Line 32... |
Line 32... |
//+-inf * 0 = QNaN
|
//+-inf * 0 = QNaN
|
//+-0 / +-0 = QNaN
|
//+-0 / +-0 = QNaN
|
// ============================================================================
|
// ============================================================================
|
|
|
`include "fp_defines.v"
|
`include "fp_defines.v"
|
|
`define GOLDSCHMIDT 1'b1
|
|
|
module fpDiv(clk, clk4x, ce, ld, op, a, b, o, done, sign_exe, overflow, underflow);
|
module fpDiv(rst, clk, ce, ld, op, a, b, o, done, sign_exe, overflow, underflow);
|
|
|
parameter WID = 128;
|
parameter WID = 128;
|
localparam MSB = WID-1;
|
localparam MSB = WID-1;
|
localparam EMSB = WID==128 ? 14 :
|
localparam EMSB = WID==128 ? 14 :
|
WID==96 ? 14 :
|
WID==96 ? 14 :
|
Line 74... |
Line 75... |
WID==32 ? 10 :
|
WID==32 ? 10 :
|
WID==24 ? 9 : 11;
|
WID==24 ? 9 : 11;
|
|
|
localparam FX = (FMSB+2)*2-1; // the MSB of the expanded fraction
|
localparam FX = (FMSB+2)*2-1; // the MSB of the expanded fraction
|
localparam EX = FX + 1 + EMSB + 1 + 1 - 1;
|
localparam EX = FX + 1 + EMSB + 1 + 1 - 1;
|
|
input rst;
|
input clk;
|
input clk;
|
input clk4x;
|
|
input ce;
|
input ce;
|
input ld;
|
input ld;
|
input op;
|
input op;
|
input [MSB:0] a, b;
|
input [MSB:0] a, b;
|
output [EX:0] o;
|
output [EX:0] o;
|
Line 88... |
Line 88... |
output sign_exe;
|
output sign_exe;
|
output overflow;
|
output overflow;
|
output underflow;
|
output underflow;
|
|
|
// registered outputs
|
// registered outputs
|
reg sign_exe;
|
reg sign_exe=0;
|
reg inf;
|
reg inf=0;
|
reg overflow;
|
reg overflow=0;
|
reg underflow;
|
reg underflow=0;
|
|
|
reg so;
|
reg so;
|
reg [EMSB:0] xo;
|
reg [EMSB:0] xo;
|
reg [FX:0] mo;
|
reg [FX:0] mo;
|
assign o = {so,xo,mo};
|
assign o = {so,xo,mo};
|
Line 108... |
Line 108... |
// The following is a template for a quiet nan. (MSB=1)
|
// The following is a template for a quiet nan. (MSB=1)
|
wire [FMSB:0] qNaN = {1'b1,{FMSB{1'b0}}};
|
wire [FMSB:0] qNaN = {1'b1,{FMSB{1'b0}}};
|
|
|
// variables
|
// variables
|
wire [EMSB+2:0] ex1; // sum of exponents
|
wire [EMSB+2:0] ex1; // sum of exponents
|
|
`ifndef GOLDSCHMIDT
|
wire [(FMSB+FADD)*2-1:0] divo;
|
wire [(FMSB+FADD)*2-1:0] divo;
|
|
`else
|
|
wire [(FMSB+5)*2-1:0] divo;
|
|
`endif
|
|
|
// Operands
|
// Operands
|
wire sa, sb; // sign bit
|
wire sa, sb; // sign bit
|
wire [EMSB:0] xa, xb; // exponent bits
|
wire [EMSB:0] xa, xb; // exponent bits
|
wire [FMSB+1:0] fracta, fractb;
|
wire [FMSB+1:0] fracta, fractb;
|
wire a_dn, b_dn; // a/b is denormalized
|
wire a_dn, b_dn; // a/b is denormalized
|
wire az, bz;
|
wire az, bz;
|
wire aInf, bInf;
|
wire aInf, bInf;
|
wire aNan,bNan;
|
wire aNan,bNan;
|
wire done1;
|
wire done1;
|
wire [7:0] lzcnt;
|
wire signed [7:0] lzcnt;
|
|
|
// -----------------------------------------------------------
|
// -----------------------------------------------------------
|
// - decode the input operands
|
// - decode the input operands
|
// - derive basic information
|
// - derive basic information
|
// - calculate exponent
|
// - calculate exponent
|
Line 135... |
Line 139... |
|
|
// Compute the exponent.
|
// Compute the exponent.
