Line 1... |
Line 1... |
`timescale 1ns / 1ps
|
`timescale 1ns / 1ps
|
// ============================================================================
|
// ============================================================================
|
// __
|
// __
|
// \\__/ o\ (C) 2006-2016 Robert Finch, Waterloo
|
// \\__/ o\ (C) 2006-2018 Robert Finch, Waterloo
|
// \ __ / All rights reserved.
|
// \ __ / All rights reserved.
|
// \/_// robfinch<remove>@finitron.ca
|
// \/_// robfinch<remove>@finitron.ca
|
// ||
|
// ||
|
//
|
//
|
// fpDiv.v
|
// fpDiv.v
|
Line 40... |
Line 40... |
localparam EMSB = WID==128 ? 14 :
|
localparam EMSB = WID==128 ? 14 :
|
WID==96 ? 14 :
|
WID==96 ? 14 :
|
WID==80 ? 14 :
|
WID==80 ? 14 :
|
WID==64 ? 10 :
|
WID==64 ? 10 :
|
WID==52 ? 10 :
|
WID==52 ? 10 :
|
WID==48 ? 10 :
|
WID==48 ? 11 :
|
WID==44 ? 10 :
|
WID==44 ? 10 :
|
WID==42 ? 10 :
|
WID==42 ? 10 :
|
WID==40 ? 9 :
|
WID==40 ? 9 :
|
WID==32 ? 7 :
|
WID==32 ? 7 :
|
WID==24 ? 6 : 4;
|
WID==24 ? 6 : 4;
|
localparam FMSB = WID==128 ? 111 :
|
localparam FMSB = WID==128 ? 111 :
|
WID==96 ? 79 :
|
WID==96 ? 79 :
|
WID==80 ? 63 :
|
WID==80 ? 63 :
|
WID==64 ? 51 :
|
WID==64 ? 51 :
|
WID==52 ? 39 :
|
WID==52 ? 39 :
|
WID==48 ? 35 :
|
WID==48 ? 34 :
|
WID==44 ? 31 :
|
WID==44 ? 31 :
|
WID==42 ? 29 :
|
WID==42 ? 29 :
|
WID==40 ? 28 :
|
WID==40 ? 28 :
|
WID==32 ? 22 :
|
WID==32 ? 22 :
|
WID==24 ? 15 : 9;
|
WID==24 ? 15 : 9;
|
Line 92... |
Line 92... |
// The following is a template for a quiet nan. (MSB=1)
|
// The following is a template for a quiet nan. (MSB=1)
|
wire [FMSB:0] qNaN = {1'b1,{FMSB{1'b0}}};
|
wire [FMSB:0] qNaN = {1'b1,{FMSB{1'b0}}};
|
|
|
// variables
|
// variables
|
wire [EMSB+2:0] ex1; // sum of exponents
|
wire [EMSB+2:0] ex1; // sum of exponents
|
wire [FX:0] divo;
|
wire [(FMSB+9)*2-1:0] divo;
|
|
|
// Operands
|
// Operands
|
wire sa, sb; // sign bit
|
wire sa, sb; // sign bit
|
wire [EMSB:0] xa, xb; // exponent bits
|
wire [EMSB:0] xa, xb; // exponent bits
|
wire [FMSB+1:0] fracta, fractb;
|
wire [FMSB+1:0] fracta, fractb;
|
wire a_dn, b_dn; // a/b is denormalized
|
wire a_dn, b_dn; // a/b is denormalized
|
wire az, bz;
|
wire az, bz;
|
wire aInf, bInf;
|
wire aInf, bInf;
|
wire aNan,bNan;
|
wire aNan,bNan;
|
|
wire done1;
|
|
wire [7:0] lzcnt;
|
|
|
// -----------------------------------------------------------
|
// -----------------------------------------------------------
|
// - decode the input operands
|
// - decode the input operands
|
// - derive basic information
|
// - derive basic information
|
// - calculate exponent
|
// - calculate exponent
|
Line 117... |
Line 119... |
|
|
// Compute the exponent.
