Line 42... |
Line 42... |
// +-inf * +-inf = -+inf (this is handled by exOver)
|
// +-inf * +-inf = -+inf (this is handled by exOver)
|
// +-inf * 0 = QNaN
|
// +-inf * 0 = QNaN
|
//
|
//
|
// ============================================================================
|
// ============================================================================
|
|
|
module fpFMA (clk, ce, op, rm, a, b, c, o, inf);
|
module fpFMA (clk, ce, op, rm, a, b, c, o, under, over, inf, zero);
|
parameter WID = 32;
|
parameter WID = 32;
|
`include "fpSize.sv"
|
`include "fpSize.sv"
|
|
|
input clk;
|
input clk;
|
input ce;
|
input ce;
|
input op; // operation 0 = add, 1 = subtract
|
input op; // operation 0 = add, 1 = subtract
|
input [2:0] rm;
|
input [2:0] rm;
|
input [WID:1] a, b, c;
|
input [WID:1] a, b, c;
|
output [EX:0] o;
|
output [EX:0] o;
|
|
output under;
|
|
output over;
|
output inf;
|
output inf;
|
|
output zero;
|
|
|
// constants
|
// constants
|
wire [EMSB:0] infXp = {EMSB+1{1'b1}}; // infinite / NaN - all ones
|
wire [EMSB:0] infXp = {EMSB+1{1'b1}}; // infinite / NaN - all ones
|
// The following is the value for an exponent of zero, with the offset
|
// The following is the value for an exponent of zero, with the offset
|
// eg. 8'h7f for eight bit exponent, 11'h7ff for eleven bit exponent, etc.
|
// eg. 8'h7f for eight bit exponent, 11'h7ff for eleven bit exponent, etc.
|
Line 76... |
Line 79... |
wire a_dn1, b_dn1, c_dn1; // a/b is denormalized
|
wire a_dn1, b_dn1, c_dn1; // a/b is denormalized
|
wire aNan1, bNan1, cNan1;
|
wire aNan1, bNan1, cNan1;
|
wire az1, bz1, cz1;
|
wire az1, bz1, cz1;
|
wire aInf1, bInf1, cInf1;
|
wire aInf1, bInf1, cInf1;
|
reg op1;
|
reg op1;
|
wire xcInf1;
|
|
|
|
fpDecompReg #(WID) u1a (.clk(clk), .ce(ce), .i(a), .sgn(sa1), .exp(xa1), .fract(fracta1), .xz(a_dn1), .vz(az1), .inf(aInf1), .nan(aNan1) );
|
fpDecompReg #(WID) u1a (.clk(clk), .ce(ce), .i(a), .sgn(sa1), .exp(xa1), .fract(fracta1), .xz(a_dn1), .vz(az1), .inf(aInf1), .nan(aNan1) );
|
fpDecompReg #(WID) u1b (.clk(clk), .ce(ce), .i(b), .sgn(sb1), .exp(xb1), .fract(fractb1), .xz(b_dn1), .vz(bz1), .inf(bInf1), .nan(bNan1) );
|
fpDecompReg #(WID) u1b (.clk(clk), .ce(ce), .i(b), .sgn(sb1), .exp(xb1), .fract(fractb1), .xz(b_dn1), .vz(bz1), .inf(bInf1), .nan(bNan1) );
|
fpDecompReg #(WID) u1c (.clk(clk), .ce(ce), .i(c), .sgn(sc1), .exp(xc1), .fract(fractc1), .xz(c_dn1), .vz(cz1), .inf(cInf1), .nan(cNan1) );
|
fpDecompReg #(WID) u1c (.clk(clk), .ce(ce), .i(c), .sgn(sc1), .exp(xc1), .fract(fractc1), .xz(c_dn1), .vz(cz1), .inf(cInf1), .nan(cNan1) );
|
|
|
Line 387... |
Line 389... |
// -----------------------------------------------------------
|
// -----------------------------------------------------------
|
|
|
// Status
|
// Status
|