|
// - correct the exponent for denormalized operands
|
// - correct the exponent for denormalized operands
|
// - adjust the difference by the bias (add 127)
|
// - adjust the difference by the bias (add 127)
|
// - also factor in the different decimal position for division
|
// - also factor in the different decimal position for division
|
assign ex1 = (xa|a_dn) - (xb|b_dn) + bias + FMSB + (FADD-1) - lzcnt;
|
`ifndef GOLDSCHMIDT
|
|
assign ex1 = (xa|a_dn) - (xb|b_dn) + bias + FMSB + (FADD-1) - lzcnt - 8'd1;
|
|
`else
|
|
assign ex1 = (xa|a_dn) - (xb|b_dn) + bias + FMSB - lzcnt + 8'd4;
|
|
`endif
|
|
|
// check for exponent underflow/overflow
|
// check for exponent underflow/overflow
|
wire under = ex1[EMSB+2]; // MSB set = negative exponent
|
wire under = ex1[EMSB+2]; // MSB set = negative exponent
|
wire over = (&ex1[EMSB:0] | ex1[EMSB+1]) & !ex1[EMSB+2];
|
wire over = (&ex1[EMSB:0] | ex1[EMSB+1]) & !ex1[EMSB+2];
|
|
|
// Perform divide
|
// Perform divide
|
// Divider width must be a multiple of four
|
// Divider width must be a multiple of four
|
|
`ifndef GOLDSCHMIDT
|
fpdivr16 #(FMSB+FADD) u2 (.clk(clk), .ld(ld), .a({3'b0,fracta,8'b0}), .b({3'b0,fractb,8'b0}), .q(divo), .r(), .done(done1), .lzcnt(lzcnt));
|
fpdivr16 #(FMSB+FADD) u2 (.clk(clk), .ld(ld), .a({3'b0,fracta,8'b0}), .b({3'b0,fractb,8'b0}), .q(divo), .r(), .done(done1), .lzcnt(lzcnt));
|
wire [(FMSB+FADD)*2-1:0] divo1 = divo[(FMSB+FADD)*2-1:0] << (lzcnt-2);
|
wire [(FMSB+FADD)*2-1:0] divo1 = divo[(FMSB+FADD)*2-1:0] << (lzcnt-2);
|
|
`else
|
|
DivGoldschmidt #(.WID(FMSB+6),.WHOLE(1),.POINTS(FMSB+5))
|
|
u2 (.rst(rst), .clk(clk), .ld(ld), .a({fracta,4'b0}), .b({fractb,4'b0}), .q(divo), .done(done1), .lzcnt(lzcnt));
|
|
wire [(FMSB+6)*2+1:0] divo1 =
|
|
lzcnt > 8'd5 ? divo << (lzcnt-8'd6) :
|
|
divo >> (8'd6-lzcnt);
|
|
;
|
|
`endif
|
delay1 #(1) u3 (.clk(clk), .ce(ce), .i(done1), .o(done));
|
delay1 #(1) u3 (.clk(clk), .ce(ce), .i(done1), .o(done));
|
|
|
|
|
// determine when a NaN is output
|
// determine when a NaN is output
|
wire qNaNOut = (az&bz)|(aInf&bInf);
|
wire qNaNOut = (az&bz)|(aInf&bInf);
|
|
|
always @(posedge clk)
|
always @(posedge clk)
|
if (ce) begin
|
// Simulation likes to see these values reset to zero on reset. Otherwise the
|
|
// values propagate in sim as X's.
|
|
if (rst) begin
|
|
xo <= 1'd0;
|
|
mo <= 1'd0;
|
|
so <= 1'd0;
|
|
sign_exe <= 1'd0;
|
|
overflow <= 1'd0;
|
|
underflow <= 1'd0;
|
|
end
|
|
else if (ce) begin
|
if (done1) begin
|
if (done1) begin
|
casez({qNaNOut|aNan|bNan,bInf,bz,over,under})
|
casez({qNaNOut|aNan|bNan,bInf,bz,over,under})
|
5'b1????: xo = infXp; // NaN exponent value
|
5'b1????: xo <= infXp; // NaN exponent value
|
5'b01???: xo = 0; // divide by inf
|
5'b01???: xo <= 1'd0; // divide by inf
|
5'b001??: xo = infXp; // divide by zero
|
5'b001??: xo <= infXp; // divide by zero
|
5'b0001?: xo = infXp; // overflow
|
5'b0001?: xo <= infXp; // overflow
|
5'b00001: xo = 0; // underflow
|
5'b00001: xo <= 1'd0; // underflow
|
default: xo = ex1; // normal or underflow: passthru neg. exp. for normalization
|
default: xo <= ex1; // normal or underflow: passthru neg. exp. for normalization
|
endcase
|
endcase
|
|
|
casez({aNan,bNan,qNaNOut,bInf,bz,over,aInf&bInf,az&bz})
|
casez({aNan,bNan,qNaNOut,bInf,bz,over,aInf&bInf,az&bz})
|
8'b1???????: mo = {1'b1,a[FMSB:0],{FMSB+1{1'b0}}};
|
8'b1???????: mo <= {1'b1,a[FMSB:0],{FMSB+1{1'b0}}};