|
// Compute the exponent.
|
// - correct the exponent for denormalized operands
|
// - correct the exponent for denormalized operands
|
// - adjust the difference by the bias (add 127)
|
// - adjust the difference by the bias (add 127)
|
// - also factor in the different decimal position for division
|
// - also factor in the different decimal position for division
|
assign ex1 = (xa|a_dn) - (xb|b_dn) + bias + FMSB - 1;
|
assign ex1 = (xa|a_dn) - (xb|b_dn) + bias + FMSB + 9 - lzcnt;
|
|
|
// check for exponent underflow/overflow
|
// check for exponent underflow/overflow
|
wire under = ex1[EMSB+2]; // MSB set = negative exponent
|
wire under = ex1[EMSB+2]; // MSB set = negative exponent
|
wire over = (&ex1[EMSB:0] | ex1[EMSB+1]) & !ex1[EMSB+2];
|
wire over = (&ex1[EMSB:0] | ex1[EMSB+1]) & !ex1[EMSB+2];
|
|
|
// Perform divide
|
// Perform divide
|
// could take either 1 or 16 clock cycles
|
// could take either 1 or 16 clock cycles
|
fpdivr8 #(FMSB+2,2) u2 (.clk(clk), .ld(ld), .a({3'b0,fracta}), .b({3'b0,fractb}), .q(divo), .r(), .done(done));
|
fpdivr8 #(FMSB+9,2) u2 (.clk(clk), .ld(ld), .a({fracta,7'b0}), .b({fractb,7'b0}), .q(divo), .r(), .done(done1), .lzcnt(lzcnt));
|
|
delay1 #(1) u3 (.clk(clk), .ce(ce), .i(done1), .o(done));
|
|
|
|
|
// determine when a NaN is output
|
// determine when a NaN is output
|
wire qNaNOut = (az&bz)|(aInf&bInf);
|
wire qNaNOut = (az&bz)|(aInf&bInf);
|
|
wire [(FMSB+9)*2-1:0] divo1 = divo[(FMSB+9)*2-1:0] << (lzcnt-2);
|
|
|
always @(posedge clk)
|
always @(posedge clk)
|
if (ce) begin
|
if (ce) begin
|
if (done) begin
|
if (done1) begin
|
casex({qNaNOut|aNan|bNan,bInf,bz})
|
casez({qNaNOut|aNan|bNan,bInf,bz,over,under})
|
3'b1xx: xo = infXp; // NaN exponent value
|
5'b1????: xo = infXp; // NaN exponent value
|
3'bx1x: xo = 0; // divide by inf
|
5'b01???: xo = 0; // divide by inf
|
3'bxx1: xo = infXp; // divide by zero
|
5'b001??: xo = infXp; // divide by zero
|
|
5'b0001?: xo = infXp; // overflow
|
|
5'b00001: xo = 0; // underflow
|
default: xo = ex1; // normal or underflow: passthru neg. exp. for normalization
|
default: xo = ex1; // normal or underflow: passthru neg. exp. for normalization
|
endcase
|
endcase
|
|
|
casex({aNan,bNan,qNaNOut,bInf,bz})
|
casez({aNan,bNan,qNaNOut,bInf,bz,over})
|
5'b1xxxx: mo = {1'b0,a[FMSB:0],{FMSB+1{1'b0}}};
|
6'b1?????: mo = {1'b1,a[FMSB:0],{FMSB+1{1'b0}}};
|
5'bx1xxx: mo = {1'b0,b[FMSB:0],{FMSB+1{1'b0}}};
|