reg under5;
|
reg under5;
|
reg over5;
|
reg over5;
|
reg [EMSB:0] ex5;
|
reg [EMSB+2:0] ex5;
|
reg [EMSB:0] xc5;
|
reg [EMSB:0] xc5;
|
wire aInf5, bInf5;
|
wire aInf5, bInf5;
|
wire aNan5, bNan5;
|
wire aNan5, bNan5;
|
wire qNaNOut5;
|
wire qNaNOut5;
|
|
|
always @(posedge clk)
|
always @(posedge clk)
|
if (ce) under5 <= ex4[EMSB+2];
|
if (ce) under5 <= ex4[EMSB+2];
|
always @(posedge clk)
|
always @(posedge clk)
|
if (ce) over5 <= (&ex4[EMSB:0] | ex4[EMSB+1]) & !ex4[EMSB+2];
|
if (ce) over5 <= (&ex4[EMSB:0] | ex4[EMSB+1]) & !ex4[EMSB+2];
|
always @(posedge clk)
|
always @(posedge clk)
|
if (ce) ex5 <= ex4[EMSB:0];
|
if (ce) ex5 <= ex4;
|
always @(posedge clk)
|
always @(posedge clk)
|
if (ce) xc5 <= xc4;
|
if (ce) xc5 <= xc4;
|
|
|
delay4 u2a (.clk(clk), .ce(ce), .i(aInf1), .o(aInf5) );
|
delay4 u2a (.clk(clk), .ce(ce), .i(aInf1), .o(aInf5) );
|
delay4 u2b (.clk(clk), .ce(ce), .i(bInf1), .o(bInf5) );
|
delay4 u2b (.clk(clk), .ce(ce), .i(bInf1), .o(bInf5) );
|
Line 421... |
Line 423... |
// - figure multiplier exponent output
|
// - figure multiplier exponent output
|
// - correct xponent and mantissa for exceptional conditions
|
// - correct xponent and mantissa for exceptional conditions
|
// -----------------------------------------------------------
|
// -----------------------------------------------------------
|
|
|
reg [FX:0] mo6;
|
reg [FX:0] mo6;
|
reg [EMSB:0] ex6;
|
reg [EMSB+2:0] ex6;
|
reg [EMSB:0] xc6;
|
reg [EMSB:0] xc6;
|
reg exinf6;
|
|
wire [FMSB+1:0] fractc6;
|
wire [FMSB+1:0] fractc6;
|
delay5 #(FMSB+2) u61 (.clk(clk), .ce(ce), .i(fractc1), .o(fractc6) );
|
delay5 #(FMSB+2) u61 (.clk(clk), .ce(ce), .i(fractc1), .o(fractc6) );
|
delay1 u62 (.clk(clk), .ce(ce), .i(under5), .o(under6));
|
delay1 u62 (.clk(clk), .ce(ce), .i(under5), .o(under6));
|
|
|
always @(posedge clk)
|
always @(posedge clk)
|
Line 450... |
Line 451... |
casez({qNaNOut5|aNan5|bNan5,aInf5,bInf5,over5,under5})
|
casez({qNaNOut5|aNan5|bNan5,aInf5,bInf5,over5,under5})
|
5'b1????: ex6 <= infXp; // qNaN - infinity * zero
|
5'b1????: ex6 <= infXp; // qNaN - infinity * zero
|
5'b01???: ex6 <= infXp; // 'a' infinite
|
5'b01???: ex6 <= infXp; // 'a' infinite
|
5'b001??: ex6 <= infXp; // 'b' infinite
|
5'b001??: ex6 <= infXp; // 'b' infinite
|
5'b0001?: ex6 <= infXp; // result overflow
|
5'b0001?: ex6 <= infXp; // result overflow
|
5'b00001: ex6 <= ex5[EMSB:0];//0; // underflow
|
5'b00001: ex6 <= ex5; //0; // underflow
|
default: ex6 <= ex5[EMSB:0]; // situation normal
|
default: ex6 <= ex5; // situation normal
|
endcase
|
endcase
|
|
|
// -----------------------------------------------------------
|
// -----------------------------------------------------------
|
// Clock #7
|
// Clock #7
|
// - prep for addition, determine greater operand
