 
//  - IEEE 754 representation
 
//
 
//      This adder/subtractor handles denormalized numbers.
 
// It has a two cycle latency.
 
// The output format is of an internal expanded representation
 
// in preparation to be fed into a normalization unit, then
 
// rounding. Basically, it's the same as the regular format
 
// except the mantissa is doubled in size, the leading two
 
// bits of which are assumed to be whole bits.
 
// ============================================================================
// ============================================================================
//
 
module fpAddsub(clk, ce, rm, op, a, b, o);
module fpAddsub(clk, ce, rm, op, a, b, o);
parameter WID = 32;
parameter WID = 128;
localparam MSB = WID-1;
localparam MSB = WID-1;
localparam EMSB = WID==80 ? 14 :
localparam EMSB = WID==128 ? 14 :
 
                  WID==96 ? 14 :
 
                  WID==80 ? 14 :
                  WID==64 ? 10 :
                  WID==64 ? 10 :
                                  WID==52 ? 10 :
                                  WID==52 ? 10 :
                                  WID==48 ? 10 :
                                  WID==48 ? 10 :
                                  WID==44 ? 10 :
                                  WID==44 ? 10 :
                                  WID==42 ? 10 :
                                  WID==42 ? 10 :
                                  WID==40 ?  9 :
                                  WID==40 ?  9 :
                                  WID==32 ?  7 :
                                  WID==32 ?  7 :
                                  WID==24 ?  6 : 4;
                                  WID==24 ?  6 : 4;
localparam FMSB = WID==80 ? 63 :
localparam FMSB = WID==128 ? 111 :
 
                  WID==96 ? 79 :
 
                  WID==80 ? 63 :
                  WID==64 ? 51 :
                  WID==64 ? 51 :
                                  WID==52 ? 39 :
                                  WID==52 ? 39 :
                                  WID==48 ? 35 :
                                  WID==48 ? 35 :
                                  WID==44 ? 31 :
                                  WID==44 ? 31 :
                                  WID==42 ? 29 :
                                  WID==42 ? 29 :
                                  WID==40 ? 28 :
                                  WID==40 ? 28 :
                                  WID==32 ? 22 :
                                  WID==32 ? 22 :
                                  WID==24 ? 15 : 9;
                                  WID==24 ? 15 : 9;
 
 
localparam WX = 3;
localparam FX = (FMSB+2)*2-1;   // the MSB of the expanded fraction
localparam FX = (FMSB+1)*2-1;   // the MSB of the expanded fraction
localparam EX = FX + 1 + EMSB + 1 + 1 - 1;
localparam EX = FX + WX + EMSB + 1;
 
 
 
input clk;              // system clock
input clk;              // system clock
input ce;               // core clock enable
input ce;               // core clock enable
input [2:0] rm;  // rounding mode
input [2:0] rm;  // rounding mode
input op;               // operation 0 = add, 1 = subtract
input op;               // operation 0 = add, 1 = subtract
input [WID-1:0] a;       // operand a
input [WID-1:0] a;       // operand a
input [WID-1:0] b;       // operand b
input [WID-1:0] b;       // operand b
output [EX+1:0] o;       // output
output [EX:0] o; // output
 
 
 
 
// variables
// variables
wire so;                        // sign output
wire so;                        // sign output
wire [EMSB:0] xo;        // de normalized exponent output
wire [EMSB:0] xo;        // de normalized exponent output
reg [EMSB:0] xo1;        // de normalized exponent output
reg [EMSB:0] xo1;        // de normalized exponent output
wire [FX+WX:0] mo;       // mantissa output
wire [FX:0] mo;  // mantissa output
reg [FX+WX:0] mo1;       // mantissa output
reg [FX:0] mo1;  // mantissa output
 
 
// There's an extra bit output in the mantissa to allow for three whole
 
// digits which the normalizer uses.
 
assign o = {so,xo,mo};
assign o = {so,xo,mo};
 
 
// operands sign,exponent,mantissa
// operands sign,exponent,mantissa
wire sa, sb;
wire sa, sb;
wire [EMSB:0] xa, xb;
wire [EMSB:0] xa, xb;
Line 100... Line 96...
wire aNan, bNan, aNan1, bNan1;
wire aNan, bNan, aNan1, bNan1;
 
 
wire [EMSB:0] xad = xa|adn;      // operand a exponent, compensated for denormalized numbers
wire [EMSB:0] xad = xa|adn;      // operand a exponent, compensated for denormalized numbers
wire [EMSB:0] xbd = xb|bdn; // operand b exponent, compensated for denormalized numbers
wire [EMSB:0] xbd = xb|bdn; // operand b exponent, compensated for denormalized numbers
 
 
fpDecompose #(WID) u1a (.i(a), .sgn(sa), .exp(xa), .man(ma), .fract(fracta), .xz(adn), .vz(az), .xinf(xaInf), .inf(aInf), .nan(aNan) );
fpDecomp #(WID) u1a (.i(a), .sgn(sa), .exp(xa), .man(ma), .fract(fracta), .xz(adn), .vz(az), .xinf(xaInf), .inf(aInf), .nan(aNan) );
fpDecompose #(WID) u1b (.i(b), .sgn(sb), .exp(xb), .man(mb), .fract(fractb), .xz(bdn), .vz(bz), .xinf(xbInf), .inf(bInf), .nan(bNan) );
fpDecomp #(WID) u1b (.i(b), .sgn(sb), .exp(xb), .man(mb), .fract(fractb), .xz(bdn), .vz(bz), .xinf(xbInf), .inf(bInf), .nan(bNan) );
 