|
8'b01??????: mo = {1'b1,b[FMSB:0],{FMSB+1{1'b0}}};
|
8'b01??????: mo <= {1'b1,b[FMSB:0],{FMSB+1{1'b0}}};
|
8'b001?????: mo = {1'b1,qNaN[FMSB:0]|{aInf,1'b0}|{az,bz},{FMSB+1{1'b0}}};
|
8'b001?????: mo <= {1'b1,qNaN[FMSB:0]|{aInf,1'b0}|{az,bz},{FMSB+1{1'b0}}};
|
8'b0001????: mo = 0; // div by inf
|
8'b0001????: mo <= 1'd0; // div by inf
|
8'b00001???: mo = 0; // div by zero
|
8'b00001???: mo <= 1'd0; // div by zero
|
8'b000001??: mo = 0; // Inf exponent
|
8'b000001??: mo <= 1'd0; // Inf exponent
|
8'b0000001?: mo = {1'b1,qNaN|`QINFDIV,{FMSB+1{1'b0}}}; // infinity / infinity
|
8'b0000001?: mo <= {1'b1,qNaN|`QINFDIV,{FMSB+1{1'b0}}}; // infinity / infinity
|
8'b00000001: mo = {1'b1,qNaN|`QZEROZERO,{FMSB+1{1'b0}}}; // zero / zero
|
8'b00000001: mo <= {1'b1,qNaN|`QZEROZERO,{FMSB+1{1'b0}}}; // zero / zero
|
default: mo = divo1[(FMSB+FADD)*2-1:(FADD-2)*2-2]; // plain div
|
`ifndef GOLDSCHMIDT
|
|
default: mo <= divo1[(FMSB+FADD)*2-1:(FADD-2)*2-2]; // plain div
|
|
`else
|
|
default: mo <= divo1[(FMSB+6)*2+1:2]; // plain div
|
|
`endif
|
endcase
|
endcase
|
|
|
so = sa ^ sb;
|
so <= sa ^ sb;
|
sign_exe = sa & sb;
|
sign_exe <= sa & sb;
|
overflow = over;
|
overflow <= over;
|
underflow = under;
|
underflow <= under;
|
end
|
end
|
end
|
end
|
|
|
endmodule
|
endmodule
|
|
|
module fpDivnr(clk, clk4x, ce, ld, op, a, b, o, rm, done, sign_exe, inf, overflow, underflow);
|
module fpDivnr(rst, clk, ce, ld, op, a, b, o, rm, done, sign_exe, inf, overflow, underflow);
|
parameter WID=32;
|
parameter WID=32;
|
localparam MSB = WID-1;
|
localparam MSB = WID-1;
|
localparam EMSB = WID==128 ? 14 :
|
localparam EMSB = WID==128 ? 14 :
|
WID==96 ? 14 :
|
WID==96 ? 14 :
|
WID==80 ? 14 :
|
WID==80 ? 14 :
|
Line 212... |
Line 243... |
WID==32 ? 22 :
|
WID==32 ? 22 :
|
WID==24 ? 15 : 9;
|
WID==24 ? 15 : 9;
|
|
|
localparam FX = (FMSB+2)*2-1; // the MSB of the expanded fraction
|
localparam FX = (FMSB+2)*2-1; // the MSB of the expanded fraction
|
localparam EX = FX + 1 + EMSB + 1 + 1 - 1;
|
localparam EX = FX + 1 + EMSB + 1 + 1 - 1;
|
|
input rst;
|
input clk;
|
input clk;
|
input clk4x;
|
|
input ce;
|
input ce;
|
input ld;
|
input ld;
|
input op;
|
input op;
|
input [MSB:0] a, b;
|
input [MSB:0] a, b;
|
output [MSB:0] o;
|
output [MSB:0] o;
|
Line 231... |
Line 262... |
wire [EX:0] o1;
|
wire [EX:0] o1;
|
wire sign_exe1, inf1, overflow1, underflow1;
|
wire sign_exe1, inf1, overflow1, underflow1;
|
wire [MSB+3:0] fpn0;
|
wire [MSB+3:0] fpn0;
|
wire done1;
|
wire done1;
|
|
|
fpDiv #(WID) u1 (clk, clk4x, ce, ld, op, a, b, o1, done1, sign_exe1, overflow1, underflow1);
|
fpDiv #(WID) u1 (rst, clk, ce, ld, op, a, b, o1, done1, sign_exe1, overflow1, underflow1);
|
fpNormalize #(WID) u2(.clk(clk), .ce(ce), .under(underflow1), .i(o1), .o(fpn0) );
|
fpNormalize #(WID) u2(.clk(clk), .ce(ce), .under(underflow1), .i(o1), .o(fpn0) );
|
fpRoundReg #(WID) u3(.clk(clk), .ce(ce), .rm(rm), .i(fpn0), .o(o) );
|
fpRoundReg #(WID) u3(.clk(clk), .ce(ce), .rm(rm), .i(fpn0), .o(o) );
|
delay2 #(1) u4(.clk(clk), .ce(ce), .i(sign_exe1), .o(sign_exe));
|
delay2 #(1) u4(.clk(clk), .ce(ce), .i(sign_exe1), .o(sign_exe));
|
delay2 #(1) u5(.clk(clk), .ce(ce), .i(inf1), .o(inf));
|
delay2 #(1) u5(.clk(clk), .ce(ce), .i(inf1), .o(inf));
|
delay2 #(1) u6(.clk(clk), .ce(ce), .i(overflow1), .o(overflow));
|
delay2 #(1) u6(.clk(clk), .ce(ce), .i(overflow1), .o(overflow));
|