|
// - prep for addition, determine greater operand
|
Line 467... |
Line 468... |
wire az7, bz7, cz7;
|
wire az7, bz7, cz7;
|
wire realOp7;
|
wire realOp7;
|
|
|
// which has greater magnitude ? Used for sign calc
|
// which has greater magnitude ? Used for sign calc
|
always @(posedge clk)
|
always @(posedge clk)
|
if (ce) ex_gt_xc7 <= (ex6 > xc6) && !under6;
|
if (ce) ex_gt_xc7 <= $signed(ex6) > $signed({2'b0,xc6});
|
always @(posedge clk)
|
always @(posedge clk)
|
if (ce) xeq7 <= (ex6==xc6) && !under6;
|
if (ce) xeq7 <= (ex6=={2'b0,xc6});
|
always @(posedge clk)
|
always @(posedge clk)
|
if (ce) ma_gt_mc7 <= mo6 > {fractc6,{FMSB+1{1'b0}}};
|
if (ce) ma_gt_mc7 <= mo6 > {fractc6,{FMSB+1{1'b0}}};
|
always @(posedge clk)
|
always @(posedge clk)
|
if (ce) meq7 <= mo6 == {fractc6,{FMSB+1{1'b0}}};
|
if (ce) meq7 <= mo6 == {fractc6,{FMSB+1{1'b0}}};
|
vtdl #(1) u71 (.clk(clk), .ce(ce), .a(4'd5), .d(az1), .q(az7));
|
vtdl #(1) u71 (.clk(clk), .ce(ce), .a(4'd5), .d(az1), .q(az7));
|
Line 488... |
Line 489... |
// -----------------------------------------------------------
|
// -----------------------------------------------------------
|
|
|
reg a_gt_b8;
|
reg a_gt_b8;
|
reg resZero8;
|
reg resZero8;
|
reg ex_gt_xc8;
|
reg ex_gt_xc8;
|
wire [EMSB:0] ex8;
|
wire [EMSB+2:0] ex8;
|
wire [EMSB:0] xc8;
|
wire [EMSB:0] xc8;
|
wire xcInf8;
|
wire xcInf8;
|
wire [2:0] rm8;
|
wire [2:0] rm8;
|
wire op8;
|
wire op8;
|
wire sa8, sb8, sc8;
|
wire sa8, sc8;
|
|
|
delay2 #(EMSB+1) u81 (.clk(clk), .ce(ce), .i(ex6), .o(ex8));
|
delay2 #(EMSB+3) u81 (.clk(clk), .ce(ce), .i(ex6), .o(ex8));
|
delay2 #(EMSB+1) u82 (.clk(clk), .ce(ce), .i(xc6), .o(xc8));
|
delay2 #(EMSB+1) u82 (.clk(clk), .ce(ce), .i(xc6), .o(xc8));
|
vtdl #(1) u83 (.clk(clk), .ce(ce), .a(4'd5), .d(xcInf2), .q(xcInf8));
|
vtdl #(1) u83 (.clk(clk), .ce(ce), .a(4'd5), .d(xcInf2), .q(xcInf8));
|
vtdl #(3) u84 (.clk(clk), .ce(ce), .a(4'd7), .d(rm), .q(rm8));
|
vtdl #(3) u84 (.clk(clk), .ce(ce), .a(4'd7), .d(rm), .q(rm8));
|
vtdl #(1) u85 (.clk(clk), .ce(ce), .a(4'd6), .d(op1), .q(op8));
|
vtdl #(1) u85 (.clk(clk), .ce(ce), .a(4'd6), .d(op1), .q(op8));
|
vtdl #(1) u86 (.clk(clk), .ce(ce), .a(4'd7), .d(sa1 ^ sb1), .q(sa8));
|
vtdl #(1) u86 (.clk(clk), .ce(ce), .a(4'd6), .d(sa1 ^ sb1), .q(sa8));
|
vtdl #(1) u87 (.clk(clk), .ce(ce), .a(4'd7), .d(sc1), .q(sc8));
|
vtdl #(1) u87 (.clk(clk), .ce(ce), .a(4'd6), .d(sc1), .q(sc8));
|
|
|
always @(posedge clk)
|
always @(posedge clk)
|
if (ce) ex_gt_xc8 <= ex_gt_xc7;
|
if (ce) ex_gt_xc8 <= ex_gt_xc7;
|
always @(posedge clk)
|
always @(posedge clk)
|
if (ce)
|
if (ce)
|
Line 526... |
Line 527... |
// numbers are equal, in which case the exponent should be
|
// numbers are equal, in which case the exponent should be
|
// zero.
|
// zero.