6'b01????: mo = {1'b1,b[FMSB:0],{FMSB+1{1'b0}}};
|
5'bxx1xx: mo = {1'b0,qNaN[FMSB:0]|{aInf,1'b0}|{az,bz},{FMSB+1{1'b0}}};
|
6'b001???: mo = {1'b1,qNaN[FMSB:0]|{aInf,1'b0}|{az,bz},{FMSB+1{1'b0}}};
|
5'bxxx1x: mo = 0; // div by inf
|
6'b0001??: mo = 0; // div by inf
|
5'bxxxx1: mo = 0; // div by zero
|
6'b00001?: mo = 0; // div by zero
|
default: mo = divo; // plain div
|
6'b000001: mo = 0; // Inf exponent
|
|
default: mo = divo1[(FMSB+9)*2-1:14]; // plain div
|
endcase
|
endcase
|
|
|
so = sa ^ sb;
|
so = sa ^ sb;
|
sign_exe = sa & sb;
|
sign_exe = sa & sb;
|
overflow = over;
|
overflow = over;
|
Line 158... |
Line 166... |
end
|
end
|
end
|
end
|
|
|
endmodule
|
endmodule
|
|
|
No newline at end of file
|
No newline at end of file
|
|
module fpDivnr(clk, ce, ld, a, b, o, rm, done, sign_exe, inf, overflow, underflow);
|
|
parameter WID=32;
|
|
localparam MSB = WID-1;
|
|
localparam EMSB = WID==128 ? 14 :
|
|
WID==96 ? 14 :
|
|
WID==80 ? 14 :
|
|
WID==64 ? 10 :
|
|
WID==52 ? 10 :
|
|
WID==48 ? 11 :
|
|
WID==44 ? 10 :
|
|
WID==42 ? 10 :
|
|
WID==40 ? 9 :
|
|
WID==32 ? 7 :
|
|
WID==24 ? 6 : 4;
|
|
localparam FMSB = WID==128 ? 111 :
|
|
WID==96 ? 79 :
|
|
WID==80 ? 63 :
|
|
WID==64 ? 51 :
|
|
WID==52 ? 39 :
|
|
WID==48 ? 34 :
|
|
WID==44 ? 31 :
|
|
WID==42 ? 29 :
|
|
WID==40 ? 28 :
|
|
WID==32 ? 22 :
|
|
WID==24 ? 15 : 9;
|
|
|
|
localparam FX = (FMSB+2)*2-1; // the MSB of the expanded fraction
|
|
localparam EX = FX + 1 + EMSB + 1 + 1 - 1;
|
|
input clk;
|
|
input ce;
|
|
input ld;
|
|
input [MSB:0] a, b;
|
|
output [MSB:0] o;
|
|
input [2:0] rm;
|
|
output sign_exe;
|
|
output done;
|
|
output inf;
|
|
output overflow;
|
|
output underflow;
|
|
|
|
wire [EX:0] o1;
|
|
wire sign_exe1, inf1, overflow1, underflow1;
|
|
wire [MSB+3:0] fpn0;
|
|
wire done1;
|
|
|
|
fpDiv #(WID) u1 (clk, ce, ld, a, b, o1, done1, sign_exe1, overflow1, underflow1);
|
|
fpNormalize #(WID) u2(.clk(clk), .ce(ce), .under(underflow1), .i(o1), .o(fpn0) );
|
|
fpRoundReg #(WID) u3(.clk(clk), .ce(ce), .rm(rm), .i(fpn0), .o(o) );
|
|
delay2 #(1) u4(.clk(clk), .ce(ce), .i(sign_exe1), .o(sign_exe));
|
|
delay2 #(1) u5(.clk(clk), .ce(ce), .i(inf1), .o(inf));
|
|
delay2 #(1) u6(.clk(clk), .ce(ce), .i(overflow1), .o(overflow));
|
|
delay2 #(1) u7(.clk(clk), .ce(ce), .i(underflow1), .o(underflow));
|
|
delay2 #(1) u8(.clk(clk), .ce(ce), .i(done1), .o(done));
|
|
endmodule
|
|
|
|
|
No newline at end of file
|
No newline at end of file
|