Line 1... |
Line 1... |
`timescale 1ns / 1ps
|
`timescale 1ns / 1ps
|
// ============================================================================
|
// ============================================================================
|
// __
|
// __
|
// \\__/ o\ (C) 2006-2016 Robert Finch, Waterloo
|
// \\__/ o\ (C) 2006-2018 Robert Finch, Waterloo
|
// \ __ / All rights reserved.
|
// \ __ / All rights reserved.
|
// \/_// robfinch<remove>@finitron.ca
|
// \/_// robfinch<remove>@finitron.ca
|
// ||
|
// ||
|
//
|
//
|
// fpNormalize.v
|
// fpNormalize.v
|
Line 46... |
Line 46... |
localparam EMSB = WID==128 ? 14 :
|
localparam EMSB = WID==128 ? 14 :
|
WID==96 ? 14 :
|
WID==96 ? 14 :
|
WID==80 ? 14 :
|
WID==80 ? 14 :
|
WID==64 ? 10 :
|
WID==64 ? 10 :
|
WID==52 ? 10 :
|
WID==52 ? 10 :
|
WID==48 ? 10 :
|
WID==48 ? 11 :
|
WID==44 ? 10 :
|
WID==44 ? 10 :
|
WID==42 ? 10 :
|
WID==42 ? 10 :
|
WID==40 ? 9 :
|
WID==40 ? 9 :
|
WID==32 ? 7 :
|
WID==32 ? 7 :
|
WID==24 ? 6 : 4;
|
WID==24 ? 6 : 4;
|
localparam FMSB = WID==128 ? 111 :
|
localparam FMSB = WID==128 ? 111 :
|
WID==96 ? 79 :
|
WID==96 ? 79 :
|
WID==80 ? 63 :
|
WID==80 ? 63 :
|
WID==64 ? 51 :
|
WID==64 ? 51 :
|
WID==52 ? 39 :
|
WID==52 ? 39 :
|
WID==48 ? 35 :
|
WID==48 ? 34 :
|
WID==44 ? 31 :
|
WID==44 ? 31 :
|
WID==42 ? 29 :
|
WID==42 ? 29 :
|
WID==40 ? 28 :
|
WID==40 ? 28 :
|
WID==32 ? 22 :
|
WID==32 ? 22 :
|
WID==24 ? 15 : 9;
|
WID==24 ? 15 : 9;
|
Line 96... |
Line 96... |
wire rbit = i[FMSB-1];
|
wire rbit = i[FMSB-1];
|
wire sbit = |i[FMSB-2:0];
|
wire sbit = |i[FMSB-2:0];
|
// shift mantissa left by one to reduce to a single whole digit
|
// shift mantissa left by one to reduce to a single whole digit
|
// if there is no exponent increment
|
// if there is no exponent increment
|
wire [FMSB+4:0] mo;
|
wire [FMSB+4:0] mo;
|
wire [FMSB+4:0] mo1 = xInf1 & incExp1 ? 0 :
|
wire [FMSB+4:0] mo1 = (xInf1 & incExp1) ? 0 :
|
incExp1 ? {i[FX:FMSB+2],gbit,rbit,sbit} : // reduce mantissa size
|
incExp1 ? {i[FX:FMSB+2],gbit,rbit,sbit} : // reduce mantissa size
|
{i[FX-1:FMSB+1],gbit,rbit,sbit}; // reduce mantissa size
|
{i[FX-1:FMSB+1],gbit,rbit,sbit}; // reduce mantissa size
|
wire [FMSB+3:0] mo2;
|
wire [FMSB+3:0] mo2;
|
wire [7:0] leadingZeros2;
|
wire [7:0] leadingZeros2;
|
|
|
generate
|
generate
|
begin
|
begin
|
if (WID==32)
|
if (WID==32) begin
|
cntlz32Reg clz0 (.clk(clk), .ce(ce), .i({mo1,5'b0}), .o(leadingZeros2) );
|
cntlz32Reg clz0 (.clk(clk), .ce(ce), .i({mo1,5'b0}), .o(leadingZeros2) );
|
|
assign leadingZeros2[7:6] = 2'b00;
|
|
end
|
else if (WID==128)
|
else if (WID==128)
|
cntlz128Reg clz0 (.clk(clk), .ce(ce), .i({mo1,12'b0}), .o(leadingZeros2) );
|
cntlz128Reg clz0 (.clk(clk), .ce(ce), .i({mo1,12'b0}), .o(leadingZeros2) );
|
else if (WID==96)
|
else if (WID==96)
|
cntlz96Reg clz0 (.clk(clk), .ce(ce), .i({mo1,12'b0}), .o(leadingZeros2) );
|
cntlz96Reg clz0 (.clk(clk), .ce(ce), .i({mo1,12'b0}), .o(leadingZeros2) );
|
else if (WID==80)
|
else if (WID==80)
|
Line 122... |
Line 124... |
// compensate for leadingZeros delay
|
// compensate for leadingZeros delay
|
wire xInf2;
|
wire xInf2;
|
delay1 #(EMSB+1) d2(.clk(clk), .ce(ce), .i(xo1), .o(xo2) );
|
delay1 #(EMSB+1) d2(.clk(clk), .ce(ce), .i(xo1), .o(xo2) );
|
delay1 #(1) d3(.clk(clk), .ce(ce), .i(xInf1), .o(xInf2) );
|
delay1 #(1) d3(.clk(clk), .ce(ce), .i(xInf1), .o(xInf2) );
|
|
|
|
|
// If the exponent underflowed, then the shift direction must be to the
|
// If the exponent underflowed, then the shift direction must be to the
|
// right regardless of mantissa bits; the number is denormalized.