|
// -----------------------------------------------------------
|
// -----------------------------------------------------------
|
|
|
reg so9;
|
reg so9;
|
reg [EMSB:0] ex9;
|
reg [EMSB+2:0] ex9;
|
reg [EMSB:0] ex9a;
|
reg [EMSB+2:0] ex9a;
|
reg ex_gt_xc9;
|
reg ex_gt_xc9;
|
reg [EMSB:0] xc9;
|
reg [EMSB:0] xc9;
|
reg a_gt_c9;
|
reg a_gt_c9;
|
wire [FX:0] mo9;
|
wire [FX:0] mo9;
|
wire [FMSB+1:0] fractc9;
|
wire [FMSB+1:0] fractc9;
|
Line 551... |
Line 552... |
delay3 #(FMSB+2) u94 (.clk(clk), .ce(ce), .i(fractc6), .o(fractc9));
|
delay3 #(FMSB+2) u94 (.clk(clk), .ce(ce), .i(fractc6), .o(fractc9));
|
delay3 u95 (.clk(clk), .ce(ce), .i(under6), .o(under9));
|
delay3 u95 (.clk(clk), .ce(ce), .i(under6), .o(under9));
|
delay2 u96 (.clk(clk), .ce(ce), .i(xeq7), .o(xeq9));
|
delay2 u96 (.clk(clk), .ce(ce), .i(xeq7), .o(xeq9));
|
|
|
always @(posedge clk)
|
always @(posedge clk)
|
if (ce) ex9 <= resZero8 ? 0 : ex_gt_xc8 ? ex8 : xc8;
|
if (ce) ex9 <= resZero8 ? 1'd0 : ex_gt_xc8 ? ex8 : {2'b0,xc8};
|
|
|
// Compute output sign
|
// Compute output sign
|
always @(posedge clk)
|
always @(posedge clk)
|
if (ce)
|
if (ce)
|
case ({resZero8,sa8,op8,sc8}) // synopsys full_case parallel_case
|
case ({resZero8,sa8,op8,sc8}) // synopsys full_case parallel_case
|
Line 583... |
Line 584... |
// Note that ex9a will be negative for an underflow condition
|
// Note that ex9a will be negative for an underflow condition
|
// so it's added rather than subtracted from xc9 as -(-num)
|
// so it's added rather than subtracted from xc9 as -(-num)
|
// is the same as an add. The underflow is tracked rather than
|
// is the same as an add. The underflow is tracked rather than
|
// using extra bits in the exponent.
|
// using extra bits in the exponent.
|
// -----------------------------------------------------------
|
// -----------------------------------------------------------
|
reg [EMSB:0] xdiff10;
|
reg [EMSB+2:0] xdiff10;
|
reg [FX:0] mfs;
|
reg [FX:0] mfs;
|
reg ops10;
|
reg ops10;
|
|
|
|
// If the multiplier exponent was negative (underflowed) then
|
|
// the mantissa needs to be shifted right even more (until
|
|
// the exponent is zero. The total shift would be xc9-0-
|
|
// amount underflows which is xc9 + -ex9a.
|
|
|
always @(posedge clk)
|
always @(posedge clk)
|
if (ce) xdiff10 <= ex_gt_xc9 ? ex9a - xc9
|
if (ce) xdiff10 <= ex_gt_xc9 ? ex9a - xc9
|
: (under9 ? xc9 + ex9a : xc9 - ex9a);
|
: ex9a[EMSB+2] ? xc9 + (~ex9a+2'd1)
|
|
: xc9 - ex9a;
|
|
|
// Determine which fraction to denormalize (the one with the
|
// Determine which fraction to denormalize (the one with the
|
// smaller exponent is denormalized). If the exponents are equal
|
// smaller exponent is denormalized). If the exponents are equal
|
// denormalize the smaller fraction.
|
// denormalize the smaller fraction.