 
// Figure out which operation is really needed an add or
// Figure out which operation is really needed an add or
// subtract ?
// subtract ?
// If the signs are the same, use the orignal op,
// If the signs are the same, use the orignal op,
// otherwise flip the operation
// otherwise flip the operation
Line 169... Line 165...
wire [FMSB+1:0] mfs = xa_gt_xb ? fractb : fracta;
wire [FMSB+1:0] mfs = xa_gt_xb ? fractb : fracta;
wire [FMSB+1:0] mfs1;
wire [FMSB+1:0] mfs1;
 
 
// Determine the sticky bit
// Determine the sticky bit
wire sticky, sticky1;
wire sticky, sticky1;
 
generate
 
begin
 
if (WID==128)
 
    redor128 u1 (.a(xdif), .b({mfs,2'b0}), .o(sticky) );
 
else if (WID==96)
 
    redor96 u1 (.a(xdif), .b({mfs,2'b0}), .o(sticky) );
 
else if (WID==80)
 
    redor80 u1 (.a(xdif), .b({mfs,2'b0}), .o(sticky) );
 
else if (WID==64)
redor64 u1 (.a(xdif), .b({mfs,2'b0}), .o(sticky) );
redor64 u1 (.a(xdif), .b({mfs,2'b0}), .o(sticky) );
 
else if (WID==32)
 
    redor32 u1 (.a(xdif), .b({mfs,2'b0}), .o(sticky) );
 
end
 
endgenerate
 
 
// register inputs to shifter and shift
// register inputs to shifter and shift
delay1 #(1)      d16(.clk(clk), .ce(ce), .i(sticky), .o(sticky1) );
delay1 #(1)      d16(.clk(clk), .ce(ce), .i(sticky), .o(sticky1) );
delay1 #(7)      d15(.clk(clk), .ce(ce), .i(xdif),   .o(xdif1) );
delay1 #(7)      d15(.clk(clk), .ce(ce), .i(xdif),   .o(xdif1) );
delay1 #(FMSB+2) d14(.clk(clk), .ce(ce), .i(mfs),    .o(mfs1) );
delay1 #(FMSB+2) d14(.clk(clk), .ce(ce), .i(mfs),    .o(mfs1) );
Line 203... Line 212...
always @*
always @*
        casex({aInf1&bInf1,aNan1,bNan1})
        casex({aInf1&bInf1,aNan1,bNan1})
        3'b1xx:         mo1 = {1'b0,op1,{FMSB-1{1'b0}},op1,{FMSB{1'b0}}};       // inf +/- inf - generate QNaN on subtract, inf on add
        3'b1xx:         mo1 = {1'b0,op1,{FMSB-1{1'b0}},op1,{FMSB{1'b0}}};       // inf +/- inf - generate QNaN on subtract, inf on add
        3'bx1x:         mo1 = {1'b0,fracta1[FMSB+1:0],{FMSB{1'b0}}};
        3'bx1x:         mo1 = {1'b0,fracta1[FMSB+1:0],{FMSB{1'b0}}};
        3'bxx1:         mo1 = {1'b0,fractb1[FMSB+1:0],{FMSB{1'b0}}};
        3'bxx1:         mo1 = {1'b0,fractb1[FMSB+1:0],{FMSB{1'b0}}};
        default:        mo1 = {mab,{FMSB-1{1'b0}}};     // mab has an extra lead bit
        default:        mo1 = {mab,{FMSB-1{1'b0}}};     // mab has an extra lead bit and two trailing bits
        endcase
        endcase
 
 
delay1 #(FX+WX+1) d3(.clk(clk), .ce(ce), .i(mo1), .o(mo) );
delay1 #(FX+1) d3(.clk(clk), .ce(ce), .i(mo1), .o(mo) );
 
 
endmodule
 
 
 
module fpAddsub_tb();
 
reg clk;
 
wire ce = 1'b1;
 
wire [2:0] rm = 3'b0;
 
wire [57:0] o1,o2,o3,o4,o5,o6;
 
wire [35:0] o11,o12,o13;
 
wire [31:0] o21,o22,o23;
 
 
 
initial begin
 
  clk = 1'b0;
 
end
 
always #10 clk = ~clk;
 
 
 
fpAddsub u1 (clk, ce, rm, 1'b0, 32'h0, 32'h0, o1);  // zero plus zero
 
fpAddsub u2 (clk, ce, rm, 1'b1, 32'h0, 32'h0, o2);  // zero minus zero
 
fpAddsub u3 (clk, ce, rm, 1'b0, 32'h3F000000, 32'h3F000000, o3);  // .5 + .5
 
fpAddsub u4 (clk, ce, rm, 1'b0, 32'h43520000, 32'h41700000, o4);  // 210+15
 
fpAddsub u5 (clk, ce, rm, 1'b1, 32'hC3520000, 32'hC1700000, o5);  // -210- -15
 
 
 
fpNormalize u11 (clk, ce, 1'b0, o3, o11);
 
fpNormalize u12 (clk, ce, 1'b0, o4, o12);
 
fpNormalize u13 (clk, ce, 1'b0, o5, o13);
 
 
 
fpRound u21 (3'd1, o11, o21);         // zero for zero
 
fpRound u22 (3'd1, o12, o22); // 
 
fpRound u23 (3'd1, o13, o23); // 
 
 
 
endmodule
endmodule
 
 
 
 
 No newline at end of file
 No newline at end of file

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.