|
// right regardless of mantissa bits; the number is denormalized.
|
// Otherwise the shift direction must be to the left.
|
// Otherwise the shift direction must be to the left.
|
wire rightOrLeft2; // 0=left,1=right
|
wire rightOrLeft2; // 0=left,1=right
|
delay1 #(1) d8(.clk(clk), .ce(ce), .i(under), .o(rightOrLeft2) );
|
delay1 #(1) d8(.clk(clk), .ce(ce), .i(under), .o(rightOrLeft2) );
|
Line 135... |
Line 138... |
|
|
// compute amount to shift right
|
// compute amount to shift right
|
// at infinity the exponent can't be incremented, so we can't shift right
|
// at infinity the exponent can't be incremented, so we can't shift right
|
// otherwise it was an underflow situation so the exponent was negative
|
// otherwise it was an underflow situation so the exponent was negative
|
// shift amount needs to be negated for shift register
|
// shift amount needs to be negated for shift register
|
wire [7:0] rshiftAmt2 = xInf2 ? 0 : -xo2 > FMSB+3 ? FMSB+4 : FMSB+4+xo2; // xo2 is negative !
|
wire [7:0] rshiftAmt2 = xInf2 ? 0 : (($unsigned(-xo2) > $unsigned(FMSB+3)) ? FMSB+4 : -xo2);//FMSB+4+xo2; // xo2 is negative !
|
|
|
|
|
// sign
|
// sign
|
// the output sign is the same as the input sign
|
// the output sign is the same as the input sign
|
delay1 #(1) d7(.clk(clk), .ce(ce), .i(so1), .o(so) );
|
delay1 #(1) d7(.clk(clk), .ce(ce), .i(so1), .o(so) );
|
Line 158... |
Line 161... |
wire [FMSB+3:0] mo2a;
|
wire [FMSB+3:0] mo2a;
|
//shiftAndMask #(FMSB+4) u1 (.op({rightOrLeft2,1'b0}), .a(mo2), .b(rightOrLeft2 ? lshiftAmt2 : rshiftAmt2), .mb(6'd0), .me(FMSB+3), .o(mo2a) );
|
//shiftAndMask #(FMSB+4) u1 (.op({rightOrLeft2,1'b0}), .a(mo2), .b(rightOrLeft2 ? lshiftAmt2 : rshiftAmt2), .mb(6'd0), .me(FMSB+3), .o(mo2a) );
|
|
|
// always @(posedge clk)
|
// always @(posedge clk)
|
// if (ce)
|
// if (ce)
|
assign mo = rightOrLeft2 ? mo2 >> rshiftAmt2 : mo2 << lshiftAmt2;
|
assign mo = rightOrLeft2 ? (mo2 >> rshiftAmt2) : (mo2 << lshiftAmt2);
|
|
//always @(posedge clk)
|
|
// $display("%c xo2=%d -xo2=%d rshift=%d >%d %d", rightOrLeft2 ? "r" : "l",xo2, -xo2, rshiftAmt2,($unsigned(-xo2) > $unsigned(FMSB+3)),FMSB+3);
|
assign o = {so,xo,mo[FMSB+4:1]};
|
assign o = {so,xo,mo[FMSB+4:1]};
|
|
|
endmodule
|
endmodule
|
|
|
|
|
No newline at end of file
|
No newline at end of file
|