|
always @(posedge clk)
|
always @(posedge clk)
|
Line 682... |
Line 689... |
// - Sort operands
|
// - Sort operands
|
// -----------------------------------------------------------
|
// -----------------------------------------------------------
|
reg [FX+2:0] oaa, obb;
|
reg [FX+2:0] oaa, obb;
|
wire realOp15;
|
wire realOp15;
|
wire [EMSB:0] ex15;
|
wire [EMSB:0] ex15;
|
|
wire [EMSB:0] ex9c = ex9[EMSB+1] ? infXp : ex9[EMSB:0];
|
|
wire overflow15;
|
vtdl #(1) u151 (.clk(clk), .ce(ce), .a(4'd7), .d(realOp7), .q(realOp15));
|
vtdl #(1) u151 (.clk(clk), .ce(ce), .a(4'd7), .d(realOp7), .q(realOp15));
|
vtdl #(EMSB+1) u152 (.clk(clk), .ce(ce), .a(4'd5), .d(ex9), .q(ex15));
|
vtdl #(EMSB+1) u152 (.clk(clk), .ce(ce), .a(4'd5), .d(ex9c), .q(ex15));
|
|
vtdl #(EMSB+1) u153 (.clk(clk), .ce(ce), .a(4'd5), .d(ex9[EMSB+1]| &ex9[EMSB:0]), .q(overflow15));
|
|
|
always @(posedge clk)
|
always @(posedge clk)
|
if (ce) oaa <= a_gt_b14 ? oa : ob;
|
if (ce) oaa <= a_gt_b14 ? oa : ob;
|
always @(posedge clk)
|
always @(posedge clk)
|
if (ce) obb <= a_gt_b14 ? ob : oa;
|
if (ce) obb <= a_gt_b14 ? ob : oa;
|
Line 707... |
Line 716... |
wire op16;
|
wire op16;
|
wire exinf16;
|
wire exinf16;
|
|
|
vtdl #(1) u161 (.clk(clk), .ce(ce), .a(4'd10), .d(qNaNOut5|aNan5|bNan5), .q(Nan16));
|
vtdl #(1) u161 (.clk(clk), .ce(ce), .a(4'd10), .d(qNaNOut5|aNan5|bNan5), .q(Nan16));
|
vtdl #(1) u162 (.clk(clk), .ce(ce), .a(4'd14), .d(cNan1), .q(cNan16));
|
vtdl #(1) u162 (.clk(clk), .ce(ce), .a(4'd14), .d(cNan1), .q(cNan16));
|
vtdl #(1) u163 (.clk(clk), .ce(ce), .a(4'd9), .d(exinf6), .q(aInf16));
|
vtdl #(1) u163 (.clk(clk), .ce(ce), .a(4'd9), .d(&ex6), .q(aInf16));
|
vtdl #(1) u164 (.clk(clk), .ce(ce), .a(4'd14), .d(cInf1), .q(cInf16));
|
vtdl #(1) u164 (.clk(clk), .ce(ce), .a(4'd14), .d(cInf1), .q(cInf16));
|
vtdl #(1) u165 (.clk(clk), .ce(ce), .a(4'd14), .d(op1), .q(op16));
|
vtdl #(1) u165 (.clk(clk), .ce(ce), .a(4'd14), .d(op1), .q(op16));
|
delay3 #(FX+1) u166 (.clk(clk), .ce(ce), .i(mo13), .o(mo16));
|
delay3 #(FX+1) u166 (.clk(clk), .ce(ce), .i(mo13), .o(mo16));
|
vtdl #(FMSB+2) u167 (.clk(clk), .ce(ce), .a(4'd6), .d(fractc9), .q(fractc16));
|
vtdl #(FMSB+2) u167 (.clk(clk), .ce(ce), .a(4'd6), .d(fractc9), .q(fractc16));
|
delay1 u169 (.clk(clk), .ce(ce), .i(&ex15), .o(exinf16));
|
delay1 u169 (.clk(clk), .ce(ce), .i(&ex15), .o(exinf16));
|
Line 724... |
Line 733... |
// - adjust for Nans
|
// - adjust for Nans
|
// -----------------------------------------------------------
|
// -----------------------------------------------------------
|
wire [EMSB:0] ex17;
|
wire [EMSB:0] ex17;
|
reg [FX:0] mo17;
|
reg [FX:0] mo17;
|
wire so17;
|
wire so17;
|
|
wire exinf17;
|
|
wire overflow17;
|
|
|
vtdl #(1) u171 (.clk(clk), .ce(ce), .a(4'd7), .d(so9), .q(so17));
|
vtdl #(1) u171 (.clk(clk), .ce(ce), .a(4'd7), .d(so9), .q(so17));
|
delay2 #(EMSB+1) u172 (.clk(clk), .ce(ce), .i(ex15), .o(ex17));
|
delay2 #(EMSB+1) u172 (.clk(clk), .ce(ce), .i(ex15), .o(ex17));
|
|
delay1 #(1) u173 (.clk(clk), .ce(ce), .i(exinf16), .o(exinf17));
|
|
delay2 u174 (.clk(clk), .ce(ce), .i(overflow15), .o(overflow17));
|
|
|
always @(posedge clk)
|
always @(posedge clk)
|
casez({aInf16&cInf16,Nan16,cNan16,exinf16})
|
casez({aInf16&cInf16,Nan16,cNan16,exinf16})
|
4'b1???: mo17 <= {1'b0,op16,{FMSB-1{1'b0}},op16,{FMSB{1'b0}}}; // inf +/- inf - generate QNaN on subtract, inf on add
|
4'b1???: mo17 <= {1'b0,op16,{FMSB-1{1'b0}},op16,{FMSB{1'b0}}}; // inf +/- inf - generate QNaN on subtract, inf on add
|
4'b01??: mo17 <= {1'b0,mo16};
|
4'b01??: mo17 <= {1'b0,mo16};
|
Line 738... |
Line 751... |
4'b0001: mo17 <= 1'd0;
|
4'b0001: mo17 <= 1'd0;
|
default: mo17 <= mab[FX+3:2]; // mab has two extra lead bits and two trailing bits
|
default: mo17 <= mab[FX+3:2]; // mab has two extra lead bits and two trailing bits
|
endcase
|
endcase
|
|
|
assign o = {so17,ex17,mo17};
|
assign o = {so17,ex17,mo17};
|
|
assign zero = {ex17,mo17}==1'd0;
|
// The following are from the multiplier!!!
|
assign inf = exinf17;
|
vtdl #(1) u173 (.clk(clk), .ce(ce), .a(4'd11), .d(over5), .q(overflow) );
|
assign under = ex17==1'd0;
|
vtdl #(1) u174 (.clk(clk), .ce(ce), .a(4'd11), .d(over5), .q(inf) );
|
assign over = overflow17;
|
vtdl #(1) u175 (.clk(clk), .ce(ce), .a(4'd11), .d(under5), .q(underflow) );
|
|
|
|
endmodule
|
endmodule
|
|
|
|
|
// Multiplier with normalization and rounding.
|
// Multiplier with normalization and rounding.
|
|
|
module fpFMAnr(clk, ce, op, rm, a, b, c, o, sign_exe, inf, overflow, underflow);
|
module fpFMAnr(clk, ce, op, rm, a, b, c, o, inf, overflow, underflow, inexact);
|
parameter WID=32;
|
parameter WID=64;
|
`include "fpSize.sv"
|
`include "fpSize.sv"
|
|
|
input clk;
|
input clk;
|
input ce;
|
input ce;
|
input op;
|
input op;
|
input [2:0] rm;
|
input [2:0] rm;
|
input [MSB:0] a, b, c;
|
input [MSB:0] a, b, c;
|
output [MSB:0] o;
|
output [MSB:0] o;
|
output sign_exe;
|
|
output inf;
|
output inf;
|
output overflow;
|
output overflow;
|
output underflow;
|
output underflow;
|
|
output inexact;
|
|
|
wire [EX:0] o1;
|
wire [EX:0] fma_o;
|
|
wire fma_underflow;
|
|
wire norm_underflow;
|
|
wire norm_inexact;
|
wire sign_exe1, inf1, overflow1, underflow1;
|
wire sign_exe1, inf1, overflow1, underflow1;
|
wire [MSB+3:0] fpn0;
|
wire [MSB+3:0] fpn0;
|
|
|
fpFMA #(WID) u1 (clk, ce, op, rm, a, b, c, o1, inf1);
|
fpFMA #(WID) u1
|
fpNormalize #(WID) u2(.clk(clk), .ce(ce), .under(1'b0), .i(o1), .o(fpn0) );
|
(
|
|
.clk(clk),
|
|
.ce(ce),
|
|
.op(op),
|
|
.rm(rm),
|
|
.a(a),
|
|
.b(b),
|
|
.c(c),
|
|
.o(fma_o),
|
|
.under(fma_underflow),
|
|
.inf()
|
|
);
|
|
fpNormalize #(WID) u2
|
|
(
|
|
.clk(clk),
|
|
.ce(ce),
|
|
.i(fma_o),
|
|
.o(fpn0),
|
|
.under_i(fma_underflow),
|
|
.under_o(norm_underflow),
|
|
.inexact_o(norm_inexact)
|
|
);
|
fpRoundReg #(WID) u3(.clk(clk), .ce(ce), .rm(rm), .i(fpn0), .o(o) );
|
fpRoundReg #(WID) u3(.clk(clk), .ce(ce), .rm(rm), .i(fpn0), .o(o) );
|
delay2 #(1) u4(.clk(clk), .ce(ce), .i(sign_exe1), .o(sign_exe));
|
fpDecomp #(WID) u4(.i(o), .xz(underflow), .inf(inf));
|
delay2 #(1) u5(.clk(clk), .ce(ce), .i(inf1), .o(inf));
|
delay1 #(1) u6 (.clk(clk), .ce(ce), .i(norm_inexact), .o(inexact));
|
|
assign overflow = inf;
|
|
|
endmodule
|
endmodule
|
|
|
|
|
No newline at end of file
|
No newline at end of file
|